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Dendritic growth is a leading cause of degradation and catastrophic failure of lithium-metal batteries. Deep understanding of this
phenomenon would facilitate the design of strategies to reduce, or completely suppress, the instabilities characterizing
electrodeposition on the lithium anode. We present a linear-stability analysis, which utilizes the Poisson-Nernst-Planck equations
to describe Li-ion transport and, crucially, accounts for the lack of electroneutrality. This allows us to investigate the impact of
electric-field gradients near the electrode surface on both ion diffusion and its anisotropy. Our analysis indicates that the use of
anisotropic electrolytes (i.e., electrolytes with anisotropic diffusion coefficients of the Li ions) and the control of the local electric
field can suppress dendritic growth of lithium metal. Specifically, changes in the local electric field can be used to enhance the
longitudinal (perpendicular to the electrode) component of the cation diffusion coefficient tensor, which decreases the maximum
growth rate of the dendrites. Electrolytes with electric field-dependent diffusion coefficients would reduce dendritic growth in small
batteries, while anisotropic electrolytes (or separators with anisotropic pore structures or columnized membranes) are appropriate
for batteries of any size.
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Dendritic growth of lithium metal is a leading cause of degrada-
tion and catastrophic failure of Li-metal batteries. Understanding the
unstable dendrite growth during electrodeposition, which has been
observed in many experimental studies,1–4 is crucial to the design
and safe operation of Li-metal batteries. Linear stability analyses5–9

can reveal important aspects of the dynamics associated with these
instabilities. Of direct relevance to our study are investigations of the
possible stabilizing effects of a negative background charge in
porous media and of dependence of the crystal grain size on duty
cycle in pulse electroplating.10 Linear stability analyses of electro-
deposition were also used to study the mechanical stabilization
effects of external pressure,11 elastic deformation12 and
electroconvection,13 as well as other stabilization mechanisms such
as thin-film piezoelectricity14 and superimposition of AC forcing on
a base DC field.15

These and other similar stability analyses rest on the assumption
of local electroneutrality. Although this simplification is adequate
under normal operating conditions, the deviation from electroneu-
trality can be significant when the applied current is high.16

Investigations of this regime,4,17,18 in which the cell overpotential
ranged between 1.9 V and 3.7 V, aim to understand Li-metal battery
cycling performance and dendrite growth on the fast-charging
lithium-metal anode.17 In such an overlimiting regime, the electrode
surface becomes highly unstable.19 The lack of electroneutrality
implies the existence of an extended space-charge region20 that
significantly affects ion transport in the entire system.21 It affects
transport properties of the electrolyte, such as possible anisotropy of
ion diffusion and dependence of the disparate diffusion coefficients
of cations and anions on a strong electric field gradient near the
electrode surface.

Anisotropy of ion diffusion in the electrolyte may provide a
means to control dendritic growth of the lithium metal, because large
gradients in the ion concentration parallel to the electrodes play a
destabilizing role.22 Dendrite formation and growth can be sup-
pressed either by using an anisotropic electrolyte23 or by inducing
the anisotropy via application of an electric field, which engenders
ionic drift diffusion and changes the transport properties.24,25 Recent
molecular dynamics simulations26,27 also show that electric fields
alter the diffusion coefficients of cations and anions in the electrolyte
and render them direction-dependent.

Motivated by these findings, we perform a linear stability
analysis of electrodeposition without resorting to the electroneu-
trality assumption. Our study extends the stability analysis19 to
include the mechanisms by which a local electric field close to the
electrode surface alters ion diffusion and enhances its anisotropic
behavior. The base- and perturbed-state Eqs. are solved numerically
to compute the spatial distributions of the electric potential, charge
density, and Li-ion concentration. These numerical solutions allow
us to construct dispersion relations for the parameter space of
interest. The comparison of the stability conditions with and without
the electric field effects identifies potential mechanisms for reducing,
and even suppressing, dendritic growth. In the vicinity of the
electrode surface, larger values of the applied electric potential
magnify the impact of (potential-dependent) ionic diffusivity on both
the maximum growth rate and charge density. For example, the
maximum growth rate is about 24% smaller than its counterpart for
the constant isotropic diffusion coefficient.

