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Langevin equations describe systems driven by internally generated or externally imposed

random excitations. excitationsIf these correspond to Gaussian white noise, it is relatively
straightforward to derive a closed form equation for the joint probability density function

(PDF) of state variables. Many natural phenomena present however correlated (colored)

excitations. For such full throughproblems, a probabilistic characterization the resolution

of ofa PDF equation can be obtained through two levels approximations: first, mixed
ensemble moments have to be approximated to tolead a closed system of equations and,

second, equations localized the resulting nonlocal should least be at partially to ensure

computational efficiency. We propose a anew semi-local formulation based on modified

large-eddy diffusivity (LED) approach; the the accuracy formulation retains most of of a
fully nonlocal sameapproach while presenting the order of algorithmic complexity as the

standard LED approach. approach againstThe accuracy theof is successfully tested Monte

Carlo simulations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Randomness enters mathematical models either through stochastic forcing forterms accounting “sub-grid” fluctuations

or representations of ofprobabilistic uncertain coefficients. These sources randomness are notinherent to most–if all–models

of complex of onphenomena. Analyzing quantifyingand the effects randomness system behavior is thus onlycentral not to

the but mathematicalanalysis of equationsLangevin also to modeling in general.

Monte Carlo simulations (MCS) are often used to solve stochastic problems through the computation of a few statistical

moments of a system state such ensembleas mean and variance. They are robust, easy to implement and readily paralleliz-

able, yet computationally demanding. The search the developmentfor more efficient alternatives has led to of quasi-MCS,

moment chaos the methoddifferential equations (MDE), polynomial expansions (PCE), and of distributions. These and other

methods have and limitations,their respective strengths e.g., MDE typically approximations require closure that formally

limit their applicability of of approximateto small coefficients variation the random inputs; and PCE the spatiotemporally

varying inputs with a finite number of random variables, which problemsrenders them unsuitable for whose coefficients
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and are have assources uncorrelated (fieldsrandom functions or orprocesses) short-range correlations such Langevin equa-

tions driven by either white or colored noise.

A model with random coefficients and/or random driving forces admits multiple solutions, the likelihood of which can

be characterized probability or (CDF) ofby the density function (PDF) the cumulative distribution function the system state.

The method of deterministicdistributions, PDF which comprises and CDF methods, aims to derive a (partial differential)

equation for the thePDF (or CDF) system whenof a state; dynamics of a system state is governed by a Langevin equation,

the corresponding PDF Fokker–Planck PDFequation is referred to as a equation. The method has its inorigins statistical

theory turbulence [ ]of 1 and has since uncertaintybeen adapted to quantify parametric in hyperbolic [ and2, the references

therein] and equations,parabolic [ ] differential3 partial as aswell to derive Fokker–Planck Langevinequations for systems

driven by colored noise [ ] white-noise4 . The method of oftendistribution is exact for inputs3 but, closurein general, requires

approximations of distributionswhen correlations.inputs are random fields exhibiting spatiotemporal Thus, the method is

complementary closuresto PCE in its the the performance sense that of generally improves as input correlation lengths

decrease [2].

The need for closures stems from the theystochastic averaging of equations noise;differential with multiplicative typ-

ically involve two approximations. of approximating of The one first consists the mixed ensemble moments the random

parameters and system Thestate. second involves localization of PDF/CDFthe resulting equation integro-to replace an 

differential equation with a partial differential equation. PDF/CDFWhile the former approximation is necessary to render a

equation computable, the latter is used computationallargely for expediency (see, e.g., athe use of large-eddy diffusivity clo-

sure [7] to derive Fokker–Planck-type equations equationsfor both Langevin with colored noise [ advection–reaction4] and

equations with ]).uncertain parameters [8

Nonlocality is a salient feature of averaged systems, accounting for, e.g., non-Fickian or “anomalous” behavior of diffusion

in crowded heterogeneous stochasticallyenvironments [ of on of9]. While the effects localization solutions averaged differ-

ential equations have been studied in the past (e.g., [10]), we are not aware of of similar analyses the localization errors

for PDF/CDF equations. A major goal void.of the present thisstudy is to fill We apply the proposed approach to stochastic,

