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Abstract

We consider the dynamics of a fluid interface in heterogeneous porous media, whose hydraulic properties are uncertain. Mod-

eling hydraulic conductivity as a random field of given statistics allows us to predict the interface dynamics and to estimate the cor-

responding predictive uncertainty by means of statistical moments. The novelty of our approach to obtaining the interface statistics

consists of dynamically mapping the Cartesian coordinate system onto a coordinate system associated with the moving front. This

transforms a difficult problem of deriving closure relationships for highly nonlinear stochastic flows with free surfaces into a rela-

tively simple problem of deriving stochastic closures for linear flows in domains with fixed boundaries. We derive a set of determin-

istic equations for the statistical moments of the interfacial dynamics, which hold in one and two spatial dimensions, and analyze

their solutions for one-dimensional flow.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Free surface (interface, moving front) problems arise

in a variety of applications, such as wetting and drying

of porous media, pumping in unconfined aquifers, sec-

ondary oil recovery, DNAPL migration and remedia-
tion, seawater intrusion, etc. Traditional deterministic

modeling of these and other similar phenomena assumes

that the subsurface environment is homogeneous and/or

that the relevant system parameters, such as hydraulic

conductivity and dispersivity, are known with certainty

in all of their relevant details. However, in most applica-

tions, interfaces propagate in heterogeneous environ-

ments, whose system parameters can only be sampled
at selected locations in space and/or time. The need to
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assign parameter values to the points where measure-

ments are not available, combined with measurement

errors, introduces parameter uncertainty. This, in turn,

leads to uncertainty in predictions of the interface

dynamics.

Uncertainty in hydraulic conductivity K(x) and other
system parameters is conveniently quantified by treating

them as random fields, whose sample statistics are in-

ferred from data [1–5]. This renders the corresponding

flow and transport equations stochastic. Solutions of

these equations (hydraulic head, the velocity and posi-

tion of a free surface, etc.) are given in terms of proba-

bility density functions or, equivalently, ensemble

moments. Usually, the first moment (ensemble mean)
provides the estimate or prediction of the system behav-

ior, and the second moment (variance or standard devi-

ation) quantifies the predictive uncertainty.

While flow and transport in randomly heterogeneous

porous media with fixed boundaries have been studied

extensively [1–5], stochastic analysis of the interfacial
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dynamics in random media is still in its infancy. A rea-

son for the relative lack of progress in analyzing this

important problem is its high degree of nonlinearity.

Since the randomness of hydraulic conductivity of a

porous medium causes the free surface dynamics to be

stochastic, ensemble averaging of the flow equations in-
volves calculating ensemble means of such quantities as

integrals of random functions over random domains

and random functionals. One approach to dealing with

this problem is to employ simplifying physical assump-

tions––such as the Dupuit approximation to model sea-

water intrusion in costal aquifers [6] and flow towards

wells in unconfined aquifers [7] or a uniform flow

approximation to describe free-surface flows [8]––which
effectively eliminate moving boundaries (interfaces).

A numerical Monte Carlo study of water tables in a

heterogeneous dam was reported in [9].

The first attempt to rigorously analyze the interface

dynamics in randomly heterogeneous porous media

dealt with the gravity-free propagation of wetting fronts

[10]. It relied on the expansions of integrals over the ran-

dom domains into a Taylor series around the corre-
sponding ensemble mean geometries. To make the

analysis and numerical implementation of this proce-

dure tractable, the authors found it necessary to linear-

ize the problem by retaining only the leading terms in

such expansions. This approach was used to describe

the dynamics of phreatic surfaces [11], DNAPL fingers

[12], and immiscible fluids [13] in heterogeneous porous

media. However, the linearization procedure lying at the
heart of these solutions is less than optimal, in that the

subsequent perturbation expansions do not contain all

the relevant terms [10].

The main goal of this study is to introduce an ap-

proach that does not require a linearization of the kind

proposed in [10]. We formulate governing equations for

the interface dynamics in random porous media in Sec-

tion 2. The key part of our approach, a stochastic map-
ping of the random, time-varying flow domain onto a

fixed domain, is presented in Section 3. Section 4 pro-

vides the corresponding mappings for the flow equa-

tions. This enables us to use standard perturbation

techniques to derive, in Sections 5 and 6, closure

approximations for the stochastic flow equations in

two dimensions. Section 7 contains a brief outline of a

numerical algorithm for solving the resulting determinis-
tic moment equations. In Section 8, we analyze the accu-

racy of our approximations in a one-dimensional

setting, by comparing the analytical solutions of mo-

ment equations with their exact counterparts.
Fig. 1. A schematic representation of the dynamics of free surfaces in

porous media.
2. Problem formulation

Consider the motion of a fluid–fluid interface in a

randomly heterogeneous porous medium XT that is
bounded by the surface CT. Following [10], we set grav-

ity, capillary length, and the viscosity of one fluid to

zero. In the inviscid fluid (air), the pressure is constant

and may be set to zero. The viscous, incompressible fluid

(water) occupies the flow domain X (X 2 XT), which is

bounded either entirely by a free surface c or by a com-
bination of c and some segments of CT (Fig. 1). Such

flow is described by a combination of Darcy�s law and

mass conservation,

qðr; tÞ ¼ �KðrÞrhðr; tÞ; r � q ¼ f ðr; tÞ; r 2 XðtÞ;
ð1Þ

subject to the boundary conditions

hðr; tÞ ¼ Hðr; tÞ; r 2 CD; ð2aÞ

nðrÞ � qðr; tÞ ¼ Sðr; tÞ; r 2 CN; ð2bÞ

hðr; tÞ ¼ 0; r 2 cðtÞ ð2cÞ
where q is the Darcy flux, K is the hydraulic conductivity

