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Dynamic mode decomposition (DMD) is a powerful data-driven technique for construction 
of reduced-order models of complex dynamical systems. Multiple numerical tests have 
demonstrated the accuracy and efficiency of DMD, but mostly for systems described by 
homogeneous partial differential equations (PDEs) with homogeneous boundary conditions. 
We propose an extended dynamic mode decomposition (xDMD) approach to cope with 
the potential unknown sources/sinks in PDEs. Motivated by similar ideas in deep neural 
networks, we equip our xDMD with two new features. First, it has a bias term, which 
accounts for inhomogeneity of PDEs and/or boundary conditions. Second, instead of 
learning a flow map, xDMD learns the residual increment by subtracting the identity 
operator. Our theoretical error analysis demonstrates the improved accuracy of xDMD 
relative to standard DMD. Several numerical examples are presented to illustrate this result.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Complexity of many, if not most, physical and biological phenomena and paucity of measurements undermine the relia-
bility of purely statistical descriptors. Instead, models of such systems are inferred or “learned” from both observational and 
simulated data and reflect the fundamental laws of nature (e.g., conservation of mass and energy). Various sparse regression 
techniques [1–4] use a proposed dictionary to “discover” the governing equations from data. The dictionary, comprising 
plausible spatial and/or temporal derivatives of a state variable, provides functional approximations of different physical 
laws. Dynamic mode decomposition (DMD) was used to compute the modes of the Koopman operator approximated from 
a preselected dictionary basis [5]; subsequent studies provided a theoretical analysis of convergence [6], practical guidelines 
for efficient construction of the dictionary [7], and other aspects of this approach. The data for sparse regression are allowed 
to be noisy [8], corrupted [9], and limited [10]. Various flavors of deep neural networks (DNN) provide a related dictionary-
based approach to PDE learning [11,12]. These and other techniques for equation discovery are as good as a dictionary on 
which they are based.

A conceptually different, dictionary-free, framework for data-informed predictions is to construct a surrogate (aka 
reduced-order) model, instead of learning a governing PDE. This framework is often classified as “unsupervised learning” 
and “equation-free”. Much of the research in this field deals with dynamical systems, for which training data are generated 
by either ordinary differential equations (ODEs) or partial differential equations (PDEs) after spatial discretization. In this 
context, DMD can be used to construct an optimal linear approximation model for the unknown system [13] and to learn 
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the unknown dynamics of chosen observables, rather than of the state itself [14]. The latter is accomplished by utilizing the 
Koopman theory [15] in order to construct linear models on the observable space, instead of identifying nonlinear mod-
els on the state space [16]. Physics-guided selection of observables provides not only better accuracy [17–19], but also a 
bridge between the understanding of data and physics. Likewise, DNN can be used to build nonlinear surrogate models for 
ODEs [20,21] and PDEs [22,23]. DNN-based surrogates and reduced-order models (ROMs) [24,25] are invaluable in applica-
tions that require a large number of model solves, such as inverse modeling [26,27] and uncertainty quantification [28–31].

Our study contributes to this second framework by extending the range of applicability of DMD-based ROMs to dynam-
ical systems described by inhomogeneous PDEs with inhomogeneous boundary conditions. In various application scenarios, 
many variants of the standard DMD algorithms were introduced to improve the performance of model reduction. The 
low-rank approximators are determined from optimization problems that are adapted to control inputs [32], time embed-
dings [33], higher-order approximations [34], optimal approximation error [35], etc. We adopt a similar methodology by 
modifying the optimization problem in a way that allows us to cope with a problem’s inhomogeneity. A major benefit 
of our new algorithm is a theoretically guaranteed accuracy improvement relative to the standard DMD algorithm with 
awareness and identification of the inhomogeneity at almost no extra computational cost. Our extended dynamic mode 
decomposition (xDMD) borrows ideas from the recent work on residual neural networks (ResNet) to provide an optimal 
linear approximation model for such systems. Our generalization of the standard DMD includes two ingredients: an added 
bias term and residual learning. The first builds upon the generalized ResNet [36] that introduces a bias term to model the 
dynamics described by underlying inhomogeneous ODEs. We extend this idea to systems described by inhomogeneous PDEs 
and prove the accuracy improvement induced by the added bias term. The second ingredient of xDMD is the learning of 
effective increments (i.e., the residual of subtracting identity from a flow map) rather than the flow map itself. Although 
mathematically equivalent to flow map learning, this strategy proved to be highly advantageous in practice and gained 
traction in the deep-learning community [37], including in its applications to equation recovery [20]. To the best of our 
knowledge, xDMD is first to fuse these two features and to provide a theoretical estimate of its performance.

In section 2, we provide a problem setup and a detailed formulation of xDMD. A formal proof of the accuracy im-
provements induced by the added bias term is presented in section 3. A number of numerical experiments are collated 
in section 4 to evaluate the learning performance of xDMD in terms of representation, extrapolation, interpolation and 
generalizability. Key results, their implication for applications, and challenges and future work are summarized in section 5.

2. Problem formulation and extended DMD

We consider a real-valued state variable u(ξ , t), whose dynamics is described by a boundary-value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= L(u) + S(ξ), (ξ , t) ∈ D ×R+;

B(u) = b(ξ ), (ξ , t) ∈ ∂D ×R+;
u(ξ ,0) = u0(ξ), ξ ∈ D.

(2.1)

Here, t denotes time; ξ is the spatial coordinate; D ⊂ Rd is the d-dimensional simulation domain bounded by the surface 
∂D; L is a (linear or nonlinear) differential operator that involves spatial derivatives; B is the boundary differential operator 
describing Dirichlet, Neumann, and/or Robin boundary conditions; S(ξ) and b(ξ ) represent sources/sinks and boundary 
functions, respectively; and u0(ξ ) is the initial state.

The simulation domain is discretized with a mesh consisting of N elements. A suitable numerical approximation of (2.1)
yields a system of (coupled, nonlinear) ODEs,⎧⎨

⎩
du

dt
= f(u, s), u, s ∈RN ,

u(0) = u0, u0 ∈RN ,

(2.2)

where s comes from both S(ξ ) and b(ξ ). Let ��t :RN →RN denote a flow map, which relates the discretized system state 
u at time t to that at time t + �t , where �t is a (sufficiently small) time increment. Since s is independent of t and acts 
as a set of parameters, the system (2.2) is time-invariant. Consequently, there exists a flow map �, depending only on the 
time difference t − t0, which represents the solution to (2.2) as u(t; u0, t0, s) = �t−t0 (u0; s).

Our goal is to learn the dynamic system f, or, more precisely, its reduced-order surrogate, using M temporal snapshots of 
the solutions. Let xk ≡ u(tk) and yk ≡ u(tk +�t) with k = 1, . . . , M , where the time lag between the input and output states, 
�t , is assumed to be independent of k for the sake of convenience. The simulation data consist of M pairs {(xk, yk)}M

k=1, 
such that

yk = ��t(xk; s), k = 1, . . . , M. (2.3)

Lemma 2.1. Assume f to be Lipschitz continuous with a Lipschitz constant L on a solution manifold M ⊂RN . Define

M�t = {x ∈ M : ��t(x; s) ∈ M}. (2.4)
2
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Then, ��t is Lipschitz continuous on M�t . Specifically, for any z, ̃z ∈M�t ,

‖��t(z; s) − ��t(z̃; s)‖ ≤ eLτ ‖z − z̃‖, t ≤ τ ≤ t + �t. (2.5)

Proof. The proof follows directly from the classical numerical analysis results in, e.g., [38, p. 109]. �
Lemma 2.1 imposes requirements on the snapshots data pairs {(xk, yk)}M

k=1: the number of data pairs M should be 
sufficiently large, and the data should be sufficiently rich for the data space to cover the solution space of interest. These 
requirements are consistent with the core of the Koopman operator theory, which underpins the DMD algorithm, e.g., [39, 
p. 47] and others [5,14,40]. The error analyses of the DMD algorithms [6,18] also verify the impact of the selection of 
observables on the success of Koopman methods.

