Hybrid models of reactive transport in porous and fractured media

Ilenia Battiato, Daniel M. Tartakovsky, Alexandre M. Tartakovsky, T.D. Scheibe

1. Introduction

Standard continuum (Darcy-scale) models of flow and transport in porous media (e.g., Darcy’s law for single- and multi-phase flows, and an advection–dispersion equation or ADE for transport) often fail to describe experimentally observed phenomena, while their pore-scale counterparts are accurate but can be computationally prohibitive. Most numerical multiscale models, which seek to combine these two descriptions, require empirical closures and/or assumptions about the behavior of pore-scale quantities at the continuum (Darcy) scale. We present a general formulation of an iterative hybrid numerical method that links the pore and continuum scales without resorting to such approximations. The algorithm treats the fluxes exchanged at the internal boundaries between pore- and continuum-scale domains as unknown, and allows for iteratively determined boundary conditions to be applied at the pore-scale in order to guarantee flux continuity. While the algorithm proposed is general, we use it to model transport in a fracture with chemically reactive walls. Results demonstrate significant improvement upon standard continuum-scale formulations.

Hybrid simulations, also known as a multi-algorithm approach or algorithm refinement, provide significant computational speed-up when a sub-domain \(\Omega_p \), wherein pore-scale simulations are required (i.e., wherein continuum models become invalid) is much smaller than a total computational domain \(\Omega \). The inequality \([1,2]\)

\[
\frac{\| \Omega_p \|}{\| \Omega \|} \frac{C_p}{C_p} \ll 1
\]

provides a more precise formulation of this statement. Here \(\| \Omega \| \), \(\| \Omega_p \| \), and \(\| \Omega_m \| \) are the respective volumes of \(\Omega \), \(\Omega_p \), and a “handshake” region \(\Omega_m \), wherein both continuum and pore-scale simulations are coupled; and \(C_p \) and \(C_m \) are the computational costs per unit volume for pore-scale and coupling simulations, respectively. This condition takes advantage of the fact that the computational cost of continuum-scale simulations is much smaller than that of pore-scale simulations \(C_p \). As pointed out in [1], a hybrid algorithm is beneficial “even if the algorithmic interface is computationally more expensive than either algorithm, as long as the interface region and the region using the more expensive method are each small fractions of the total volume.” The latter condition is satisfied in highly localized flow and transport phenomena, such as flow and transport to/from point sources and propagation of reactive fronts. Tools for identifying the regions \(\Omega_p \), wherein continuum models break down, were developed in [5,6].

It is important to distinguish hybrid algorithms from multiscale numerical approaches that are based on empirical closures [9], upscaling methods [13] and/or assumed macroscopic behavior of microscopic variables [7]. Multiscale algorithms employ “effective” representations of pore-scale processes, which share many approximations and assumptions with continuum models. For example,
the multiscale methods based on upscaling techniques [9,13] impose periodic boundary conditions on a pore-scale problem, rely on truncated Taylor expansions of pore-scale variables, and/or employ empirical closures.

We present a hybrid algorithm that couples pore-scale simulations in a small domain Ω_p with continuum simulations elsewhere in the computational domain, Ω/Ω_p. The coupling is accomplished via an iterative procedure in a handshake region Ω_h, where both the pore-scale and continuum-scale descriptions are solved iteratively to ensure the continuity of state variables and their fluxes across the interface between Ω_h and the rest of the computational domain.

The manuscript is organized as follows. Section 2 contains a general formulation of flow and transport equations at the pore (Section 2.1) and continuum (Section 2.2) scales, as well as an outline of the proposed hybrid algorithm (Section 2.3). Both the hybrid formulation and its numerical implementation are made concrete in Section 3 by applying them to model Taylor dispersion in a planar fracture with chemically reactive walls. In Section 4, we use this well-studied problem to validate our hybrid algorithm via comparison with analytical solutions and two-dimensional pore-scale numerical simulations.

2. Hybrid formulation of flow and transport in porous media

2.1. Governing equations at the pore scale

Consider reactive transport in a fully-saturated porous medium Ω^p. Within the pore space Ω^p contained in Ω^T, single-phase flow of an incompressible fluid is described by the Stokes and continuity equations,

$$\mu \nabla \cdot \mathbf{v} - \nabla p = 0, \quad \nabla \cdot \mathbf{v} = 0,$$ (1)

where $\mathbf{v}(x)$, $p(x)$ and μ are the fluid’s velocity, dynamic pressure, and dynamic viscosity, respectively. Flow equations (1) are subject to the no-slip boundary condition on the solid–liquid interface Γ^p_s, which is taken to be impermeable to flow, i.e., $\mathbf{v} = \mathbf{0}$ for $x \in \Gamma^p_s$. The flow is driven by boundary conditions imposed on $\partial \Gamma^T$, the external boundary of Ω^T.