Mathematical Formulation

We study electrodeposition on the lithium anode in a two-
dimensional half-cell domain, Ω= Ωs ∪ Ωf (Fig. 1). The Li-metal
electrode surface Γ(t), which separates the Li-metal anode Ωs(t) from
the liquid electrolyte Ωf(t), is initially located at x= 0. A negative
electrostatic potential, φe, is maintained on Γ(t); the electric potential
at the outer edge of the electrolyte (x= L) is fixed at 0. The initial
concentration of lithium cations, Li+, in the binary dilute electrolyte
electrolyte is c0. At the electrode surface, Γ, the cations, Li+,
undergo a Faradaic reaction with electrons, e−, and reduce to Li
atoms, Li+ + e− → Li, which are subsequently deposited on the
electrode surface.

This deposition causes the Li-metal surface Γ(t) to change with
time t. We study this evolution in the two-dimensional Cartesian
coordinate system spanned by the orthogonal unit-vectors ex and ey,
and represent the moving interface, Γ(t), by a single-valued function
h(y, t) such that h(y, 0)= 0 (Fig. 1). Our focus is on the stability of
the electrodeposition, i.e., of the temporal evolution of h(y, t).

Governing equations.—Under isothermal conditions and in the
absence of a magnetic field, the state of an immobile dilute
electrolyte at any point x= (x, y)⊤ ∈ Ωf = {x: h(y, t) ⩽ x ⩽ L,
0 ⩽ y ⩽ B} and time t is defined by the concentrations (mol/m3) of
cations, c+(x, t), and anions, c−(x, t), and by the electric potential φ
(x, t) (V). Spatial variability of these three state variables induceszE-mail: tartakovsky@stanford.edu
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mass fluxes of cations, J+(x, t), and anions, J−(x, t),
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where D± are the diffusion coefficients (m2 s−1), whose tensorial
nature accounts for possible anisotropy; z± are the charge numbers
(valences) of the cations and anions; F is the Faraday constant
(s·A mol−1); R is the gas constant (J/mol/K); and T is the
temperature (K). Mass conservation of ions in the electrolyte is
described by the Nernst-Planck equations,

∂
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The electric potential, φ, is governed by the Poisson equation,
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where ϵ is the absolute permittivity of the solvent (F m−1).
The electrodeʼs surface Γ(t) is impervious to inert (non-reactive)

anions, i.e.,

· = ∈ Γ > [ ]− tn J x0, , 0, 3

where n is the normal vector pointing outward from the electrolyte.
The normal component of the cation flux, J+, through this surface is
balanced by the Faradaic reaction Li+ + e− → Li such that

· = ∈ Γ > [ ]+ R tn J x, , 0, 4aLi

where RLi is the rate of production of lithium atoms.10 This condition
is supplemented with the minimum Li+ concentration condition at
the electrode surface:19

·∇ = ∈ Γ > [ ]+c tn x0, , 0. 4b

The production rate RLi is given by the Butler-Volmer equation,
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where k0 is the reaction rate constant (mol/m2 s−1); γts is the activity
coefficient of the transition state for the Faradaic reaction (−); z is
the number of electrons involved in the electrode reaction; αan and

αcat are the anodic and cathodic charge-transfer coefficients,
respectively (−); +

Θc is the standard concentration; ω is the molar
volume of Li metal (m3 mol−1); γ is the isotropic surface energy of
the Li metal (J m−2), and κ(y, t) is the mean curvature of Γ(t) (m−1).
The activation overpotential ηα(x ∈ Γ, t) is defined as

η ϕ ϕ= − ( ∈ Γ ) − [ ]α
Θt Ex , , 6e

where EΘ is the standard electrode potential. For the sake of
specificity, we set γts = 1, αan = 1− αcat, and EΘ = 0. The inter-
facial current density I is related to the reaction rate RLi by

= [ ]I zFR . 7Li

The boundary conditions on the moving interface Γ(t), Eqs. 3
and 4, are supplemented with a kinematic condition that describes
the spatiotemporal evolution of Γ. The normal-vector n(y, t) and
mean curvature κ(y, t) of Γ are expressed in terms of the derivatives
of h(y, t) as19
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The rate of change of Γ(t), or equivalently of h(y, t), is given by the
current into the anode,10,19
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The boundary conditions on the remaining segments of the
computational domain Ωf are
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The boundary conditions at x= L reflect an assumption that small
(magnitude ε) perturbations of the anode surface do not affect the
ion concentrations the half-cell distance away; this assumption is
effectively enforced in the full-cell linear stability analyses10,19 that
impose identical perturbations on both cathode and anode (Fig. 8
provides a comparison of our results with those reported in 10). The
last three boundary conditions in Eq. 10 imply that the horizontal
surfaces, y= 0 and B, are electrically insulated and impermeable.