Langevin-type systems driven by correlated The challenges (colored) noise in Section .2 inherent to closing the resulting

systems are and methodsof equations discussed in Section 3 in the Appendix. describesSection 4 proposed numerical to

solve these systems along with algorithmictheir complexity. compu-In theSection ,5 we study localization errors on two

tational examples: Brownian particles driven by colored noise [11] and the stochastically der oscillator.forced Van Pol Main

conclusions derived from our summarizedstudy are in Section .6

2. PDF method

Consider the random ordinary differential equation

d tx( , )ω

dt
= v( (x t t,ω), ,ω), (1)

x( , )0 ω = x0(ω), (2)

where the timeproblem is to be solved on a interval 0( , T f ) and (1), (2) are to hold for almost every ω ∈  with ( , F ,P)

being an appropriate probability space. The solution x : (0, T f ) ×  → RN is an RN -valued stochastic process

x(t, )ω = [x1( ,t ω), ..., xN ( , )t ω ]T ,

and v : RN ×( ,0 T f )× is a given continuous function. The initial condition x0 is an N-dimensional random vector. Denoting

by · ≡ E[·] the theensemble mean, we consider Reynolds decomposition of v= [v1, ..., vN ]T into deterministicits part  v

and a stochastic fluctuation v

v = v v + ,

where v has any mean zero for fixed x and t . The stochastic fluctuation term is characterized by its correlation time τ

and finite characteristic amplitude. conditionsWe assume that v satisfies additional guaranteeing the existence of uniquea

path-wise solution to ( (1), 2) (see for instance [ ,12 13]). In this paper, we concentrate on dynamical systems for which the

effect aof nonzero correlation time of the stochastic fluctuation cannot be ignored.

Let X = [X1 , ..., XN ]T ∈ R
N be a variable in the phase system’s space. At any given , time t the state of the system is

characterized probability or,by the joint P[x( ,t ω) ≤ ]X equivalently, function (PDF) by its joint probability density p(X, t).

We aim to derive a ( (computable closed-form PDF equation for the initial value problem (IVP) 1), 2).
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Let  be the auxiliary function PDF,(“raw” [ ]2 )

( , )X t;ω = δ(x X(t, )ω − ) =

N


i=1

δ(x i( , )t ω − Xi ), (3)

with its corresponding Reynolds decomposition  =   +  . By elementary properties of the Dirac delta function, the

ensemble mean time theof of( ,X t) over all realizations x at t is simply PDF p(X, t)

( , )X t  ≡



RN

δ(Y X Y Y X− )p( , t d) = p( , t);

hence,  = p + 
.

Differentiating  with respect to time yields the following conservation law

∂

∂t
+ X · =( )v 0, (4)

where usingwe have ) and ) andused ( (1), 3 the the the meansifting property of Dirac function.delta Taking ensemble of (4

the fact that v = 0 leads to an initial problemboundary value for the PDF p

∂p

∂t
+ X ·  ( v p) + X · v = 0, (5)

p ( , )· 0 = p
0, (6)

with conditionvanishing conditions. Thefree-space boundary initial (6) results from theour assumed knowledge of distri-

bution of x0 in (2). The average flux term v  in (5) is unknown the theand can only be evaluated if solution of IVP in

( (1), 2) is known; in other words, the above problem is unclosed.

3. Closures

Our of of ofapproach to closure follows that [14]. For the sake completeness, we present the details the derivation

of three possible closures, namely, nonlocal, the thesemi-local and local, at end of paper, see Appendix A. In all three

formulations, the terminal problem

dχ

ds
= v( ,χ s) , (7)

χ( ) ,t = X (8)

and anits associated flow playχ( )s = ; (s X, t) essential possible,role. Whenever we drop ω from the notation for conve-

nience.

The local closure is obtained by a direct application of the classical large-eddy diffusivity (LED) approach. Under that

approach, covariancethe cross term termcan be split velocityinto a drift and a diffusive term

v  ≈ − ( , )X t V ( , ) ( , )X t p X t D( , )X t X p t(X, ),

where the theLED drift velocity V and LED diffusion tensor D are given (in A.12 A.13) and ( ) respectively. The range of

validity of this closure is expected to tobe limited short correlation time scales.

The nonlocal closure does not rely on short correlations; it is derived in the Appendix and takes the form

v ( , )X t ≈ −

t


0

J ( , )s;X t   ·


v ( , )X t v T ( ( , ) s;X t), s


p s t s( ( ;X, ), )


ds, (9)

where

J ( , )s;X t = exp

⎛

⎝−

t


s

χ · v( ( )χ τ ),τ dτ

⎞

⎠ . (10)

When considering closures more accurate than a simple local approximation as above, the computational complexity

of the method PDF for a given prob-dimension N depends largely upon the work associated with solving the terminal 

lem (7), (8) and that of evaluating the Jacobian (10). Problems for which the divergence of the flow χ · v, which appears

prominently applicationin is in(10), linear χ are dramatically than Browniansimpler the generic case. The particle from

Section 5 falls in this simplified category Van der oscillator,while the Pol also treated in Section ,5 does not. In fact, several
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classical from the test problems literature, such Duffingas and the nonlinear pendulum the oscillator fall in the special

category of presenting flow flowa nonlinear but a linear divergence, see Thesefor instance [15]. latter problemstest are

likely to give optimistican overly assessment of the methods under consideration.

