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in a second-order fluid

Ramanathan Vishnampet and David Saintillana)

Department of Mechanical Science and Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 6 February 2012; accepted 21 June 2012; published online 18 July 2012)

The slow sedimentation of a dilute suspension of spherical particles in a second-order
fluid is investigated using theory and numerical simulations. We first analyze the
motion of a single isolated spherical particle sedimenting under gravity when placed
in a linear flow field. In the limit of weak viscoelasticity (low Deborah number), the
velocity of the particle is calculated, and the nonlinear coupling of the settling motion
with the local flow field is shown to result in a lateral drift in a direction perpendicular
to gravity. By the same effect, the mean flow driven by weak horizontal density
fluctuations in a large-scale suspension of hydrodynamically interacting particles will
also result in a horizontal drift, which has the effect of reinforcing the fluctuations
as we demonstrate using a linear stability analysis. Based on this mechanism, an
initially homogeneous suspension is expected to develop concentration fluctuations, a
prediction supported by previous experiments on sedimentation in polymeric liquids.
We further confirm this prediction using large-scale weakly nonlinear numerical
simulations based on a point-particle model. Concentration fluctuations are indeed
found to grow in the simulations, and are shown to result in an enhancement of
the mean settling speed and velocity fluctuations compared to the Newtonian case.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733700]

I. INTRODUCTION

The sedimentation of small particles suspended in a fluid is a ubiquitous phenomenon arising in
both natural and industrial processes.1 It has received much attention over the last few decades, and
several central questions, such as the mechanisms controlling the magnitude of velocity fluctuations,
remain controversial to date.2–13 While the vast majority of previous investigations has focused on the
case of suspensions in Newtonian fluids, numerous industrial applications involving sedimentation,
notably in the chemical engineering field, use suspending fluids such as polymer solutions in which
non-Newtonian effects may become important. A few experimental studies in viscoelastic fluids show
that the dynamics in these systems differ significantly from the Newtonian case,14–22 emphasizing
the need for a better understanding of non-Newtonian effects in sedimenting suspensions.

In recent experiments, Mora et al.21 considered the case of a dilute suspension of monodisperse
non-Brownian spheres sedimenting in a polymer solution. Starting from well-mixed homogeneous
suspensions, they reported the formation of particle-rich structures taking the form of vertical
columns surrounded by regions of clear fluid. This pattern formation, also observed in previous
studies using other types of fluids,15, 18 resulted in an enhancement of the settling velocity beyond
the velocity of an isolated particle. These findings come in stark contrast to what is typically observed
in Newtonian fluids, where suspensions remain homogeneous and exhibit velocity hindering. Mora
et al.21 explained this phenomenon as a result of local clustering of nearby particles, which is known
to occur in viscoelastic and shear-thinning fluids.19, 20, 23–25 It is not entirely clear, however, how
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local clustering can lead to the formation of macroscopic structures of the type observed in full-scale
suspensions.

Other types of sedimenting suspensions are known to develop large-scale inhomogeneities.
Suspensions of non-spherical or non-rigid particles in Newtonian fluids are subject to concentration
instabilities as a result of hydrodynamic interactions, also leading to the formation of large-scale
concentrated structures.26–38 These instabilities can be explained as a consequence of a coupling
between the anisotropic mobility of the particles and the macroscale flow field generated by the
density fluctuations in the suspension:26, 32 specifically, density fluctuations create a disturbance
flow which causes the particles to orient or deform in such a way that they migrate toward the
regions of higher concentration. This mechanism, however, does not apply to isotropic particles
(such as rigid spheres) in Newtonian fluids, as their mobility is unaffected by the local flow field, a
direct consequence of the linearity of Stokes flow. Yet, in the case of a viscoelastic fluid, a coupling
between settling motion and local fluid flow is possible even for spheres owing to nonlinearities, and
this suggests that an instability similar to that for anisotropic particles may also exist in this case.
Elucidating this coupling and its implications for suspension stability is the subject of the present
work.

In a recent study, Phillips39 proposed a theoretical model for this instability. He considered the
effect of pair particle interactions (calculated for two identical spheres in the case of a second-order
fluid24) on the evolution of density fluctuations in a suspension of particles with a concentration
profile initially perturbed in the horizontal direction. He found that particle–particle interactions
can lead to an effective flux which competes with diffusion and can result in the formation of
dense vertical columns. The model we propose herein describes the same effect but from a different
perspective: we show that the horizontal migration causing the amplification of density fluctuations
can be interpreted as a consequence of the nonlinear interaction of the settling motion of the particles
under gravity with the large-scale mean-field fluid velocity driven by density fluctuations across the
suspension. We also confirm the predictions of our theoretical model by performing weakly nonlinear
particle simulations using a point-particle model.

