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A B S T R A C T

Equations of state (EoS) play a central role in modeling the phase equilibrium of fluid mixtures. Their
parameterization involves fitting a model to experimental data, i.e., solving a nonlinear, non-convex, mul-
tivariate optimization problem. The latter requires one to select design variables, domains of definition for
each variable, and weights assigned to individual measurements. We demonstrate that subjective choices of an
optimization algorithm and an initial guess also impact the regression process. Consequently, EoS predictions
are fundamentally uncertain even after the EoS tuning to a limited set of experimental data points. We
demonstrate this observation for two hydrocarbon reservoir fluids, in which five properties of the heaviest
carbon fraction are treated as design variables. While all the optimization algorithms and initial guesses match
experimental data for the gas and liquid properties, the resulting EoS parameterizations lead to dramatically
different predictions of the fluid’s thermophysical behavior in the unsampled pressure and temperature regions.
We propose the probabilistic treatment of design variables to quantify the predictive uncertainty of the resulting
fluid models.
1. Introduction

Estimation of phase equilibria and thermophysical properties of
complex fluid mixtures is central to a plethora of applications such
as design of fuel/biofuel blends (Soria et al., 2011), planning carbon
capture and storage operations (Xu et al., 2017), and quantitative
forecasting of multiphase flow in the oil and gas industry (Santim et al.,
2020). This task typically relies on an equation of state (EoS) to predict
a complex fluid’s pressure, volume and temperature (PVT) behavior
at the macroscopic level. Parameters of a postulated EoS model are
adjusted to match experimental data via a fitting/tuning procedure
(regression), in which pre-selected variables are allowed to vary within
a certain interval.

In a typical application, financial and operational constraints ensure
that available experimental data are sparse and cover only a small
subset of the PVT conditions of interest. The use of a data-tuned EoS
in the unsampled PVT regions introduces uncertainty in predictions
of fluid behavior. Partial knowledge of a complex fluid’s composition
is another source of predictive uncertainty of an EoS. For example,
in petroleum fluid mixtures, it is only possible to make a component
analysis for the lighter fractions of the reservoir fluid (Pedersen et al.,
1984), while the heavier fractions are lumped together in the so-called
Cplus fraction. Thus, petroleum compositions are most often reported
to the C7+, C10+, or C20+ fractions and, in rare cases, to the C30+
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fraction (Pedersen et al., 1989). The data reported in this way pose
an additional challenge to the EoS parameterization.

Cubic equations of state serve as the benchmark within the indus-
try for modeling hydrocarbon reservoir fluids, yet their application
is not without limitations. When employed to describe oil fractions
with C20+ components, even state-of-the-art software packages and
advanced correlations can yield unreliable phase equilibrium calcu-
lations (Allahyarzadeh-Bidgoli et al., 2021). Additionally, the anal-
ysis of CO2-rich systems suggests that highly asymmetric mixtures
challenge the precision boundaries of cubic EoS when coupled with
conventional mixing rules (da Silva et al., 2018). A noteworthy lim-
itation is the demonstrated inadequacy of cubic EoS in accurately
predicting asphaltene gradients in reservoirs (Mullins et al., 2013), an
issue that might prompt consideration of alternative EoS models. One
such alternative includes the Flory–Huggins–Zuo EoS in combination
with the Yen–Mullins Model for a more reliable representation of
asphaltenes (Mullins et al., 2017). Despite these recognized limitations,
this study utilizes the modified Peng–Robinson EoS (Peng and Robin-
son, 1976; Robinson and Peng, 1978) is utilized in this study owing to
its widespread acceptance and application in the industry.

Commercial thermodynamic simulators, such as WinProp, Mul-
tiflash or PVTsim, offer modules for the EoS regression and for
the Cplus fraction characterization (splitting and lumping procedures).
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Nomenclature

Abbreviations

ADAM Adaptive moment estimation method
Cplus Hydrocarbon plus fraction
CMA-ES Covariance matrix adaptation evolution

strategy
DFP Davidon–Fletcher–Powell method
DSM Direct search method
EoS Equation of state
PDF Probability density function
PVT Pressure–volume–temperature
SCN Single carbon number

Superscripts

* Normalized variable

Subscripts

𝑐𝑟 Critical
comp Components
g Gas
m Mixture
meas Measurements
o Oil
Pen Peneloux correction

Variables

𝐳 Composition vector of fluid mixture
𝜔 Acentric factor
𝛺𝑎, 𝛺𝑏 Cubic EoS parameters
𝑎 Attraction parameter
𝑏 Covolume parameter
𝑁 Total number
𝛾 Specific gravity
𝐱 Design variables vector
 Percentage error
𝜌 Density
𝐵 Formation volume factor
𝑐 Volume shift parameter
𝑒 EoS prediction
𝐹 Objective function
𝑀 Molecular weight
𝑁iter Total number of iterations
𝑃 Pressure
𝑃 sat Saturation pressure
𝑅 Universal gas constant
𝑅s Solution gas–oil ratio
𝑇 Temperature
𝑉 Volume
𝑣 Molar volume
𝑤 Weight
𝑦 Experimental value
𝑍 Gas compressibility factor
BIP Binary interaction parameter

For instance, WinProp allows the regression process to adjust the
fluid components’ critical pressure 𝑃cr, critical volume 𝑉cr, critical
temperature 𝑇 , acentric factor 𝜔, molecular weight 𝑀 , among other
2

cr
properties. It also allows the binary interaction parameter (BIP) to be
included as fitting variables. While a standard approach is to include
into the tuning process the most uncertain variables, e.g., the param-
eters related to the characterization of the Cplus fraction, its optimal
implementation remains unsettled.

Several EoS regression procedures have been proposed in the liter-
ature. Coats and Smart (Coats and Smart, 1986) state that it is usually
sufficient to perform the cubic EoS regression on the 𝛺𝑎 and 𝛺𝑏 param-
eters associated to the methane and plus fraction components and on
the methane-plus fraction BIP. Whitson and Brulé (2000) suggest fitting
the 𝛺𝑎 and 𝛺𝑏 parameters of the next-to-heaviest Cplus fraction instead
of those of the methane or, alternatively, fitting 𝑃cr and 𝑇cr. Christensen
1999) proposes first to fit the MC7+ used for splitting and the volume
hift parameters of the expanded components to then adjust the two
ost sensitive coefficients in empirical correlations for 𝑃cr, 𝑇cr and 𝜔

f the C7+ expanded components. Aguilar Zurita and McCain (2002)
ecommend tuning first 𝑀 of the plus fraction and then 𝑃cr, 𝑇cr and 𝜔

of single carbon number (SCN) groups up to C45+. Al-Meshari (2004)
modifies the latter method by adjusting 𝜔 of the heaviest multiple
carbon number group to match the saturation pressure, instead of its
critical properties. This ambiguity is a reason why the detailed process
of the EoS parameter tuning is more of an art than a science (Deepstar,
2001).