2.1. Standard DMD

Given a dataset of snapshots, {(xk, yk)}M
k=1, DMD constructs a best-fit linear operator A ∈RN×N such that

yk ≈ Axk, k = 1, . . . , M. (2.6)

Therefore, the matrix A is determined in a least square sense

A = argmin
Â∈RN×N

1

M

M∑
k=1

‖yk − Âxk‖2. (2.7)

Typically, one rewrites the dataset {(xk, yk)}M
k=1 in a matrix form,

X =
⎡
⎣ | | |

x1 x2 · · · xM

| | |

⎤
⎦

N×M

and Y =
⎡
⎣ | | |

y1 y2 · · · yM

| | |

⎤
⎦

N×M

. (2.8)

Then, A is computed as

A = YX† (standard DMD), (2.9)

where † denotes the Moore-Penrose inverse.

Remark 2.1. The Moore-Penrose inverse is computed via singular value decomposition (SVD), which requires certain trun-
cation criteria to maintain computational stability. In all our numerical tests, we use the default truncation in the pinv
command of Matlab.

Remark 2.2. In a typical DMD algorithm, e.g., [39, p. 7], a reduced-order model Ã is derived by projecting A onto the proper 
orthogonal decomposition (POD) modes. Since the major goal of our study is to obtain a linear approximation model of 
inhomogeneous PDEs, for which standard DMD algorithms fail, we omit the order-reduction procedure for simplicity.

2.2. Generalized DMD

In order to cope with potential inhomogeneity of the underlying dynamics, the following modification is made in [36]:

yk ≈ Agxk + b, k = 1, . . . , M. (2.10)

The matrix Ag and the vector b ∈RN are computed by solving the optimization problem

(Ag,b) = argmin
Â∈RN×N ,b̂∈RN

1

M

M∑
k=1

‖yk − Âxk − b̂‖2. (2.11)

Let us introduce

X̃ :=
[

X
1

]
(N+1)×M

(2.12)

where 1 := [1, 1, · · · , 1] is a vector of size 1 × M . Then Ag and b are obtained by

[Ag,b] = YX̃† (generalized DMD or gDMD). (2.13)
3
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Remark 2.3. gDMD can be regarded as a special arrangement of DMD with control (DMDc) [32]. In the latter, the aug-
mented data matrix (2.12) is constructed by stacking the state variable snapshots xk and the control input snapshots, which 
in our context are set to 1 since there is no control. Applications of DMD and the Koopman theory in control are an ac-
tive research area [41–44], but lie outside the scope of our analysis that focuses on improving the performances of DMD 
in learning unknown dynamical systems. Of more direct relevance is a connection of gDMD and DMD to dictionary learn-
ing (e.g., [7,6,5]): the dictionary composition is treated as the state variable itself and set to 1 in the augmented matrix. 
However, the computational cost of identifying relevant terms from a proposed dictionary can be prohibitively large for 
high-dimensional dynamical systems and discretized PDEs. Instead, our framework includes only the bias term, which has 
physical interpretations in inhomogeneous PDEs.

2.3. Residual DMD

The residual DMD or rDMD borrows a key idea behind ResNet. The latter explicitly introduces the identity operator in 
a neural network and forces the network to approximate the “residual” of the input-output map. Although mathematically 
equivalent, this simple transformation proved to improve network performance and became increasingly popular in the 
machine learning community.

Writing A = I + B, where I is the (N × N) identity matrix and B is the remainder, recasts (2.6) as

yk ≈ xk + Bxk. (2.14)

The matrix B is determined by

B = (Y − X)X† (residual DMD or rDMD). (2.15)

It provides an approximation of the “effective increment” [20, definition 3.1], ϕ�t , that is defined as

ϕ�t(u; f, s) = �t f(�τ (u; s)) (2.16)

for some t ≤ τ ≤ t + �t such that

u(t + �t) = u(t) + ϕ�t(u; f, s). (2.17)

2.4. Extended DMD

Combining the modifications introduced in the previous two subsections, we arrive at our extended DMD or xDMD,

yk ≈ xk + Bgxk + b, (2.18)

where Bg and b are computed as

[Bg,b] = (Y − X)X̃† (extended DMD or xDMD). (2.19)

3. Relative performance of different DMD formulations

Theorem 3.1. In the least square sense, gDMD in section 2.2 fits the M snapshots data X and Y better than the standard DMD from 
section 2.1 does, i.e.,

1

M

M∑
‖yk − Agxk − b‖2 ≤ 1

M

M∑
‖yk − Axk‖2. (3.1)
k=1 k=1

4
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Proof. The optimization problem (2.11) gives rise to

1

M

M∑
k=1

‖yk − Agxk − b‖2

= min
Â∈RN×N ,b̂∈RN

1

M

M∑
k=1

‖yk − Âxk − b̂‖2

≤ min
Â∈RN×N ,b̂∈RN

1

M

M∑
k=1

(
‖yk − Âxk‖2 + ‖b̂‖2

)

= min
Â∈RN×N

(
1

M

M∑
k=1

‖yk − Âxk‖2

)
+ min

b̂∈RN
‖b̂‖2

= 1

M

M∑
k=1

‖yk − Axk‖2 + min
b̂∈RN

‖b̂‖2.

(3.2)

The inequality is derived by triangle inequality and the last equality is achieved by (2.7). Since the equality is achieved with 
b̂ = 0, gDMD is equivalent to the standard DMD only when the bias term b = 0. �
Remark 3.1. Theorem 3.1 implies that xDMD from section 2.4 fits the M snapshots data X and Y better than rDMD from 
section 2.3 in the least square sense, i.e.,

1

M

M∑
k=1

‖yk − xk − Bgxk − b‖2 ≤ 1

M

M∑
k=1

‖yk − xk − Bxk‖2. (3.3)

Corollary 3.1.1. Let μM be an empirical measure defined on a given dataset {x1, · · · , xM} by

μM = 1

M

M∑
k=1

δxk , (3.4)

where δxk denotes the Dirac measure at xk. Then, for any x ∈M�t ,

‖��t(x) − Agx − b‖2 ≤ ‖��t(x) − Ax‖2 a.s., (3.5)

i.e., the inequality (3.5) holds in the sense of distribution.

Proof. The integral of a test function g with respect to μM is given by

∫
M

g(x)dμM(x) = 1

M

M∑
k=1

g(xk). (3.6)

It follows from (3.1) and the definition of yk in (2.3) that

1

M

M∑
k=1

(
‖��t(xk) − Axk‖2 − ‖��t(xk) − Agxk − b‖2

)
≥ 0. (3.7)

Thus, by virtue of (3.6),∫
M

(
‖��t(x) − Ax‖2 − ‖��t(x) − Agx − b‖2

)
dμM(x) ≥ 0. (3.8)

Hence, the inequality (3.5) holds in the sense of distributions. �
Remark 3.2. By the same token,

‖��t(x) − Bgx − b‖2 ≤ ‖��t(x) − Bx‖2, a.s. (3.9)
5



H. Lu and D.M. Tartakovsky Journal of Computational Physics 444 (2021) 110550
Theorem 3.2. Suppose that the assumptions of Lemma 2.1 hold, and further assume that

1. ‖��t − Ax‖L∞(M�t ) < +∞ and ‖��t − Agx − b‖L∞(M�t ) < +∞;
2. xk, yk ∈M�t for k = 1, . . . , M.

