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Abstract Current models of vegetation pattern formation rely on a system of weakly
nonlinear reaction–diffusion equations that are coupled by their source terms. While
these equations, which are used to describe a spatiotemporal planar evolution of
biomass and soil water, qualitatively capture the emergence of various types of veg-
etation patterns in arid environments, they are phenomenological and have a limited
predictive power. We ameliorate these limitations by deriving the vertically averaged
Richards’ equation to describe flow (as opposed to “diffusion”) ofwater in partially sat-
urated soils. This establishes conditions under which this nonlinear equation reduces
to its weakly nonlinear reaction–diffusion counterpart used in the previous models,
thus relating their unphysical parameters (e.g., diffusion coefficient) to the measurable
soil properties (e.g., hydraulic conductivity) used to parameterize the Richards equa-
tion. Our model is valid for both flat and sloping landscapes and can handle arbitrary
topography and boundary conditions. The result is a model that relates the environ-
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mental conditions (e.g., precipitation rate, runoff and soil properties) to formation of
multiple patterns observed in nature (such as stripes, labyrinth and spots).

Keywords Vegetation pattern · Soil water flow · Sloping landscape

Mathematics Subject Classification 92D40 · 35M30 · 35C07

1 Introduction

Complex vegetation patterns (VPs) are observed in numerous regions around the
world (e.g., Valentin et al. 1999; Deblauwe et al. 2008; Getzin et al. 2016). On flat
grounds VPs are spots, labyrinths and gaps (von Hardenberg et al. 2001; Rietkerk
et al. 2004; Gowda et al. 2014), whereas on sloping environments the typical VP is
stripes (Lefever and Lejeune 1997; Klausmeier 1999; Deblauwe et al. 2008; Meron
2012). A widely accepted tenet underpinning theoretical studies of VP formation is
the feedback between vegetation and water available in the soil, also known as “water
redistribution hypothesis” (Sherratt and Synodinos 2012). This hypothesis states that
since most of the rain falls on bare ground, which has a low infiltration rate, it runs
off until it reaches vegetated areas with higher infiltration rates. This process creates
a positive feedback loop between local vegetation growth and water transport toward
the growth location. A typical analysis of VPs assumes that patterns start from a ran-
domly perturbed uniform vegetation distribution and focuses on the transition between
different patterns in response to the reduction in the mean (annual) rainfall (Meron
2012; Gowda et al. 2014). In this view, the terrain slope may have a fundamental
impact on processes governed by water movement, due to the downhill flow both on
the surface (runoff) and in the soil (Deblauwe et al. 2012; Dralle et al. 2014). A similar
effect can be detected even when deterministic initial conditions mimic the effect of
some localized disturbances (see, e.g., Sherratt 2016; Zelnik et al. 2016 and references
therein).

Other feedback mechanisms have been hypothesized to explain VP formation in
semiarid environments.Most relevant examples of such processes are local facilitation
due to the reduction of evaporation by shading and the effect of the shape of the root
system on the distribution of water in the soil (Meron 2016 and references therein).
An additional process, which takes place on slopes, is the interception of the downhill
runoff of water by vegetation. Lefever and Lejeune (1997) discussed the effects of
anisotropic environmental conditions on formation of tiger bush (striped patterns).
The authors showed that bands of vegetation can be either orthogonal or parallel
to the anisotropy if the anisotropy enhances either negative or positive feedbacks,
respectively. In the case of slopes, the anisotropy is represented by the preferential
downhill flow ofwater both on the surface (runoff) and in the soil. This process has two
main effects. First, vegetation tends to formbands andmoves uphill to follow the source
of water. Second, vegetation fronts deplete the resource which becomes unavailable
to the plants downhill. The latter effect allows the development of another band only
far enough downhill where new runoff can accumulate. Although the majority of the
models rely upon the water redistribution hypothesis, it is important to understand
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their physical implications, which could inadvertently lead the reader to erroneously
apply the model of Klausmeier (1999) or Rietkerk et al. (2004) to unwarranted sites.