The fluid contains a dissolved species with molar concentration $c(x,t)$ [M L$^{-3}$] that undergoes advection, molecular diffusion and a linear heterogeneous reaction at the solid–liquid interface Γ^p_s. The evolution of $c(x,t)$ is described by an advection–diffusion equation,

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v} c) = \nabla \cdot (D \nabla c) + \mathbf{n} \cdot \mathbf{n} \cdot (c + \mathbf{n} \cdot \mathbf{n} \cdot c),$$ (2a)

subject to the boundary condition on the solid–fluid interface Γ^p_f,

$$- \mathbf{n} \cdot \nabla c = \chi^T c,$$ (2b)

and boundary conditions on $\partial \Omega^T$. Here $\nabla \cdot (D^T \nabla c)$ is the molecular diffusion coefficient, χ^T (M L$^{-1}$ T$^{-1}$) is the reaction rate constant for a surface reaction (e.g., linear microbial degradation), and $\mathbf{n}(x)$ is the outward unit normal vector of Γ^p_s.

2.2. Governing equations at the continuum scale

Let $\mathcal{A}(\mathbf{x}, t)$ denote the volumetric average of a pore-scale quantity $A(\mathbf{y}, t)$ defined as

$$\mathcal{A}(\mathbf{x}, t) = \frac{1}{\phi(\mathbf{x})} \int_{\Gamma^p} A(\mathbf{y}, t) d\mathbf{y},$$ (3)

where $\phi(\mathbf{x})$ is the porosity of a porous medium, and the averaging volume \mathcal{A} might or might not constitute a representative elementary volume (REV). Averaging (1), i.e., upscaling the flow equations from the pore scale to the continuum scale, leads to Darcy’s law [4],

$$\mathbf{v} = - \frac{k}{\mu} \nabla p,$$ (4)

where k is the permeability of the porous medium, and $\mathbf{v}(x)$ is Darcy’s flux. The validity of (4) requires that the Reynolds number Re_c satisfy the inequality [8, p.74, and the references therein]

$$Re_c = \frac{V d}{\nu} < 10,$$ (5)

where d is a typical length associated with grain geometry, and ν is the fluid’s kinematic viscosity.

A continuum-scale formulation of the pore-scale transport problem (2) typically used in practice is

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v} c) = \nabla \cdot (D \nabla c) - K c,$$ (6)

where D is the dispersion tensor, and K is the effective reaction rate. Eq. (6) can be derived by standard upscaling methodologies, such as multiple-scale expansions or volumetric averaging [5, and references therein]. Regardless of the choice of an upscaling technique, a number of simplifying approximations are required for (6) to be valid [5,6]. These can be summarized by the phase diagram developed in [5] and reproduced in Section 3 for completeness.

2.3. General hybrid formulation

We are concerned with transport regimes in which $Re_c < 10$, i.e., the Darcy law (4) is valid over the whole computational domain Ω^T but one or more of the sufficient conditions [5,6] for the validity of the continuum-scale transport Eq. (6) break down in a sub-domain Ω_p of the computational domain Ω^T, (Fig. 1). In Ω_p, the averaging of (2) results in an integro-differential equation

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v} c) = \nabla \cdot (D \nabla c) - K c,$$ (7)

where the averaging (3) is now defined over $\mathcal{A} = \Omega_p(\mathbf{x}^*)$ and \mathbf{x}^* is the centroid of Ω_p, i.e., the sub-domain Ω_p shrinks to a point $\mathbf{x}^* \in \Omega^T$. Violation of some of the sufficient conditions [5,6] prevents the averaging integrals in (7) from being converted into the corresponding terms for the macroscopic (average) concentration c in (6).