Let un
DMD and un

gDMD denote solutions, at time tn ≡ t0 + n�t, of the DMD and gDMD models, respectively. Let un denote the true 
solution at time tn, induced by the flow map ��t . Then errors of the DMD and gDMD models at time tn,

En
DMD = ‖un − un

DMD‖2 and En
gDMD = ‖un − un

gDMD‖2, (3.10)

satisfy inequalities

En
DMD ≤ (1 + eL�t)nE0

DMD + ‖��t − A‖L∞(M)

(1 + eL�t)n − 1

eL�t
,

En
gDMD ≤ (1 + eL�t)nE0

gDMD + ‖��t − Ag − b‖L∞(M)

(1 + eL�t)n − 1

eL�t
,

(3.11)

Proof. The proof follows similar derivations as Theorem 4.3 in [20] using triangle inequality:

En
DMD = ‖un−1 + ��t(un−1) − un−1

DMD − Bun−1
DMD‖2

≤ ‖un−1 − un−1
DMD‖ + ‖��t(un−1) − Bun−1

DMD‖2

≤ ‖un−1 − un−1
DMD‖ + ‖��t(un−1

DMD) − Bun−1
DMD‖2 + ‖��t(un−1

DMD) − ��t(un−1)‖2

= ‖un−1 − un−1
DMD‖ + ‖��t(un−1

DMD) − Aun−1
DMD‖2 + ‖��t(un−1

DMD) − ��t(un−1)‖2

≤ ‖un−1 − un−1
DMD‖ + ‖��t − A‖2

L∞(M�t )
+ eL�t‖un−1

DMD − un−1‖2

= (1 + eL�t)En−1
DMD + ‖��t − A‖2

L∞(M�t )

≤ (1 + eL�t)En−2
DMD + ‖��t − A‖2

L∞(M�t )
(1 + (1 + eL�t))

≤ · · ·

≤ (1 + eL�t)nE0
DMD + ‖��t − A‖2

L∞(M�t )

n−1∑
k=0

(1 + eL�t)k

(3.12)

A proof for the error bound for En
gDMD is similar. �

Remark 3.3. The above error estimates indicate that gDMD has a tighter error bound than DMD a.s. because Corollary 3.1.1
indicates ‖��t − Ag − b‖2

L∞(M�t )
≤ ‖��t − A‖2

L∞(M�t )
a.s.

Remark 3.4. Similarly, xDMD has a tighter error bound than rDMD a.s.

Remark 3.5. This error bound provides a general guideline for the error growth, in order to compare the DMD and gDMD 
models. The magnitude of the errors depends on the specific dynamics of the flow map ��t . Many DMD studies (e.g., [18]) 
have showed that the linear operator A is not guaranteed to be a good approximator of the general flow map ��t , especially 
when the latter is highly nonlinear. In another word, ‖��t − A‖2

L∞(M�t )
and, similarly, ‖��t − A − b‖2

L∞(M�t )
can be large 

in the error bound estimate. A way to construct ROMs in these highly nonlinear scenarios is to approximate the so-called 
“Koopman operator” via mapping the state variables onto observables. The discussion is beyond the scope of this work; we 
refer the interested reader to [15,39].

4. Numerical experiments

We use a series of numerical experiments to demonstrate that xDMD outperforms other DMD variants and to validate 
our error estimates.1 Snapshots (training data) are obtained from reference solutions during time [0, T ], with input-output 
time-lag �t , i.e.,

X =
⎡
⎣ | | |

u0 u1 · · · uM

| | |

⎤
⎦ , Y =

⎡
⎣ | | |

u1 u2 · · · uM+1

| | |

⎤
⎦ , T = (M + 1)�t. (4.1)

1 Additional numerical experiments are reported in the Supplemental Material.
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These datasets are assumed to be sufficiently large and rich to satisfy Lemma 2.1. We construct DMD and xDMD (and the 
other intermediate variants) by finding the best fit A or (Bg, b), which yields a set of linear approximation models for the 
�t time-lag input and output. The ability to learn the unknown dynamics is tested in terms of the following characteristics.

• Representation: Compare the difference between uk and Aku0, or between uk and (I + Bg)
ku0 + ∑k−1

i=0 (I + Bg)
kb, for 

k = 1, . . . , M + 1. The error is essentially the least square fitting error, aka “training error” in machine learning. The 
training error reflects the accuracy of a trained ROM on the available M training data points in Y of (4.1). It is usually 
embedded in the target “loss function”, e.g., (2.7) for DMD, which is optimized in the process of training. The trained 
model is then validated on another, different than Y, dataset (i.e., test dataset); the resulting discrepancy is referred to 
as “test error”. The test error reflects the accuracy and robustness of the trained model; small test errors indicate that 
the obtained ROMs reflect physics rather than simply fit the data. We use this metric to investigate our ROM’s capacity 
for extrapolation, interpolation and generalizability.

• Extrapolation: Draw another set of the reference solution {uk}2(M+1)

k=M+1 from time interval [T , 2T ] following the same �t

time-lag trajectory for the convenience of testing. Compare the difference between uk and Aku0 (DMD extrapolation to 
[T , 2T ]), and between uk and (I +Bg)

ku0 +∑k−1
i=0 (I +Bg)

kb (xDMD extrapolation to [T , 2T ]), for k = M +1, . . . , 2(M +1).
• Interpolation: Select a random subset of the dataset, i.e.,

Xs =
⎡
⎣ | | |

us0 us1 · · · usm

| | |

⎤
⎦ , Ys =

⎡
⎣ | | |

us0+1 us1+1 · · · usm+1

| | |

⎤
⎦ , (4.2)

where s0 = 0, {s1, . . . , sm} ⊂ {1, · · · , M}, with m < M . Then determine A and (Bg, b) based on the selected dataset Xs

and Ys . Compare the difference between uk and Aku0 (DMD interpolation to [0, T ]), and between uk and (I + Bg)
ku0 +∑k−1

i=0 (I + Bg)
kb (xDMD interpolation to [0, T ]), for k = 1, . . . , M + 1. In our examples, the selected number of snapshots, 

m, is smaller than M/2.
• Generalizability: Determine A and (Bg, b) from the datasets X and Y, and obtain a linear approximation model of the 

discretized PDE. Compute another set of reference solutions {vk}M+1
k=1 from a different initial input v0 �= u0 and the 

same boundary condition and source. Compare the difference between vk and Akv0, and between vk and (I + Bm)kv0 +∑k−1
i=0 (I + Bm)kb, for k = 1, . . . , M + 1. In our examples, the input v0 has completely different features than the training 

u0.
• Accuracy: The accuracy is compared in terms of the log relative errors,

εn
DMD := lg

(
‖un − un

DMD‖2
2

‖un‖2
2

)
, εn

xDMD := lg

(
‖un − un

xDMD‖2
2

‖un‖2
2

)
, (4.3)

where ‖ · ‖2 denotes the L2 norm.

All comparisons between DMD and xDMD are made using the same dataset and the same SVD truncation criteria in the 
pseudo-inverse part (using the default truncation criteria in Matlab).

4.1. Inhomogeneous PDEs

We start by examining the performance of the aforementioned DMD variants in learning a PDE with inhomogeneous 
source terms. Consider a one-dimensional diffusion equation with a source and homogeneous boundary conditions,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
= 0.1

∂2u

∂x2
+ S(x), x ∈ (0,1), t > 0;

u(x,0) = exp[−20(x − 0.5)2];
ux(0, t) = 0, ux(1, t) = 0.