Mathematical models of VP dynamics can become very complex, since they have
to account for several biophysical processes. A common approach to the problem
of model selection is to adopt the principle of maximum parsimony. Thus, in line
with Klausmeier (1999), we assume that the governing equation for the specific (per
unit area) biomass B [ML−2] is

∂B
∂t

= D∇2
h B + cWB2 − dB, (1)

where the diffusion coefficient D [L2/T] represents the plant dispersal, and ∇h ≡
(∂/∂x1, ∂/∂x2) denotes the two-dimensional gradient. The positive constants c
[L/(MT)] and d [1/T] quantify the rate of growth and death of biomass, respectively.
A survey of the values of these two parameters can be found in Marasco et al. (2014).
The quantity W is typically referred to simply as “water” (e.g., Klausmeier 1999;
Rietkerk et al. 2004; Cartenì et al. 2012; Marasco et al. 2014, among many others).
The main assumption underlying (1) is that the biomass growth rate is proportional
to plant dispersal (modeled as diffusion), water uptake and plant’s natural mortality.
A functional dependence C ≡ C(W, B) of the biomass B on the soil water W can be
modeled in several ways (e.g., Gierer and Meinhardt 1972; Segel and Jackson 1972).
Equation (1) is based on the so-called local self-enhancement mechanism that assumes
C ∼ WB2 and covers a large class of observed cases.

We focus on the role of water distribution in determining the VP type. Rather
than using a diffusion–reaction equation to describe the dynamics of the somewhat
ambiguous quantity W , we use a physically based model (Richards’ equation) to
describe flow of water in partially saturated soils. This enables us both to express W
in terms of soil water saturation and to relate soil properties and rainfall regime to the
occurrence of VPs. Finally, we show how our results explain the emergence of certain
patterns rather than others.

2 Model of Water Flow in Sloping Environments

Agenerally acceptedmodel of fluid flow in partially saturated porousmedia, including
water flow in soils, employs the three-dimensional Richards equation (e.g., Comegna
et al. 2010, 2013; Severino et al. 2003, 2006; Fallico et al. 2016; Gómez et al. 2009
and references therein)

∂ϑ

∂t
= −∇ · q − S, q = −KsKr∇(ψ + x3). (2)

Here t [T] is time, x = (x1, x2, x3)⊤ [L] is the position vector with the vertical
coordinate x3 positive upward, ϑ(x, t) [−] is the water content (volume of water per
volume of soil), q(x, t) [L/T] is the (Buckingham–Darcy) water flux or macroscopic
(averaged) flow velocity, Ks [L/T] is the saturated hydraulic conductivity, 0 < Kr =
Kr (ϑ) < 1 [−] is the water content-dependent relative hydraulic conductivity of the
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Fig. 1 Key hydrologic processes involved in vegetation pattern formation on a sloping landscape. The
sloping root zone is bounded by a ground surface su(x1, x2) and a surface sb(x1, x2) at the bottom. The
infiltration flux is prescribed at the soil surface su . The hosting soil is horizontally unbounded (Color figure
online)

soil,ψ(ϑ) [L] is the pressure head (also knownasmatric potential or suction) defined as
the ratioψ ≡ pw/γw between the averagewater pressure pw and specificwaterweight
γw. Pressure head in soils is smaller than atmospheric pressure head, i.e., ψ < 0. The
evapotranspiration rate S(ϑ, B) [T−1] depends on both water content ϑ and biomass
B. It provides a field-scale representation of water uptake by roots (Hillel 1998) and
can be related to a mesoscale description of water dynamics at the interface between
individual roots and ambient soil (e.g., Severino and Tartakovsky 2015). Equation (2)
is closed by specifying the functional forms of Kr = Kr (ϑ), ψ = ψ(ϑ) and S(ϑ, B).

We use this equation to describe water dynamics in the root zone, sb(xh) ≤ x3 ≤
su(xh), where su(xh) is the ground surface, sb(xh) is the bottom of the root zone,
and xh ≡ (x1, x2)⊤ is the planar position vector (Fig. 1). Average infiltration rate p
[LT−1] enters the model via a boundary condition

− q · n = p for x3 = su(xh) (3)

where n is the unit normal vector to the surface su(xh). The infiltration rate p is com-
puted by subtracting runoff and other screening processes from the net precipitation
rate. The bottom of the root zone, x3 = sb(xh), is defined as soil depth at which
(Bresler 1973)

∂ψ

∂x3
= 0 for x3 = sb(xh). (4)
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Recalling the definition of water flux q in (2), this boundary condition defines the
bottomof a root zone as a surface belowwhich the soilwater flow is gravity-dominated.
The boundary conditions (3) and (4) imply that flow in the vadose zone is largely
vertical; that is the principal reason for deploying the three-dimensional Richards
equation (2) rather than its one-dimensional (in the x1 direction) counterpart used by
Ursino (2005).