According to Gauss’ theorem, (7) can be rewritten as

$$\phi \frac{\partial c}{\partial t} = \frac{1}{\phi(\mathbf{x})} \int_{\Gamma^p_s} \mathbf{n} \cdot (\mathbf{n} \cdot \mathbf{n} \cdot c) d\Gamma,$$ (8)

where Γ^p_s is the bounding surface of Ω_p and $d\Gamma$ is an infinitesimal element of Γ_p. Since the surface $\Gamma_p = \Gamma^p_s \cup \Gamma_p^p$ consists of liquid–liquid (Γ^p_s) and solid–liquid (Γ_p^p) segments, boundary condition (2b) and the no-slip condition yield
\[\frac{\partial \phi}{\partial t} = - \frac{1}{\phi[\partial \phi]} \int_{\Gamma_p} q_n ds - \frac{1}{\phi[\partial \phi]} \int_{X_p} \nabla c ds, \tag{9} \]

where \(q_n(x,t) = \mathbf{n} \cdot (\mathbf{v} c - \mathbf{D} \nabla c) \) is the pore-scale mass flux (or flux density) through the liquid-liquid portion of the boundary, \(\Gamma_p \). The right-hand-side of (9) depends on the pore-scale quantities. It represents the fluxes exchanged at the boundary \(\Gamma_p \) between the pore- and continuum-scale descriptions. Multiscale approaches \([7,9,13, \text{among others}]\) decouple the two descriptions by employing closure assumptions to express the unresolved pore-scale flux \(q_n(x,t) \) in terms of its continuum-scale counterpart. A typical strategy is to represent the pore-scale concentration \(c = \bar{c} + \epsilon \) as the sum of its average \(\bar{c} \) and corresponding fluctuations \(\epsilon \), to linearize \(f(c) = f(\bar{c}) + \epsilon \frac{df}{dc} \bar{c} \) \(+ \cdots \), to postulate a numerical or analytical closure for \(\epsilon \), and to impose boundary conditions on \(\Gamma_p \) (the most common being a periodic condition).

In contrast, our goal is to compute the unresolved pore-scale flux \(q_n \) without any assumption on the pore-scale behavior and without resorting to linearization of the general reactive term \(f(c) \) when the latter is present. To this end, we obtain the pore-scale concentration \(c(x,t) \) in (9) by solving the transport problem (2) defined on \(\Omega_p \). The boundary condition (2b) is now defined on the union of all solid-liquid surfaces \(\Gamma_s' \) contained in \(\Omega_p \). On the fluid-fluid segments \(\Gamma_p'' \), mass conservation requires that \(n \cdot (\nabla c - \mathbf{v} c) = q_n \). The pore-scale flux \(q_n(x,t) \), which represents a boundary condition for the pore-scale problem (2) and a source term for the continuum-scale Eq. (9), is unknown.

Fig. 2. Phase diagram indicating the range of applicability of macroscopic advection-reaction-diffusion equations in terms of the Péclet (Pe) and Damköhler (Da) numbers. The grey region identifies the sufficient conditions under which the macroscopic equations hold. In the white region, macro- and micro-scale problems are coupled and have to be solved simultaneously. Also identified are different transport regimes depending on the order of magnitude of Pe and Da. Diffusion, advection, and reaction are of the same order of magnitude at the point \((\alpha, \beta) = (1,0)\). Reproduced from [5].
In summary, the hybrid pore-scale/continuum-scale algorithm contains the three unknowns \((c, \dot{c}, q_n)\) that satisfy a system of coupled partial-differential equations,

\[
\frac{\partial \dot{c}}{\partial t} + \nabla \cdot (\mathbf{V} c) = \nabla \cdot (D \nabla c) - K c, \quad x \in \Omega^T, \quad t > 0,
\]

\[
\frac{\partial \dot{c}}{\partial t} = \frac{1}{\phi} \left[\int_{I_{in}} q_n dx - \frac{1}{\phi} \left| \int_{I_{out}} \mathbf{x} \cdot d\mathbf{x} \right| \right], \quad x \in \Omega^p, \quad t > 0,
\]

\[
\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{V} c) = \mathcal{D} \nabla^2 c, \quad x \in \Omega', \quad t > 0,
\]

supplemented by initial conditions and boundary conditions on the external domain \(\partial \Omega^T\).

In the following section we apply this hybrid algorithm to model transport in a fracture with chemically reactive walls.

3. Transport in a fracture with reactive walls

Consider transport of a reactive solute by advection and diffusion in a fracture of width \(2H\). The solute undergoes a first-order heterogeneous reaction at the walls of the channel. The flow domain \(\Omega = \{(x, y) : x \in (0,\infty), y < H\}\) has the boundary \(\Gamma = \{(x, y) : x \in (0,\infty), y = H\}\).