(4.4)

The reference solution is obtained by an implicit finite-difference scheme with �x = 0.01 and �t = 0.01. Training datasets 
consist of M = 80 snapshots collected from t = 0 to t = 0.8. The extrapolation is tested from t = 0.8 to t = 1.6. The interpo-
lation training set consists of m = 20 snapshots randomly selected from the M = 80 snapshots.

The left column of Fig. 1 provides a comparison between the reference solution and its DMD and xDMD approximations 
in the three modes: representation, extrapolation and interpolation. The DMD and xDMD models have a reduced rank of 
17. As predicted by the theory, DMD fails in all three modes. For a fixed time, the DMD error grows with x, which is 
to be expected since standard DMD algorithms are not designed to handle inhomogeneous PDEs, such as (4.4) in which 
the source term is S(x) = x. If a source term lies outside the span of the training data, as happens in this test, then it 
cannot be represented as a linear combination of the available snapshots. The DMD model always lies within the span of 
the training data, while the true solution grows out of that subspace because of the source. On the other hand, the xDMD 
7
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Fig. 1. Reference solution of (4.4) and its DMD (2.9) and xDMD (2.19) approximations in the representation, extrapolation, and interpolation regimes (left 
column). Also shown are the log relative errors of the DMD (2.9), gDMD (2.13), rDMD (2.15), and xDMD (2.19) models (right column). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

model captures the true solution in all modes thanks to the bias term that accounts for the solution expansion outside the 
training data span.

The right column of Fig. 1 shows the accuracy of the DMD (2.9), gDMD (2.13), rDMD (2.15), and xDMD (2.19) models. 
Although DMD and rDMD are mathematically equivalent, the identity subtraction in rDMD reduces the solution error in 
all three modes (representation, extrapolation, and interpolation). Addition of the bias term in xDMD contributes to further 
orders-of-magnitude reduction in the error, consistent with the theoretical proof in section 3. In all modes, the proposed 
xDMD outperforms the other DMD variants by several orders of magnitude, achieving almost machine accuracy.

Fig. 2 shows the performance of different ROMs in long-time extrapolation, up to t = 100. Exhibiting errors that grow 
slowly in time, the gDMD and xDMD predictions accurately capture the underlying dynamics for very long time due to 
the advantageous role of the bias term. That is in contrast to the DMD and rDMD models, which make poor unphysical 
predictions without awareness of the inhomogeneous source term.

An added benefit of gDMD and xDMD is their ability to infer a source function, S(x), in an inhomogeneous PDE from 
temporal snapshots of the solution (Fig. 3). Both methods recover S(x), regardless of whether it is linear (S = x) or nonlinear 
(S = ex), and have comparable errors. While DMD lumps together the differential operator and the source, gDMD and xDMD 
treat them separately. This endows them with the ability to learn both the operator (the system itself) and the source 
8
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Fig. 2. Reference solution of (4.4) and its DMD (2.9) and xDMD (2.19) approximations (left); and the log relative error of the DMD (2.9), gDMD (2.13), 
rDMD (2.15), and xDMD (2.19) models (right) for long time extrapolation.

Fig. 3. Estimation of the source term S(x) = x and ex in (4.4) by gDMD and xDMD: the eyeball measure (left) and the log relative error (right).

(external forces acting on the system), as long as the latter does not vary with time. This self-learning feature carries almost 
no extra computational cost.

4.2. Inhomogeneous boundary conditions and data errors

Next, we examine the ability of DMD and xDMD to handle inhomogeneous boundary conditions and data errors. Consider 
a two-dimensional diffusion equation in a multi-connected domain D with inhomogeneous boundary conditions,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= ∇2u, (x, y) ∈ D, t ∈ (0,10000];

u(x, y,0) = 0;
u(0, y, t) = 3, u(800, y, t) = 1,

∂u
(x,0, t) = ∂u

(x,800, t) = 0, u(x, y, t) = 2 on ∂S (red).

(4.5)
∂ y ∂ y
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Fig. 4. Multi-connected simulation domain D (left) and the mesh used in the finite-element solution of (4.5).

Fig. 5. The reference solution of (4.5), u(x, y, t), at times t = 2000, t = 5000 and t = 10000.

The domain D is the 800 × 800 square with an S-shaped cavity (Fig. 4). The Dirichlet boundary conditions are imposed 
on the left and right sides of the square and the cavity surface. The top and bottom of the square are impermeable. The 
reference solution is obtained via Matlab PDE toolbox on the finite-element mesh with 1633 elements shown in Fig. 4. The 
solution from early transient time (t = 2000) until steady state (t = 10000) is presented in Fig. 5.

With the total simulation time (time sufficient to reach steady state) t = 10000, we generate snapshots spaced by �t = 5
and use those to conduct four tests. First, the leading M = 1200 snapshots are used to inform DMD and xDMD and to 
ascertain their representation errors. Second, the DMD and xDMD models are deployed to extrapolate until t = 10000
and compare the extrapolation error of the two models. Third, randomly selected M = 600 snapshots from the first 1200
snapshots are used for interpolation and to compare the interpolation error of DMD and xDMD. Finally, we repeat these 
representation/extrapolation/interpolation tests on data corrupted by addition of zero-mean white noise whose strengths at 
any (x, t) is 0.1% of the nominal value of u(x, t) at that point.

Fig. 6 reveals that, for noiseless data, the accuracy of xDMD is orders of magnitude higher than that of DMD in the 
representation and interpolation modes with the same reduced rank of 30; in the extrapolation mode, the error is domi-
nated by the extrapolation error, which increases with time, but xDMD is still about 9% more accurate than DMD at later 
times. DMD has a good performance in this case because the inhomogeneity from the boundary conditions happens to lie 
inside the span of the training data (i.e., can be approximated by a linear combination of the available snapshots), which is 
not guaranteed for all inhomogeneous boundary conditions (see a counterexample of Figure S1 in Supplemental Material). 
However, in the presence of measurement noise, xDMD has no better performance than DMD; it is even less accurate in the 
extrapolation and interpolation regimes. This sensitivity to noise mirrors the over-fitting issue in machine learning: models 
with more parameters fit the limited number of available data (solution snapshots) too closely and, consequently, fail to fit 
additional data or to reliably predict future observations. Since xDMD has more parameters than DMD due to the bias term, 
one should expect the former to be more sensitive to noise than the latter.

4.3. Coupled nonlinear PDEs

Common sense suggests that the success of linear models, such as DMD and xDMD, to approximate nonlinear dynamics 
is not guaranteed. In machine learning, data augmentation by feature map is widely used to deal with the nonlinearity. 
Similarly, judiciously chosen observables play a crucial role in the success of data-driven (DMD) modeling [6,19,45]. The 
selection of observables requires prior knowledge of the underlying process, which is out of scope of this study. Instead, 
we assume no prior knowledge and apply no data augmentation, i.e., our observables are the state itself. To satisfy the 
10



H. Lu and D.M. Tartakovsky Journal of Computational Physics 444 (2021) 110550
Fig. 6. Dependence of the log relative error of the DMD and xDMD models on time in the representation, extrapolation and interpolation modes. These 
errors are reported for noiseless data (top row) and data corrupted by addition of zero-mean white noise whose strengths at any (x, t) is 0.1% of the 
nominal value of u(x, t) at that point (bottom row).

assumptions in Lemma 2.1, we restrict our attention to nonlinear PDEs whose solutions are confined in certain subspace 
M. Our numerical experiments deal with the two-dimensional viscous Burgers’ equation (reported in the Supplemental 
Material) and the two-dimensional Navier-Stokes equations. The goal of these tests is to assess the ability of DMD and 
xDMD to learn complex flow maps.