Ecological models deal with “water,” a quantity W (xh, t) whose dynamics is
described in two spatial dimensions, xh ∈ R2. We define this quantity as the amount
of water contained in a soil column,

W (xh, t) =
∫ su

sb
ϑ(x, t)dx3, (5)

which means that W has the units of length [L]. An equation for W (x, t) is derived
by integrating (2) over x3 (see Appendix for details), leading to

∂W
∂t

= Ks∇2
hG − Ks∇h · [F(su)∇hsu] + p

√
1+ |∇hsu |2 − KsK ⋆

r − St ,

G =
∫ su(xh)

Z
Fdx3 (6)

where F(ϑ) =
∫ ϑ
0 D(s)ds; D(ϑ) is the moisture diffusivity normalized by Ks [L];

K ⋆
r is the value of relative conductivity at x3 ≡ Z ; and St ≡ St (xh, t) is the total rate,

[LT−1], of water consumption by plants.
We assume Kr = exp(αψ) (e.g., Tartakovsky et al. 2003) and ϑ = exp(αψ) (e.g.,

Pullan 1990) where α [L−1] is a soil parameter related to the soil’s texture. The
characteristic length λc ≡ α−1 is a measure of the relative importance of the capillary
and gravitational forces (see White and Sully 1992; Severino et al. 2016, 2017);
gravity dominates capillarity (coarse-textured soils) when λc → 0 and vice versa
(fine-textured soils). Then, D(ϑ) = 1/α, F(ϑ) = ϑ/α, and (6) transforms into

∂W
∂t

= Ks

α

{
∇2
hW − ∇h · [ϑ(su)∇hsu]

}
+ p

√
1+ |∇hsu |2 − KsK ⋆

r − St ,

St = cW B2 + ℓW (7)

where ℓ is the rate of the water loss in the soil by evaporation and/or drainage. This
equation is exact but contains unknown ϑu ≡ ϑ(su). While a detailed (numerical
or analytical) investigation is required to compute the distribution of water content
ϑ within the rooting zone (see, e.g., Severino and Tartakovsky 2015), we adopt a
Dupuit-like approximation by neglecting the vertical variability of ϑ in the root zone.
Then (5) gives rise to ϑ(su) ≈ W/(su − Z) ≈ aW , where a [L−1] is the inverse of the
root zone depth (the latter approximation is not strictly necessary). Hence, (7) yields

∂W
∂t

= Ks

α
∇2
hW −∇h · (uhW )+ p

√
1+ |∇hsu |2 − KsK ⋆

r − St , uh = aKs

α
∇hsu .

(8)
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Equations (1) and (8) relate the occurrence of VPs to water distribution along
the landscape. In the case of zero slope, i.e., |∇hsu | ≡ 0, (8) yields a generalized
version of the one-dimensional model of Ursino (2005). Before proceeding further, we
compare (8) with its counterpart in Sherratt (2016). The two equations are practically
the same (up to a slightly different definition of the advection term). Nevertheless,
there is a fundamental difference which renders our flow model more suitable for the
analysis of the occurrence of VPs. Our model does not require an extra parameter (the
coefficient D in Sherratt 2016) accounting for “water diffusion”; instead, it is shown
to be given by the ratio, Ks/α, of well-defined (measurable) soil hydraulic properties.
This allows one to relate the occurrence of VPs to: (i) soil parameters, (ii) precipitation
regime and (iii) landscape’s slope, thus providing a physically based explanation of
the occurrence (or not) of VP in certain regions.

3 Discussion and Concluding Remarks

To elucidate the impact of soil type and slope on the emergence of VPs, we conduct
numerical simulations on a square (100m × 100m) domain. Equations (1) and (8)
are solved by a finite-difference method (for details, see Rietkerk et al. 2002). The
quantities, which are allowed to vary (within a broad range), are the soil parameter
α (see, e.g., Comegna et al. 2006, 2010; Severino et al. 2016) and the slope s ≡ ∇su ∼
constant. Figure 2 depicts the spatial distribution of biomass B as predicted by our
model for different α = 100, 21.5, 17.5, 10, 1 m−1 (from left to right), and slopes
s = 0, 0.3, 0.6. The other (fixed) parameters are listed in Table 1 (Severino et al.
2003, 2010). Starting with the case of patterns in flat environments (the bottom row in
Fig. 2), water is strongly retained when α is large (fine-textured soils/large capillary
forces). As a consequence, almost all the infiltrated water is available for plant uptake,
leading to the uniform distribution of biomass. As α decreases, the water mobility
increases.