We explore speedhere instead a modified LED closure which combines the simplicity and of the of)local one with (most

the the nonlocal theaccuracy of one. onFollowing [ a14], we construct semi-local LED closure based mean-field advection

problem

∂p

∂s
+ ∇X · (v p s t) = 0, < , (11)

p( ( , ) s;X t), s = J
−1( , ) ( ,s;X t p X t). (12)

Equation (12) gives a ;local approximation for p substituting it into the above nonlocal form of the cross covariance term,

we obtain the semi-local closure

v


 ( , )X t ≈ −

t


0

J ( , )s;X t  ·



v

( , )X t v

 T ( ( , ) s;X t), s



J
−1( , ) ( , )s;X t p X t ]



ds. (13)

The PDF localizedp in (13) has been from but the( ( s;X, t), s) to ( ,X t) operator ∇· has not.

4. Numerics

For any of the above closures, we solve (5) through Strang splitting consideringby successively the two equations

∂p

∂t
+ v  · ∇ p = 0, (14)

∂p

∂t
+ p∇ · v + ∇ · v   = 0. (15)

The linear hyperbolic equation (14) is solved adaptive through the version of the Clawpack package [16] using a Lax–

Wendroff discretization and a van Leer limiter. Equation (15) is solved through a Crank–Nicolson discretization (forward

Euler for the nonlocal closure) centraland second-order differencing space.in

The computational domain is taken as ( ,−L L)2 where L > 0 is the smallest number large enough to ensure that the

domain truncation, i.e., imposing extrapolated boundary thanconditions rather lim|X|→∞ p(X) = 0, only generates negligible

errors (by if is improveswhich we mean that the thesize of ofeach dimension domain increased 10 fold, the error only by

0.01 percent).

To compare the complexity attached to each of numericalthe three proposed aclosures, we consider simplified scheme

built spatialon a fixed uniform mesh with n
2 spatial conjunctionnodes in with forward Euler time-stepping. Let nt be the

total number of oftime steps. Assuming a parabolic stability condition, nt is order n
2 , i.e., nt = O(n2 ). For both the local

and formulations,semi-local the computation theof required requiresfinite difference approximations O(n2) operations at

each time timestep. Repeating these operations nt steps results in a complexity of O(n4).

For the nonlocal formulation, unlike the local and semi-local ones, the evaluation of the divergence of the cross covari-

ance term (9) usually involves a numerical approximation of the integral; this requires the history of the solution up to the

current central time thestep. To evaluate integrand second-order in ( a9), finite difference function can be used. Charac-

teristic tracing requires O ( )n operations per node. Since there are a total of n2 spatial integrandnodes, evaluating the of

(9) requires O(n3 ) operations. Considering the mth time step, the time integral in (9) is evaluated with m + 1 quadrature

nodes, i.e., evaluating the integral requires (m+ 1) (·O n
3 ) operations. Summing over all time steps gives a total of

O(n3) ·

nt


1

(m + 1) (= O n
3 ) ·



nt (nt + 3)

2



(16)

operations Hence, offor the nonlocal scheme. the nonlocal scheme has a complexity O(n7). aNote that even if fixed number

of approximatingquadrature nodes were used in the integral significant(at ofthe price a loss in accuracy), the complexity

of the nonlocal scheme would still be O(n5) (versus O n
4) for the local and semi-local formulations.

In the results presented below, the theproposed semi-local approach is four orders of magnitude faster than as standard

Monte Carlo approach.

5. Applications

We consider two applications PDF of the method associated and its closures, namely, the motion free of a Brownian

particle drivenin water, and the Van der oscillatorPol with stochastic forcing, all by colored applicationsnoise. Both have

two variables,state i.e., N = 2.
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5.1. Brownian particle

We consider free diametera silica microsphere of of 1 μm in water at andnormal pressure constant temperature T =

293 ),.15 K. terminalUnder these conditions, mean-fieldthe problem (7 (8) has an analytic solution, eliminating additional

numerical on oferrors, and making it possible to concentrate our attention the accuracy the closures themselves.

For simplicity, of center ofwe assume that the motion the particle’s mass, denoted by x, is one-dimensional. The motion

is described by the astic Newton equation [ ]11

mẍ = −γ ẋ+ γ
2d

τ
ξt (17)

with some given initial conditions, deterministic or ofrandom. In the(17), m is mass the considered particle, γ corresponds

to friction givenas by Stokes law, i.e., γ = 6πμR R d, being the radius of the particle. The diffusion coefficient is related to

the thefriction coefficient γ by fluctuation–dissipation relation:

d =
kB T

γ

where kB is the Boltzmann constant. Finally, the colored noise ξ t is taken to be an Ornstein–Uhlenbeck process defined by

the stochastic differential (SDE):equation

dξt = −
2

τ
ξt dt +



4

τ
dWt, (18)

where τ is the timenoise correlation and Wt is a (standard Wiener process. The nonstationary solution to 18) is condition-

ally given by a scaled time-transformed Wiener process:

ξt = ξ0 exp



−
2t

τ



+exp



−
2t

τ



W
exp



τ



−1
,

or unconditionally given by

ξt = exp



−
2t

τ



W
exp



τ

,

where ξt =0 for any fixed time associatedt . Its covariance function is given by

C t s( , ) = exp



−
2

τ
| − |t s



− exp



−
2

τ
( )t + s



. (19)

The characteristic value of the timeparticle’s relaxation σ γ= m/ is given by σ0 = 0.11 μs and the root mean square

velocity is about v0 = 2
s

[ (17]. Nondimensionalizing 17) with respect to σ0, v0 , and l0 = σ0v0, and letting x1 = x and

x2 = ẋ, we arrive at a system of first-order Langevin equations:



ẋ1

ẋ2



=



x2

−x2



+ ξ̂t

⎡

⎣

0


τ v20

⎤

⎦ (20)

where ξ̂t = ξσ0 t
.

In the simulations below, we consider the the timefollowing values of correlation τ = 10−8 , 10−6, and 10−4 . The initial

condition (6) is taken as a zero-mean uncorrelated joint Gaussian:

p
0 ∼ N





0

0



,



15

2
0

0
15

2



.

5.1.1. Local closure

Applying the PDF method with the local closure to equation (20) results in LEDthe classical closed-form IBVP for the

joint PDF p , given (by equation A.14 A.12 A.13). In thethis case, LED drift velocity ( ) and diffusion tensor ( ) can be found

exactly

V ( , )X t ≡



0

0



,

D( , )X t ≡

t


0

J ( , )s;X t



v( , )X t v T ( ( , ) s;X t), s



ds = D1( )t



0 0

0 1
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Fig. 1. Evolution closure, (of the joint PDF, computed through local for the position (horizontal) and velocity (vertical) corresponding to 20) for a correlation

time of τ = 10−6 .

where

D 1( )t =



2d

τ v 2
0

 t


0

J ( , ) (s;X t C σ0t,σ0 s)ds =



2d

τ v2
0

 t


0

exp( ) (t − s C σ0t,σ0s)ds

=
2k BT

γ v20



A B+ exp (βt) − (A B+ )exp(α1t)



, (21)

with A = 1 2/( σ0 − =τ ), B 1/(2σ0 + τ α), 1 = −1 2σ0/ βτ , and = −4σ0/τ . The classical closed-form LED IBVP for the joint

PDF p, given (by equation A.14), then simplifies to

∂tp x+ 2 ∂x1 p x− 2∂x2 p p D= + 1(t)∂x2x2 p

where D 1( ) t is given (by 21). Fig. 1 displays the the the classicalevolution of joint PDF for closed-form LED IBVP.

5.1.2. Semi-local closure

Applying the semi-local closure to equation (20) results in the the theclosed-form IBVP for PDF p given by ( (5), 6) where

cross covariance term is approximated by ( (13). Here, the expression from 13) can be found exactly

v  ≈ −

t


0

J ( , )s;X t  ·


v ( , )X t v T( ( , ) s;X t), s


J
−1( , ) ( , )s;X t p X t ]



ds

= −

t


0



v ( , )X t v T ( ( , ) s;X t), s




p t(X, )ds

= −
2d

τ v20

t


0

C(σ0t,σ0 s)



0

∂2 p t(X, )



ds. (22)

As the terminal value problem ( (7), 8) is linear underfor the application consideration, the characteristics 1 and 2 can

also be computed exactly

1(s; x1, x2, )t = −x2 exp (t s− )+ x2 + x1,

2(s; x1, x2, )t = x2 exp (t s− ) .

Under the substitution

∂2
= −exp(s t)∂x2 (23)

equation (22) becomes

v  ≈ −



0
D2( )t



∂ x2 p

where
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Fig. 2. Evolution of the joint PDF, computed through semi-local closure, for the position (horizontal) and velocity (vertical) corresponding to (20) for a

correlation time of τ = 10−6.

D2( )t =
2d

τ v20

t


0

exp( ) (s − t C σ0t,σ0s)ds

=
2kB T

γ v 2
0



B A+ exp (βt) − ( A B+ )exp(−α2t)



, (24)

with α2 = +1 2 , , ,σ τ/ and A B and β are as in § 5.1.1. The modified closed-form LED IBVP for the joint PDF p simplifies to

∂tp x+ 2∂x 1p x− 2∂x2 p p D= + 2 (t)∂x2x2 p,

where D2 ( ) t is given by (24). Fig. 2 shows the joint PDF for the semi-local closed-form LED IBVP evolving in time, revealing

that the classical the(local) closureLED in Fig. 1 induces diffusiona faster rate for joint PDF.