We consider two-dimensional flow of an incompressible fluid with density ρ = 1 and dynamic viscosity ν = 1/600
(these and other quantities are reported in consistent units) around an impermeable circle of diameter D = 0.1. The flow, 
which takes place inside a rectangular domain D = {x = (x, y)� : (x, y) ∈ [0, 2] × [0, 1]}, is driven by an externally imposed 
pressure gradient; the center of the circular inclusion is xcirc = (0.3, 0.5)� . Dynamics of the three state variables, flow 
velocity u(x, t) = (u, v)� and fluid pressure p(x, t), is described by the two-dimensional Navier-Stokes equations,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂ y
= 0;

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂ y
= − 1

ρ

∂ p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂ y2

)
, x ∈ D, t > 0;

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂ y
= − 1

ρ

∂ p

∂ y
+ ν

(
∂2 v

∂x2
+ ∂2 v

∂ y2

)
;

(4.6)

subject to initial conditions u(x, y, 0) = (0, 0)� and p(x, y, 0) = 0; and boundary conditions

p(2, y, t) = 0,
∂ p

∂n
|∂D\{x=2} = 0, u(0, y, t) = (1,0)�,

∂u(2, y, t)

∂n
= 0, u(x,0, t) = u(x,1, t) = 0.

Here, n denotes the unit normal vector. This combination of parameters results in the Reynolds number Re = 60.
The reference solution is obtained with the Matlab code [46], which implements a finite-difference scheme on the 

staggered grid with �x = �y = 0.02 and �t = 0.0015. Our observable (quantity of interest) is the magnitude of the flow 
velocity, U (x, y, t) = √

u2 + v2. Visual examination of the solution U (x, y, t) reveals it to be periodic from t = 7.5 to t = 15
(the simulation horizon), i.e., the solution is confined in a fixed subspace M. We collect M = 2500 snapshots of U from 
t = 7.5 to t = 11.25 into a training dataset, from which DMD and xDMD learn the nonlinear dynamics. The discrepancy 
between the reference solution and its fitting with the DMD and xDMD models is the representation error.

The first row of Fig. 7 depicts the spatial distribution of the flow speed U , at times t = 9.38 and t = 11.25, computed 
with the (reference) solution of the Navier-Stokes equations (4.6). The DMD and xDMD models have a reduced rank of 75. 
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Fig. 7. Velocity magnitude U = √
u2 + v2 of incompressible flow with Reynolds number Re = 60 around an impermeable circle, predicted by solving 

numerically the two-dimensional Navier-Stokes equations (4.6) (top row) and by using the DMD and xDMD models (middle and bottom rows, respectively) 
in the representation mode. The representation errors (4.3) for these two approximations are displayed in the second and third rows, respectively.

Both DMD and xDMD fit the nonlinear flow data using a linear approximation with satisfactory accuracy (the last two rows 
of Fig. 7). The errors are confined to the circle’s wake, with xDMD being two orders of magnitude more accurate than DMD.

Next, we use the learned DMD and xDMD models in the extrapolation mode, i.e., to predict U (x, y, t) within the time 
interval from t = 11.25 to t = 15. As shown in Fig. 8, both DMD and xDMD yield accurate extrapolation, which should 
be expected due to the periodic behavior of the solution. Although the accuracy in extrapolation is diminished for both 
methods, xDMD remains more accurate than DMD at different extrapolation times.

Finally, Fig. 9 exhibits the log relative error of the two methods as function of time. In the representation mode, both 
DMD and xDMD have nearly steady small fitting error, fluctuating about 10−10 for xDMD and 10−6 for DMD. The obser-
vation of xDMD’s higher accuracy in fitting the data is consistent with Theorem 3.1. Similarly, the extrapolation error of 
DMD and xDMD validates Theorem 3.2. Although both extrapolation errors grow slowly, the xDMD error exhibits a pe-
riodic pattern (consistent with the periodic pattern of the solution U ), indicating that the xDMD linear model is able to 
capture the detailed periodic feature of the true flow better. Once an accurate linear representation of the nonlinear flow 
is available, one can conduct spatiotemporal mode analysis, reduced-order modeling and accelerated simulations. Table 1
collates computational times of simulating the reference solution and the linear approximation models. Further reduction in 
computation cost can be achieved by constructing reduced-order models using eigen-decomposition in DMD and xDMD.

4.4. Generalizability to new inputs

Generalizability refers to a model’s ability to adapt properly to new, previously unseen data, drawn from the same 
distribution as the one used to create the model. With validated generalizability, a DMD or xDMD model can be employed 
as a surrogate to accelerate, e.g., expensive Markov Chain Monte Carlo (MCMC) sampling used in inverse problems. A 
typical setting for this type of problems is solute transport in groundwater flow, whose steady-state Darcy velocity (flux) 
q(x) = −K∇h is computed from the groundwater flow equation

∇ · (K∇h) = 0. (4.7)
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Fig. 8. Velocity magnitude U = √
u2 + v2 of incompressible flow with Reynolds number Re = 60 around an impermeable circle, predicted by solving 

numerically the two-dimensional Navier-Stokes equations (4.6) (top row) and by using the DMD and xDMD models (middle and bottom rows, respectively) 
in the extrapolation mode. The extrapolation errors (4.3) for these two approximations are displayed in the second and third rows, respectively.

Fig. 9. Temporal evolution of log relative error of the DMD and xDMD models in the representation and extrapolation modes.

Table 1
Computational time and relative error for the reference solution and the DMD 
and xDMD models.

Simulation DMD xDMD

Computational time (sec) 29.0776 2.1352 2.1654
Relative error – 2.0515 × 10−5 3.1193 × 10−6

Here, h(x) is the hydraulic head, and K (x) is the hydraulic conductivity of a heterogeneous subsurface environment; in 
our simulations we use a rectangular simulation domain D = {x = (x, y)� : (x, y) ∈ [0, 128] × [0, 64]} and the K (x) field 
in Fig. 10 (these and other quantities are expressed in consistent units). The boundary conditions are h(x = 0, y) = 1, 
h(x = 128, y) = 0, and impermeable on y = 0 and y = 64.
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Fig. 10. Spatial distribution of hydraulic conductivity K (x) used in our simulations.

Fig. 11. Representative snapshots of solute concentration, u(x, t), in the training dataset with initial condition (4.9).

The resulting macroscopic velocity v(x) = q/ω, with ω denoting the porosity, is then used in the advection-dispersion 
equation to predict the contaminant concentration u(x, y, t):

∂u

∂t
+ v · ∇u = ∇ · (D∇u), x ∈ D, t ∈ (0, T ], (4.8)

with T = 80. In general, the dispersion coefficient D is a second-rank semi-positive definite tensor, whose components 
depend on the magnitude of the flow velocity, |u|. Here, for illustrative purposes, we treat it as the identity matrix, D = I. 
The boundary conditions for (4.8) are u(0, y, t) = 0.2 and ∂xu(128, y, t) = ∂yu(x, 0, t) = ∂yu(x, 64, t) = 0. The training is 
done for the initial condition u(x, y, 0) = uin(x, y) with

uin = s exp[−(x − xs)
2 − (y − ys)

2], (4.9)

where s = 100 and the coordinates of the plume’s center of mass, (xs, ys) are treated as independent random variables 
with uniform distributions, xs ∼ U [0, 25] and ys ∼ U [0, 64]. An example of the training dynamics is presented in Fig. 11. 
We generate NMC = 2000 realizations of the pairs (xs, ys) and evaluate the corresponding initial conditions u(n)

(x) for 
in

14
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Fig. 12. Representative snapshots of solute concentration, u(x, t), in the test case with initial condition (4.11).

n = 1, . . . , NMC. For each of these realizations, (4.8) is solved2 to compute our quantity of interest, the concentration field 
u(n)

T (x) ≡ u(n)(x, T ). The matrix pairs {u(n)

in , u(n)
T }NMC

n=1 are arranged into vectors

X =
⎡
⎣ | | |

x1 x2 · · · xNMC

| | |

⎤
⎦ and Y =

⎡
⎣ | | |

y1 y2 · · · yNMC

| | |

⎤
⎦ (4.10)

where xn is vectorized u(n)

in and yn is vectorized u(n)
T . Finally, the DMD and xDMD models are deployed to learn the flow 

map ��t with the time lag �t = T .
Our goal here is to test the ability of these models to predict u(x, T ) for other initial conditions, such as the line source

uin =
{

80 x = 10, y ∈ [20,40],
0 otherwise.