Assuming laminar, fully developed flow inside the fracture, the “pore-scale” velocity in (1) is given by Poiseuille’s law, \(\mathbf{V} = (u,0)^T\), where

\[
u(y) = u_m \left[1 - \left(\frac{y}{H} \right)^2 \right]
\]

and \(u_m\) is the maximum velocity at the center of the fracture \(y = 0\). The general pore-scale transport problem (2) reduces to

\[
\frac{\partial \dot{c}}{\partial t} + \frac{\partial \dot{c}}{\partial x} \mathbf{V} \cdot \nabla c = \mathcal{D} \frac{\partial^2 c}{\partial x^2} \quad \text{within} \quad \Gamma\prime = \{(x, y) : x \in (0,\infty), y < H\},
\]

\[
\mathbf{V} (\mathbf{V} \cdot \nabla c - D \nabla \dot{c}) = q_n, \quad x \in \Gamma\prime, \quad t > 0,
\]

with the boundary condition \(\dot{c} = 0\) at the external boundary \(\partial \Omega^T\). The average concentration \(\bar{c}(x,t)\) in (3) is now defined as

\[
\bar{c}(x,t) = \frac{1}{2H} \int_{-H}^{H} c(x,y,t) \, dy.
\]

It satisfies a version of the continuum (Darcy-scale) transport Eq. (6) that has the form [16]

\[
\frac{\partial \bar{c}}{\partial t} + \frac{\partial \bar{c}}{\partial x} + K c = D \frac{\partial^2 \bar{c}}{\partial x^2}, \quad x \in (0,\infty), \quad t > 0,
\]
macroscopic CV, $X_{p, x}$ and $X_{p, x+1, 2}$, respectively (Fig. 3). Time t in the pore-scale simulations is discretized into n_t intervals of width Δt, such that $\Delta t = n_t \Delta t$ and $t_n = n \Delta t$ with $n = 0, 1, \ldots$

Let us define $c_{i, x}^y = c(x_i, y, t_s)$ and $c_{i, x+1, 2}^y = c(x_{i+1}, y, t_s)$. In Appendix A.1 we derive a finite-volume fully-implicit approximation of the macroscopic Eqs. (18) and (19),

$$A_{i+1} \chi_{i+1}^{k, y} + A_{i} \chi_{i}^{k, y} + A_{i-1} \chi_{i-1}^{k, y} = \text{RHS}^N,$$

where, for nodes $l = \{1, \ldots , N \}^* \cup \{1^*, \ldots , N^* \}$,

$$A_{i+1} = -a_{i+1}, \quad A_{i} = \frac{\Delta x_{i+1/2}}{\Delta t} + q_i, \quad A_{i-1} = -a_i, \quad a_0 = 0.$$

(25a)

$$a_1 = \max \left(-U, \frac{D_{1/2}}{\Delta x_{1/2}}, \frac{1}{2} \right), \quad D_{1/2} = \frac{D}{\Delta x_{1/2}}.$$

(25b)

$$a_{i-1} = \max \left(-U, \frac{D_{i-1/2}}{\Delta x_{i-1/2}}, \frac{1}{2} \right), \quad D_{i-1/2} = \frac{D}{\Delta x_{i-1/2}}.$$

(25c)

$$a_{i} = 0, \quad \bar{u}_i = a_i - a_{i+1} + K \Delta x_i - S_i, \quad \text{RHS}^N = \frac{\Delta x_{i+1/2}}{\Delta t} \chi_{i+1/2}^{k, y} + \bar{S}_i.$$

(25d)

and S_i and \bar{S}_i represent a numerical discretization of external boundary conditions at the macroscale.

At node i^*, the coefficients in (24) take the form (Appendix A.2)

$$A_{i^*} = -d_{i^*}, \quad A_{i^*}^c = \frac{\Delta x_{i^*}}{\Delta t} + d_{i^*}, \quad A_{i^*} = -d_{i^*}.$$

(26a)

$$\text{RHS}^N = \frac{\Delta x_{i^*}}{\Delta t} \chi_{i^*}^{k, y} + \frac{1}{2} H N T \sum_{k=1}^{n_k} c_{k, i^*}^{y}.$$

(26b)

with

$$c_{i^*}^{y} = \sum_{i=1}^{n_k} \Delta x_i (c_i^{H} + c_i^{L} - N), \quad \frac{g_i^{H} g_i^{L}}{f_{i^*}^{H} g_i^{L}} \text{ if } \frac{f_{i^*}^{H}}{f_{i^*}^{L}} \in (-2, 2),$$

(26c)

$$g_i^{H}(y) = \frac{1}{2} \left[\sum_{i=1}^{n_k} c_{i^*}^{y} \right] \left[\frac{u_i}{2} \left[\frac{g_i^{H} g_i^{L}}{f_{i^*}^{H} g_i^{L}} \text{ if } \frac{f_{i^*}^{H}}{f_{i^*}^{L}} \in (-2, 2),