5.1.3. Nonlocal closure

Employing the PDF method with the nonlocal closure to equation (20) results in the theclosed-form IBVP for joint PDF p,

given ( (by 5), 6), where the cross covariance term (9) is given by

v ≈ −

t


0

J ( , )s;X t  ·


v ( , )X t v T ( ( , ) s;X t), s


p s t s( ( ;X, ), )]


ds

= −

t


0

J ( , )s;X t



v( , )X t v T ( ( , ) s;X t), s



 p s t s( ( ;X, ), )ds

= −
2d

τ v20

t


0

exp ( ) (t − s C σ0t,σ0s)



0

∂2
p s t s( ( ;X, ), )



ds

= −
2d

τ v20

t


0

C(σ0t,σ0s)



0

∂x2 p s t s( ( ;X, ), )



ds, (25)

where the last equality in (25) results from the nonlocal the substitution of (23). The closed-form IBVP for joint PDF p

simplifies to

∂tp x+ 2∂x 1
p x− 2∂x2 p p= + X · v  ( , )X t

where

∇X · v


( , )X t ≈ −
2d

τ v2
0

t


0

C(σ0t,σ0s)∂x2x2 p s t s( ( ;X, ), )ds. (26)

In order to compare ofthe relative merits the three the PDFsconsidered closures, marginal for each closure are computed

via quadrature and compared Monte of ofwith the Carlo solution equation presents(20). Fig. 3 two snapshots the position

and velocity correlationmarginals for a medium time of τ = 10−6. The local and semi-local closures accurately capture the

Monte of position,Carlo solution corresponding to the marginal density i.e. p x( 1|x2 ), for the tested correlation times. For

the marginal density corresponding to velocity, i.e. p x( 2 |x1), only the semi-local closure retains accuracy in the results of

Fig. 3.
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Fig. 3. Comparison semi-local closuresof the position (top row) and velocity (bottom row) marginals under local and against Monte-Carlo estimates for the

Brownian problemparticle with τ = 10−6.

Fig. 4. Evolution of the L
2 error particlein local andthe velocity marginals under semi-local closures for the Brownian for correlation times τ = 10−8,10−6

and 10−4 .

More generally, the the time theaccuracy each PDFof closure depends on correlation τ . We use L
2-norm of the differ-

ence between our approach and the Monte Carlo solution to quantify the error in our approach and refer to that quantity as

the L
2 error. For the the the nonlocalpresent Brownian thatparticle example, it was observed regardless of correlation time,

and are semi-local closures within 10−4 from the each other in L
2-norm; therefore, we only report the results from the

local and andsemi-local closures omit expensiveresults from the much more computationally nonlocal closure.

As displayed in Fig. 4, in the case of a “large” correlation time of τ = 10−4, aresults from all three closures are within

10−4
L
2 error. For a small correlation time τ = 10−8, all of the closures agree well with the Monte Carlo solution, with the

semi-local accurateand nonlocal closures being slightly more than However,the local closure. for τ = 10−6, the semi-local

closure local see middle.is substantially more thanaccurate the closure, Fig. 4,

The semi-local and nonlocal closures thus lead to results that are significantly more accurate than the local closure.

Since the the nonlocalsemi-local accurateclosure is no less than one magnitudeand is several orders of faster than it, we

conclude closurethat the semi-local is superior to the other two. re-emphasizeWe that the semi-local approach is also 4

orders Carloof Montemagnitude faster than the approach.

5.2. Stochastically forced Van der Pol oscillator

We consider stochastica Van der Pol oscillator with forcing driven by a colored noise



ẋ1

ẋ2



=



x2

μ(1− x
2
1)x 2− x1



+ ξt



0


τ sin( )ωt



(27)
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where ξt is defined theby stochastic differential equation (18) with covariance function ourC t( , s) given by (19). For

simulations, the parameterwe take values as andμ = 1, 1,A = ω = 5 and consider three correlation times: τ = 0.1, 1, and

10. The initial condition (6) is taken as an uncorrelated joint Gaussian:

p
0∼ N



1

0



,



0.01 0

0 0.01



.

Unlike in § 5.1 10, (the Jacobian J (s t;X, ) ) cannot be found exactly since

J ( , )s;X t = exp

⎛

⎝−

t


s

χ · v( ( )χ τ ),τ dτ

⎞

⎠

= exp

⎛

⎝−

t


s

μ(1− 2
1 ( ,τ ;X t),τ ))dτ

⎞

⎠ ,

where nonlinear(s;X, t) is the thesolution to terminal problem ( (7), 8).