Diffusivity alteration by electric field.—The presence of an
electric field, ϕ ϕ= ( = −∂ = −∂ )⊤E EE ,x x y y , alters the diffusion
coefficients of cations and anions, D±, rendering them direction-
dependent, D±.

26,27 Both the magnitude of the diffusion coefficients
and the degree of their anisotropy increase with the magnitude of Ex
or Ey. We adopt the exponential model derived from the molecular
dynamics simulations of 1M solution of LiPF6 in ethylene
carbonate,26

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

= [ ]
ϕ

ϕ

± ±
∣ ∣

∣ ∣

±
∂

∂

±

±

±

±

D e
e

D e
e

D 0
0

0
0

. 11

b E

b E

b

b

ref

ref

x

y

x

y

where ±Dref are the isotropic diffusion coefficients of cations and
anions when ∣E∣= 0, and the fitting parameters b± (m V−1) account
for the strength of the electric field.

Figure 1. Schematic representation of a two-dimensional half-cell domain
Ω = Ωs ∪ Ωf. The interface between the Li metal, Ωs, and liquid electrolyte,
Ωf, is denoted by Γ. The coordinate system moves in the positive x direction
with velocity U, which is the average deposition rate on the electrode.
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Like many others, our model of dendritic growth, Eqs. 1–10, rests
on the dilute-solution formulation. Measurements of the activity
coefficient for LiPF6 in PC/EC/DMC for a wide range of concentra-
tion (up to 4M) found it to be close to 1 for concentrations up to
1M,28 indicating that the dilute formulation holds. This finding is
seemingly contradicted by the study29 that found the solutions of
LiPF6 in PC/EC/EMC for the concentration range 0.0625–1M not to
be “dilute”; yet, it showed that the dilute-solution model of these
solutions overestimates the specific energy of a lithium-ion cell by
only 0.6%. Be that as it may, our analysis can accommodate other
dependencies of D± on E, and the one in Eq. 11 is used for the sake
of concreteness.

Linear Stability Analysis

Linear stability analysis is performed by applying a small
perturbation, ε ( + )wt ikyexp , to a one-dimensional steady-state
base state, h(0)(t) ≡ Ut, φ(0)(x) and ( )±

( )c x0 . Here, ε is the small
dimensionless parameter, w is the growth rate (1/s), k is the wave
number (1/m), and i2=− 1. The electrodeposition process is
unstable if the perturbations grow with time, i.e., if w> 0. The
goal of a stability analysis is to express w in terms of the physical
properties of the electrolyte and the anode.

To facilitate this analysis, we rewrite 1–11 in terms of dimen-
sionless variables
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The corresponding dimensionless parameters describing the pertur-
bation of the anode surface, Γ, are

˜ = ˜ = [ ]
+

k kL w
L w

D
, . 12b

2

ref

The dimensionless Li production rate R̃Li and interfacial current
density Ĩ are
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Unless specified otherwise, all the quantities discussed from here
on are dimensionless, even though we drop the tildes to simplify the
notation. In a linear analysis, the electrode surface height, h(y, t), and
the state variables φ(x, y, t) and c±(x, t) are written as

ε( ) = ( ) + [ ]( ) ( ) +h y t h t h e, 13wt iky0 1

ϕ ϕ εϕ( ) = ( ) + ( ) [ ]( ) ( ) +t x x ex, 14wt iky0 1

ε( ) = ( ) + ( ) [ ]± ±
( )

±
( ) +c t c x c x ex, , 15wt iky0 1

where the constant h(1) and the functions φ(1) and ±
( )c 1 are the first-

order (in ε) corrections. Then, the interfacial conditions 3–11 are
expanded in Taylor series around the leading-order interface h(0),
which is moving with the constant velocity ω= = −( ) ( )U h t Rd d ;0