Previous attempts to bring some rigor into the EoS regression in-
volve the assessment of the ability of alternative tuned EoS models to
reproduce experimental data. For example, a comparison of the perfor-
mance of the alternative EoS regression procedures (Coats and Smart,
1986; Whitson and Brulé, 2000; Christensen, 1999; Aguilar Zurita and
McCain, 2002; Al-Meshari, 2004) on 30 fluid samples (19 oil and 11
gas) suggest that the approaches from Al-Meshari (2004) and Whitson
and Brulé (2000) perform best for oil and gas fluids, respectively (Ali
and El-Banbi, 2015). Such comparative studies ignore the impact of the
selection of an optimization algorithm and initial guess for the design
variables.

Our study focuses on these aspects of the EoS regression. The im-
portance of this hitherto unexplored aspect of complex fluid modeling
stems from the fact that the EoS regression is a nonlinear, non-convex,
multivariate optimization problem that poses multiple local minima.
Since different optimization algorithms employ alternative approaches
to explore the search space, the choice of an optimization algorithm
and its hyper-parameters is known to affect the optimization trajectory
and final destination. An initial guess can also impact the optimiza-
tion path. In Section 2, we describe four representative optimization
algorithms considered in this work: the adaptive moment estimation
method (ADAM) (Kingma and Ba, 2014), the Davidon–Fletcher–Powell
method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), the covari-
ance matrix adaptation evolution strategy method (CMA-ES) (Hansen,
2006), and the direct search method (Hooke and Jeeves, 1961) (DSM).
Section 3 contains our assessment of the relative performance of these
conceptually distinct optimization algorithms on the EoS tuning of two
hydrocarbon reservoir fluids. Main conclusions drawn from this study
are summarized in Section 5.

2. Methodology

To be specific, we consider the modified Peng–Robinson EoS (Peng
and Robinson, 1976; Robinson and Peng, 1978),

𝑃 = 𝑅𝑇
𝑣 − 𝑏𝑚

−
𝑎𝑚

𝑣2 + 2𝑏𝑚𝑣 − 𝑏𝑚2
, (1a)

because of its widespread usage and simplicity. Here, 𝑃 is the pressure,
𝑇 is the temperature, 𝑣 is the molar volume, 𝑅 is the universal gas
constant. The attraction, 𝑎𝑚, and covolume, 𝑏𝑚, parameters are com-
puted for the fluid mixture of 𝑁comp components with composition
𝐳 = (𝑧1,… , 𝑧𝑁comp )

⊤ according to the mixing rules

𝑎𝑚 =
𝑁comp
∑

𝑁comp
∑

𝑧𝑖𝑧𝑗 (𝑎𝑖𝑎𝑗 )1∕2(1 − BIP𝑖𝑗 ), 𝑏𝑚 =
𝑁comp
∑

𝑧𝑖𝑏𝑖, (1b)

𝑖=1 𝑗=1 𝑖=1
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where BIP𝑖𝑗 is the binary interaction parameter (BIP) between the 𝑖th
and 𝑗th components, and the attraction and covolume parameters of
the 𝑖th component (𝑖 = 1,… , 𝑁comp) are computed from the acentric
factor 𝜔𝑖 as

𝑎𝑖 = 𝛺𝑎
𝑅2𝑇 2

cr,𝑖
𝑃cr,𝑖

[

1 + 𝑚𝑖

(

1 − 𝑇
𝑇cr,𝑖

)1∕2
]2

, 𝑏𝑖 = 𝛺𝑏
𝑅𝑇cr,𝑖
𝑃cr,𝑖

, (1c)

𝑚𝑖 =

{

0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖 , 𝜔𝑖 ≤ 0.49

0.379642 + 1.48503𝜔𝑖 − 0.164423𝜔2
𝑖 + 0.016666𝜔3

𝑖 , 𝜔𝑖 > 0.49,

(1d)

ith 𝛺𝑎 = 0.45724 and 𝛺𝑏 = 0.07780. The properties of pure hydrocar-
on components, generalized single carbon number fractions, and light
ases are reported in Appendix A.

For given 𝑃 and 𝑇 , the molar volume 𝑣 predicted with Eq. (1) is
hifted to 𝑣Pen according to Péneloux et al. (1982) and Jhaveri and
oungren (1988)

Pen = 𝑣 −
𝑁comp
∑

𝑖=1
𝑧𝑖𝑐𝑖, (2)

here 𝑐𝑖 is the volume shift parameter for the 𝑖th component. Finally,
ensities are computed based on the components molecular weights.

.1. Problem formulation

The design variables used to fit the EoS (1) to data are 𝑃cr,𝑖, 𝑇cr,𝑖,
𝑖, 𝑐𝑖, and the molecular weight 𝑀𝑖 for the 𝑖th pseudocomponent
orresponding to the heaviest hydrocarbon fraction, the Cplus frac-
ion. The resulting set of design variables is {𝑃cr,𝐶plus , 𝑇cr,𝐶plus , 𝜔𝐶plus ,
𝐶plus ,𝑀𝐶plus}. A design point 𝐱 = (𝑃 ∗

cr,𝐶plus
, 𝑇 ∗

cr,𝐶plus
, 𝜔∗

𝐶plus
, 𝑐∗𝐶plus

,𝑀∗
𝐶plus

)⊤

s a vector containing these design variables non-dimensionalized by
heir initial values, so that 𝐱 = 1 at the first iteration.