In the following, we focus on the case of a second-order fluid, which is amenable to analytical
solutions while capturing sufficient physics to illustrate the general effects of viscoelasticity on the
dynamics. The paper is organized as follows. The constitutive model and its conditions of validity
are described in Sec. II A. In Sec. II B, we analyze the nonlinear coupling that occurs when a single
sphere sediments in an imposed linear flow, and derive a correction to the Newtonian mobility as a
function of the local velocity gradient. This correction is then used to study the linear stability of a
homogeneous suspension in Sec. II D, where an instability similar to that for anisotropic particles
is predicted. To analyze the instability in finite systems beyond the linear regime, we also describe
results from numerical simulations of large-scale suspensions in Sec. III. Implications and limitations
of the model and simulations are discussed in Sec. IV.

II. THEORY

A. Constitutive relation and non-dimensionalization

In this work, we specifically consider the case of a second-order fluid, which corresponds to an
asymptotic expansion of the Oldroyd-B model for weak viscoelasticity (as measured by the Deborah
number defined below) and slowly varying flows.40 For a flow with velocity field u and pressure
field p, the stress tensor is written as the sum of Newtonian and non-Newtonian contributions:

σ = −pI + 2η0E + "(u). (1)

In Eq. (1), η0 denotes the zero-shear-rate (or Newtonian) viscosity, E = (∇u + ∇uT )/2 is the
rate-of-strain tensor, and "(u) is the nonlinear polymeric extra stress given by

"(u) = −"1

!
E + 4"2E · E, (2)
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where "1 > 0 and "2 < 0 are the first and second normal stress coefficients, and where the first
term on the right-hand side involves the upper-convected derivative of the rate-of-strain tensor:

!
E = ∂E

∂t
+ u · ∇E − (∇uT · E + E · ∇u). (3)

Stresses may be non-dimensionalized by η0γ̇ where γ̇ is a characteristic shear rate for the flow of
interest. We introduce the Deborah number (or dimensionless flow strength) De = "1γ̇ /η0 and the
ratio of the normal stress coefficients λ = −4"2/"1, and we note that the second-order fluid model
is valid for De # 1. The dimensionless stress tensor is then written as σ = −pI + 2E + De "(u),
where the polymeric stress is now given by

"(u) = −
[!
E + λE · E

]
. (4)

In the problem considered here, two different characteristic shear rates may be identified. The first
one corresponds to the shear rate created by a sedimenting sphere on the scale of the particle and may
be estimated as the ratio of the Stokes velocity Us by the radius a of a sphere: γ̇ = Us/a = F/6πη0a2

where F is the magnitude of the gravitational force acting on a particle. The second one corresponds
to the macroscopic flow U0 created by the density fluctuations on the scale L of the suspension:
γ̇ = U0/L , where the velocity scale U0 depends on the particle distribution in the suspension and
will be defined more precisely in Sec. II D. In the following, we assume that both characteristic
shear rates are such that the corresponding Deborah numbers are much less than unity.

B. Isolated sphere sedimenting in a linear flow field

We first analyze the case of a single isolated sphere of radius a, surface S, and outward normal n
sedimenting under the gravitational force F in a linear velocity field of the form V(x) = V0 + x · A,
where A = ∇V is the imposed velocity gradient. Also denote by Q and S the associated pressure and
stress fields, respectively. For ease of analysis, the position vector x is defined such that the sphere is
located at the origin. In this section, the characteristic shear rate γ̇ used for non-dimensionalization
is taken to be the magnitude of the imposed velocity gradient: γ̇ = (A:A)1/2, and lengths are made
dimensionless using the particle radius a.

When sedimenting in this flow field, the sphere will assume a translational velocity Up and an
angular velocity #p. In a Newtonian fluid, it is a well-known result that Up is given as the sum of
the Stokes velocity and of the mean external velocity:

Up = Us + V0. (5)

Here, we wish to determine the first non-Newtonian correction to Up in the limit of De # 1. This
correction may be obtained using a classical method based on the Lorentz reciprocal theorem,41–43

which we outline here.
Denoting by u and p the total velocity and pressure fields in the fluid, the dynamics are governed

by the momentum and continuity equations:

∇ · σ = 0, ∇ · u = 0, (6)

where σ = −p I + 2E + De "(u) and the polymeric stress "(u) is again given by Eq. (4). In addition,
the boundary conditions for the velocity field are

u(x) = Up + #p × x as x ∈ S, (7)

u(x) → V(x) as |x| → ∞, (8)

and the force and torque balances on the sphere read as
∫

S
σ · n d S = F,

∫

S
x × (σ · n) d S = 0. (9)
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For convenience, we also define disturbance flow variables û, p̂, and σ̂ , obtained by subtracting the
imposed flow variables from u, p, and σ :

û(x) = u(x) − V(x), (10)

p̂(x) = p(x) − Q(x), (11)

σ̂ (x) = σ (x) − S(x). (12)

These perturbation variables still satisfy the continuity equation ∇ · û = 0 and momentum equation
∇ · σ̂ = 0, where the disturbance stress tensor is now expressed as

σ̂ = − p̂ I + 2Ê + De ["(û + V) − "(V)] , (13)

and the boundary conditions Eqs. (7) and (8) become

û(x) = Up + #p × x − V(x) as x ∈ S, (14)