Li
0

e.g., φ(x ∈ Γ, t)≈ φ(h(0), y, t)+ .... Finally, the terms of equal power
of ε are collected to specify boundary-value problems (BVPs) for the
base state (of order ε0) and the first-order correction (of order ε).
These calculations are reported in the Appendix; the BVP for the
base-state variables ξ( )±

( )c 0 and φ(0)(ξ) consists of Eqs. 23a and 24,
and the BVP for the perturbed-state variables ξ( )±

( )c 1 and φ(1)(ξ)
comprises Eqs. 25 and 26. Both BVPs are written in the moving
coordinate system ξ ω( ≡ + )( ) ⊤x R t y,Li

0 .
The base-state Eqs. 23a and 24 are solved numerically with the

Matlab function bvp4c to obtain ξ( )±
( )c 0 , φ(0)(ξ), and their first- and

second-order derivatives. These are then used as coefficients in the
perturbed-state Eqs. 25 and 26; the numerical solution is obtained10

by employing a second-order finite-difference scheme and solving
the resulting generalized eigenvalue problem with the Matlab
function eigs.

Table I. Parameters used in the simulations.

Parameter Symbol Value Units References

Half-cell length L 0.5, 5, 50 μm 19
Cation diffusivity without electric field +Dref 1.61 · 10−11 m2 s−1 30

Anion diffusivity without electric field −D ref 3.91 · 10−11 m2 s−1 30

Exponent in cation diffusion tensor b+ 2.31 · 10−9 m V−1 26
Exponent in anion diffusion tensor b− 2.49 · 10−9 m V−1 26
Temperature T 298.15 K
Molecular weight of lithium metal M 6.941 g mol−1 31
Density of lithium metal ρ 0.534 g cm−3 31
Li+ bulk concentration c0 1000 mol/m3

Standard concentration cref 1000 mol m−3

Standard electrode potential EΘ 0 V
Dielectric constant ϵ/ϵ0 90 — 32
Vacuum permittivity ϵ0 8.854 · 10−12 F m−1 33
Reaction rate constant k0 2.7 · 10−3 mol (m 2 · s)−1 34
Surface energy of metal/electrolyte interface γ 1 J m−2 7
Activity coefficient of the transition state γts 1 —
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Results and Discussion

The parameters used in our simulations are presented in Table I. We
start by computing the base-state solution for constant isotropic diffusion
coefficients, D±, (i.e., for Eq. 11 with b±= 0) for a wide range of the
applied electric potential φe. Figure 2 shows the concentrations of
cations, +̃

( )c 0 , and anions, ˜−
( )c ;0 the charge density ρ̃ = ˜ − ˜( )

+
( )

−
( )c c ;e

0 0 0 and

the electric potential ϕ̃( )0 . These dimensionless quantities are computed
for the half-cell length L= 5 μm, which corresponds to the limiting
current density = =+I FD c L2 62.1 mAlim

ref
0 /cm2. For small values of

the applied potential, φe=− 0.1 V, the base-state current density I(0) is
smaller than Ilim, the cations at the electrode surface are not depleted, and
electroneutrality holds throughout the simulation domain. On the other
hand, for large φe when I(0) reaches Ilim, the Li-cation concentration

ξ( )+
( )c 0 is approximately zero near the electrode surface and local
electroneutrality is violated within the boundary layer, ξ⩽ ˜ ⩽0 0.02;
for L= 5 μm, its width is 0.02 · 5= 0.1 μm. Figure 2 also shows that
higher values of the applied potential φe induce larger values of the
electric potential gradient, ∂ξφ

(0), near the electrode surface.
In accordance with Eq. 11, the electric field E=− ∇φ gives rise

to anisotropic ionic diffusion. Since for the base state
= (− )ϕ

( ) ( ) ⊤jE , 00 0 , the leading-order approximations of the principal

components of the diffusion tensor ±
( )D 0 in Eq. 17 become

= ( )ϕ
±

± ±
( )D D b jexpxx

ref 0 and =±
±D Dyy
ref , i.e., the diffusion anisotropy

manifests itself in the boundary layer adjacent to the electrode.
Figure 3 shows the spatial extent of this region for half-cell lengths
L= 0.5 and 5 μm. Both the anisotropy ratio + +D Dxx yy and the
boundary-layer width increase as L decreases, or φe increases,
with the longitudinal diffusion coefficient +Dxx being up to 12%
larger than its reference value +Dref for L= 0.5 μm and φe =−3.5 V.