Eq. (1) is solved for a series of pressure and temperature conditions,
nder some of which the fluid mixture separates into a gas phase and
liquid phase. When two phases are present, the molar volumes of

he gas and liquid phases, 𝑣Pen,g and 𝑣Pen,l, are computed by the EoS,
esides of the liquid fraction 𝑙 obtained through the equality of the
omponents fugacity in each phase, the fundamental criteria for phase
quilibria. From these set of solutions, fluid properties measured exper-
mentally are predicted. The optimization is carried by minimizing the
elative error for 𝑁meas measurements,

𝑘(𝐱) =
𝑒𝑘(𝐱) − 𝑦𝑘

𝑦𝑘
, 𝑘 = 1,… , 𝑁meas, (3)

between 𝑒𝑘(𝐱), the fluid property predicted by the EoS with design
variables 𝐱, and 𝑦𝑘, the kth experimental data point. Following Agarwal
t al. (1990), we consider the objective function

(𝐱) =
𝑁meas
∑

𝑘=1
𝑤2

𝑘
2
𝑘 (𝐱), (4)

where 𝑤𝑘 is the weight assigned to the 𝑘th measurement; we assign
equal weights to all measurements, such that 𝑤1 = ⋯ = 𝑤𝑁meas =
1∕𝑁meas.

The upper and lower bounds for each design variable are defined
as a percentage of their initial guesses. A maximum variation of 20% is
permitted for 𝑃 ∗

cr,𝐶plus
, 𝑇 ∗

cr,𝐶plus
, 𝜔∗

𝐶plus
, and 𝑀∗

𝐶plus
; and 50% for 𝑐∗𝐶plus

.
Representing these limits by the vector 𝜟𝒙 , we formulate the EoS
regression as a constrained optimization problem

minimize
𝐱

𝐹 (𝐱), subject to 1 − 𝛥𝑥𝑖 ≤ 𝑥𝑖 ≤ 1 + 𝛥𝑥𝑖 for all 𝑖. (5)

The initial values for 𝑃cr,𝐶plus and 𝑇cr,𝐶plus are obtained through Twu’s
correlation (Twu, 1984); for 𝜔𝐶plus through Lee–Kesler’s correlation
(Kesler and Lee, 1976); for the volume shift parameter 𝑐𝐶plus for all com-
ponents through Jhaveri–Youngren’s correlation (Jhaveri and Youn-
gren, 1988). The initial guess for 𝑀𝐶plus is its measured value reported
3

in the PVT analysis.
Table 1
Molar composition and plus fraction properties of
reservoir fluids A and B.

Component Mole fraction (%)

Fluid A Fluid B

CO2 0.91 0.02
N2 0.16 0.21
C1 36.47 41.50
C2 9.67 2.35
C3 6.95 0.78
i-C4 1.44 0.32
C4 3.93 0.40
i-C5 1.44 0.19
C5 1.41 0.19
C6 4.33 0.31
C7 33.29a 0.83
C8 – 2.14
C9 – 1.30
C10 – 1.32
C11 – 1.31
C12 – 1.44
C13 – 1.62
C14 – 1.50
C15 – 1.65
C16 – 1.41
C17 – 1.48
C18 – 1.32
C19 – 1.10
C20+ – 35.32b

aPlus fraction. Density = 0.8515 g/cm3 at 60oF.
Molecular weight = 218.
bPlus fraction. Density = 0.9811 g/cm3 at 60oF.
Molecular weight = 505.

The stopping criteria for the optimization process is either the
convergence of the objective function 𝐹 within a tolerance of 10−8 for
the change in |𝐹 | between two consecutive iterations or a maximum
number of 100 iterations.

2.2. Alternative minimization strategies

We discuss the four alternative minimization algorithms used in our
comparative study in Appendix B. They are selected because of both
their popularity in the field and their conceptual dissimilarity from each
other. For a fair comparison, their hyperparameters were optimized for
this particular application.

2.3. Numerical implementation

We implement the Peng–Robinson EoS (Peng and Robinson, 1976;
Robinson and Peng, 1978) and the optimization algorithms in the
Python and Julia programming languages, respectively. The Julia op-
timization routine calls the Python EoS routine at each evaluation of
the objective function to compute the EoS predictions. Although not
shown here, we validated our implementation against the commercial
simulator PVTsim.

2.4. Data description

We investigate two reservoir fluid compositions. The first is a
slightly volatile oil with a bubble point pressure of 181.67 bar at 104oC
and solution gas–oil ratio of 134 Sm3/Sm3 from Whitson and Brulé
(2000), denoted here as fluid A. The second composition, denoted
here as fluid B, refers to a hydrocarbon reservoir fluid from the
northern Campos basin offshore Brazil. It has a bubble point pressure
of 186.7 bar at 76oC and solution gas–oil ratio of 48 Sm3/Sm3. Their
compositions are described in Table 1, along with the density and
molecular weight of the plus fractions.
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Fig. 1. Convergence history of fluid A’s normalized design variables (𝑃 ∗
cr,𝐶plus

, 𝑇 ∗
cr,𝐶plus

, 𝜔∗
𝐶plus

, 𝑀∗
𝐶plus

, and 𝑐∗𝐶plus
) for alternative optimization algorithms: adaptive moment

estimation (ADAM) (Kingma and Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen, 2006), and direct search method (DSM) (Hooke and Jeeves, 1961).
The data used for the EoS tuning consist of measurements from a
differential liberation: residual oil API, solution gas–oil ratio 𝑅s, oil
formation volume factor 𝐵o, gas formation volume factor 𝐵g, oil density
𝜌o, gas specific gravity 𝛾g (air = 1), and gas compressibility factor 𝑍. A
total of 69 and 83 experimental points were used in the regression of
fluids A and B, respectively.

Non-hydrocarbon-hydrocarbon BIPs are set to their tabulated values
in Whitson and Brulé (2000). Hydrocarbon–hydrocarbon BIPs are set to
zero, except for fluid A between methane and C7+, which is computed
according to Arbabi and Firoozabadi (1995). Volume shift parameters
were defined according to Whitson and Brulé (2000) for fluid A and
computed according to Jhaveri and Youngren (1988) for fluid B.

We treat the Cplus fraction as a single pseudocomponent as done
by Robinson and Peng (1978), Rowe (1978) and Stange et al. (1988).
While this approach has its detractors (Aguilar Zurita and McCain,
2002; Christensen, 1999; Al-Meshari, 2004; Zuo and Zhang, 2000),
three main reasons justify our choice. First, our goal is to assess how
the choice of an optimization routine and the initial guess affect EoS
predictions of the PVT fluid behavior. Demonstrating that different
combinations of values for the Cplus parameters can similarly represent
experimental data is a simple and intuitive way to meet this purpose.
In particular, we use experimental data measured at the differential
liberation. Second, the plus-fraction splitting and lumping procedures
are empirical and ultimately the Cplus characterization problem has
only two independent variables: the measurements of the molecu-
lar weight and the density of the plus fraction. Since the lumping
scheme influences the performance of the EoS regression on volumetric
4

data (Aguilar Zurita and McCain, 2002), we ignore this source of
uncertainty. Third, the single-component approach is still seen in the
oil and gas industry (e.g., Li and Yang, 2013).