of a porous medium, h is the hydraulic head, f is the

source function, and n is unit normal to the surface

C = CD [ CN [ c consisting of Dirichlet segments CD,

Neumann segments CN, and a moving front c. The func-
tions H and S are the prescribed hydraulic head and flux

on the Dirichlet and Neumann boundary segments,

respectively. The dynamics of the free surface c(t) is de-
scribed by

dR

dt
¼ V nðR; tÞn

ne
¼ VðR; tÞ

ne
; R 2 cðtÞ; ð2dÞ

where ne is porosity, V is the Darcian velocity of the

moving front c, and mass conservation requires that

Vn, the normal velocity of the front, satisfies Vn(R, t) =

q(R, t) Æ n(R, t). Eqs. (1)–(2) constitute the widely used

Green and Ampt [14] model for the propagation of wet-

ting fronts in porous media.
Uncertainty in the hydraulic conductivity of a porous

medium is captured by representing K = K(r) as a ran-
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dom field with given mean K, variance r2
K , and a two-

point correlation function qK(r1, r2). Other possible

sources of randomness, which we do not consider here,

are the driving forces f, H, and S, and porosity ne. (Since

the random effects of initial conditions and driving

forces are additive, they can be easily incorporated into
the present analysis following the procedure outlined in

[15]. It is common (e.g., [5] and references therein) to

treat porosity as a deterministic function rather than

as a random field. One can extend our analysis to incor-

porate the randomness of porosity by treating its vari-

ance as an additional perturbation parameter, e.g.,

[16].) Our goal is to develop a set of deterministic equa-

tions for the mean and variance of the system states. The
former estimates the interfacial dynamics, while the lat-

ter quantifies the uncertainty associated with such an

estimate.
3. Stochastic mapping of the flow domain

Consider a curvilinear coordinate system (n,g), which
is tied to the moving interface c(t). An advantage of

using such a coordinate system is that the random,

time-varying flow domain X in the (x,y) Cartesian coor-

dinate system becomes a fixed regular-shaped domain

(e.g., a square or a rectangle) W in the (n,g) coordinate
system (see Fig. 2).

Following [17,18], we define a stochastic mapping

X ! W (0 6 n 6 1,0 6 g 6 1) as a solution of the La-
place equations

o
2x

on2
þ o

2x
og2

¼ 0;
o
2y

on2
þ o

2y
og2

¼ 0; ð3Þ

subject to the boundary conditions

xð1; gÞ ¼ xcðgÞ; yð1; gÞ ¼ ycðgÞ ð4aÞ

xð0; gÞ ¼ xCD
ðgÞ; yð0; gÞ ¼ yCD

ðgÞ ð4bÞ
Fig. 2. A mapping of the flow domain.
and

xðn; 0Þ ¼ xC0
ðnÞ; yðn; 0Þ ¼ yC0

ðnÞ ð4cÞ

xðn; 1Þ ¼ xC1
ðnÞ; yðn; 1Þ ¼ yC1

ðnÞ; ð4dÞ

where xCD
ðgÞ, yCD

ðgÞ, xC0
ðnÞ, yC0

ðnÞ, xC1
ðnÞ, and yC1

ðnÞ
are the known functions that describe the boundaries

CD and CN = C0 [ C1, respectively.
For the mapping (3) and (4) to exist, it is necessary

that the boundary of the flow domain be piecewise

smooth [10]. This condition holds for most physical

applications, such as (unstable) front propagation in

porous media. Moreover, as will become clear below,

it is sufficient for (3) and (4) to exist in a weak sense,

which further smooths the boundary through its ensem-

ble averaging.
We use Reynolds decomposition A ¼ Aþ eA to repre-

sent a random field A as the sum of its mean A and a

zero-mean random fluctuation eA. (In the following, we

use A and hAi interchangeably to indicate the ensemble

mean of A.) Then stochastic averaging of (3) and (4)

yields the ensemble mean component of the stochastic

mapping as a solution of

o2�x

on2
þ o2�x
og2

¼ 0 ð5Þ

subject to

�xð1; gÞ ¼ �xcðgÞ; �xðn; 0Þ ¼ xC0
ðnÞ; ð6aÞ

�xð0; gÞ ¼ xCD
ðgÞ; �xðn; 1Þ ¼ xC1

ðnÞ: ð6bÞ
Here �xcð0Þ ¼ xC0

ð1Þ and �xcð1Þ ¼ xC1
ð1Þ.

Let us introduce the Green�s function L(n,gjn1,g1) as
a solution of the Poisson equation,

o
2L

on21
þ o

2L
og21

¼ �dðn1 � nÞdðg1 � gÞ; ð7Þ

subject to the homogeneous boundary conditions,

Lðn; g j n1 ¼ 0; g1Þ ¼ Lðn; g j n1 ¼ 1; g1Þ
¼ Lðn; g j n1; g1 ¼ 0Þ ¼ L n; g j n1; g1 ¼ 1ð Þ ¼ 0: ð8Þ

Then (5) and (6) can be recast as

�xðn; gÞ ¼ �
Z 1

0

�xcðg1Þ
oL
on1jn1¼1

� xCD
ðg1Þ

oL
on1jn1¼0

" #
dg1

�
Z 1

0

xC1
ðn1Þ

oL
og1jg1¼1

� xC0
ðn1Þ

oL
og1jg1¼0

" #
dn1:

ð9Þ
An expression for �y is obtained in a similar fashion.