û(x) → 0 as |x| → ∞. (15)

We wish to solve the disturbance problem in the asymptotic limit of weak viscoelasticity, or
De # 1. As it is a regular perturbation problem, we may assume the following expansion for the
disturbance velocity:

û = û(0) + De û(1) + · · · , (16)

with similar expansions for the disturbance pressure p̂ and stress tensor σ̂ , as well as for the particle
linear and angular velocities Up and #p:

p̂ = p̂(0) + De p̂(1) + · · · , (17)

σ̂ = σ̂ (0) + De σ̂ (1) + · · · , (18)

Up = U(0)
p + De U(1)

p + · · · , (19)

#p = #(0)
p + De #(1)

p + · · · . (20)

1. Zeroth-order problem

The zeroth-order problem corresponds to the Newtonian case, and is formally obtained by setting
De ≡ 0 in the governing equations. Specifically, the dynamics are governed by the momentum and
continuity equations,

∇ · σ̂ (0) = 0, ∇ · û(0) = 0, (21)

where σ̂ (0) = − p̂(0)I + ∇û(0) + ∇û(0)T , subject to the boundary conditions

û(0)(x) = U(0)
p + #(0)

p × x − V(x) as x ∈ S, (22)

û(0)(x) → 0 as |x| → ∞, (23)

and to the force and torque balance of Eq. (9).
The solution is classic, and may be obtained for instance using the method of harmonic

expansions.44 In particular, the disturbance velocity field û(0) has contributions from both the gravi-
tational force and the external linear flow:

û(0)(x) = 1
8π

[(
I
x

+ xx
x3

)
+ 1

3

(
I

x3
− 3

xx
x5

)]
· F +

[
−5

4
xxx
x5

− 1
2

(
Ix
x5

− 5
2

xxx
x7

)]
: (A + AT ).

(24)
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The linear velocity of the sphere is obtained as the sum of the Newtonian Stokes velocity and of the
local external velocity, and its angular velocity is half the imposed vorticity:

U(0)
p = F

6π
+ V0, #(0)

p = 1
2
∇ × V. (25)

2. First-order problem

Having solved the Newtonian problem, we then attempt to obtain a solution to O(De). The
first-order problem also satisfies the momentum and continuity equations:

∇ · σ̂ (1) = 0, ∇ · û(1) = 0, (26)

where the stress tensor is now given by

σ̂ (1) = − p̂(1)I + ∇û(1) + ∇û(1)T + "(û(0) + V) − "(V). (27)

Note that the disturbance velocity û may be replaced by û(0) to order O(De) in the nonlinear
component of the stress. The boundary conditions for this problem are

û(1)(x) = U(1)
p + #(1)

p × x as x ∈ S, (28)

û(1)(x) → 0 as |x| → ∞, (29)

and the force and torque balances simplify as
∫

S
σ̂ (1) · n d S = 0,

∫

S
x × (σ̂ (1) · n) d S = 0. (30)

To determine the particle linear motion U(1)
p , we make use of the Lorentz reciprocal theorem.43, 45

Consider a complementary Newtonian flow problem with velocity v, pressure q, and stress s, that
satisfies

∇ · s = 0, ∇ · v = 0, (31)

with s = −qI + ∇v + ∇vT , subject to the boundary conditions

v(x) = e as x ∈ S, (32)

v(x) → 0 as |x| → ∞, (33)

where e is an arbitrary fixed vector. The solution of this complementary problem is straightforward
and given by

v(x) = 3
4

[(
I
x

+ xx
x3

)
+ 1

3

(
I

x3
− 3

xx
x5

)]
· e. (34)

Using the momentum equations for σ̂ (1) and s and using the symmetry of the stress tensors, we
can derive the following expressions:

∇ · (σ̂ (1) · v) = σ̂ (1):(∇v + ∇vT )/2, (35)

∇ · (s · û(1)) = s:(∇û(1) + ∇û(1)T )/2. (36)

Subtracting Eq. (36) from Eq. (35), integrating over the entire volume of fluid V f , and using the
divergence theorem then yields:

−
∫

S
n · [σ̂ (1) · v − s · û(1)]d S = 1

2

∫

V f

[σ̂ (1) : (∇v + ∇vT ) − s : (∇û(1) + ∇û(1)T )]dV . (37)
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Note that v = e and û(1) = U(1)
p + #(1)

p × x on the surface S of the sphere, and that the stress tensor
for the complementary problem is known. Using the force balance Eq. (30), we therefore simplify
the left-hand side in Eq. (37) as

−
∫

S
n · [σ̂ (1) · v − s · û(1)]d S = −6π U(1)

p · e. (38)

The right-hand side in Eq. (37) may also be simplified by substituting Eq. (27) for the expression of
σ̂ (1) and making use of the continuity equations for û(1) and v. After manipulation, Eq. (37) yields
the following expression, valid for any vector e:

U(1)
p · e = − 1

12π

∫

V f

[
"(û(0) + V) − "(V)