(4.11)

Fig. 12 exhibits the reference dynamics generated from this line source. The quantity of interest is the solute concentration 
map at T = 80.

In Fig. 13, we compare the ability of DMD and xDMD to predict a quantity of interest, i.e., u(x, T ), for an initial condition 
that is qualitatively different from that for which they were trained.3 The DMD and xDMD models have the reduced rank 
of 1648. While xDMD performs well in this generalizability test, DMD yields a wrong output concentration map because 
of its failure to handle inhomogeneity. The prediction error is largest in the vicinity of the left boundary, along which the 
inhomogeneous Dirichlet boundary condition is prescribed.

Fig. 14 demonstrates the DMD and xDMD performance for the same task as before but when noisy data are used for 
training. The training data are corrupted by addition of zero-mean white noise whose strength is 0.1% of the nominal 
value. Although the predictions from both models are disturbed by the white noise, xDMD still captures the features of 
the concentration map. In contrast to Fig. 6, the correction effects from the bias term in xDMD are more dominant than 

2 The reference solutions are obtained with the groundwater flow simulator MODFLOW and the solute transport simulator MT3DMS, both ran on a 
uniform mesh �x = �y = 1.

3 The results for the initial condition given by a linear combination of two Gaussians are presented in Supplemental Material.
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Fig. 13. Solute concentration predicted with the DMD and xDMD models for the initial condition not seen during training. Also shown are the absolute 
errors of DMD and xDMD.

Fig. 14. Solute concentration predicted with the DMD and xDMD models using 0.1% noisy data for the initial condition not seen during training. Also shown 
are the absolute errors of DMD and xDMD.

over-fitting the noise. The prediction error of DMD is still largest in the vicinity of the left boundary due to its failure to 
handle the inhomogeneous Dirichlet boundary condition.

5. Conclusions and future work

We presented an extended DMD (xDMD) framework for representation of (linear or nonlinear) inhomogeneous PDEs. 
Our xDMD borrows from residual learning and bias identification ideas, which originated in the deep neural networks 
community. It shows high accuracy in learning the underlying dynamics, especially in inhomogeneous systems for which 
standard DMD fails. The inhomogeneous source can be accurately learned from the bias term at no extra computational 
cost. We conducted a number of numerical experiments to demonstrate that xDMD is an effective data-driven modeling 
tool and offers better accuracy than the standard DMD.

Although xDMD provides an optimal linear approximation of the unknown dynamics, data-driven modeling for highly 
nonlinear PDE in general remains a challenging task. Judiciously chosen observables are needed in order to approximate 
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the corresponding Koopman operator, which requires either prior knowledge about the dynamics or dictionary learning. 
Developments and experiences from deep learning may again bring potential solutions and vice versa.

In the follow-up work, we plan to use xDMD to construct surrogates, e.g., for Markov Chain Monte Carlo solutions 
of inverse problems and for uncertainty quantifications. The verified generalizability will allow us to replace the expensive 
simulation with xDMD surrogates in each Monte Carlo run. Further model reduction can be carried out to improve efficiency 
as well.
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SUPPLEMENTAL MATERIAL

We provide a few additional tests used to demonstrate the relative performance of DMD and xDMD.

Boundary Conditions and Noisy Data395

We study the non-homogeneity driven by boundary conditions. Consider a one-dimensional diffusion

equation,

∂tu = D∂xxu, x ∈ [0, 1], t > 0, (S1)

with D = 0.1. Three different cases are tested to compare DMD and gDMD:

• Case 1: Dirichlet boundary conditions,u(x, 0) = 1,

u(0, t) = 3, u(1, t) = 2.
(S2)

• Case 2: Neumann boundary conditions,u(x, 0) = e−20(x−0.5)2

,

ux(0, t) = 0, ux(1, t) = 0.
(S3)

• Case 3: Contaminant training data. The initial and boundary conditions are the same as in Case

1. The training data are solution to (S1) with 0.1% measurement noise.

The same spatiotemporal discretization as in Test 4.1 is used, with the same number of training data.

The solution behavior is trivial and, thus, not shown here. The relative accuracy of DMD and xDMD is400

compared in Figure S1 in terms of representation, extrapolation and interpolation.

In Case 1, xDMD exhibits the higher-order accuracy than DMD in all three regimes of representation,

extrapolation and interpolation. DMD captures the overall solution behavior because the diffusion effect

dominates the dynamics in comparison with the non-homogeneity driven by the boundaries. The DMD

error is mostly distributed near the two boundaries, and this error accumulates with time. On the other405

hand, xDMD has a flat error distribution in the physical domain with the much smaller error magnitude.

In Case 2, which is a homogeneous case, the accuracy of xDMD than that of DMD. The improvements

are mostly due to the modification in rDMD, but also indicate that no sacrifice of accuracy is made by

adding the bias. This test guarantees better performance of xDMD without knowledge of homogeneity.

In Case 3, both DMD and xDMD lose several orders of accuracy and behave almost the same in the410

presence of noise. In the interpolation test, xDMD is even less accurate than DMD. This behavior is

reminiscent of the over-fitting issue in machine learning: models with more parameters fit too closely to

1



the limited number of contaminant data and therefore fail to fit additional data or reliably predict future

observations. Obviously, xDMD has more parameters than DMD due to the bias term.
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Figure S1: Solution accuracy in Cases 1 (left column), 2 (middle column) and 3 (right column) in the representation (top

row), extrapolation (middle row) and interpolation (bottom row) regimes.

Two-dimensional Viscous Burgers’ Equation415

Consider the two-dimensional viscous Burgers’ equation,∂tu+ u∂xu+ v∂yu = ν(∂xxu+ ∂yyu)

∂tv + u∂xv + v∂yv = ν(∂xxv + ∂yyv).
(S4)
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This equation, with ν = 0.05, is defined for (x, y) ∈ [0, 2]× [0, 2] and t ∈ [0, 2]; and is subject to no-flux

boundary conditions and the initial condition

u(x, y, 0) = v(x, y, 0) =

1 (x, y) ∈ [0.5, 1]× [0.5, 1],

0 otherwise.
(S5)

Figure S2: Temporal snapshots of the solution, u(x, t) = v(x, t), to the 2D viscous Burgers’ equation.

The reference solution is computed via a finite-difference scheme on a uniform mesh with ∆x = ∆y =

0.05 and ∆t = 0.001. The snapshot solution needs to be reshaped into a vectorized form. We randomly

select 500 snapshots out of the 2000 reference solutions to form the training data. Due to the viscosity ν,

the solution exhibits weak nonlinearity and smooth diffusive profiles (Figure S2). Both DMD and xDMD

capture the solution with satisfactory accuracy. We plot the relative error of xDMD is two orders of420

magnitude smaller than DMD (Figure S3).