To obtain an equation for the random fluctuations ~x,
we subtract (5) and (6) from (3) and (4), which gives

o
2~x

on2
þ o

2~x
og2

¼ 0 ð10Þ
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subject to

~xð1; gÞ ¼ ~xcðgÞ; ~xðn; 0Þ ¼ ~xC0
ðnÞ; ð11aÞ

~xð0; gÞ ¼ 0; ~xðn; 1Þ ¼ ~xC1
ðnÞ: ð11bÞ

To find the boundary functions ~xC0
ðnÞ and ~xC1

ðnÞ, we
note that both x and �x belong to C0 and C1, and that

the following equalities hold,

~xC0
ð1Þ ¼ ~xcð0Þ; ~xC0

ð0Þ ¼ 0;

~xC1
ð1Þ ¼ ~xcð1Þ; ~xC1

ð0Þ ¼ 0: ð12Þ

Let h ¼ ð1þ ~hÞn, where h~hi ¼ 0, be a random vari-

able describing the random variation of the coordinate

x along boundaries C0 and C1. Expanding xC0
ðhÞ and

xC1
ðhÞ in a Taylor series, and retaining the leading terms

in these expansions, yields

xC0
ðhÞ � xC0

ð�hÞ þ oxC0

o�h
n~h; xC1

ðhÞ � xC1
ð�hÞ þ oxC1

o�h
n~h;

ð13Þ
and

~xC0
¼ oxC0

o�h
n~h; ~xC1

¼ oxC1

o�h
n~h: ð14Þ

Combining (12) and (14) gives

~xC0
ðnÞ ¼ ~xcð0Þn

dxC0

dn
dxC0

dn

� ��1

n¼1
;

~xC1
ðnÞ ¼ ~xcð1Þn

dxC1

dn
dxC1

dn

� ��1

n¼1
: ð15Þ

In terms of the Green�s function (7) and (8), the solution
of (10) and (11) can be written as

~xðn; gÞ ¼
Z 1

0

~xC0
ðn1Þ

oL
og1jg1¼0

dn1 �
Z 1

0

~xC1
ðn1Þ

oL
og1jg1¼1

dn1

�
Z 1

0

~xcðg1Þ
oL
on1jn1¼1

dg1: ð16Þ

An expression for ~y is obtained in a similar fashion.

Eq. (16) and the corresponding equation for ~y define
the linear integral operators bX and bY that relate the

mapping fluctuations inside the flow domain, ~xðn; gÞ
and ~yðn; gÞ, to their counterparts on the moving inter-
face, ~xc and ~yc, i.e.,

~xðn; gÞ ¼ bX � ~xc; ~yðn; gÞ ¼ bY � ~yc: ð17Þ
4. Transformed flow equations

Let the subscripts n and g denote the partial deriva-

tives with respect to n and g, respectively, and

J ¼ oðx; yÞ
oðn; gÞ ¼ xnyg � xgyn ð18Þ
denote the mapping Jacobian. Then

o

ox
¼

yg

J
o

on
�
yn

J
o

og
;

o

oy
¼ � xg

J
o

on
þ xn

J
o

og
ð19Þ

and (1) becomes

oygq1
on

�
oynq1
og

� oxgq2
on

þ oxnq2
og

¼ Jf ½xðn; gÞ; yðn; gÞ�:

ð20Þ

The Darcy flux components q1 and q2 are given by

q1 ¼ �K½xðn; gÞ; yðn; gÞ�
yg

J
oh
on

�
yn

J
oh
og

� �
; ð21aÞ

q2 ¼ �K½xðn; gÞ; yðn; gÞ� � xg

J
oh
on

þ xn

J
oh
og

� �
: ð21bÞ

Substituting (21) into (20) and denoting F = Jf yields

� o

on
K11 oh

on
� o

og
K22 oh

on
þ o

on
K12 oh

og
þ o

og
K21 oh

on
¼ F ;

ð22Þ

where the components of the hydraulic conductivity ten-

sor are given by

K11 ¼ K
x2g þ y2g

J
; K22 ¼ K

x2n þ y2n
J

;

K12 ¼ K21 ¼ K
xnxg þ ynyg

J
: ð23Þ

Expressions (23) can be rewritten as

Kab ¼ R�1TR�1
� 	ab

; a; b ¼ 1; 2;

R ¼ 1ffiffiffiffiffiffi
KJ

p
xn yn

xg yg

�����
�����: ð24Þ

Since in general the mapping X ! W is not orthogonal,

K125K2150.

While hydraulic conductivity in the fixed coordinate

system (x,y) was taken to be a scalar, hydraulic conduc-
tivity in the moving coordinate system (n,g) becomes a
second rank tensor. Of course, the flow equation (22) re-

mains valid even if hydraulic conductivity in the (x,y)

coordinate system were a tensor.

Since the transformed flow equations involve first

derivatives xn, xg, yn, and yg, the boundary C (or, more

precisely, its ensemble mean) must be at least once differ-

entiable. This explains the existence condition for the
mapping X ! W in Section 3.