(26d)

$$g_i^{L}(y) = \frac{1}{2} \left[\sum_{i=1}^{n_k} c_{i^*}^{y} \right] \left[\frac{u_i}{2} \left[\frac{g_i^{H} g_i^{L}}{f_{i^*}^{H} g_i^{L}} \text{ if } \frac{f_{i^*}^{H}}{f_{i^*}^{L}} \in (-2, 2),

(26e)

where $c_{i^*}^{y} = c(x_i, y, t_s)$ is the pore-scale concentration continuous in y, to be discretized by an appropriate quadrature rule in (26c); $\bar{u}_i = u_i(y)$; $\bar{g}_i = \sum_{i=1}^{n_k} c_{i^*}^{y}$, $\bar{f}_i = \sum_{i=1}^{n_k} c_{i^*}^{y}$, $\bar{g}_i = \sum_{i=1}^{n_k} c_{i^*}^{y}$, $\bar{f}_i = \sum_{i=1}^{n_k} c_{i^*}^{y}$, and $\bar{g}_i = \sum_{i=1}^{n_k} c_{i^*}^{y}$ are the respective lengths of the eastern and western boundaries of the CV centered at x_i and q_w and q_e are the unknown continuum-scale mass fluxes at the western and eastern internal boundaries separating the pore- and continuum-scale representations. They serve as boundary conditions for the pore-scale simulations in the i^*-th CV. We stress that RHS^N is a function of pore-scale concentration and that the latter depends on q_w and q_e. An iterative algorithm to solve (24)–(26) is described below.

3.2. Hybrid algorithm

The boundary conditions at the north and south boundaries (solid walls of the fracture) are defined by (16b).

(3) **Pore-scale evolution and source-term evaluation.**

The pore-scale problem (16b), supplemented with the boundary conditions (28) is evolved from T^0 to T^m. The source term g at node i^* is evolved from (26c)–(26e).

(4) **Continuum-scale evolution**. The continuum-scale concentration c is evolved from T^m to T^{m+1} by using the Thomas algorithm to solve the tri-diagonal system (24).

(5) **Continuum-scale fluxes computation**. Continuum-scale fluxes q_w and q_e at locations $X_{p, x}$ and $X_{p, x+1, 2}$ are computed by means of (A.2) and compared with the q_w and q_e from step 2.

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Continuum-scale</th>
<th>Pore-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain length in x</td>
<td>$L = 20$ [L]</td>
<td>$\Delta x = 0.25$ [L]</td>
</tr>
<tr>
<td>Maximum velocity</td>
<td>$u_m = 5$ [L/T]</td>
<td>$a_{x} = 0.1$</td>
</tr>
<tr>
<td>Reaction coefficient</td>
<td>$K = 0.1$ [T]</td>
<td>$x = 0$ [L/T]</td>
</tr>
<tr>
<td>Péclet number</td>
<td>$Pe \approx 0.03$</td>
<td>$Pe = x/2$</td>
</tr>
<tr>
<td>Damköhler number</td>
<td>$Da = 40$</td>
<td>$Da = 0.03$</td>
</tr>
</tbody>
</table>

Case 1: Advection–diffusion

- **Time domain**: $[0.04, 0.4]$ [T]
- **Maximum velocity**: $u_m = 33.3$ [L/T]
- **Reaction coefficient**: $K = 0$ [T]
- **Péclet number**: $Pe = 0.33$
- **Damköhler number**: $Da = 0$

Case 2: Advection–reaction–diffusion (homogeneous x)

- **Time domain**: $[0.02, 0.2]$ [T]
- **Maximum velocity**: $u_m = 10.0417$ [L/T]
- **Reaction coefficient**: $K = 39.55$ [T]
- **Péclet number**: $Pe = 10$
- **Damköhler number**: $Da = 40$

Case 3: Advection–reaction–diffusion (heterogeneous x)

- **Time domain**: $[0.025, 0.25]$ [T]
- **Maximum velocity**: $u_m = 10.0417$ [L/T]
- **Reaction coefficient**: $K = 39.55$ [T]
- **Péclet number**: $Pe = 10$
- **Damköhler number**: $Da = 225$
- **$Da_{x} = 2.8$**
Convergence check and iteration. Select an acceptable tolerance \(\varepsilon \). If \(|q_W - q_{0W}| > \varepsilon \) or \(|q_E - q_{0E}| > \varepsilon \), use, e.g., the Broyden method, to refine the guess of \(q_W \) and \(q_E \) and go to step 2. If both \(|q_W - q_{0W}| \leq \varepsilon \) and \(|q_E - q_{0E}| \leq \varepsilon \), then the convergence is reached. March forward in time (\(N := N + 1 \)) and go to step 1.