]
: (∇v + ∇vT )dV . (39)

As û(0) and v are known from Eqs. (24) and (34), this may be used to determine U(1)
p . The evaluation

of the integral in Eq. (39) is cumbersome but can be performed analytically. All calculations done,
we find:

U(1)
p = 1

35
(A + AT ) · V0 + 1

6π

[
f1(λ)A + f2(λ)AT ]

· F, (40)

where the two parameters f1(λ) and f2(λ) are functions of the ratio of the normal stress coefficients:

f1(λ) = λ

8
+ 5

64
, f2(λ) = λ

8
− 11

64
. (41)

In dimensional variables, the total settling velocity of the sphere can therefore be written

Up = M1(A) · V0 + M2(A) · F + O(De2), (42)

where the two mobility tensors M1 and M2 are given by

M1(A) = I + "1

35η0
(A + AT ), (43)

M2(A) = M0

{
I + "1

η0

[
f1(λ)A + f2(λ)AT ]}

, (44)

with M0 = 1/6πη0a. A result similar to Eq. (42) had previously been obtained by Brunn,41 though
we are unable to match the coefficients in our solution to his. An important consequence of Eq. (44)
is that depending on the nature of the local velocity gradient A = ∇V the settling velocity of the
sphere may have non-zero components in directions perpendicular to gravity.

C. Direction of motion and physical interpretation

In a vertical shear flow of the form u(x) = −γ̇ x ẑ (such as the one depicted in Fig. 1), for which
V0 = 0 and A = −γ̇ x̂ẑ, we find that the settling velocity of the sphere under the gravitational force
F = −F ẑ is given by

Up = −M0 F ẑ + [M0"1 f1(λ)γ̇ F/η0]x̂ + O(De2). (45)

Noting that "1 ≥ 0 and f1(λ) ≥ 0 (since λ ≥ 0 for polymeric solutions and melts42), the horizontal
component of the settling velocity Up is therefore directed toward the half-space where F · u(x) > 0,
i.e., toward the right in Fig. 1.

The origin of this horizontal drift velocity can be easily understood physically: in the situation
of Fig. 1, the left side of the sphere, where the external fluid velocity and the gravitational force point
in opposite directions, effectively experiences a stronger shear rate than the right side of the sphere,
where fluid velocity and gravity point in the same direction. Combined with the curvature of the
surface, this effect results in a net imbalance of normal stresses between the two sides of the sphere,
which causes it to migrate toward the right. As we proceed to show next, this non-zero horizontal
velocity is responsible for a concentration instability in homogeneous suspensions.
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V(x)
F Ωp

U(0)
p U(0)

p + DeU(1)
p

x̂

ŷ
ẑ

FIG. 1. Sedimentation of an isolated sphere in a linear flow of a second-order fluid.

D. Stability of a homogeneous suspension under sedimentation

We now turn our focus on the stability of a large-scale dilute homogeneous suspension of
sedimenting spheres in a second-order fluid, and develop a continuum theory to understand the effect
of the drift velocity described above on suspension stability. We adopt an approach similar to that
proposed by Koch and Shaqfeh26 and Saintillan et al.32, 33 for spheroids and for deformable particles,
and represent the configuration of the suspension by a continuous variable c(x, t) denoting the
concentration of particles at position x and time t inside the suspension. This variable is normalized
as

1
V

∫

V
c(x, t) dV = n, (46)

where V is the volume of the container and n is the mean number density of particles in the
suspension. Its evolution is governed by a conservation equation:

∂c
∂t

+ ∇·(ẋc) = 0, (47)

in which the flux velocity ẋ can be modeled in dimensional variables as

ẋ = M1[∇u(x)] · u(x) + M2[∇u(x)] · F − D · ∇ ln c(x). (48)

In particular, ẋ is written as the sum of the velocity of a particle placed in the local flow field
u(x) induced by the remaining particles in the suspension, of the settling velocity of that particle
in the velocity gradient ∇u(x), and of a diffusive term (with diffusion tensor D assumed constant),
which may represent the effects of Brownian motion in the case of a colloidal suspension, or of
hydrodynamic diffusion. The use of Eqs. (43) and (44) for the particle velocities is contingent upon
an assumption of weak viscoelasticity, and the error in Eq. (48) is O(De2).

To close Eqs. (47) and (48), the fluid velocity field u(x) must be determined. It satisfies the
continuity equation ∇ · u = 0, together with the following momentum equation, in which we include
a forcing term corresponding to the weight exerted by the particles on the fluid:

− η0∇2u + ∇ p = ∇ · "(u) + F[c(x) − n]. (49)

In the following analysis, we assume that the concentration fluctuations are small, i.e., that c(x, t)
− n = εc′(x, t) with |ε| # 1 and c′(x, t) = O(n).