Next, we investigate the impact of the electric field-dependence
of ion diffusion on electrodeposition. Specifically, we compare the
base-state charge density ρ̃( )

e
0 and the perturbed-state growth rates w̃

alternatively computed with either constant diffusion coefficients

±Dref or field-dependent diffusion coefficients D± in Eq. 17. When the
applied electric potential is small (φe =−0.1 V) the dependence of
the diffusion coefficients on the electric field has negligible effect on
the charge density ρ̃e (Fig. 4). This is because in this regime the
electric field E is approximately zero (Fig. 2). Higher values of
the applied electric potential (φe =−2.5 and −3.5 V) produce the
boundary layer within which the electrolyte is not eletroneutral,
E> 0, the diffusion anisotropy increases in accordance with Eq. 17,
and the base-state charge density ρ̃( )

e
0 near the electrode surface

decreases relative to that predicted for the constant diffusion
coefficient.

Figure 2. Spatial profiles of the base-state cation, +̃
( )c 0 , and anion, ˜−

( )c 0 , concentrations; electric potential ϕ̃( );0 and charge density ρ̃( )
e

0 for L = 5 μm, φe = −0.1 V
or −1 V, and constant diffusion coefficients =± ±D Dref .

Journal of The Electrochemical Society, 2022 169 060536



Figure 4. Spatial profiles of base-state charge density ρ̃( )
e

0 computed with either constant diffusion coefficients ±Dref or electric field-dependent diffusion
coefficients D± in Eq. 17, for L = 0.5 μm and several values of φe.

Figure 3. Spatial profiles of the normalized longitudinal diffusion coefficient, +
+D Dxx
ref in Eq. 17, for L = 0.5 and 5 μm and several values of φe.

Journal of The Electrochemical Society, 2022 169 060536



These relatively small and localized changes in electroneutrality
(Fig. 2) and charge density (Fig. 4) have significant impacts on the
dendrite growth rate w̃ when the applied electric potential φe
becomes large (Fig. 5). For small φe, i.e., for underlimiting current
( <( )I Ilim0 ), the growth rate w̃ is negative for all wavenumbers
˜ >k 0. This means that the electrode surface growth is uncondition-
ally stable, i.e., a small initial perturbation of the surface geometry
decays with time, regardless of whether or not the diffusion tensor
D± depends on the electric field E. For larger φe (overlimiting
current, >( )I Ilim0 ), the growth rate w̃ is positive within a certain
range of k̃ , where the surface growth is unstable and dendrites
develop. The dispersion relation ˜ = ˜ ( ˜)w w k exhibits non-monotonic
behavior: w̃ increases from zero at ˜ =k 0 to its maximum value of
w̃max at k̃max wherein the electrode surface growth is maximally
unstable; further increase of k̃ causes the positive growth rate w̃ to
decrease until it reaches 0 at a critical wavenumber k̃cr at which
point the electrode surface is marginally stable. For ˜ > ˜k kcr , the
growth rate w̃ becomes negative, and surface energy stabilizes the
electrode surface growth. The surface energy term ˜Ca k2 in
Eqs. 25–26 comprises the surface curvature κ(1) ∝ k2 and the surface
energy γ. This term has a stabilizing effect on the surface growth at

large k̃ by imposing an energy penalty on the creation of additional
surface area. The difference between the dispersion relations
˜ = ˜ ( ˜)w w k corresponding to constant diffusion coefficients ±Dref and
their electric field-dependent anisotropic counterparts D± increases
with φe. For φe =−3.5 V, the use of ±Dref instead of D± would
overestimate w̃max by 24%, while kcr remains virtually unchanged.

In another set of numerical experiments, we study how the half-
cell length L affects the stability of the electrode interface growth.
Figure 6 shows the dispersion relations ˜ = ˜ ( ˜)w w k corresponding to
constant isotropic diffusion coefficients ±Dref and the electric field-
dependent diffusion tensors D±, for L= 5 μm (although not shown
here, we have observed the same trend for L= 50 μm). The
maximum growth rate w̃max increases with L, which is in agreement
with the previous study.19 The impact of the electric field-depen-
dency of the diffusion coefficient on the dispersion relation
˜ = ˜ ( ˜)w w k decreases with L. That is because the change in ˜±Dxx is
confined to the boundary layer adjacent to the electrode, and the
width of this layer as a small fraction of the total cell decreases with
L (Fig. 3).