3. Results

3.1. Optimization algorithm

Fig. 1 exhibits fluid A’s convergence history of the normalized
design variables (𝑃 ∗

cr,𝐶plus
, 𝑇 ∗

cr,𝐶plus
, 𝜔∗

𝐶plus
, 𝑐∗𝐶plus

, 𝑀∗
𝐶plus

) for alternative
optimization methods: ADAM (Kingma and Ba, 2014), DFP (Davi-
don, 1959; Fletcher and Powell, 1963), CMA-ES (Hansen, 2006), and
DSM (Hooke and Jeeves, 1961). Fig. 2 does the same for fluid B. These
algorithms not only have distinct optimization paths, but also yield
different solutions (final values of the design variables); the latter are
collated in Table 2 for both fluids. This performance is to be expected
given the high degree of nonlinearity of the optimization problem
(Eqs. (1) and (2)).

The non-convexity of the objective function is depicted in Fig. 3,
in which the curve was generated using 200 objective function evalua-
tions. It shows the objective function evaluated at convex combinations
between the CMA-ES and DSM solutions for fluid B. A convex combi-
nation of two points refers to the point that lies along the line segment
connecting these two points. The weight 𝜃 controls the position of the
point on the segment, such that 𝜃 = 0 corresponds to the CMA-ES
solution and 𝜃 = 1 to the DSM solution; the values of 𝜃 between 0
and 1 map out the landscape of the objective function between these
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Fig. 2. Convergence history of fluid B’s normalized design variables (𝑃 ∗
cr,𝐶plus

, 𝑇 ∗
cr,𝐶plus

, 𝜔∗
𝐶plus

, 𝑀∗
𝐶plus

, and 𝑐∗𝐶plus
) for alternative optimization algorithms: adaptive moment

estimation (ADAM) (Kingma and Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen, 2006), and direct search method (DSM) (Hooke and Jeeves, 1961).
Table 2
EoS regression results obtained with four alternative optimization algorithms: adaptive moment estimation (ADAM) (Kingma
and Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen, 2006), and direct search method (DSM) (Hooke and Jeeves, 1961).

Property Initial value ADAM DFP CMA-ES DSM

Fluid A
Critical pressure, 𝑃cr,𝐶plus

(bar) 17.39 17.64 17.60 17.73 17.60
Critical temperature, 𝑇cr,𝐶plus

(K) 772.24 747.76 736.81 686.74 772.24
Acentric factor, 𝜔𝐶plus

0.7207 0.6778 0.7174 0.8609 0.5971
Molecular weight, 𝑀𝐶plus

218 210 208 209 214
Volume shift, 𝑐𝐶plus

(cm3/mol) 44.2 46.1 44.3 22.1 51.4

Fluid B
Critical pressure, 𝑃cr,𝐶plus

(bar) 13.10 10.88 10.96 10.48 11.14
Critical temperature, 𝑇cr,𝐶plus

(K) 986.40 1041.93 1113.39 1129.58 1002.72
Acentric factor, 𝜔𝐶plus

1.2744 1.0944 1.0195 1.0542 1.1256
Molecular weight, 𝑀𝐶plus

505 503 501 503 499
Volume shift, 𝑐𝐶plus

(cm3/mol) 133.5 121.0 162.7 200.2 90.0
two solutions. All in all, the results presented in Figs. 1–3 and Table 2
demonstrate that results of the EoS regression depend on the choice of
an optimization algorithm.

Fig. 4 shows the decay of the objective function 𝐹 with the number
of iterations, 𝑁iter, for both fluids. It further elucidates the challenge
posed by nonlinearity of the optimization problem (Eqs. (1)–(2)). While
the four optimization methods significantly reduce 𝐹 from its initial
value and yield essentially the same value of 𝐹 at convergence, they
do so for a distinctly different sets of the optimized design variables
(Table 2). Since the objective function 𝐹 is the sum of the square
5

percentage errors, different sets of the optimized design variables match
the experimental data with virtually the same level of accuracy.

Indeed, Figs. 5–6 and Table 3 compare the tuned EoS predictions
against experimental data. It can be observed that all of these optimiza-
tion algorithms significantly improve experimental data representation
compared to the original (not tuned) EoS model and yield similar
predictions.

The objective function 𝐹 is defined for pressure–temperature
regimes in which experimental data are available. There is no guarantee
that the design variables that minimize 𝐹 are appropriate outside
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Fig. 3. Objective function (squared relative error) evaluated for fluid B at convex
combinations between the solutions obtained by the covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen, 2006) (𝜃 = 0) and the direct search method
(DSM) (Hooke and Jeeves, 1961) (𝜃 = 1). The curve is generated using 200 objective
function evaluations.

Table 3
EoS predictions and experimental data for the saturation pressure and the API gravity
of the residual oil from the differential liberation at 104oC and 76oC for fluids A
and B, respectively. The EoS tuning is carried out with four alternative optimization
algorithms: adaptive moment estimation (ADAM) (Kingma and Ba, 2014), Davidon–
Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance
matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006), and direct search
method (DSM) (Hooke and Jeeves, 1961).

Property Measurement Original ADAM DFP CMA-ES DSM

Fluid A
Saturation pressure (bar) 181.7 210.1 194.3 195.3 193.4 189.8
Residual oil API 35.1 39.4 36.7 36.6 36.6 36.5

Fluid B
Saturation pressure (bar) 186.7 232.3 173.9 176.0 174.4 175.4
Residual oil API 17.5 17.9 17.9 17.6 17.7 17.6

these regimes. We investigate the ability of the EoS models, tuned
with the four alternative optimization techniques on ‘‘training’’ data,
to extrapolate from such regimes, i.e., to represent the unseen data.

Fig. 7 depicts fluids A and B’s phase envelopes from the EoS models
tuned with the four alternative optimization algorithms. Even though
the phase equilibria behavior and the critical points of the regressed
fluids are distinct, the lack of additional experimental data precludes
any conclusion about the superiority of one model over the others.
The significant discrepancy between the predicted envelopes may have
severe consequences both during the design and operation of an oil
and gas production system, since the tuned fluid EoS feeds into flow
simulations for the reservoir and for the wellbore and pipeline.