Boundary conditions for the flow equation (22) are

derived by recasting (2) in the moving coordinate sys-

tem. For the Dirichlet boundary segments this gives

hðn ¼ 0; gÞ ¼ H xCD
ðgÞ; yCD

ðgÞ
� 


; hðn ¼ 1; gÞ ¼ 0:

ð25aÞ
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Likewise, the conditions on the Neumann boundaries

transform into

�q2ðg ¼ 0Þ ¼ K22 xC0
ðnÞ; yC0

ðnÞ
� 
 oh

og

� K21½xC0
ðnÞ; yC0

ðnÞ� oh
on

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

q
S½xC0

ðnÞ; yC0
ðnÞ� ð25bÞ

and

�q2ðg ¼ 1Þ ¼ K22 xC1
ðnÞ; yC1

ðnÞ
� 
 oh

og

� K21½xC1
ðnÞ; yC1

ðnÞ� oh
on

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

q
S½xC1

ðnÞ; yC1
ðnÞ�: ð25cÞ

The equations for the interface dynamics become

(Appendix A)

oxc

ot
¼ vx oh

on
;

oyc

ot
¼ vy oh

on
; ð26aÞ

where

vx ¼ � K
neJ

oyc

og
; vy ¼ K

neJ
oxc

og
: ð26bÞ

Introducing a new notation for the coordinates n1 = n
and n2 = g, and using the Einstein summation conven-

tion and tensorial notation allows us to recast (20) and

(21) in a compact form

oqa

ona ¼ F ; qa ¼ �Kab oh

onb a; b ¼ 1; 2: ð27Þ

Finally, introducing a hydraulic resistivity tensor

Zab ¼ K�1� �ab ¼ RRT
� �ab ð28Þ

transforms the flow Eq. (27) into

oqa

ona ¼ F ;
oh
ona ¼ �Zabqb; n1; n2

� �
2 W : ð29Þ

This is the form we use below to derive moment equa-

tions for hydraulic head and the interface dynamics.
5. Statistical moments of head

Stochastic averaging of the flow equation (29), de-
fined on the fixed domain W and subject to the Dirichlet

and Neumann boundary conditions (25), has received

considerable attention [1–5,19]. Most of these studies

have assumed that hydraulic conductivity (resistivity)

is a scalar, while in (29) it is a tensor.

To simplify presentation, we set the source function

and boundary fluxes to zero, i.e., f = 0 and S = 0. (One

can easily incorporate nonzero deterministic f and S into
the following analysis.) Taking the ensemble average of

(29) and (25) yields equations for the mean hydraulic

head
o�qa

ona ¼ 0; � o�h
ona ¼ Z

ab
�qb þ eZ ab

~qb
D E

ð30Þ

subject to the boundary conditions

�h n1 ¼ 0; n2
� �

¼ H n2; t
� �

; �h n1 ¼ 1; n2
� �

¼ 0; ð31aÞ

�q2 n1; n2 ¼ 0
� �

¼ 0; �q2 n1; n2 ¼ 1
� �

¼ 0: ð31bÞ

We use a perturbation expansion in the powers of the
conductivity fluctuations to approximate the second mo-

ment heZ ab
~qbi in (30). The second-order (in the standard

deviation of conductivity) approximation of heZ ab
~qbi

gives rise to the nonlocal mean flow equation (Appendix

B),

� o�h
ona ¼ Z

ab � eZ aa1
Z
�1

� 	a1b1 eZ b1b
� �� �

�qb nð Þ

þ
Z 1

0

Z 1

0

eZ aa1T a1b1 eZ b1b

1

D E
�qb n1ð Þdn1; ð32Þ

where Z = Z(n), Z1 = Z(n1), and, as before, the summa-

tion over the repeated indexes is implied. The tensor T in

(32) is defined by

T a1b1 ¼ Z
�1

� 	a1a2 o
2E n j n1ð Þ
ona2 on

b2
1

; Z
�1
1

� 	b2b1
; ð33Þ

where E(njn1) is the Green�s function defined as a solu-

tion of

o

na
2

Z
�1

� 	ab oE

onb
2

" #
¼ �d n12 � n11

� �
d n22 � n21
� �

ð34Þ

subject to the boundary conditions

E n1 j n12 ¼ 0; n22
� �

¼ 0; E n1 j n12 ¼ 1; n22
� �

¼ 0; ð35aÞ

Z
�1

� 	2aoG
ona

2j
n2
2
¼0

¼ 0; Z
�1

� 	2aoG
ona

2j
n2
2
¼1

¼ 0: ð35bÞ

To obtain the second-order approximations of the
correlation matrices of Z in (32), we linearize the ran-

dom fluctuations eZ ab
about the corresponding means,eZ ab

~x; ~y; eK ; n
� 	

� Zab
x ~xðnÞ þ Zab

y ~yðnÞ þ Zab
K
eK �xðnÞ; �yðnÞ½ �;

ð36Þ
where Zab

x , Z
ab
y , and Zab

K are the linear deterministic oper-

ators defined by (C.1)–(C.3) in Appendix C. Hence, the
correlation matrices in (32) can be expressed, up to sec-

ond order, in terms of the cross-correlations between ~x,
~y, and eK . These, in turn, are related to the statistics of

the interface fluctuations ~xc and ~yc by (17).

For completeness, we outline a procedure for calcu-

lating the head covariance in Appendix B.
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6. Statistical moments of the interface dynamics