The local electric field impacts ion diffusion in two ways: it alters
the magnitude of the ionic diffusion coefficients and enhances their

Figure 5. Dispersion relations ˜ = ˜ ( ˜)w w k computed with either constant diffusion coefficients ±Dref or electric field-dependent diffusion coefficients D± in Eq. 17,
for L = 0.5 μm and several values of φe.
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Figure 6. Dispersion relations ˜ = ˜ ( ˜)w w k computed with either constant diffusion coefficients ±Dref or electric field-dependent diffusion coefficients D± in Eq. 17,
for L = 5 μm and several values of φe.

Figure 7. Dispersion relations ˜ = ˜ ( ˜)w w k computed with either constant isotropic diffusion coefficients ±Dref or constant anisotropic diffusion coefficients
=+

+D Dxx
ref , = =− −

−D D Dyy xx
ref and two values of +Dyy. Other parameters are set to φe = −3.5 V and to either L = 0.5 μm or L = 5 μm.
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anisotropic nature. To isolate the contribution of each factor, we
conduct two sets of numerical experiments. In the first, we simulate
electrolytes with isotropic diffusion coefficients =± ±D D ;ref with

=± ±D D1000 ;ref and with the anion diffusivity =− −D D ref and the
cation diffusivity =+ +D D1000 ref . Although not shown here, we
found that modifying D− has no effect and modifying D+ has a
negligible effect on the dispersion relations in Fig. 5 and 6.

The second set of experiments deals with the stability analysis for
electrolytes with constant anisotropic diffusion coefficients,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= [ ]±

±

±
D

D
D

0
0

. 16xx

yy

where ±Dxx and
±Dyy are the constant diffusion coefficient components

in the principal x and y directions. The resulting base-state and
perturbed-state Eqs. are derived in the Appendix. We found the
anisotropic behavior of the anion diffusion coefficient D− to have no
impact on the interfacial dynamics, so we only present results for
different anisotropy ratios of the cation diffusion coefficient D+. The
use of D± from Eq. 16 rather than from Eq. 11 does not change the
base-state dynamics, which is governed by Eqs. 23a and 24. The
perturbed-state Eqs. are reported in the Appendix. Figure 7 exhibits
the dispersion relations ˜ = ˜ ( ˜)w w k corresponding to the constant
isotropic diffusion coefficients ±Dref and to the constant anisotropic
diffusion coefficients =+

+D Dxx
ref , = =− −

−D D Dyy xx
ref and two values

of +Dyy. The maximum growth rate w̃max increases by about 70% or

60% when +Dyy doubles from +Dref to +D2 ref , for φe =−3.5 V and
L= 0.5 μm or L= 5 μm, respectively. Enhancing cation diffusion in
the direction parallel to the electrode surface (y) decreases the
maximum wavenumber k̃max, while the critical wavenumber k̃c
remains unchanged. This finding is in agreement with the numerical
simulations of dendrite growth.23 It is worthwhile contrasting this
behavior with that of interfacial growth in multiphase flows,35–38 in
which increasing the transverse component of the diffusion coeffi-
cient tensor stabilizes the interface.

Our stability analysis follows the large body of literature7,9,13,19,39,40

in assuming the base state to be stationary. The transient base-state
analysis10 reveals this assumption to have no effect on the dispersion
relation w=w(k) when the current density I is much smaller than the

limiting current Ilim (Fig. 8).The importance of the transient base state
becomes more pronounced in the over-limiting regime, >I Ilim, (see
Fig. 5 in 10). However, in this regime the electroneutrality assumption,
which underpins the stability analysis in 10, no longer holds. In a
follow-up study, we will extend our analysis to account for the transient
base state.

Conclusions

To identify possible mechanisms for control of dendrite growth
in Li-metal batteries, we conducted a linear stability analysis of
electrodeposition onto the electrode surface. The analysis employs
the Poisson-Nernst-Planck Eqs. coupled with the Butler-Volmer
kinetics to describe electrodeposition. we do not invoke the
assumption of electroneutrality, which is known to break down in
the boundary layer adjacent to the electrode surface. Accounting for
gradients in the charge distributions allowed us to investigate the
stabilizing effects of electric field-dependent anisotropic diffusion of
ions on dendritic growth of Li. Our analysis leads to the following
major conclusions.