3.2. Initial guess

To ameliorate the EoS regression dependency on the optimization
algorithm, we investigate a two-stage EoS-tuning procedure. The op-
timal values of the decision variables obtained with ADAM, CMA-ES,
or DSM serve as the initial guess for the subsequent DFP minimiza-
tion. The DFP is selected as the second stage optimization for being
a second-order minimization strategy. We note that the commercial
simulator WinProp v.2017 also employs a second-order algorithm,
namely Agarwal et al.’s procedure (Agarwal et al., 1990).

The phase envelopes for thus refined EoS are plotted in Fig. 8 for
fluids A and B, demonstrating the sensitivity of DFP minimization to an
6

Table 4
EoS-regression results obtained via the two-step regression in which the optimal values
of the decision variables obtained with ADAM (Kingma and Ba, 2014), CMA-ES
(Hansen, 2006), or DSM (Hooke and Jeeves, 1961) serve as the initial guess for the
subsequent DFP minimization (Davidon, 1959; Fletcher and Powell, 1963).

Property Initial guess from

ADAM CMA-ES DSM

Fluid A
Critical pressure, 𝑃cr,𝐶plus

(bar) 17.64 17.73 17.66
Critical temperature, 𝑇cr,𝐶plus

(K) 746.46 686.75 771.37
Acentric factor, 𝜔𝐶plus

0.6783 0.8609 0.5966
Molecular weight, 𝑀𝐶plus

210 209 213
Volume shift, 𝑐𝐶plus

(cm3/mol) 45.3 22.1 51.4

Fluid B
Critical pressure, 𝑃cr,𝐶plus

(bar) 10.90 10.49 11.04
Critical temperature, 𝑇cr,𝐶plus

(K) 1042.20 1131.17 1003.53
Acentric factor, 𝜔𝐶plus

1.0933 1.0516 1.1228
Molecular weight, 𝑀𝐶plus

504 504 504
Volume shift, 𝑐𝐶plus

(cm3/mol) 121.1 200.6 90.1

initial guess. The phase envelopes optimized using the initial guesses
from ADAM, CMA-ES, and DSM differ significantly. Table 4 reports
the corresponding optima design variables. Different optimized values
are reached by the same optimization algorithm with different initial
guesses. This proves that the EoS regression may also depend on the
design variables initialization besides of the optimization algorithm.

4. Discussion

The EoS models obtained using four different optimization algo-
rithms yield significantly different predictions of phase envelopes, and
there is no clear evidence that any single optimization algorithm out-
performs the others during the EoS regression with generic data. The
EoS predictions impact multiphase flow simulations, giving rise to pre-
dictive uncertainty in simulations of, e.g., oil and gas flow in the reser-
voir, wellbore, and pipelines. Since an erroneous EoS might adversely
impact economic feasibility studies, cause severe flow assurance prob-
lems, and affect equipment integrity, reliance on a single optimization
algorithm and a single initial guess during the EoS regression should
be avoided. Yet, it is the strategy implemented in some commercial
thermodynamic simulators.

Given the variability in the optimization results for a given selection
of the design variables, comparative studies of different sets of the de-
sign variables and optimization procedures might have to be revisited.
This is especially so since many of them, e.g., those discussed in the
Introduction, do not even mention the optimization algorithm used.

Since both the initial guess and the optimization algorithm signif-
icantly impact the EoS-regression results, predictions of the regressed
EoS models are fundamentally uncertain. This predictive uncertainty
should be quantified, e.g., by treating the design variables probabilis-
tically.

Probability distributions of the fraction properties, e.g., 𝐶plus, can
be characterized from a sample of regressed values considering dif-
ferent optimization algorithms and initial values. We demonstrate this
approach for the design variables (𝑃 ∗

cr,𝐶plus
, 𝑇 ∗

cr,𝐶plus
, 𝜔∗

𝐶plus
, 𝑀∗

𝐶plus
, and

𝑐∗𝐶plus
) of Fluid B, for which the optimized values are alternatively

obtained by the four optimization algorithms (Section 2.2) and by the
two-stage EoS-tuning procedure (Section 3.2) in which the optimized
values from one algorithm are used as initial guesses for the other
algorithms. From these samples containing 16 points each, we fit
probability distributions to the 𝐶plus properties in Fig. 9.

The 𝐶plus fraction parameters are potentially correlated, implying
that a joint distribution would represent their uncertainty more accu-
rately. However, undertaking such an analysis would require a more
comprehensive examination and possibly additional data points, which
we plan to investigate in future research.
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Fig. 4. Convergence history of the objective function 𝐹 for (a) fluid A and (b) fluid B, and four optimization algorithms: adaptive moment estimation (ADAM) (Kingma and Ba,
014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006), and direct
earch method (DSM) (Hooke and Jeeves, 1961).
One way to quantify the subsequent uncertainty associated with
he EoS regression is through the use of Monte Carlo simulations. In
hese simulations, a large number of random realizations of the design
ariables are generated and used as inputs to the regression model.
he resulting outputs can then be used to estimate the distribution of
he predicted fluid properties, as well as their associated confidence
ntervals. This type of analysis provides a more comprehensive under-
tanding of the uncertainty associated with the EoS regression results
nd can be used to guide future research efforts aimed at reducing
he uncertainty of the EoS predictions in the context of partially char-
cterized hydrocarbon mixtures. Uncertainty in the fluid-model char-
cterization propagates through a modeling workflow, affecting the
rediction uncertainty of the pipe (Alawadhi et al., 2018; Fulchignoni
t al., 2023) and porous media flow (Yang et al., 2020, 2022) models.
uantifying the EoS prediction uncertainty and its impact on the
verall flow predictions is also an area of future work.
7

5. Conclusions

EoS regression on experimental data is a vital component of com-
plex fluids modeling. While previous studies have focused mainly on
the influence of EoS regression procedures and regression variables,
we investigated the robustness of this nonlinear regression to the
choices of an optimization algorithm and an initial guess used for its
initialization. The four alternative optimization techniques considered
are the adaptive moment estimation (ADAM) (Kingma and Ba, 2014),
the Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher
and Powell, 1963), the covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen, 2006), and the direct search method (DSM) (Hooke
and Jeeves, 1961). These were deployed to fit the Peng–Robinson
EoS (Robinson and Peng, 1978) to experimental data for two hy-
drocarbon reservoir fluids. Our study leads to the following major

conclusions.
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Fig. 5. Fluid A EoS predictions and experimental data for (a) solution gas–oil ratio, (b) oil formation volume factor, (c) gas compressibility factor, (d) gas formation volume factor,
(e) oil specific gravity, and (f) gas specific gravity. The EoS tuning is carried out with four alternative optimization algorithms: adaptive moment estimation (ADAM) (Kingma and
Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006), and
direct search method (DSM) (Hooke and Jeeves, 1961).
• While the four optimization algorithms yield comparable errors in
the tuned EoS representation of the experimental data, they lead
to different EoS predictions of the thermophysical behavior in the
unsampled PVT region. This demonstrates that the choice of an
optimization algorithm plays a key role in the EoS tuning.