4. Numerical results

In Section 4.1, we use advective–diffusive transport (Taylor dispersion) in a fracture with uniform reaction rates. This setting admits an analytical solution and, hence, is used to analyze the accuracy of the hybrid algorithm relative to that of its continuum (upscaled) counterpart. In Section 4.2, the reaction coefficient is taken to be highly heterogeneous. For this situation, we compare the hybrid solution with both a solution of the upscaled equation (18) and an averaged solution of the fully two-dimensional problem (“pore-scale simulations”).

4.1. Hybrid validation

We consider the macroscopic problem (18) subject to the initial and boundary conditions

\[
\begin{align*}
c(x, 0) &= 1, & c(0, t) &= 0, & \frac{\partial c}{\partial x}(\infty, t) &= 0. \\
\end{align*}
\]

(29)

Its unique solution is

\[
\begin{align*}
c(x, t) &= e^{-t} \left(1 - \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-\eta^2} d\eta + \frac{1}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\eta^2} d\eta \right). \\
\end{align*}
\]

(30)

This exact solution is used to verify the accuracy of both the hybrid algorithm and the numerical solutions of the continuum problem (18) for advective–diffusive transport (Case 1 in Table 1) and advective–diffusive–reactive transport with uniform reaction rates (Case 2 in Table 1). The set of parameters used in these simulations are summarized in Table 1. These values are typical for flow and trans-

![Fig. 4. Case 1 in Table 1: temporal snapshots of the average concentration \(c(x, t) \) computed with the analytical solution (30) (solid line) and hybrid simulations (\(\times \)) at times \(t = 0.005, t = 0.05, t = 0.15, t = 0.25, \) and \(t = 0.395 \) (from left to right). Symbol \(\square \) indicates the location of node \(I^* \), where the pore- and continuum-scales are coupled.](image1)

![Fig. 5. Case 2 in Table 1: temporal snapshots of the average concentration \(c(x, t) \) computed with the analytical solution (30) (solid line) and hybrid simulations (\(\times \)) at times \(t = 0.001, t = 0.005, t = 0.015, t = 0.025, t = 0.05, t = 0.1, \) and \(t = 0.195 \) (from top to bottom). Symbol \(\square \) indicates the location of node \(I^* \), where the pore- and continuum-scales are coupled.](image2)
port processes through fractured media: experiments of transport in fractured media \[10,11\] with fracture aperture in the order of microns \((0.6 \text{ – } 120 \mu m)\) and weighted average velocity of 0.75 m/day have Péclet number in the range of \(2.6 \times 10^3 \text{ – } 0.52\).

Figs. 4–6 show a perfect agreement between the analytical and hybrid solutions. This is to be expected since all the necessary conditions for the validity of the macroscopic (averaged) transport Eq. (18) hold for the flow and transport regimes considered in Cases 1 and 2. The comparison between the numerical and analytical solutions of (18) also demonstrates that the choice of space–time discretization is adequate to ensure the required accuracy. Hence, the discrepancy between the hybrid (and pore-scale) and continuum simulations observed in Section 4.2 is due to the breakdown of the latter rather than numerical errors.

Fig. 7 depicts the pore-scale concentration at the macro-scale node at four temporal snapshots. The mass accumulation and mass depletion areas close to the boundaries arise from imposition of continuity of pore- and continuum-scale mass fluxes on the west and east edges of a continuum-scale element \(I^p\). Specifically, the continuum-scale mass fluxes \(q_E\) and \(q_W\), which are constant along the respective edges of the \(I^p\)-th CV, serve as uniform boundary conditions for the pore-scale simulations. However, the local
distortions of the concentration distribution have a relatively little effect on the average (continuum-scale) concentration (see Figs. 5 and 6).

4.2. Hybrid simulations for highly localized heterogeneous reactions

In the last example we investigate the effects of heterogeneity in reaction rates. Specifically, we assume \(x \) at the \(I^* \)-th node to be two orders of magnitude bigger than in the rest of the channel, with the Damköhler number \(D_a \), changing from 0.03 to 2.8. Eq. (18) fails for \(D_a \geq 3 \) as the effective reaction coefficient \(K \) changes sign for increasing positive values of \(x \) (i.e., increasing mass loss at the solid–liquid interface); this leads to the unphysical behavior of \(K < 0 \) (i.e., source) while mass is absorbed (degraded, etc.) at the micro-scale (i.e., sink).