• Electric field-dependent anisotropic diffusion reduces both
charge density close to the electrode surface and the maximum
growth rate of dendrites relative to the values of their counterparts
for constant isotropic diffusion.

• This effect is most pronounced for large values of the applied
electric potential φe and small half-cell lengths L, e.g., the maximum
growth rate is reduced by about 24% when φe =−3.5 V and L= 0.5
μm. Hence, the impact of electric field on ionic diffusion cannot be
ignored for batteries with ultra-thin separators.

• The local electric field affects ion diffusion and the stability of
electrodeposition by altering the diffusion coefficient values and by
enhancing the degree of anisotropy. An interplay of these two
mechanisms can be used to suppress dendritic growth in Li-ion and
Li-metal batteries.

Our findings suggest new strategies for the electrolyte design,
i.e., for the optimal selection of solvent and salt and for the tuning of
the ionic concentration of solution. Such a design would be informed
by the degree to which the electric field affects the electrolyteʼs
transport properties and anisotropic behavior and, ultimately, the
dendritic growth. An optimal electrolyte (with additives) would
exhibit a strong response to the local electric field in a way that
increases the cation diffusion coefficient in the direction perpendi-
cular to the electrode surface.

Another design strategy for the suppression of dendrite growth,
suggested by our analysis, is to use anisotropic electrolytes, e.g., liquid
crystals, liquid-crystalline physical gels etc., or separators with
anisotropic pore structures or columnized membranes. As a dendrite
suppression strategy, electrolytes with electric field-dependent diffu-
sion coefficients are appropriate for small batteries, while anisotropic
electrolytes reduce dendritic growth in batteries of any size.

Although our linear stability analysis reveals the role of key
parameters in dendrite initiation, it does not describe subsequent
dendritic growth. The latter requires a numerical solution of surface-
evolution equations. In follow-up studies, we will model the
dynamics of dendritic growth by solving the nonlinear phase-field
equations41,42 and compare this solution with the predictions of our
linear stability analysis. We also plan to compare the advantages and
disadvantages of commonly used commercial liquid electrolytes43

and to investigate the effects of coating on the dendritic growth of
the solid electrolyte surface. The former study would require
electrolyte-specific experimental data on the dependence of ionic
diffusion coefficients on applied electric field, while the latter
analysis will be facilitated by an effective-medium representation44

of the composite solid electrolyte.
Finally, it is worthwhile emphasizing that our analysis ignores

several interfacial phenomena on the anode, which are of potential
relevance to Li-dendrite initiation and growth. These include

Figure 8. Dispersion relations ˜ = ˜ ( ˜)w w k alternatively predicted with the
steady-state and transient base-state solutions. The latter is obtained by
extracting the data from Fig. 2 in the Supplementary Material for 10.
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Li-solvation/desolvation and their impact on the formation of solid
electrolyte interface.45,46 Accounting for these processes is another
fruitful venue for future research.
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Appendix A. Perturbation Analysis

Let ε εˆ = ( + )wt ikyexp . Then, accounting for Eq. 14, a Taylor
expansion of D± in Eq. 11 is
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where ϕ= ∂ϕ
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0 0 , and I is the 2× 2 identity matrix. Substituting

Eqs. 14, 15 and 17 into the dimensionless form of Eqs. 1 and 2, and
collecting the terms of order ε0 and ε leads to the zeroth-order
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and the first-order equations,

⎛
⎝⎜

⎞
⎠⎟

ϕ

ϕ

− + = ( + )

+ [ ]

±
( )

± ±
( )

( )
± ±

( )

± ± ±
( ) ( )

x
J b J

x
w D k c

D k z c

d
d

d
d

, 19a

1 0
1

ref 2 1

ref 2 0 1

ϕ ϕ
λ

− + = + [ ]
( )

( ) + +
( )

− −
( )

x
k

z c z cd
d 2

, 19b
D

2 1

2
2 1

1 1

2

⎛
⎝⎜

⎞
⎠⎟

ϕ= − + + [ ]ϕ±
( )

±
±
( )

± ±
( ) ( )

± ±
( )

( )
ϕ± ( )