• EoS regression is sensitive to the choice of an initial guess used
to initiate the optimization procedure. This conclusion holds even
for initial guesses obtained as solutions of the minimization prob-
lem obtained with different optimization algorithms.

• Our findings suggest the necessity of reporting 𝐶plus fraction
parameters as distributions rather than unique (expected) values.
8

These distributions should be obtained from the optimized design
variables considering different optimization algorithms and initial
guesses.

Future studies could explore variations to the EoS regression pro-
cess. Incorporating the Cplus fraction expansion and lumping procedures
would introduce more design variables to the optimization problem.
Including additional experimental data and assigning different weights
to the experimental data would change the objective function and,
therefore, the optimization process. Future studies could also inves-
tigate whether specific fluid compositions are more susceptible to
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Fig. 6. Fluid B EoS predictions and experimental data for (a) solution gas–oil ratio, (b) oil formation volume factor, (c) gas compressibility factor, (d) gas formation volume factor,
(e) oil specific gravity, and (f) gas specific gravity. The EoS tuning is carried out with four alternative optimization algorithms: adaptive moment estimation (ADAM) (Kingma and
Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell, 1963), covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006), and
direct search method (DSM) (Hooke and Jeeves, 1961).
disparate local minima during the EoS regression. A key aspect of
future research is to conduct a comprehensive analysis of the tuned EoS
prediction uncertainty and assessing its influence on the uncertainty in
flow simulation results.
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Fig. 7. Phase envelopes (vapor liquid equilibrium) for the EoS models before and after regression of (a) fluid A and (b) fluid B. The EoS tuning is carried out with four
alternative optimization algorithms: adaptive moment estimation (ADAM) (Kingma and Ba, 2014), Davidon–Fletcher–Powell method (DFP) (Davidon, 1959; Fletcher and Powell,
1963), covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006), and direct search method (DSM) (Hooke and Jeeves, 1961). The markers indicate the critical
point.
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Efficiency and Renewable Energy (EERE), USA of the U.S. Department
of Energy (DOE) under project number FY19 AOP 3.1.8.7.

Appendix A

For the sake of completeness, we collate in Table A.5 the relevant
properties of pure hydrocarbon components, generalized single carbon
number fractions, and light gases.

Appendix B

This Appendix describes the four optimization algorithms imple-
mented in our study.

The adaptive moment estimation method (Kingma and Ba, 2014). ADAM
is a first-order method that computes individual adaptive learning
10

1

rates for each parameter from estimates of the first and second mo-
ments of the gradients of the objective function. At each iteration, the
intermediate variables

𝐦𝑡+1 ← 𝛽1𝐦𝑡 + (1 − 𝛽1)∇𝐹 (𝐱𝑡), 𝐦̂𝑡+1 ←
𝐦𝑡+1

(1 − 𝛽𝑡+11 )
, (B.1a)

𝑡+1 ← 𝛽2𝐯𝑡 + (1 − 𝛽2)∇𝐹 (𝐱𝑡)⊙ ∇𝐹 (𝐱𝑡), 𝐯̂𝑡+1 ←
𝐯𝑡+1

(1 − 𝛽𝑡+12 )
(B.1b)

are computed in order to update the design point,

𝐱𝑡+1 ← 𝐱𝑡 − 𝛼 𝐦̂𝑡+1 ⊘ (
√

𝐯̂𝑡+1 + 𝜖). (B.1c)

he symbols ⊙ and ⊘ refer to the element-wise vector product and
ivision, respectively. Algorithm 1 presents a pseudocode for the ADAM
ptimization algorithm for a deterministic objective function.

he Davidon–Fletcher–Powell method (Davidon, 1959; Fletcher and Powell,
963). DFP is a second-order gradient decent method. It rests on the
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Fig. 8. Phase envelopes (vapor liquid equilibrium) obtained for (a) fluid A and (b) fluid B via the two-step EoS regression in which the optimal values of the decision variables
obtained with ADAM (Kingma and Ba, 2014), CMA-ES (Hansen, 2006), or DSM (Hooke and Jeeves, 1961) serve as the initial guess for the subsequent GD2O minimization (Agarwal
et al., 1990). The markers indicate the critical point.
e
t
i

t

Newton’s method,

𝐱𝑡+1 ← 𝐱𝑡 − (𝐇𝑡)−1∇𝐹 (𝐱𝑡), (B.2)

where the inverse of the Hessian matrix 𝐇 is approximated by a
symmetric and positive definite matrix 𝐐. Because the second-order
information is approximated, it is called a quasi-Newton method. At
each iteration 𝑡, the design point is updated according to

𝐱𝑡+1 ← 𝐱𝑡 − 𝛼𝑡 𝐐𝑡∇𝐹 (𝐱𝑡), (B.3)

where 𝛼𝑡 is a scalar step factor. Algorithm 2 presents a pseudocode for
the DFP optimization algorithm.

The covariance matrix adaptation evolution strategy method (Hansen,
2006). CMA-ES is a stochastic method inspired by natural evolution
strategies. It relies on recombination, mutation and elite selection tech-
niques. At each iteration step, the algorithm improves the parameters
of a multivariate Gaussian search distribution. The change rates for the
mean and the covariance of the search distribution and for the step
11
size are updated separately. The CMA-ES is recognized to be among
the leading algorithms for optimization of real-valued functions (Eiben
et al., 2003).

Algorithms 3 and 4 present a pseudocode for the CMA-ES optimiza-
tion algorithm. A Matlab implementation of the CMA-ES algorithm can
be found in Hansen (2006).