While one can expect quantitative and qualitative differences between the upscaled model (18) and a fully 2D pore-scale solution for \(D_a \geq 3 \), we show here that significant deviations from the “exact” pore-scale solution occur even for \(D_a < 3 \). This is done by comparing the results of our hybrid simulations with those obtained alternatively by solving the 1D continuum-scale Eq. (18) or by averaging the fully 2D pore-scale solution. Figs. 8 and 9 show respectively the continuum-scale concentration and breakthrough curves obtained from the upscaled 1D continuum-scale, hybrid and fully 2D pore-scale equations. At the location of high heterogeneity (see Fig. 8), the continuum-scale equation significantly overestimates the concentration, while the hybrid simulations improves

![Fig. 8](image-url)
Fig. 8. Case 3 in Table 1: temporal snapshots of the average concentration \(c(x, t) \) computed with the 1D continuum model (18) (solid line), hybrid algorithm (\(\times \)) and fully-resolved 2D pore-scale simulations (dashed line) at times \(t = 0.0005 \) (top), \(t = 0.015 \) (center) and \(t = 0.06 \) (bottom). Symbol \(\square \) indicates the location of node \(I^* \), where the pore- and continuum-scales are coupled.

![Fig. 9](image-url)
Fig. 9. Case 3 in Table 1: breakthrough curves at the hybrid node \(I^* \) computed with the 1D continuum model (18) (solid line), hybrid simulations (\(\times \)), and fully-resolved 2D pore-scale simulations (dashed line).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Relative errors, (100%</th>
<th>c_{ex} - c_{ap}</th>
<th>/c_{ap}), between the “exact” fully-resolved pore-scale simulations ((c_{ex})) and its approximate counterpart ((c_{ap})) computed with either the continuum model or the hybrid simulations at the hybrid node (I^*).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuum model</td>
<td>(t = 0.0005)</td>
<td>(t = 0.015)</td>
<td>(t = 0.06)</td>
</tr>
<tr>
<td></td>
<td>200.8%</td>
<td>602.2%</td>
<td>890.7%</td>
</tr>
<tr>
<td>Hybrid algorithm</td>
<td>0.85%</td>
<td>110%</td>
<td>105%</td>
</tr>
</tbody>
</table>
the prediction’s accuracy (Table 2) at a fraction of computational cost. In our simulations conducted on a single-processor computer, the computational costs of the hybrid and fully-resolved 2D pore-scale simulations were 1.02×10^2 and 1.65×10^4 times larger than those of the 1D continuum-scale model (CPU time = 1.25).

The accuracy of the hybrid algorithm can be improved by enlarging X_p, the portion of the computational domain where the pore-scale simulations are carried out. When X_p becomes large enough to absorb the effects of the spike in the reaction rate constant, the hybrid algorithm’s performance becomes similar to that shown in Figs. 5 and 6. Any improvement in accuracy comes at the expense of increased computational burden, since the pore-scale simulations have to be conducted in a larger region.

Fig. 8 reveals that pore-scale effects propagate from the domain of pore-scale simulations (CV\textsubscript{I}w) into the adjacent regions of continuum-scale simulations (e.g., CV\textsubscript{I}w/C0 and I\textsubscript{w}+ 1). This phenomenon is due to both a two-way coupling between the scales and the nonlinearity of reactive transport equations. The propagation of noise (unresolved fluctuations) from a fine-algorithm region into a coarse-algorithm region is a salient feature of hybrid simulations, occurring even in linear systems\cite{[1–3]}. Fig. 10 depicts the concentration profile at the pore-scale at four different times and shows how the highly reacting walls produce strong concentration gradients between areas where mass is more quickly depleted because of fast reactions (close to the walls) relative to others where the major transport mechanism is diffusion (in the center of the channel).

5. Summary and conclusions

We developed a general algorithm to incorporate pore-scale (subgrid) effects into continuum models of reactive transport in porous and fractured media. Unlike multiscale methods that are based on empirical closures and/or approximations, our approach does not require prior knowledge about the macroscopic behavior of pore-scale variables. This is attained by treating the normal fluxes through the internal boundaries separating the two formulations as unknown quantities. Given the intrinsic nonlinearity of such a formulation, the solution is found through an iterative procedure.

We applied our algorithm to model transport in a fracture with chemically reactive walls. A finite-volume implementation of the hybrid formulation was compared with corresponding analytical solutions, when available, and/or with “pore-scale” simulations of two-dimensional transport inside the fracture.