First, we argue that for the purpose of determining the flux velocity ẋ the nonlinear term in the
momentum equation can be neglected to leading order. Indeed, in the limit of weak viscoelasticity, the
solution of Eq. (49) may once again be written as a regular expansion u(x) ≈ u(0)(x) + u(1)(x) + · · ·
where u(0) is the Newtonian solution, u(1) is the first correction due to viscoelasticity which is O(De),
etc. If we assume that the concentration fluctuations in the suspension occur over a length scale L
(typically, the container width), the following scales U0 and U1 for u(0) and u(1) may be obtained
by inspection of Eq. (49): U0 = εFnL2/η0 and U1 = De U0, where De = "1U0/η0L. The scale U1



073302-8 R. Vishnampet and D. Saintillan Phys. Fluids 24, 073302 (2012)

should be compared to the scale for the viscoelastic correction in the settling velocity in Eq. (48),
which is De F/η0a. The nonlinear terms in Eq. (49), of magnitude De U0 and smaller, may therefore
be neglected if U0 # F/η0a, which can be shown to be equivalent to ε # (1/φ0) × (a/L)2, where
φ0 is the mean suspension volume fraction, related to the number density by φ0 = (4πa3/3)n. In a
typical sedimentation experiment (e.g., Bergougnoux et al.8), φ0 ∼ 10−3, a ∼ 1 mm, and L ∼ 10 cm,
which yields ε # 10−1. For concentration fluctuations that satisfy this condition, the momentum
equation (49) may therefore be replaced by

− η0∇2u + ∇ p = F[c(x) − n], (50)

which will result in an O(εDe) error in the calculation of the flux velocity in Eq. (48).
We are now ready to perform the linear stability analysis. We take the base state of the suspension

to be uniform in space: c(x, t) = n. In this case, the solution of the flow problem is easily shown to
be: u(x) = 0, and p = p0. To investigate the stability, we consider a weak perturbation with respect
to this base state:

c(x, t) = n + εc′(x, t). (51)

This perturbation induces a weak disturbance flow u(x) = εu′(x), and pressure perturbation p = p0

+ εp′. Substituting the expressions for c and u into Eqs. (47) and (48) and neglecting terms of O(ε2)
yields the following linearized equation for c′(x, t):

∂c′

∂t
+ M0 F · ∇c′ + M0n"1

η0
∇ · [( f1(λ)∇u′ + f2(λ)∇u′T ) · F] − ∇ · (D · ∇c′) = 0. (52)

Assume a normal mode perturbation with wavevector k: c′(x, t) = c̃(k) exp(ik · x + σ t). The corre-
sponding velocity perturbation may also be written u′(x) = ũ(k) exp(ik · x + σ t), where the Fourier
coefficient ũ(k) can be obtained by Fourier transform of the momentum equation (50) and by
application of the pressure projection operator:46

ũ(k) = 1
η0k2

(
I − kk

k2

)
· F c̃(k). (53)

Substituting Eq. (53) into the linearized equation (52) yields:
[
σ + iM0 k · F − M0n"1 f1(λ)

η2
0

F ·
(

I − kk
k2

)
· F + k · D · k

]
c̃(k) = 0. (54)

Denote by * the angle formed by the gravitational force F and the wavevector k, defined by:
F · k = Fk cos *. Using Eq. (54), the real and imaginary parts of σ are readily obtained as

σR = Re(σ ) = M0n"1 f1(λ)F2

η2
0

sin2 * − k · D · k, (55)

σI = Im(σ ) = −M0 Fk cos *. (56)

Recalling that "1 ≥ 0 and f1(λ) ≥ 0, we find that the growth rate σ R for the concentration fluctuations
is positive at low wavenumbers (or long scales) for wavevectors k that have a non-zero component
in a direction perpendicular to gravity (sin * -= 0), and is maximum when * = π /2, corresponding
to horizontal density waves. At high wavenumbers, particle diffusion damps this growth rate and
stabilizes the suspension. The growth rate is plotted as a function of the wavenumber for various
wave angles in Fig. 2(a), in which the following dimensionless variables are used:

σ ∗
R = η2

0σR

M0n"1 f1(λ)F2
, k∗ = k

n1/3
, D∗ = η2

0D
M0n1/3"1 f1(λ)F2

. (57)

The mechanism for the instability is illustrated in Fig. 2(b) and is qualitatively similar to that
described by Koch and Shaqfeh26 for spheroids and by Saintillan et al.32 for deformable particles
in Newtonian fluids. Specifically, a weak concentration fluctuation in the suspension (e.g., due to
the initial random mixing) will create a disturbance flow, which points downwards in the high-
density regions and upwards in the low-density regions. When a sphere sediments in this flow, the



073302-9 R. Vishnampet and D. Saintillan Phys. Fluids 24, 073302 (2012)
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  Low density                             High density 

(b) 

FIG. 2. (a) Dimensionless growth rate σ ∗
R as a function of the wavenumber k* for various wave angles *. In this plot,

the dimensionless diffusion tensor was taken to be the identity tensor: D∗ = I. (b) Mechanism for the instability: a weak
concentration fluctuation creates a disturbance flow which causes the particles to settle preferentially toward the denser
regions (after Koch and Shaqfeh26).

nonlinear coupling of its settling motion with the local flow field owing to viscoelastic effects causes
it to migrate toward the denser regions, according to the discussion of Sec. II C. This migration
has the effect of reinforcing the initial concentration fluctuation, thereby leading to the growth of
inhomogeneities. Based on this analysis, we expect large-scale density fluctuations to grow with time,
with the longest wavelengths growing the fastest: in a bounded system, the strongest inhomogeneities
are therefore expected to occur on the scale of the container, at least in the linear regime.