To reduce computational cost, we approximate approximate(s;X, t) in its inJ by terminal condition X, resulting the

Jacobian

J̃ ( , )s;X t = exp

⎛

⎝−

t


s

μ(1− x
2
)dτ

⎞

⎠= exp


−μ(1− x
2)(t s− )



.

5.2.1. Local closure

Applying the PDF method with the local closure to equation (27) results in LED the classical closed-form IBVP for the

joint PDF p , given (by equation A.14 A.12). In thethis case, LED drift velocity ( ) and diffusion tensor (A.13) can be found

exactly when approximating J by J̃

V ( , )X t ≡



0

0



,

D( , )X t ≡

t


0

J̃ ( , )s;X t



v( , )X t v T ( ( , ) s;X t), s


ds = D3( )t



0 0
0 1



,

where

D3( )t =
A tsin(ω )

τ

t


0

J̃ ( , ) ( , ) ( )s;X t C t s sin ωs ds. (28)

The integral in equation (28) can be computed analytically IBVP(we LEDomit the the classicaldetails). Hence, closed-form

for the joint PDF p , given (by equation A.14), simplifies to

∂tp x+ 2∂x 1
p +



μ(1− x
2
1)x2 − x1



∂x2 p = −(1 − x
2
1)p + D3 (t)∂x2x2 p.

5.2.2. closureSemi-local

The PDF method, applied to (27) with the thesemi-local closure, results in closed-form IBVP jointfor the PDF p, given by

( (5), 6), where the cross covariance term is again approximated by (13).

Following [14], we now approximate ∇ in terms of ∇X . More precisely, we have

∇X = 
T∇, (29)

where i j =
∂

∂X j
( , )s;X t . observeWe through elementary calculus that  satisfies

d

ds
= J,

( , ) ,t;X t = I

where mean-fieldJ is the the Jacobian of velocity, identity i.e., J Y( , s) = ∂ v( ,Y s)/∂Y and I is the N N× matrix. Conse-

quently,  can be expressed as
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( , )s;X t = O E[ ]J (s),

= +I

s


t

J( ( s1;X, )t ds1 +

s


t

s1


t

J( ( s1;X, ) ( (t J  s2;X, )t ds1ds2 + . . .

where O E is the ordered exponential. By approximating exponential intoJ( ( s;X, t) by J X( ,t), the ordered simplifies the

matrix exponential and we obtain

 ≈ −exp((s t) ( ,J X t)),

and thus, by ( )29

∇ ≈ exp((t s t− )J X( , ))T∇X. (30)

Using substitutionthe above and approximating J by J̃ in (13) leads to an approximation covarianceof the cross term

that can be computed analytically

v


 ( , )X t ≈ −

t


0

J̃ ( , )s;X t  ·


v

( , )X t v

 T ( ( , ) s;X t), s


˜J
−1( , ) ( , )s;X t p X t



ds

= −
A tsin(ω )

τ

t


0

J̃ ( , ) ( , ) ( )s;X t C t s sin ωs



0 0

0 1



exp((t s− )J X( ))TX
˜J
−1( , ) ( , )s;X t p X t ds. (31)

The integrals in (31) can be computed exactly through IBVP jointMAPLE, LEDsimplifying closed-formthe modified for the

PDF p to the form:

∂tp x+ 2∂ x1 p +



μ(1− x
2
1)x2 − x1



∂x2 p = −(1 − x
2
1) ∂p + x2 (D4∂x1 p) ∂+ x2 (D5∂x2 p),

where D4 and D5 are known functions of x1 , x2 and t which we omit for brevity. Fig. 5 shows the thejoint PDF for

semi-local IBVP closed-form LED evolving in time, where the black dots track the theensemble mean. that This reveals

ensemble mean in and notof doesitself accurately capture dynamicsthe of (27).

As with the previous application, we compare the marginal PDFs for each closure obtained via quadrature with the

Monte of plots timesCarlo solution equation (27). The error for the small, medium, and large correlation are given .in Fig. 6

As the the can be seen there, both local and semi-local agreePDF closures well with MC solution for a small correlation
time of τ = 0.1 through two semi-local accurate.pseudo-periods, with the being slightly more For a medium correlation

time the the the theof τ = 1, local closurePDF captures neither marginal density norfor position velocity by end of first
pseudo-period; the semi-local closure is however Finally, remarkably accurate two for the entire pseudo-periods. for the

large correlation closures withtime the theof neitherτ = 10, local nor semi-local agree the theMC solution for entire two
pseudo-periods.

We display in Fig. 7 the comparison of the position and velocity marginals against mediumMC for (τ = 1) and large

(τ = 10) correlation length at roughly the times at which the local closure loses accuracy, i.e., t = 6 and t = 3 respectively,
see Fig. 6.