The ensemble averaging of (26) yields

o�xc

ot
¼ �vx o

�h

on1
þ ~vx o

~h

on1

* +
: ð37Þ

To derive an expression for the mixed moment in (37),

we note that the second-order approximation of ~vx is de-

rived from a Taylor expansion as

~vx ~xc; ~yc; eK� 	
� vx

k
eK þ vx

x~xc þ vx
y~yc; ð38Þ

where the deterministic expansion coefficients vx
k, vx

x and

vx
y are given by (C.4)–(C.6) in Appendix C. Subtracting

(37) from (26), and retaining the second-order terms

gives

o~xc

ot
¼ �vx o

~h

on1
þ ~vx o

�h

on1
: ð39Þ

Substituting (38) and a similar expansion for the
hydraulic head fluctuations ~h into (39) leads to

o~xc n21
� �
ot

¼ X k n21; m
� �eK ðmÞ þ X x n21; n

2
3

� �
~xc n23
� �

þ X y n21; n
2
3

� �
~yc n23
� �

; ð40Þ
where the deterministic coefficients Xk, Xx, and Xy are

given by (C.7) in Appendix C. Similarly, an equation

for ~yc is

o~yc n21
� �
ot

¼ Y k n21; m
� �eK ðmÞ þ Y x n21; n

2
3

� �
~xc n23
� �

þ Y y n21; n
2
3

� �
~yc n23
� �

: ð41Þ

Equations for covariances Cc
xxðn

2
1; n

2
2Þ ¼ h~xcðn21Þ~xcðn22Þi

and Cc
yyðn

2
1; n

2
2Þ ¼ h~ycðn21Þ~ycðn22Þi, and cross-covariance

Cc
xyðn

2
1; n

2
2Þ ¼ h~xcðn21Þ~ycðn22Þi are derived from (40) and

(41) by noting that

oCc
xx n21; n

2
2

� �
ot

¼
o~xc n21
� �
ot

~xc n22
� �* +

þ
o~xc n22
� �
ot

~xc n21
� �* +

ð42aÞ
and

oCc
xy n21; n

2
2

� �
ot

¼
o~xc n21
� �
ot

~yc n22
� �* +

þ
o~yc n22
� �
ot

~xc n21
� �* +

:

ð42bÞ
This gives

oCc
xx n21; n

2
2

� �
ot

¼ X k n21; m
� �

Cc
Kx m; n22
� �

þ X x n21; n
2
3

� �
Cc

xx n22; n
2
3

� �
þ X y n21; n

2
3

� �
Cc

yy n22; n
2
3

� �
þ X k n22; m

� �
Cc

Kx m; n21
� �

þ X x n22; n
2
3

� �
Cc

xx n21; n
2
3

� �
þ X y n22; n

2
3

� �
Cc

yy n21; n
2
3

� �
; ð43Þ
oCc
xy n21; n

2
2

� �
ot

¼ Xk n21; m
� �

Cc
Ky m; n22
� �

þ X x n21; n
2
3

� �
Cc

xy n23; n
2
2

� �
þ X y n21; n

2
3

� �
Cc

yy n22; n
2
3

� �
þ X k n22; m

� �
Cc

Kx m; n21
� �

þ X x n22; n
2
3

� �
Cc

xx n21; n
2
3

� �
þ X y n22; n

2
3

� �
Cc

xy n21; n
2
3

� �
; ð44Þ

and an equation for Cc
yyðn

2
1; n

2
2Þ which is analogous to

(43).

To derive approximate solutions for cross-

covariances Cc
Kxðm; n2Þ ¼ heK ðmÞ~xcðn2Þi and Cc

Kyðm; n2Þ ¼
heK ðmÞ~ycðn2Þi, we note that their second-order approxi-

mations involve only the leading term in an expansion
of conductivity fluctuations, eK � eK ð�x; �yÞ. (The depen-

dence of eK on ~x and ~y enters the third- and higher-order
terms.) Then

oeK
ot

¼ bC eK ; bC ¼ o�x
ot

o

o�x
þ o�y

ot
o

o�y
: ð45Þ

Combining (45) with (9) yields

bC ¼ U
o

on
ð46aÞ

where U = (U1,U2)
T is given by

U 1 ¼
1

D
�yn2

o�x
ot

� �xn2
o�y
ot

� �
; U 2 ¼

1

D
��yn1

o�x
ot

þ �xn2
o�y
ot

� �
;

ð46bÞ

D ¼ �xn1�yn2 � �xn2�yn1 ; ð46cÞ

and

o

ot

�x n; tð Þ
�y n; tð Þ

� �
¼�

Z 1

0

oL n j n11 ¼ 1;n21
� �

on11

o

ot

�xc n21; t
� �

�yc n21; t
� � !

dn21:

ð46dÞ

Multiplying (40) with eK , taking the ensemble mean in a
manner similar to (42), and accounting for (45) and (46)

leads to

oCc
Kx m; n2
� �
ot

¼ bC m; m1ð ÞCc
Kx m1; n

2
� �

þ X k n2; m1
� �

qK m; m1ð Þ
þ X x n2; n21

� �
Cc

Kx m; n21
� �

þ X y n2; n21
� �

Cc
Ky m; n21
� �

: ð47Þ

An analogous procedure applied to (41) leads to an

equation for Cc
Kyðm; n2Þ.

Eqs. (43), (44) and (47) are subject to the homoge-

neous initial conditions. A conductivity correlation

function in the moving coordinate system qK(m,m1) at
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time t is computed, to second order in conductivity fluc-

tuations, at the mean coordinates.
7. Numerical implementation

We present a detailed description of our numerical

algorithm and its implementation in a companion paper.

A brief outline is as follows.

• Given the mean location of the interface at time t,

solve (3) and (4) to construct the dynamic mapping

X ! W.

• Compute the correlation matrices Z, Z1, and T in the
nonlocal mean flow equation (32).

• Solve the mean flow equation (32) and equations for

the second moments (Appendix B) to obtain the

mean hydraulic head �h and the hydraulic head vari-

ance r2
h.