The mechanism described here is similar to that previously proposed by Phillips.39 Phillips
started from pair particle interactions in a second-order fluid (calculated asymptotically in the limit
of weak viscoelasticity and widely separated particles24), and integrated these interactions over a
uniform particle distribution perturbed by a sine wave in a horizontal direction. After averaging, he
obtains a horizontal particle flux that causes particles to migrate preferentially toward dense regions.
In the mechanism proposed herein, we consider the mean-field flow field generated by an arbitrary
distribution of particles on the scale of the suspension, and analyze the migration of a test particle in
this flow field as a result of non-Newtonian effects. Note that in addition to this mean-field effect, pair
particle interactions may also play a role at shorter length scales and cause local particle aggregation
and chaining, as previously studied by Phillips and Talini;24 such local interactions are not easily
included in the continuum framework of the present model.

The influence of the normal stress coefficients is clear from expressions such as Eqs. (45)
and (55), where the growth rate for long-wavelength perturbations, which is directly related to
the horizontal drift velocity, is proportional to "1f1(λ) = 5"1/64 − "2/2. Since "2 < 0 for
polymeric fluids, both normal stress coefficients have a destabilizing effect, which is consistent
with the previous finding of Phillips.39 For a given value of "1, the growth rate is minimum when
"2 = 0 (or λ = 0), corresponding to the case of a Weissenberg fluid.

III. NUMERICAL SIMULATIONS

The linear stability analysis of Sec. II D provides a mechanism for the growth of concentra-
tion fluctuations in the suspensions, but is limited to a weak initial density fluctuation satisfying
ε # (1/φ0) × (a/L)2. This very stringent condition is unlikely to be met in most sedimentation
experiments, where even well-mixed suspensions have significant random number density fluctua-
tions. In addition, the analysis only captures the linear regime and does not account for finite system
sizes. To confirm the results of the linear analysis but also investigate the effects of nonlinearities,
finite system size, and random initial distributions, we also perform direct numerical simulations of
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dilute particle suspensions using a point-particle model and a weakly nonlinear approach, which we
proceed to describe here.

A. Simulation method

1. Governing equations

The method of simulation is an extension of the previous work of Bergougnoux et al.8 and
Saintillan et al.32 for Newtonian fluids, which is based on a point-particle model and a spectral
solution of the Stokes equations. We consider a suspension of M identical spheres of radius a
suspended in a container of dimensions Lx × Ly × Lz filled with a second-order fluid, where the
gravitational force on the particles points in the negative z-direction: F = −F ẑ. The suspension is
assumed to be dilute, i.e., the mean interparticle distance n−1/3 (where n is the mean number density)
is assumed to be much greater than the particle radius. Denoting by xα the center-of-mass position
of particle α (for α = 1, . . . , M), the translational velocity ẋα of a particle is obtained to order O(De)
by application of the mobility relation Eq. (42) derived in Sec. II B:

ẋα = M1[∇u(xα)] · u(xα) + M2[∇u(xα)] · F + O(De2). (58)

Here, u(x) denotes the velocity field driven by the particles as they sediment through the fluid, and
satisfies the continuity and momentum equations:

∇ · u = 0, −η0∇2u + ∇ p = ∇ · "(u) + f(x). (59)

In the momentum equation, the force distribution f(x) corresponds to the forces exerted by the
particles on the fluid. In the case of identical point particles subject to a gravitational force F, it is
obtained as

f(x) = F
M∑

β=1

δ(x − xβ), (60)

where δ denotes the three-dimensional Dirac delta function. Equations (58)–(60) form a closed
system of equations which can be solved by time-marching of the particle positions, and requires a
solution of Eq. (59) at each time step.

2. Mean-field flow solution

The numerical solution of Eqs. (59) and (60) proceeds as follows. Knowing the particle positions
from the previous time step (or from the initial configuration), the force distribution f(x) is calculated
on a Cartesian grid (with Kx × Ky × Kz grid points) by linear interpolation. The number of grid
points is chosen so that the mesh size is smaller than the mean interparticle distance. Once the force
distribution is known on the grid, the nonlinear momentum equation is solved iteratively to O(De),
for consistency with the order of approximation of the mobility relation Eq. (58). Specifically, we
first solve for the Newtonian solution (u(0), p(0)) (using a spectral method described below), which
satisfies the linear Stokes equations

∇ · u(0) = 0, −η0∇2u(0) + ∇ p(0) = f(x). (61)

After the Newtonian O(De0) solution is obtained, it is used to calculate the non-Newtonian stress on
the right-hand side of Eq. (59). As a second step to the iterative method, we then solve the problem