Direct search method. The Hooke–Jeeves algorithm (Hooke and Jeeves,
1961), herein labeled DSM, performs a direct search over the search
space based on evaluations at steps of magnitude 𝛼 in each coordinate
direction. At each iteration, for 𝐱 ∈ R5, 𝐹 [𝐱 + (𝛼, 0, 0, 0, 0)⊤], 𝐹 [𝐱 +
(−𝛼, 0, 0, 0, 0)⊤], … , 𝐹 [𝐱 + (0, 0, 0, 0, 𝛼)⊤] and 𝐹 [𝐱 + (0, 0, 0, 0,−𝛼)⊤] are
valuated. The anchoring point 𝐱 thus moves to the position in which
he objective function is smaller, if any improvement is found. If no
mprovements are verified, the step size decreases for a finer search.

Algorithm 5 presents a pseudocode for the Hooke–Jeeves optimiza-
ion algorithm.
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Fig. 9. Fitted probability density function (PDF) for the 𝐶plus fraction properties: (a) critical pressure, (b) critical temperature, (c) acentric factor, (d) molecular weight, and (e)
volume shift parameter.
Table A.5
Properties of the reservoir fluid components (CO2, N2, and hydrocarbons up to C19
fraction).

Component Critical pressure
(bar)

Critical temperature
(K)

Acentric
factor

Molecular
weight

CO2 73.8 304.2 0.225 44.0
N2 33.9 126.2 0.040 28.0
C1 46.0 190.6 0.008 16.0
C2 48.8 305.4 0.098 30.1
C3 42.5 369.8 0.152 44.1
i-C4 36.5 408.1 0.176 58.1
C4 38.0 425.2 0.193 58.1
i-C5 33.8 460.4 0.227 72.2
C5 33.7 469.5 0.251 72.2
C6 29.7 507.4 0.296 86.2
C7 31.1 548.0 0.280 95.0
C8 28.8 575.0 0.312 106.0
C9 26.3 603.0 0.348 116.0
C10 24.2 626.0 0.385 133.0
C11 22.3 648.0 0.419 152.0
C12 20.8 668.0 0.454 164.0
C13 19.6 687.0 0.484 179.0
C14 18.6 706.0 0.516 193.0
C15 17.6 724.0 0.550 209.0
C16 16.6 740.0 0.582 218.0
C17 15.9 755.0 0.613 239.0
C18 15.3 767.0 0.638 250.0
C19 14.8 778.0 0.662 264.0
12
Algorithm 1 Adaptive Moment Estimation Method (ADAM) optimiza-
tion algorithm (Kingma and Ba, 2014)
1: Require: 𝛼 > 0: hyperparameter for the step size
2: Require: 𝜖 > 0: small value (∼ 10−8) to prevent division by zero
3: Require: 𝛽1, 𝛽2 ∈ [0, 1): hyperparameters for the exponential decay

rates for the moment estimates
4: Require: 𝐹 (𝐱): Objective function with parameters 𝐱
5: Require: 𝐱0: Initial guess
6: 𝐦0 ← 0 (Initialize 1st moment vector)
7: 𝐯0 ← 0 (Initialize 2nd moment vector)
8: 𝑡 ← 0 (Initialize iteration counter)
9: while stopping criteria not reached do

10: 𝑡 ← 𝑡 + 1 (Increment iteration counter)
11: 𝐦𝑡 ← 𝛽1𝐦𝑡−1 + (1 − 𝛽1)∇𝐹 (𝐱𝑡−1) (Update biased first moment

estimate)
12: 𝐯𝑡 ← 𝛽2𝐯𝑡−1 + (1 − 𝛽2)∇𝐹 (𝐱𝑡−1)⊙∇𝐹 (𝐱𝑡−1) (Update biased second

raw moment estimate)
13: 𝐦̂𝑡 ← 𝐦𝑡∕(1 − (𝛽1)𝑡) (Compute bias-corrected first moment

estimate)
14: 𝐯̂𝑡 ← 𝐯𝑡∕(1 − (𝛽2)𝑡) (Compute bias-corrected second raw moment

estimate)
15: 𝐱𝑡 ← 𝐱𝑡−1 − 𝛼 𝐦̂𝑡 ⊘ (

√

𝐯̂𝑡 + 𝜖) (Update parameters)
16: end while
17: Return 𝐱𝑡 (Resulting parameters)
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Algorithm 2 Davidon–Fletcher–Powell (DFP) optimization
algorithm (Davidon, 1959; Fletcher and Powell, 1963)
1: Require: 𝐹 (𝐱): Objective function with parameters 𝐱
2: Require: 𝐱0: Initial guess
3: Require: 𝐐0: Initial inverse Hessian approximation
4: 𝑡 ← 0 (Initialize iteration counter)
5: while stopping criteria not reached do
6: 𝐠𝑡 ← ∇𝐹 (𝐱𝑡) (Compute gradient at current point)
7: 𝐝𝑡 ← −𝐐𝑡𝐠𝑡 (Compute search direction)
8: 𝛼𝑡 ← minimize

𝛼𝑡
𝐹 (𝐱𝑡 + 𝛼𝑡𝐝𝑡) (Compute the step size)

9: 𝐱𝑡+1 ← 𝐱𝑡 + 𝛼𝑡𝐝𝑡 (Update parameter vector)
10: 𝐠𝑡+1 ← ∇𝐹 (𝐱𝑡+1) (Compute gradient at new point)
11: 𝜹𝑡 ← 𝐱𝑡+1 − 𝐱𝑡 (Compute change in parameter vector)
12: 𝜸𝑡 ← 𝐠𝑡+1 − 𝐠𝑡 (Compute change in gradient)
13: 𝐐𝑡+1 ← 𝐐𝑡 + 𝜹𝑡𝜹⊤𝑡

𝜹⊤𝑡 𝜸𝑡
− 𝐐𝑡𝜸𝑡𝜸⊤𝑡 𝐐𝑡

𝜸⊤𝑡 𝐐𝑡𝜸𝑡
(Update inverse Hessian

approximation)
4: 𝑡 ← 𝑡 + 1 (Increment iteration counter)
5: end while
6: Return 𝐱𝑡

Algorithm 3 Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) optimization algorithm (Hansen, 2006) (Part 1)
1: Require: 𝐹 (𝐱): Objective function with parameters 𝐱
2: Require: 𝐱0: Initial guess
3: Require: 𝜎 > 0: Hyperparameter for step size
4: Require: 𝜆: Hyperparameter for sample size
5: Require: 𝜇: Hyperparameter for elite sample size
6: 𝑛 ← length(𝐱) (Problem dimension)
7: 𝑤′

𝑖 ← ln 𝜆 + 1
2

− ln 𝑖 for 𝑖 = 1,… , 𝜆

8: 𝜇eff ←

(
∑𝜇

𝑖=1 𝑤
′
𝑖
)2

∑𝜇
𝑖=1 𝑤

′2
𝑖

(Variance-effective size of 𝜇)