• Calculate the mean velocity of the interface from (37)

and compute the mean position of the interface at

time t + Dt.
• Solve Eqs. (43), (44) and (47) to obtain cross-covari-

ances Cc
xx, C

c
yy , C

c
xy , C

c
Kx, and Cc

Ky at time t + Dt.
• Repeat calculations.
8. A computational example

While in general our moment equations have to be

solved numerically, some flow scenarios are amenable

to analytical treatment. Consider the one-dimensional

front propagation in a randomly heterogeneous porous

medium of log-normal hydraulic conductivity K = lnY

with geometric mean Kg ¼ expðY Þ, variance r2
Y , correla-

tion function qY, and correlation length k. The front is
driven by hydraulic head h(0) = H0 imposed at the

boundary x = 0.

We recast the problem in a dimensionless form by

introducing

xd ¼
x
k
; td ¼ 2

tKgH 0

nek
2
; Kd ¼

K
Kg

; hd ¼
h
H 0

: ð48Þ

In the following, we drop the subscript d.

8.1. Mapping

Solving the one-dimensional version of (3) and (4)

yields a mapping

x ¼ xcn; ð49aÞ

whose Jacobian is

J ¼ ox
on

¼ xc: ð49bÞ
8.2. Transformed flow equations

The mapping (49) transforms flow equations into the

one-dimensional version of (29),

oq
on

¼ 0;
oh
on

¼ �Zq; hð0Þ ¼ 1; hð1Þ ¼ 0: ð50aÞ

Hydraulic resistivity Z � Z11 is obtained from (24) and
(28) as

Z ¼ xcK�1: ð50bÞ
8.3. Statistical moments of head

The one-dimensional version of (30) and (31) gives

o�q
on

¼ 0;
o�h
on

¼ �Z�q� eZ~qD E
; �hð0Þ ¼ 1; �hð1Þ ¼ 0:

ð51Þ
To close (51), i.e., to compute the mixed moment heZ~qi,
we seek the first-order (in r2

Y ) approximation of the

mean hydraulic head, �h ¼ �h
ð0Þ þ �h

ð1Þ þOðr4
Y Þ.

Consider the normalized dimensionless hydraulic

resistivity,

z ¼ Z=�xc: ð52Þ
Since

K ¼ Kgð1þ r2
Y =2Þ þOðr4

Y Þ
and

heK 2i ¼ r2
Y þOðr4

Y Þ;
it follows from (50b) and (52) that

�z ¼ 1þ r2
Y

2
� U � n

oU
on

; ~z ¼ ~xc

�xc
� eK ; U ¼

eK~xc

D E
�xc

;

ð53Þ
where eK ¼ eK ½�xðnÞ�.

The one-dimensional Green�s function in (34) and

(35) is given by

E n j n1ð Þ ¼ ðn1 � nÞhðn � n1Þ þ ð1� n1Þn; ð54Þ
where h(n) is the Heaviside function denned as h = 1 for

n P 0 and h = 0 otherwise. Substituting (54) into the

one-dimensional versions of (32) and (33), and introduc-
ing Q ¼ q�xc, yields a solution for the mean hydraulic

head,

� o�h
on

¼ Q �zðnÞ �
Z 1

0

Czðn; mÞdm

� �
;

oQ
on

¼ 0: ð55Þ

The normalized mean flux Q is obtained by integrating

the first equation in (55), while taking into account the

boundary conditions (50),

Q ¼
Z 1

0

�zðmÞdm �
Z 1

0

Z 1

0

Czðl; mÞdldm
� ��1

: ð56Þ
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It follows from (53) that the covariance function

Czðl; mÞ ¼ h~zðlÞ~zðmÞi in (55) and (56) is given by

Czðl; mÞ ¼ qY ½�xcðl � mÞ� � UðlÞ � UðmÞ þ rc; ð57Þ
where rc ¼ r2

c=�x
2
c and r2

c ¼ h~x2ci.
Substituting (54) into the one-dimensional versions of

(B.3) and (B.4) yields an expression for the random fluc-

tuations of hydraulic head,

~hðnÞ¼Q n
Z 1

0

~zðmÞdm�
Z n

0

~zðmÞdm
� �

; eQ¼�Q
Z 1

0

~zðmÞdm

ð58Þ

Hence, the variances of hydraulic head and flux are

given by

r2
h

Q
2
¼ n2

Z 1

0

Z 1

0

Czðl; mÞdldm

� 2n
Z 1

0

Z n

0

Czðl; mÞdldm

þ
Z n

0

Z n

0

Czðl; mÞdldm; ð59Þ

and

r2
Q ¼ Q

2
Z 1

0

Z 1

0

Czðl; mÞdldm; ð60Þ

respectively.
8.4. Statistical moments of the interface dynamics

The equations of motion of the interface (37) and (39)

can now be written as

o�xc

ot
¼ Qðn ¼ 1Þ

2�xc
;

o~xc

ot
¼
eQðn ¼ 1Þ

2�xc
: ð61Þ

Recalling the definition of ~z in (53), it follows from (61)

that

o

ot
~xc

�xc

� �
¼ � Q

2�x2c

Z 1

0

~zðmÞdm þ ~xc

�xc

� �
¼ Q
2�x2c

Z 1

0

eK ½�xðmÞ�dm � 2
~xc

�xc

� �
: ð62Þ

The one-dimensional version of (45) and (46) gives an

equation for the conductivity fluctuations,

oeK
ot

¼ n
�xc

o�xc

ot
oeK
on

¼ Qn
2�x2c

oeK
on

: ð63Þ

Combining (62) with (63) leads to equations for the

covariances rc and U,

orc

ot
¼ Q

�x2c

Z 1

0

UðmÞdm � 2rc

� �
; ð64Þ
and

oU
ot

� Qn
2�x2c

oU
on

¼ Q
2�x2c

Z 1

0

qY ½�xðnÞ;�xðmÞ�dm � 2UðnÞ
� �

;

ð65Þ
respectively. Integrating (64) and (65) subject to homo-

geneous initial conditions gives

rc ¼
Z 1

0

Z 1

0

ð1� nÞð1� gÞqY ½�xcðn � gÞ�dndg ð66Þ

and

UðnÞ ¼
Z 1

0

ð1� gÞqY ½�xcðn � gÞ�dg: ð67Þ

Eqs. (55)–(57), (59)–(61), (66) and (67) form a closed

set of deterministic equations for the statistics of the

interface dynamics and related state variables.