∇ · u = 0, −η0∇2u + ∇ p = ∇ · "(u(0)) + f(x), (62)

which yields a solution to Eq. (59) accurate to O(De). One significant advantage of this iterative
process is that the right-hand side in Eq. (62) is known, and therefore the equations are linear and
can be solved using standard methods for Stokes flow. Once the velocity field u(x) is known, it
is differentiated on the grid by second-order central finite differences to obtain ∇u(x). The values
of the velocity and velocity gradient at the particle locations, which are required in Eq. (58), are
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then obtained by interpolation from the grid values; in the simulations described below, third-order
B-splines are used for interpolation.47

For both steps of the iterative method, the Stokes equations need to be solved on the grid, with
a known force density g(x), representing either f(x) or [∇ · "(u(0)) + f(x)]. The following boundary
conditions are enforced at the container walls:

n · u(x) = 0, n · ∇[(I − nn) · u(x)] = 0, (63)

where n is a unit vector normal to the boundary. The first condition enforces no fluid penetration,
whereas the second one corresponds to a free-shear-stress boundary condition. While this differs
from the no-slip boundary condition applying at the walls of a rigid container, it has the advantage
of allowing for a very efficient spectral solution while preventing fluid penetration at the boundaries,
a feature that has previously been shown to be critical in sedimentation simulations.7 Previous
simulations of sphere suspensions,8, 12, 48 as well as spheroid suspensions,32, 33 have demonstrated
that this boundary condition is sufficient to capture most salient features observed in sedimentation
experiments, including the decay of velocity fluctuations in sphere suspensions,12 and a wavenumber
selection for density fluctuations in spheroid suspensions.33 Note, however, that owing to the free-
shear-stress condition there is no resistance to tangential flow close the the boundaries, which may
have a quantitative effect on velocity fluctuations in the suspensions.

The spectral solution of the Stokes equations is obtained as follows. We first decompose the
force density g(x) as the sum of its three components in the x, y, and z directions:

g(x) = g1(x)x̂ + g2(x)ŷ + g3(x)ẑ. (64)

By linearity of the Stokes equations, it is possible to solve three independent problems for the three
functions g1, g2, and g3, with solutions u1(x), u2(x), and u3(x). The full flow velocity u(x) driven by
the force density g(x) is then obtained by superposition. The solution of the first problem (for u1)
proceeds as follows. In order to satisfy the boundary conditions of Eq. (63), we seek a solution in
terms of truncated sine and cosine series:8, 32

u1(x) =
∑

k






ũ1x (k) sin
(

πkx x
Lx

)
cos

(
πky y

L y

)
cos

(
πkzz

Lz

)

ũ1y(k) cos
(

πkx x
Lx

)
sin

(
πky y

L y

)
cos

(
πkzz

Lz

)

ũ1z(k) cos
(

πkx x
Lx

)
cos

(
πky y

L y

)
sin

(
πkzz

Lz

)






, (65)

where the wavevector k is defined as

k = kx

Lx
x̂ + ky

L y
ŷ + ky

L y
ŷ (66)

with kx = 1, . . . , Kx, ky = 1, . . . , Ky, and kz = 1, . . . , Kz. This choice of sine and cosine series in
Eq. (65) automatically satisfies the boundary conditions. Substitution of Eq. (65) into the momentum
equation then suggests expanding g1(x) as

g1(x) =
∑

k

g̃1(k) sin
(

πkx x
Lx

)
cos

(
πky y

L y

)
cos

(
πkzz

Lz

)
. (67)

After elementary manipulations, it is possible to show that the momentum and continuity equations
for u1 are exactly satisfied provided that

ũ1x (k) = −
(

k2
y

L2
y

+ k2
z

L2
z

)

ũ1(k), ũ1y(k) = kx ky

Lx L y
ũ1(k), ũ1z(k) = kx kz

Lx Lz
ũ1(k), (68)
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where the coefficient ũ1(k) is given by

ũ1(k) = − g̃1(k)

η0π
2

[(
kx

Lx

)2

+
(

ky

L y

)2

+
(

kz

Lz

)2
]2 . (69)

In the simulations, fast sine and cosine transform algorithms are used to calculate g̃1(k) in
Eq. (67), from which the velocity field is obtained by application of Eqs. (65), (68) and (69).
The two additional flow fields u2(x) and u3(x) corresponding to the other two components of force
are obtained by straightforward modifications of Eqs. (65) and (67).

In the following discussion, we non-dimensionalize all the variables using the length scale a
(radius of a particle), velocity scale Us = F/6πη0a (Stokes velocity in the Newtonian solvent), and
corresponding time scale a/Us. All simulations are performed in a box of dimensions Lx × Ly × Lz

= 300 × 300 × 1200, and the number of grid points (or Fourier modes) is chosen to be 65 × 65 ×
257. We use a dilute volume fraction of φ0 = 0.5 %, corresponding to a total of 128 915 particles
in the simulation domain. The ratio λ = −4"2/"1 of the normal stress coefficients is set to 2, and
we vary the value of the Deborah number De = "1Us/η0a from 0 to 1 to investigate the effects of
viscoelasticity. Note that the simulation method described here is only valid for weak viscoelasticity
(De # 1), so the results for De = 1 are unlikely to be quantitatively accurate; yet, we do not expect
the dynamics to change qualitatively over the range of Deborah numbers considered here.