Figure S3: Temporal evolution of the log relative errors of the DMD and xDMD solutions, u(x, t) = (u, v)>, to the viscous

Burgers’ equation in the interpolation regime.
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One-dimensional Advection-Diffusion Equation

Consider a one-dimensional advection-diffusion equation with a time-invariant source,∂tu+ v∂xu = D∂xxu+ S(x), x ∈ [−4, 4], t ∈ [0, 4],

S(x) = exp(−x2/0.2).
(S6)

We set v = 1 and D = 0.1. The training is conducted using the initial and boundary conditionsu(x, 0) = exp(−(x+ 2)2/0.1),

ux(−4, t) = 0, ux(4, t) = 0.
(S7)

The initial condition mimics a localized source at point x = −2 with strength 1 and width
√

0.1.

The training data should be carefully chosen such that its traveling wave can cover the whole domain

of interest and the training time should be sufficiently long. In this case, one should choose a training425

dataset with active pulses all over the domain [−4, 4]. Otherwise, the data-driven modeling will receive no

signal in parts of the domain and, thus, fail to learn the global dynamics. This issue has been discussed

in [19] for advection-dominant phenomena.

The training data are collected from reference solutions using a finite-difference scheme with ∆x = 0.04

and ∆t = 0.04. Figure S4 shows that both DMD and xDMD represent the training data with satisfactory430

accuracy. As in the previous tests, xDMD achieves higher-order accuracy than DMD.
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Figure S4: DMD and xDMD solutions to (S6) on the training data. Left: the DMD and xDMD solution profiles compared

with the reference solution at different times; Right: temporal evolution of the log relative error.

Essentially, we want the DMD and xDMD models to learn, from the training data, the advection-

diffusion operator with a fixed source. If the models are accurate, then for a different input (e.g., a point

source with different strength, location and width), one can use the DMD and xDMD approximations

to obtain solutions directly, without solving the governing equation. We test this generalizability on two435

types of inputs. In Test 1, the input data are generated for a single point source u(x, 0) = s exp(−(x −
x0)2/σ2), where s ∼ U [1, 11], x0 ∼ U [−2, 1], and σ2 ∼ U [1/15, 1/10]. In Test 2, the input data are

4



generated from a two-point source u(x, 0) = s1 exp(−(x − x0
1)2/σ2

1) + s2 exp(−(x − x0
2)2/σ2

2), where

s1, s2 ∼ U [1, 11], x0
1, x

0
2 ∼ U [−2, 1], and σ2

1 , σ
2
2 ∼ U [1/15, 1/10].
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<latexit sha1_base64="nlOYUdOcLB+k6EYW3cewfF0yWss=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Koko9ljw4rEF+wFtKJvtpF272YTdjVhCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/Pbj6g0j+W9mSToR3QoecgZNVZqPPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NWHVz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LivedcVtXJVr1TyOApzCGVyABzdQgzuoQxMYIDzDK7w5D86L8+58LFrXnHzmBP7A+fwB5ImM9g==</latexit>x
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<latexit sha1_base64="3nOeoGsBeXKje4iRNl7K3J7f7Yk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHZ9YI4BLx6jmAckS5idzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqEccJ9yM6UCIUjKKVHs4ve6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn80unZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NiWPUzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfOi4l1X3Purcq2ax1GAYziBM/DgBmpwB3VoAIMQnuEV3pyR8+K8Ox/z1hUnnzmCP3A+fwDlOozo</latexit>�3

<latexit sha1_base64="5gv0/+CeZQLyK24a7oxZ6113Mxo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURxR4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw4XXL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSENT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqsetdV9/6qUq/lcRThBE7hHDy4gTrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+IyjOY=</latexit>�1

<latexit sha1_base64="f4VfZ9uNY1yeGu0rGZOTHqLuGM0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRij0WvHisYm2hDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uHRo4lTzXiLxTLWnYAaLoXiLRQoeSfRnEaB5O1gfDPz209cGxGrB5wk3I/oUIlQMIpWur+o9csVt+rOQVaJl5MK5Gj2y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfFsO5nQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vksfLqndVde9qlUY9j6MIJ3AK5+DBNTTgFprQAgYhPMMrvDlj58V5dz4WrQUnnzmGP3A+fwDmvozp</latexit>�4

<latexit sha1_base64="wElOYbN08Kkfv0WN8xkK5uGznpA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSRFsceCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1Fjp4bLaL5XdijsHWSVeTsqQo9EvffUGMUsjlIYJqnXXcxPjZ1QZzgROi71UY0LZmA6xa6mkEWo/m186JedWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSENT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HCKNgRv+eVV0qpWvOuKe39VrtfyOApwCmdwAR7cQB3uoAFNYBDCM7zCmzN2Xpx352PRuubkMyfwB87nD+O2jOc=</latexit>�2

<latexit sha1_base64="5J5olVXZWoPCkocqDPJlHGvQxzY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTdVtXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad2mMrg==</latexit>
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<latexit sha1_base64="EW5Int/Pmx8+QYFANI+i9Y7xt2c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTdVtXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeO2Mrw==</latexit>
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<latexit sha1_base64="LdZmF6FtyGCWjcv9AB9xvfCW6Qo=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgyYgxchglkwGUJPpydp0tMzdNeIYchfePGgiFf/xpt/Y2c5aPRBweO9KqrqBYkUBl33y8ktLa+sruXXCxubW9s7xd29holTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDXxmw9cGxGrOxwl3I9oX4lQMIpWuu8gf8SselMdd4slt+xOQf4Sb05KMEetW/zs9GKWRlwhk9SYtucm6GdUo2CSjwud1PCEsiHt87alikbc+Nn04jE5skqPhLG2pZBM1Z8TGY2MGUWB7YwoDsyiNxH/89ophpd+JlSSIldstihMJcGYTN4nPaE5QzmyhDIt7K2EDaimDG1IBRuCt/jyX9I4KXtnZff2tFQ5n8eRhwM4hGPw4AIqcA01qAMDBU/wAq+OcZ6dN+d91ppz5jP78AvOxzeBxZDE</latexit>
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<latexit sha1_base64="LdZmF6FtyGCWjcv9AB9xvfCW6Qo=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgyYgxchglkwGUJPpydp0tMzdNeIYchfePGgiFf/xpt/Y2c5aPRBweO9KqrqBYkUBl33y8ktLa+sruXXCxubW9s7xd29holTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDXxmw9cGxGrOxwl3I9oX4lQMIpWuu8gf8SselMdd4slt+xOQf4Sb05KMEetW/zs9GKWRlwhk9SYtucm6GdUo2CSjwud1PCEsiHt87alikbc+Nn04jE5skqPhLG2pZBM1Z8TGY2MGUWB7YwoDsyiNxH/89ophpd+JlSSIldstihMJcGYTN4nPaE5QzmyhDIt7K2EDaimDG1IBRuCt/jyX9I4KXtnZff2tFQ5n8eRhwM4hGPw4AIqcA01qAMDBU/wAq+OcZ6dN+d91ppz5jP78AvOxzeBxZDE</latexit>
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<latexit sha1_base64="5mBMTE/FOSXZauZirrfmEQvpLFQ=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PAHLwIEcwDNkuYncwmQ2ZnlpleSVjyGV48KOLVr/Hm3zhJ9qDRgoaiqpvurjAR3IDrfjmFldW19Y3iZmlre2d3r7x/0DIq1ZQ1qRJKd0JimOCSNYGDYJ1EMxKHgrXD0c3Mbz8ybbiSDzBJWBCTgeQRpwSs5HeBjSEb1+/q01654lbdOfBf4uWkgnI0euXPbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8YpU+jpS2JQHP1Z8TGYmNmcSh7YwJDM2yNxP/8/wUousg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb/8l7TOqt5F1b0/r9Qu8ziK6Agdo1PkoStUQ7eogZqIIoWe0At6dcB5dt6c90VrwclnDtEvOB/fYSaRRg==</latexit>
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<latexit sha1_base64="5mBMTE/FOSXZauZirrfmEQvpLFQ=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PAHLwIEcwDNkuYncwmQ2ZnlpleSVjyGV48KOLVr/Hm3zhJ9qDRgoaiqpvurjAR3IDrfjmFldW19Y3iZmlre2d3r7x/0DIq1ZQ1qRJKd0JimOCSNYGDYJ1EMxKHgrXD0c3Mbz8ybbiSDzBJWBCTgeQRpwSs5HeBjSEb1+/q01654lbdOfBf4uWkgnI0euXPbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8YpU+jpS2JQHP1Z8TGYmNmcSh7YwJDM2yNxP/8/wUousg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb/8l7TOqt5F1b0/r9Qu8ziK6Agdo1PkoStUQ7eogZqIIoWe0At6dcB5dt6c90VrwclnDtEvOB/fYSaRRg==</latexit>