This determines a reduction of water and development of spot-type patterns. In flat
landscapes, coarse-textured soils (smallα) facilitate the emergence of spotted patterns,
whereas fine-textured soils (large α) favor uniform vegetations. Finally, the isotropy
of the biomass diffusion coefficient D implies that the shape of spots in the case of
s = 0 is circular.

Another (and more interesting) way to look at Fig. 2 is from the bottom to the
top (increasing slope) for a fixed α, i.e., for a given soil type. For fixed Ks/α ≤
(8.6md−1)/(50m−1), soil water retention deteriorates as the slope increases and grav-
ity becomes dominant.As a consequence, patterns start to emerge. The effect of sloping
is to produce an anisotropy in pattern formation, giving rise to an elongated “bar-type”
shape (stripe) (in agreement with von Hardenberg et al. 2001; Meron et al. 2007). This
is particularly pronounced at large slopes. The same transitional behavior is observed
even for Ks/α ≃ (8.6m d−1)/(10m−1). The difference here is that the final (i.e.,
stripe) pattern starts from a spotted one. For Ks/α ≃ 8.6/10m2 d−1 the emergence
of labyrinth patterns with the highest slope originates, unlike the previous case (cor-
responding to α ≃ 17.5m−1), from the appearance of hexagonal-type gaps in a flat
environment. Finally, for large water diffusion, e.g., for Ks/α ≥ (8.6md−1)/(1m−1),
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Fig. 2 Spatial vegetation patterns at tmax for several values of the soil diffusion coefficient Ks/α (m2 d−1)
with varying α (columns) and slope s (rows). The remaining parameters are listed in Table 1. Darker shades
of the gray scale maps represent higher values of biomass B

Table 1 Values of the model parameters used in the numerical simulations reported in Fig. 2

Parameter Description Units Value

c Biomass’s growth rate due to water uptake md−1 kg−1 4.5 × 10−1

d Death’s rate of the biomass d−1 1.0 × 10−2

p Precipitation rate md−1 4.0 × 10−3

D Diffusion coefficient for biomass dispersal m2d−1 1.0 × 10−2

a Inverse of the root zone width m−1 1.0

Ks Saturated hydraulic conductivity md−1 8.6

K ⋆
r Relative conductivity at x3 ≡ Z − 0.0

spot-like patterns are not influenced by s because diffusion overtakes sloping. In the
case of extremely sloping environments (the row corresponding to s = 0.6 in Fig. 2),
although water is strongly retained, the slope is so steep as to prevent formation of
uniform patterns (as happens for smaller s), and instead it leads immediately to stripes.

Table 2 corroborates these results by comparing the model predictions with the
VPs observed in several countries for a given mean precipitation, slope and soil type.
It demonstrates a good correspondence between real vegetation patterns and the ones
predicted by the model simulations shown in Fig. 2.

To summarize, our study relates the analysis of Sherratt (2016) to hydraulic soil
properties. By using a widely used model of flow in partially saturated porous media
(Richards’ equation), we recover the VPs in sloping environments predicted by Sher-
ratt (2016). Crucially, our model provides physical insights into the effects of soil
properties on VP formation:
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1. Coarse-textured soils do not retain water well (i.e., gravity is the dominant force),
and therefore vegetational patterns are likely to be formed, in accordancewithSher-
ratt (2016);

2. fine-textured soils strongly retainwater, favoring the formation of uniformpatterns.

This explains, for instance, the occurrence of VPs in arid/semiarid environments char-
acterized by sandy (i.e., coarse) soils (see also discussions in Zelnik et al. 2015;
Meron 2016). Finally, unlike the majority of the previous studies dealing with flat flow
domains, we show how sloping may lead to bar-type patterns even in strongly water
retaining soils wherein, in the absence of sloping, patterns are usually not observed.