9: 𝑐𝑚 ← 1

10: 𝑐𝜎 ←
𝜇eff + 2

𝑛 + 𝜇eff + 5

11: 𝑑𝜎 ← 1 + 2max

(

0,
√

𝜇eff − 1
𝑛 + 1

− 1

)

+ 𝑐𝜎

12: 𝑐𝛴 ←
4 + 𝜇eff∕𝑛

𝑛 + 4 + 2𝜇eff∕𝑛

13: 𝛼cov ← 2
14: 𝑐1 ←

𝛼cov
(𝑛 + 1.3)2 + 𝜇eff

5: 𝑐𝜇 ← min
(

1 − 𝑐1, 𝛼cov
1∕4 + 𝜇eff + 1∕𝜇eff − 2
(𝑛 + 2)2 + 𝛼cov𝜇eff∕2

)

16: 𝛼−𝜇 = 1 + 𝑐1∕𝑐𝜇
17: 𝛼−𝜇eff = 1 +

2𝜇−eff
𝜇eff+2

18: 𝛼−pos def = 1−𝑐1−𝑐𝜇
𝑛𝑐𝜇

19: 𝑤𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
∑𝜆

𝑖=𝑗
|

|

|

𝑤′
𝑗
|

|

|

+ 𝑤′
𝑖 if 𝑤′

𝑖 ≥ 0

min
(

𝛼−𝜇 ,𝛼
−
𝜇eff

,𝛼−pos def

)

∑𝜆
𝑗=1

|

|

|

𝑤′
𝑗
|

|

|

− 𝑤′
𝑖 if 𝑤′

𝑖 < 0

, 𝑖 = 1,… , 𝜆

20: E ←
√

𝑛
(

1 − 1
4𝑛

+ 1
21𝑛2

)

1: 𝒑𝝈 ,𝒑𝜮 ,𝜮 ← 𝟎, 𝟎, I
2: 𝑡 ← 0 (Initialize iteration counter)
3: 𝒎𝑡 ← 𝐱0 (Initialize distribution mean)
13
Algorithm 4 Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) optimization algorithm (Hansen, 2006) (Part 2)
24: while stopping criteria not reached do
25: Sample 𝐱𝐤 ∼ 

(

𝒎, 𝜎2𝜮
)

, 𝑘 = 1,… , 𝜆
26: 𝐅 ← Evaluate(𝐹 , {𝐱𝑘}𝜆𝑘=1) (Evaluate objective function)
27: idx← SortIndices(𝐅) (Sort indices by objective function values)
8: 𝐲𝐤 ← (𝐱𝐤 −𝐦)∕𝜎, 𝑘 = 1,… , 𝜆
9: ⟨𝒚⟩w ←

∑𝜇
𝑖=1 𝑤𝑖 𝐲idx𝑖

0: 𝐦𝑡+1 ← 𝒎 + 𝑐m𝜎⟨𝒚⟩w (Update distribution mean)
1: 𝒑𝜎 ←

(

1 − 𝑐𝜎
)

𝒑𝜎 +
√

𝑐𝜎
(

2 − 𝑐𝜎
)

𝜇eff𝜮
− 1

2
⟨𝒚⟩w

32: 𝜎 ← 𝜎 × exp
(

𝑐𝜎
𝑑𝜎

(

‖𝒑𝜎‖
E − 1

))

(Update step size)

33: ℎ𝜎 ←

⎧

⎪

⎨

⎪

⎩

1 if ‖𝒑𝜎‖
√

1−(1−𝑐𝜎)2(𝑡+1)
<
(

1.4 + 2
𝑛+1

)

E

0 otherwise

4: 𝒑𝜮 ←
(

1 − 𝑐𝛴
)

𝒑𝜮 + ℎ𝜎
√

𝑐𝛴
(

2 − 𝑐𝛴
)

𝜇eff ⟨𝒚⟩w

35: 𝑤◦
𝑖 ← 𝑤𝑖 ×

(

1 if 𝑤𝑖 ≥ 0 else 𝑛∕
‖

‖

‖

‖

𝜮− 1
2 𝐲idx𝑖

‖

‖

‖

‖

2)

, 𝑖 = 1,… , 𝜆

6: 𝜮 ←

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + 𝑐1(1 − ℎ𝜎 )𝑐𝛴 (2 − 𝑐𝛴 ) − 𝑐1 − 𝑐𝜇
𝜆
∑

𝑖=1
𝑤𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
usually equals to 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜮 + 𝑐1𝒑𝜮𝒑𝜮⊤ +

𝑐𝜇
∑𝜆

𝑖=1 𝑤
◦
𝑖 𝐲idx𝑖𝐲

⊤
idx𝑖

37: 𝑡 ← 𝑡 + 1 (Increment iteration counter)
38: end while
39: Return 𝐱𝑡

Algorithm 5 Hooke–Jeeves optimization algorithm
1: Require: 𝐹 (𝐱): Objective function with parameters 𝐱
2: Require: 𝐱0: Initial guess
3: Require: 𝛼 > 0: Hyperparameter for initial step size
4: Require: 𝛾 > 0: Hyperparameter for step decay
5: Require: 𝜖 > 0: Convergence tolerance
6: 𝑡 ← 0 (Initialize iteration counter)
7: while 𝛼 > 𝜖 and stopping criteria not reached do
8: improved ← False
9: 𝐱𝐵 ← 𝐱𝑡
0: 𝑦𝐵 ← 𝐹 (𝐱𝑡)
1: for each dimension 𝑖 do
2: for sgn in {−1, 1} do
3: 𝐱𝑇 ← 𝐱𝑡 + sgn 𝛼 𝐞𝐢 (Exploratory move)
4: 𝑦𝑇 ← 𝐹 (𝐱𝑇 )
5: if 𝑦𝑇 < 𝑦𝐵 then
6: 𝐱𝐵 ← 𝐱𝑇 (Update best solution)
7: 𝑦𝐵 ← 𝑦𝑇
8: improved ← True (Indicate improvement)
9: end if
0: end for
1: end for
2: 𝐱𝑡+1 ← 𝐱𝐵 (Update current solution)
3: if not improved then
4: 𝛼 ← 𝛾 𝛼 (Reduce step size)
5: end if
6: 𝑡 ← 𝑡 + 1 (Increment iteration counter)
7: end while
8: Return 𝐱𝑡
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