J D e
c

x
z c j z c

x

d

d
d

d
. 19cb j1 ref

1
1 0 0

10

It follows from Eq. 18 that =±
)J const0 . Hence, Eq. 19a is

transformed into
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The derivation of the boundary conditions on the evolving
electrode surface Γ(t), whose points are represented as
( ( ))⊤y h y t, , , requires one to approximate φ(x ∈ Γ, t), c±(x ∈ Γ, t)
and their gradients. That is accomplished by expanding these
quantities in Taylor series around the base state Γ =( )0

{ = ( ) = ⩽ ⩽ }⊤ ( )x y x h y B Lx , : , 00 such that

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ εϕ

ϕ ϕ ϕ

( ∈ Γ ) ≈ ( ) + ˆ ˆ

ˆ = + [ ]

( ) ( )

( ) ( )
( )

( )

= ( )

t h

h
x

x , ,

d
d

; 21a
x h

0 0

1 1
0

1

0

⎛
⎝⎜

⎞
⎠⎟

ε( ∈ Γ ) ≈ ( ) + ˆˆ

ˆ = + [ ]

± ±
( ) ( ) ±

±
( ) ( ) ±

( )
±
( )

= ( )

c t c h c

c h
c

x
c

x , ,

d

d
; 21b

x h

0 0

1 1
0

1

0

and

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ϕ ϕ

ε ϕ ϕ

ε ϕ

∇ ( ∈ Γ ) ≈ ( )

+ ˆ +

+ ˆ ( ) [ ]

( )
( )

( )
( ) ( )

=
( ) ( )

( )

t
x

h

h
x x

ik h

x e

e

,
d

d

d
d

d
d

; 21c

x

x h

y

0
0

1
2 0

2

1

1 0

0

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ε

ε

∇ ( ∈ Γ ) ≈ ( ) + ˆ +

+ ˆ ( )
[ ]

±
±
( )

( ) ( ) ±
( )

±
( )

=

±
( ) ( )

( )
c t

c

x
h h

c

x

c

x

ikc h

x e

e

,
d

d

d

d

d

d

.
21d

x

x h

y

0
0 1

2 0

2

1

1 0

0

The function h(0)(t) and the constant h(1) are first defined in Eqs. 12
and 13, respectively. It follows from Eq. 8 that first-order approx-
imations of the unit normal vector ' ε= + ( )( )n n 0 2 and the
curvature are, respectively, κ κ εκ= + ˆ( ) ( )0 1 , with the components
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Hence, a first-order approximation of the reaction rate RLi in Eq. 12c,
has the components ( )RLi

0 and ( )RLi
0 given by Eqs. 24c and 26c. The

current density I is expanded to first order, ε= + ˆ( ) ( )I I I0 1 , with
I(0) = zR(0) and J(1) = zR(1).

The interface h(0)(t) is moving with velocity U= dh(0)/dt. It
follows from Eq. 9 that this velocity is given by ω= − ( )U RLi

0 . We
introduce the moving coordinate system associated with the elec-
trode-electrolyte interface, (ξ ≡ x− Ut, y). Rewriting Eqs. 17–22 in
this coordinate system yields the following zeroth- and first-order
boundary-value problems (BVPs).

Base-state BVP.—The base-state dependent variables ξ( )±
( )c 0 and

φ(0)(ξ) satisfy the one-dimensional steady-state Poisson-Nernst-
Planck equations:
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Equation 23 are subject to the boundary conditions at the non-
perturbed anode-surface, ξ= 0,
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and at the outer surface of the electrolyte, ξ= 1,
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Perturbed-state BVP.—The perturbed-state variables ξ( )±
( )c 1 and

φ(1)(ξ) satisfy the one-dimensional differential Eqs.
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Equation 25 are subject to the boundary conditions at ξ= 0,
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In these conditions, which are obtained as first-order approximations
of Eqs. 3–10,
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Perturbed-state BVP for anisotropic constant diffusion.—
Another problem of practical significance involves anisotropic
electrolytes in which the diffusion coefficient tensor in Eq. 11 is
replaced with Eq. 16. The procedure used above yields the base-state
dynamics described by Eqs. 23a and 24 with =±

±D Dxx
ref and b± = 0.

It also leads to the perturbed-state equations
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and by Eq. 26e, respectively.
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