Our study leads to the following major conclusions:

- The proposed hybrid algorithm enables one to determine pore- and continuum-scale concentrations and fluxes in regions of a computational domain where advection–reaction–diffusion equations break down.
- The proposed method is capable of handling highly localized heterogeneities, provides a considerable improvement in accuracy, and enables one to properly capture the pore-scale physics.
- The hybrid formulation does not require additional parameters besides continuum properties of the porous media, physical and (bio)geochemical properties of a solute and fluid, and pore-scale geometry.
- The hybrid model formulation reduces to a zero-finding algorithm for a vector function. Such a formulation suggests its high adaptability to a wide variety of problems and different numerical schemes.
- Although not pursued here, the general hybrid formulation presented in Section 2.3 is suitable for implementation in commercial numerical codes.

A root-finding method used to couple the pore- and continuum-scale simulations determines the convergence and computational burden of the hybrid algorithm. While flexible, the Broyden method used in the present implementation of the hybrid algorithm might not be optimal in terms of either convergence or computational efficiency. Further research is needed in order to improve
the hybrid’s computational efficiency and to relax the size of pore-scale simulation domain to the hybrid’s accuracy.

Further generalizations to transport in porous media with complex pore-scale geometries will be addressed in future research together with full resolution of flow equation at the pore scale, the removal of the overlap between the two regions, and the possibility of incorporating uncertain pore geometry.

Acknowledgments

We thank the anonymous reviewers for their insightful comments. This research was supported by the Office of Science of the US Department of Energy (DOE) under the Scientific Discovery through Advanced Computing (SciDAC).

Appendix A

A.1. Discrete form of (18) for nodes other than I^*

Integration of (18) over a CV centered at X_i gives

$$\frac{\partial X_i}{\partial t} + \left(U_{i+1/2} - U_{i-1/2}\right)(c_i - c_{i+1}) = -D_{i-1/2}(c_i - c_{i+1}) - K_{i-1/2}\Delta X_i,$$ \hspace{1cm} (A.1)

where $D_{i-1/2} = D / \Delta X_i$, with $s = I - 1/2$ and $I + 1/2$.

The total fluxes through the western and eastern faces of the CV centered at X_i are [23]

$$q_{i-1/2} = (U_{i+1/2} - D_{i-1/2})(c_i - c_{i+1}), \hspace{1cm} (A.2a)$$

$$q_{i+1/2} = (U_{i+1/2} - D_{i+1/2})(c_{i+1} - c_i), \hspace{1cm} (A.2b)$$

respectively. Concentrations c_{i+1} and c_{i-1} have to be determined in function of c_i, c_{i+1} and c_{i-1}. Combining (A.1) and (A.2) and integrating over the macroscopic time step Δt_{TN}, we obtain

$$\left(c_i^{n+1} - c_i^n\right) = 0 = -\frac{\Delta t_{TN}}{\Delta X_i} \left[\left(U_{i+1/2} - D_{i-1/2}\right)(c_i - c_{i+1}) - \left(U_{i+1/2} - D_{i+1/2}\right)(c_{i+1} - c_i)\right].$$ \hspace{1cm} (A.3)

where $\theta \in [0,1]$. Setting $\theta = 0$, $\theta = 1/2$, or $\theta = 1$ results in an explicit, Crank–Nicolson, or fully implicit scheme, respectively. The fluxes are evaluated by means of the hybrid differencing scheme [19], based on a combination of a central (second order accurate) and an upwind (first order accurate) differencing scheme. Accordingly,

$$q_{i-1/2} = \frac{U_{i+1/2} - D_{i-1/2}}{2} \left[1 + \frac{2}{P_{i-1/2}}\right]c_i - \frac{2}{P_{i-1/2}}\left[1 - \frac{2}{P_{i-1/2}}\right]c_{i+1},$$

$$q_{i+1/2} = \frac{U_{i+1/2} - D_{i+1/2}}{2} \left[1 - \frac{2}{P_{i+1/2}}\right]c_{i+1} - \frac{2}{P_{i+1/2}}\left[1 + \frac{2}{P_{i+1/2}}\right]c_i,$$ \hspace{1cm} (A.4)

where $P_{i-1/2} = P_{i+1/2} = P_e$, $P_e \in (-2, 2)$, $P_e \geq 2$, $P_e \leq -2$,

$$i = I - 1/2 \quad \text{and} \quad I + 1/2, \quad \text{and} \quad P_e = U_i / D_i.$$ \hspace{1cm} (A.5)

Combining (A.7) with (A.9)-(A.11) yields (26d).

Combining (A.7) with (A.9), (A.12), and (A.13) leads to (26e).

References