6. Conclusions

Theoretical Langevin with coloredanalysis simulationand efficient numerical of equations noise remain an open chal-

lenge. The dynamics of Langevin equations can rarely be adequately described by a few low order moments only; this point

is clearly illustrated by Fig. 5 where the meanensemble is often probability ofa low state. Derivation Fokker–Planck equa-

tions, which describe the dynamics of the probability density function or PDF (rather than its moments), typically requires

ad hoc approximations whose validity cannot be ascertained a priori.

The proposed method of distributions demonstrates that the PDF dynamics for Langevin equations with colored noise

satisfies a anonlocal (integro-differential) equation that has to be localized in order to derive Fokker–Planck equation. For
white counterparts.noise, equations theirthe PDF are andexact reduce to Fokker–Planck For colored noise, the derivation

of equationsPDF requires not also,only closure approximations but for computational convenience, “localization” approx-

imations. We investigate the need and consequences of the latter which takes here the form of the localization of an

integro-differential equation. OurPDF analysis leads to the following major conclusions.

• Even though nonlocal (integro-partial-differential) PDF equations are linear, their accurate and reliable numerical reso-

lution is highly challenging in dimensions higher than 2 (the case considered in the paper).

• Localization of such PDF equations yields “easy-to-solve” (linear, Fokker–Planckthe partial-differential) equations, but

introduces considerable approximation error.
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Fig. 5. Evolution (of the joint PDF of 27) with τ = 0 semi-local closure;.1, computed through the position corresponds to the horizontal axis and the velocity 

to to top tothe vertical goesone. Time from left right and bottom, t = 0, 0.5, 1, . . . ,13. The black dot tracks the ensemble mean.

Fig. 6. Evolution of the maximum of the relative L2 errors in and in local andposition velocity marginals under semi-local closures for the stochastically 

forced forVan der Pol oscillator correlation times τ = 10−1,1 and 10.
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Fig. 7. Comparison semi-local closuresof the position and velocity marginals under local and against Monte-Carlo estimates for forcedthe stochastically 

Van der Pol oscillator problem; top row: τ = 1, bottom row: τ = 10.

• Partial localization provides an attractive sweettrade-off between accuracy and cost; the spot likelyis to be problem

dependent.

We use here systems of ODEs driven by colored noise to analyze the localization errors introduced by the LED approx-
imation of otherwise nonlocal PDF equations. However, andboth PDF equations their localizationsLED-based are equally

relevant ] andfor first-order (hyperbolic) [ , ,2 6 8 second-order (parabolic) [3] PDEs with random randomcoefficients and/or

driving forces. In a follow up study, we will investigate the localization errors and the use of nonlocal PDF equations in the

Partial Differential Equations setting.

Appendix A. Closure derivation

Let L be the linear operator

L =
∂

∂t
+ X ·  ( v )

together with conditionsthe initial and boundary

( , )X 0 = δ(x0 −X) and lim
|X|→∞

( , ) .X t = 0 (A.1)

Let L̂ Lbe the adjoint of , i.e.

L̂ = −
∂ 

∂s
− v  · Y

with condition infinity conditionvanishing boundary at and vanishing terminal ( ,Y t) = 0. Finally, let G = G( ,X t;Y, s) be

the Green’s isfunction of L; G characterized by

L̂G = δ(X Y− )δ(t s− ), (A.2)

with condition infinity condition function vanishing boundary at and terminal G(X, t;Y, t) = 0. The Green’s G can be ob-

tained through the method of characteristics. Indeed, let’s consider the problem

dϕ

dr
= v( ,ϕ r r s t) , ∈ ( , ), (A.3)

ϕ( ) ,s = Y (A.4)
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together with the associated Along the theflow , .ϕ(r r s) (=  ;Y, ) characteristics, equation for G reduces to

d

dr
G ( , , )X t;ϕ r = −δ(t r− )δ(X −ϕ)

with G(X, t; (t s t r s t;Y, ), ) = 0. Integrating in between and , we have

G t s t s(X, ;Y, ) (= H − ) δ(X Y− (t; , s)), (A.5)

where H is the lead theHeaviside Elementaryfunction. manipulations to following equation for  

L  = −X · (v − v), (A.6)

with conditionshomogeneous initial and vanishing conditions.boundary Rewriting (A.6) in terms of Y and s, multiplying

by byG(X, t;Y, s), and integrating parts, we obtain

t


0



RN

GL
dYds = −



RN

G t(X, ;Y,0) ( , )Y 0 dY+

t


0



RN


L̂G dYds,

where additionalthe boundary boundaryterms cancel conditionbecause of the terminal on G and the vanishing condition

(A.1) at infinity. Taking (A.2) and (A.6) into account leads to

( , )X t =



RN

G t(X, ;Y,0)( , )Y 0 dY +

t


0



RN

G t s(X, ;Y, )Y ·





v ( , )Y s  ( , )Y s



− v ( , ) ( , )Y s  Y s



dYds.