8.5. Comparison with exact solutions

The direct integration of flow equations (50) leads to

h ¼ 1� Q�1
Z n

0

zðmÞdm; Q�1 ¼
Z 1

0

zðmÞdm: ð68Þ

The statistics of the interface dynamics can be computed

from (68) exactly provided a porous medium is perfectly

correlated (k ! 1), i.e., hydraulic conductivity is a ran-

dom constant [10]. Indeed, for perfectly correlated med-

ia (68) gives

h ¼ 1� x
xc
; q ¼ K

xc
; x2c ¼ Kt; ð69Þ

which gives exact analytical expressions for the mean

and variance of the interface position [10],

�xc

� 

exact

¼ er2Y =8
ffiffi
t

p
; r2

c

h i
exact

¼ er2Y =2 � er2Y =4
� 	

t: ð70Þ

Thus the mean position of the interface scales as
ffiffi
t

p
,

while its variance increases linearly with t. Additionally,

the normalized cross-covariance U ¼ heK~xci=�xc has the

form

½U�exact ¼ e9r
2
Y =8 � e5r

2
Y =8 ð71Þ

and is time invariant.

Next we compare the first-order perturbation solu-

tions derived in the previous section with their exact

counterparts. Since for perfectly correlated media
CY ¼ r2

Y , (66) and (67) yield

rc ¼
r2
Y

4
; U ¼ r2

Y

2
: ð72Þ

Then it follows from (53) that �z ¼ 1 and r2
z � qY � 2Uþ

rc ¼ r2
Y =4, so that (56) gives

Q ¼ 1� r2
Y

4

� ��1

: ð73Þ
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Substituting (73) into (61) leads to perturbation approx-

imations for the mean and variance of the interface

position,

�xc ¼
ffiffiffiffiffi
Qt

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

1� r2
Y =4

r
¼ 1þ r2

Y

8
þOðr4

Y Þ
� � ffiffi

t
p

ð74aÞ

and

r2
c � �x2crc ¼

r2
Y

4
1þ r2

Y

8

� �2

t ¼ r2
Y

4
þOðr4

Y Þ
� �

t: ð74bÞ

The comparison of (70) and (74) reveals that our per-

turbation solutions (i) give the correct time evolution of

the interface statistics, and (ii) are indeed the first-order

(in the log conductivity variance r2
Y ) approximations of

their exact counterparts. This is not the case with the lin-
earized solutions, which can be found in Section 4.2 of

[10].

Another advantage of the proposed approach is that

it involves relative fluctuations of the dependent and

independent random fields (e.g., ~xc=�xc and eQ=Q), rather
than their absolute counterparts (e.g., ~xc and eQ). The
former can be small even when the latter are large,

which is important for the accuracy of perturbation
solutions. In particular, it follows from (74b) and (72)

that the coefficient of variation of the interface position

qc � rc=�xc ¼ rY =2 is less than 1 even for highly hetero-

geneous media with r2
Y < 4, while the corresponding

variance r2
c increases with time and, hence, can be arbi-

trary large.
9. Summary and conclusions

We considered interface dynamics in heterogeneous

porous media whose hydraulic parameters are uncer-

tain. To predict the evolution of a fluid–fluid interface

and to quantify the uncertainty associated with such a

prediction, we treated the hydraulic conductivity (per-

meability) of a porous medium as random and the cor-
responding governing equations as stochastic. The

previous attempts to address this problem involve math-

ematical objects––such as integrals of random functions

over random domains and random functionals––that

are not readily amenable to standard perturbation tech-

niques. To overcome this difficulty, we introduced a dy-

namic stochastic mapping of the domain with moving

boundaries onto a fixed domain. This allowed us to
use the well-understood ensemble averaging approaches

to derive deterministic differential equations for the sta-

tistical moments of hydraulic head, Darcian flux, and

interface dynamics.

We used perturbation expansions in a small para-

meter r2
Y , the variance of log hydraulic conductivity,

to derive closure approximations for these moment

equations. This formally limits the applicability of our
approach to mildly heterogeneous porous media

ðr2
Y < 1Þ. However, the comparison of analytical solu-

tions of the one-dimensional moment equations with

their exact counterparts demonstrates that the perturba-

tion approximations remain accurate for r2
Y as large

as 2.
Our study leads to the following major conclusions.

• The proposed approach yields a self-consistent first-

order (in the variance of log hydraulic conductivity

r2
Y ) approximation of the statistics of the interface

dynamics. This is in contrast with the existing linear-

ized perturbation solutions, which omit some of the

relevant terms in the corresponding expansions.
• For one-dimensional free-surface flow, the mean

position of the interface �xc scales as
ffiffi
t

p
, while its var-

iance r2
c increases linearly with time t.