In future studies, our analysis will be extended in several ways. It can be incor-
porated into the physics-based model of Gilad et al. (2004), which uses shallow
water equations to account for overland flow (runoff) but employs a phenomenological
“water diffusion” concept to deal with flow in partially saturated soils.

For the sake of simplicity, we did not consider other processes involved in the
formation of VPs, such as the “litter autotoxicity” proposed by Cartenì et al. (2012)
and Marasco et al. (2014), or screening effects, like interception of run-off and fog by
vegetation and trees, respectively (see, e.g., Meron 2016). Future works should also
investigate effects of soil properties on the cycle of water soluble toxic molecules and
possible implications for the formation and stability of spatial patterns by means of a
bifurcation analysis.
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per mobilitá di breve durata” (Naples University, Italy), “OECD Cooperative Research Programme: Bio-
logical Resource Management for Sustainable Agricultural Systems” (Contract No. JA00073336). D. M.
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Appendix

Integrating the Richards equation (2) over x3 gives

∂W
∂t

= q3(xh, Z , t) − q3(xh, su, t) −
∫ su

Z
(∇h · qh)dx3 − St , (A1)

where St (xh, t) ≡
∫ su
Z S(x, t)dx3 and qh = (q1, q2)⊤. According to Leibniz rule,

∫ su

Z
(∇h · qh)dx3 =

∫ su

Z

2∑

i=1

∂qi
∂xi

dx3 =
2∑

i=1

[
∂

∂xi

∫ su

Z
qidx3 − ∂su

∂xi
qi (xh, su, t)

]
.

(A2)

Hence, (A1) yields

∂W
∂t

= −∇h ·Qh − q3(xh, su, t)+ q3(xh, Z , t)+ qh(xh, su, t) · ∇hsu − St ,

(A3)
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where Qh = (Q1, Q2)
⊤ is the specific (per unit length) volumetric flow rate, [L2/T],

whose components are given by

Qi (xh, t) =
∫ su

Z
qi (x, t)dx3, i = 1, 2. (A4)

Next, we rewrite the equation for the soil surface as F(x) ≡ x3 − su(xh) = 0. The
unit normal vector to this surface is given by

n = ∇F
|∇F | =

1
|∇F |

(
− ∂su

∂x1
,− ∂su

∂x2
, 1

)⊤
. (A5)

Hence, the boundary condition (3) takes the form

qh · ∇hsu − q3 = p|∇F | on x3 = su(xh). (A6)

The boundary condition (4), together with q3 = −KsKr
∂

∂x3
(x3+ψ) from the second

relation in (2), gives rise to the condition

q3 = −KsK ⋆
r on x3 = Z , (A7)

where K ⋆
r is the relative conductivity value at x3 = Z . Substituting (A6) and (A7)

into (A3) yields

∂W
∂t

= −∇h ·Qh + p
√
1+ |∇hsu |2 − KsK ⋆

r − St ,

Qi =
∫ su

Z
qi (xh, x3)dx3, i = 1, 2 (A8)

where St (xh, t) is the total rate of water consumption by plants, [L/T]. Substituting
the definition of the Darcy flux q in (2) into (A4) yields

Qi = −Ks

∫ su

Z
Kr (ϑ)

∂ψ

∂xi
dx3 = −Ks

∫ su

Z
D(ϑ)

∂ϑ

∂xi
dx3, i = 1, 2 (A9)

where D(ϑ) is the moisture diffusivity. Let F(ϑ) ≡
∫ ϑ
0 D(s) ds, then

Qi = −Ks

∫ su

Z

∂

∂xi
F(xh, x3)dx3, i = 1, 2. (A10)

Using Leibniz rule,

Qi/Ks = − ∂

∂xi

∫ su

Z
dx3 F(xh, x3)+ F(su, Z)

∂su
∂xi

, (A11)

and substituting into (A8) leads to
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∂W
∂t

= Ks∇2
hG − Ks∇h · [F(su, Z)∇hsu] + p

√
1+ |∇hsu |2 − KsK ⋆

r − St . (A12)

with

G =
∫ su

Z
F(xh, x3)dx3. (A13)

We assume that Kr = exp (αψ) and ϑ = exp (αψ). Then,

D(ϑ) ≡ Kr (ϑ)
dψ
dϑ

= 1
α

and F(ϑ) = ϑ

α
. (A14)

Hence, G ≡ W/α, which yields (6).
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