xDMD

Figure S5: DMD and xDMD solutions to (S6) on the test data. Left: the DMD and xDMD solution profiles compared with

the reference solution at different times; Right: temporal evolution of the log relative error.

Figure S5 shows that xDMD has superior performance in generalizing the learned model to new,440

previously unseen inputs. The modeling errors in the two tests are well controlled under reasonable

magnitude. On the other hand, DMD has poor performance in generalization due to the lack of source

term identification. The nature of (S6) implies that a good model should consist of two parts: one part

accounts for the advection-diffusion operator, which is sensitive to the variation of the initial inputs; the

other part accounts for the inhomogeneous source term, which is invariant to the initial inputs. This445

intuition is explicitly accounted for in the xDMD framework.
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Two-dimensional Advection-Diffusion Equation

Next, we consider a two-dimensional advection-diffusion equation
∂tu+ v · ∇u = ∇ · (D∇u) + S(x, y), (x, y) ∈ [0, 20]× [0, 10], t ∈ [0, T ],

S(x, y) = s exp

[
− (x− 5)2 + (y − 5)2

2σ2

]
.

(S8)

We set

v =

−2.75

0.0

 , D =

0.5 0

0 0.5

 , s = 100.0, σ2 = 0.05.

This equation is subject to no-flux boundary conditions and the initial condition u(x, 0) = uin(x). The

problem describes, e.g., the spatiotemporal evolution of the concentration u(x, t) of a groundwater con-

taminant that is advected by flow velocity v, while undergoing hydrodynamic dispersion. The training

data are generated for

uin(x) ≡ s exp

[
− (x− xs)2 + (y − ys)2

2σ2

]
, (S9)

wherein the coordinates of the plume’s center of mass, (xs, ys) are treated as independent random variables

with uniform distributions, xs ∼ U [0, 10] and ys ∼ U [0, 10]. We generate NMC = 4000 realizations of

the pairs (xs, ys) and evaluate the corresponding initial conditions u
(n)
in (x) for n = 1, . . . , NMC. For each450

of these realizations, (S8) is solved to compute u
(n)
T (x) ≡ u(n)(x, T ) with T = 4 using a finite-difference

scheme with ∆x = ∆y = 0.25. The matrix pairs {u(n)
in , u

(n)
T }NMC

n=1 are arranged into data matrices X and

Y, as in (4.10). Finally, the DMD and xDMD models are deployed to learn the flow map Φ∆t with the

time lag ∆t = T .

We test the generalizability of the DMD and xDMD models by considering the following three tests.455

• Test 1: The initial input is the same as in (S9) but the single point source is now allowed to have

different strength and width: s ∼ U(50, 100) and σ2 ∼ U(0.02, 0.1).

• Test 2: The initial input is a two-point source with different strengths, locations and widths:

uin = s1 exp

[
− (x− xs1)2 + (y − ys1)2

2σ2
1

]
+ s2 exp

[
− (x− xs2)2 + (y − ys2)2

2σ2
2

]
, (S10)

where s1, s2 = U(50, 100), σ2
1 , σ

2
2 = U(0.02, 0.1), xs1 , xs2 ∼ U [0, 10], and ys1 , ys2 ∼ U [0, 10].

• Test 3: The initial input is a fixed-strength line source,

uin =

75 x = 5, y ∈ [3, 6],

0 otherwise.
(S11)

For Test 1, Figure S6 demonstrates the xDMD model’s ability to accurately predict the solution for

an initial condition not represented in the training set. At the same time, the DMD model fails this460

6



relatively weak generalization test due to the reason given in section 5. The DMD error map has a peak

centered at (5, 5), which is the location of the source S(x) in (S8). This further verifies that the loss of

accuracy is caused by the shortcoming of DMD in identifying the inhomogeneous source term.

Figure S6: Test 1: The ground truth at the end of simulation time (top row) and its DMD and xDMD approximations

(middle row), accompanied by the corresponding absolute error maps (bottom row).

Figure S7 reveals a similar performance of DMD and xDMD in the more challenging Test 2. As

before, the xDMD model accurately predicts the solution at T = 4 corresponding to the two-point initial465

input not seen during the training. The right corner concentration tail is mostly caused by the advection-
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diffusion effect on the north-east point source. This pure advection-diffusion dynamic is well captured by

DMD, as shown by the flat low error concentration in the DMD error map. The error peak is at (5, 5)

again, showing the significant effect of identifying the source.

Figure S7: Test 2: The ground truth at the end of simulation time (top row) and its DMD and xDMD approximations

(middle row), accompanied by the corresponding absolute error maps (bottom row).

Figure S8 demonstrates a similar behavior of the DMD and xDMD solutions for a line source initial470

input (Test 3). Although the solutions to (S8) with the single-point source, two-point source and line

source exhibit quite different features, all of them can be thought of as a linear superposition of the

8



training single-point sources. Therefore, all the three types of the initial input can be regarded as drawn

from the same distribution. As before, xDMD again achieves satisfactory accuracy in this generalizability

test and DMD appears similar error map pattern centered at (5, 5).475

Figure S8: Test 3: The ground truth at the end of simulation time (top row) and its DMD and xDMD approximations

(middle row), accompanied by the corresponding absolute error maps (bottom row).

Transport in Heterogeneous Media: Generalizability to New Inputs

The setting is identical to that in Section 4.4. Our goal here is to test the ability of DMD and xDMD

models to predict u(x, T ) for initial conditions not seen in training, such as a two-point source with

9



different strength and locations:

uin(x) = s1 exp(−(x− xs1)2 + (y − ys1)2) + s2 exp(−(x− xs2)2 + (y − ys2)2, (S12)

where s1 = 50, s2 = 80, (xs1 , ys1) = (10, 40), (xs2 , ys2) = (20, 20).

Figure S9: Section 4.4: The ground truth at the end of simulation time (top row) and its DMD and xDMD approximations

(middle row), accompanied by the corresponding absolute error maps (bottom row).

Figure S9 shows the success of xDMD in learning the solution for an initial data not seen the training

data. The xDMD error map has very small magnitude, indicating the high accuracy of xDMD in this

10



generalized test. On the other hand, DMD predicts a very different concentration map, failing the480

generalization test. As before, the DMD error is highest close to the left boundary, where the Dirichlet

boundary condition is imposed. This visualization again addresses the significant role of the bias term

added in the new xDMD framework.
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