The initial time theterm on right vanishes if the initial condition on x0 is deterministic. We obtain an exact (unclosed)

equation for the stochastic flux v by multiplying the previous relation by v( , ) X t and taking the ensemble mean

v =( , )X t



RN

G t(X, ;Y v,0)  ( , )X t  ( , )Y 0  −dY

t


0



RN

G t s(X, ;Y, )Y ·



v ( , )X t v T ( , ) ( , )Y s  Y s



dYds.

The closure correspondsLED here to assuming  ≈ 0 on the the right hand side of above equation, resulting in a com-

putable relationship

v( , )X t ≈ −

t


0



RN

G t s(X, ;Y, )Y ·


v ( , )X t v T ( , )Y s



p s(Y, )



dYds. (A.7)

Setting

q t s(X Y, , , ) = Y ·


v ( , )X t v T ( , )Y s



p s(Y, )



,

expression (A.7) can be simplified by taking into account the form (A.5) of G

v( , )X t ≈ −

t


0



RN

δ(X Y X Y Y− (t; , s q)) ( , ,t s d, ) ds,

≈ −

t


0



RN

δ(X X−ϕ)q( , ( s t t s;ϕ, ), , )









d s t( ;ϕ, )

dϕ









dYds.

The canexpression of the from theJacobian previous relation be made explicit by invoking the Liouville–Ostrogradski

Lemma which we recall and prove below (not having literature).been able to tofind an appropriate reference it in the

Lemma 1 (Liouville–Ostrogradski). Consider the initial value problem

dχ

ds
= f( ,χ s), (A.8)

χ( ) ,t = ξ (A.9)
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where f : RN × →R R
N

is a a aregiven deterministic function and ξ possibly random initial condition. Both f and ξ assumed to be

such that, for forany of , arealization ξ the above system admits unique solution the range of time under consideration. Then, if  is

the corresponding flow, i.e., s s t ,χ( ) (=  ; ξ, ) we have









∂( , )s; ξ t

∂ξ









= exp

⎛

⎝−

t


s

χ · f( ( )χ τ ),τ dτ

⎞

⎠.

Proof. Proceeding similarly to § 2, it is straightforward to check that p, the PDF of χ , satisfies

∂p

∂t
+ ∇χ · =( )fp 0.

We define theP( )s = p( (χ s), s) as restriction of onp characteristic curves. By construction, P satisfies

dP

ds
= −P ∇χ · f,

and thus by integration

P P( )s = ( )t exp

⎛

⎝−

s


t

∇χ · f( ( )χ τ ),τ dτ

⎞

⎠.

The canflow  be regarded as changea one-to-one of variables and thus

P( )s =









d

dχ


−1









P(t).

Plugging into the theprevious relation and taking inverse completes proof.the 2

We apply the the theLiouville–Ostrogradski withlemma χ and  being respectively solution and flow corresponding to

(A.8) and (A.9) with f( ,χ s) = v X( ,χ s) and ϕ = =ξ ; this yields

v


 ( , )X t ≈ −

t


0

J ( , )s;X t  ·


v

( , )X t v

 T ( ( , ) s;X t), s


p s t s( ( ;X, ), )


ds, (A.10)

where

J ( , )s;X t = exp

⎛

⎝−

t


s

χ · v( ( )χ τ ),τ dτ

⎞

⎠ .

Substituting approximation (A.10) into (5) gives a time-convoluted integro-differential equation for p resulting from colored

noise. integro-differential The equation can be solved numerically but may pose challenges significant numerical as the

resulting problem is in inlocal neither time nor space.

The localization inherent in the classical LED theory [ ]7 ignores the the time Invariation of p over correlation interval.

other words, it itsassumes that p and spatial derivatives are approximately uniform over the interval . gives(t t− τ, ) This

rise approximationsto p s( ( ;X, t), s) ≈ p( ,X t) and ∇ p s t s( ( ;X, ), ) ≈ ∇Xp t(X, ), so that

v


  ≈ − ( , )X t V ( , ) ( , )X t p X t D( , )X t X p t(X, ), (A.11)

where V and are andD the LED drift velocity diffusion tensor

V ( , )X t ≡ −

t


0

J ( , )s;X t



v
 ( , )X t  · v  T ( ( , ) s;X t), s



ds, (A.12)

D( , )X t ≡

t


0

J ( , )s;X t



v

( , )X t v

 T ( ( , ) s;X t), s


ds. (A.13)

Substituting (A.11 A.12), ( ), (A.13) into (5) results in LED the classical following closed-form IBVP jointfor the probability

density function p:
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∂p

∂t
+ X ·



( )v + V p



= X · (D X p). (A.14)

The closure–mostlyshortcomings of the above LED importantly, limited correlationits validity to short timescale–are well

known and documented [14].
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