• The corresponding coefficient of variation qc � rc=�xc,

a key measure of predictive uncertainty, is time

invariant and remains relatively small (qc < 1) even

for highly heterogeneous media with the variance of

log hydraulic conductivity r2
Y < 4.
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Appendix A. Equations for the interface dynamics

The stochastic mapping X ! W transforms the

dynamics conditions on the interface (2d) into

nc � q ¼ V n ðA:1Þ

and

oxc

ot
¼

V xðxc; ycÞ
neðxc; ycÞ

;
oyc

ot
¼

V yðxc; ycÞ
neðxc; ycÞ

: ðA:2Þ

Here xc = xc(g, t), yc = yc(g, t), and the normal to the free
surface nc is given by

nc ¼
rc

j rc j ¼
ðoyc=ogÞex � ðoxc=ogÞeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxc=ogÞ2 þ ðoyc=ogÞ

2
q ; ðA:3Þ

where ex and ey denote the unit vectors in the Cartesian

(x,y) coordinate system.

Substituting (A.3) and the Darcy flux (21) evaluated
at the interface into (A.1) yields
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V n ¼ � K

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxc=ogÞ2 þ ðoyc=ogÞ

2
q

� oxc

og

� �2

þ
oyc

og

� �2
" #

oh
on

(

� oxc

on
oxc

og
þ
oyc

on

oyc

og

� �
oh
og

)
: ðA:4Þ

Since the interface is an equipotential, i.e., a surface of

the constant hydraulic head, the tangential derivative

of the hydraulic head oh/og � 0. Hence, it follows from

(A.3) and (A.4) that the components of the interface

velocity vector V = Vnnc are given by

V x ¼ �K
J

oyc

og
oh
on

; V y ¼
K
J
oxc

og
oh
on

: ðA:5Þ

Substituting (A.5) into (A.2) gives (26).
Appendix B. Mixed moments

To derive the second-order approximation of heZ abeqbi
in (30), we consider an equation for the hydraulic head

and flux fluctuations, which is obtained by subtracting

(30) and (31) from (29) and (25) and retaining the terms
up to eZ 2

-order,

oeqa

ona ¼ 0; � oeh
ona ¼ Z

ab
~qb þ eZ ab

�qb ðB:1Þ

subject to the boundary conditions

~h n1 ¼ 0; n2
� �

¼ 0; ~h n1 ¼ 1; n2
� �

¼ 0; ðB:2aÞ

~q2 n1; n2 ¼ 0
� �

¼ 0; ~q2 n1; n2 ¼ 1
� �

¼ 0: ðB:2bÞ

In terms of E(n1jn2), the Green�s function defined by
(34) and (35), the solution of (B.1) and (B.2) is

~hðnÞ ¼ �
Z 1

0

Z 1

0

oEðn j n1Þ
ona

1

Z
�1

� 	aa1 eZ a1b
�qb dn1: ðB:3Þ

It follows from (B.1) and (B.3) that

~qaðnÞ ¼ � Z
�1

� 	aa1 eZ a1b
�qbðnÞ þ Z

�1
� 	aa1

�
Z 1

0

Z 1

0

o
2Eðn j n1Þ
ona1 ona2

1

Z
�1

� 	a2b2 eZ b2b
�qb dn1:

ðB:4Þ

Substituting (B.4) into (30) gives the nonlocal mean flow

Eq. (32).

(Co)variances of hydraulic head and Darcy�s flux are
obtained by squaring (B.3) and (B.4) and taking the

ensemble mean.
Appendix C. Differential operators and expansion

coefficients

Linear deterministic operators Zab
x , Z

ab
y , and Zab

K in

(36) are given by

Zab
x ¼ 1

J 0K

�xn1
o

on1
þ �yn1

o

on2
0

�xn2
o

on1
þ �yn2

o

on2
0

������
������

� 1

J 0

�x2
n1
þ �y2

n1
�xn1�xn2 þ �yn1�yn2

�xn1�xn2 þ �yn1�yn2 �x2
n2
þ �y2

n2

������
������

� �yn2
o

on1
� �yn1

o

on2

� �
; ðC:1Þ

Zab
y ¼ 1

J 0K

0 �xn1
o

on1
þ �yn1

o

on2

0 �xn2
o

on1
þ �yn2

o

on2

������
������

� 1

J 0

�x2
n1
þ �y2

n1
�xn1�xn2 þ �yn1�yn2

�xn1�xn2 þ �yn1�yn2 �x2
n2
þ �y2

n2

������
������

� �xn1
o

on2
� �xn2

o

on1

� �
; ðC:2Þ

and

Zab
K ¼ � 1

K

�x2
n1
þ �y2

n1
�xn1�xn2 þ �yn1�yn2

�xn1�xn2 þ �yn1�yn2 �x2
n2
þ �y2

n2

�����
�����; ðC:3Þ

where J 0 ¼ �xn1�yn2 � �xn2�yn1 .

Expansion coefficients vx
k, vx

x, and vx
y in (38) are given

by

vx
x ¼

K�ycn2

ne �xcn1�ycn2 � �xcn2�ycn1

� 	2 �ycn1
o

on2
� �ycn2

o

on1

� �
; ðC:4Þ

vx
y ¼

K�ycn2

ne �xcn1�ycn2 � �xcn2�ycn1

� 	2
�

�xcn1�ycn2 � �xcn2�ycn1

�ycn2

o

on2
� �xcn1

o

on2
þ �xcn2

o

on1

 !
;

ðC:5Þ

and

vx
K ¼

�ycn2

ne �xcn1�ycn2 � �xcn2�ycn1

� 	 : ðC:6Þ

Coefficients Xk, Xx, and Xy in (40) are given by

X d ¼ vx
d

o�h

on1
� �vx

Z 1

0

Z 1

0

o
2Eðn j n1Þ
on1ona

1

Z
�1

� 	aa1
Za1b

d �qbdn1;

d ¼ k; x; y: ðC:7Þ
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