B. Results and discussion

The evolution of the concentration field in two typical simulations at De = 0 and 1 is illustrated
in Fig. 3. In the absence of viscoelasticity [De = 0, Fig. 3(a)], significant density fluctuations exist
owing to the initial random distribution of the particles, which follows a Poisson distribution. These
fluctuations are also observed in experiments, where they may follow statistics that depart slightly

(a) (b) t = 200                            t = 400 t = 200                            t = 400 
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FIG. 3. Concentration field, inferred from particle positions, at two different instants, in simulations of 128 915 spheres
sedimenting in a container of dimensions 300 × 300 × 1200 (mean volume fraction φ0 = 0.5 %): (a) De = 0.0 (Newtonian),
and (b) De = 1.0 (viscoelastic). In the viscoelastic case, dense vertical clusters are observed to form, as highlighted by the
black closed contours.
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FIG. 4. Vertical density profiles at various times in simulations of 128 915 spheres sedimenting in a container of dimensions
300 × 300 × 1200 (mean volume fraction φ0 = 0.5 %): (a) De = 0.0, (b) De = 0.5, and (c) De = 1.0. The figure shows
averages over 10 simulations with distinct initial conditions.

from Poisson13 but are comparable in magnitude. One key feature to be noted is that the magnitude
of these fluctuations remains sensibly the same with time, as will be confirmed more quantitatively
below. However, in the case of a viscoelastic fluid (De = 1), much stronger concentration fluctuations
are observed, as demonstrated in Fig. 3(b) by dense spots (highlighted by black closed contours)
surrounded by clarified regions. The growth of density fluctuations, which is in qualitative agreement
with experimental observations,21 supports our prediction of Sec. II D of a concentration instability.
In the simulations, we find that fluctuations become stronger as the Deborah number is increased.
We also find that they tend to grow over time (at least initially, as their growth eventually competes
with hydrodynamic diffusion and the developing stratification also tends to damp the dynamics),
and a qualitative observation of the concentration field at late times [e.g., t = 400 in Fig. 3(b)]
suggests that a structuring of the suspension is taking place in the form of dense vertical columns or
streamers separated by relatively clear fluid. This structuring, which is reminiscent of the streamer
formation in settling suspensions of rodlike particles,30, 32–34 was also reported in experiments in non-
Newtonian fluids21 and hints at a wavenumber selection not predicted by the simple linear analysis
of Sec. II D.

Another feature visible in Fig. 3 is the development of a broad suspension front, as a result
of the rapid settling of the dense clusters and streamers out of suspension. This is shown more
precisely in Fig. 4, where we plot vertical concentration profiles at various times for three values
of the Deborah number. In the Newtonian case [Fig. 4(a)], a diffuse concentration front is found to
develop and spread at the interface with the clear fluid, as previously characterized in experiments
and simulations;8, 12, 48 however, the concentration profile remains nearly uniform and equal to the
mean concentration in the bulk of the suspension away from the front, except in the late stages of
the sedimentation process when the front becomes very broad. In a viscoelastic fluid [Figs. 4(b)
and 4(c)], the suspension front is observed to spread more rapidly, and vertical density gradients are
seen to form in the bulk away from the front. This strong stratification, which is not observed at
De = 0, is easily understood as a consequence of the formation of dense clusters, which sediment
rapidly out of suspension and leave clarified fluid in their wake. Similar observations had previously
been made on the sedimentation of anisotropic particles in a Newtonian fluid.32, 33 In that case, it has
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FIG. 5. (a) Mean settling velocity 〈Uz〉/Us and (b) standard deviation .Uz/Us of the vertical velocity as functions of time at
various Deborah numbers. The figure shows averages over 10 simulations with distinct initial conditions.

previously been argued that stratification may play a role in the structuring of the density fluctuations
in the form of vertical streamers by setting a critical length scale beyond which fluctuations cannot
grow.33 While this mechanism is still debated and not fully supported by experiments,49 it may be
at play in the instability of spherical particles in viscoelastic fluids as well, and may explain the
formation of vertical columns observed in Fig. 3(b). Additional work is needed to elucidate this
effect.

In addition to stratification, the clustering of the particles as a result of the instability also
leads to an enhancement of the mean settling speed and velocity fluctuations. Both quantities
are plotted as functions of time for different values of the Deborah number in Fig. 5. When
De = 0, the mean settling velocity remains close to the Stokes velocity for an isolated particle,
and is even found to decrease slightly with time, an effect that can be attributed to interactions
with the bottom boundary when much of the suspension has settled near the bottom of the con-
tainer. When the Deborah number is non-zero, we observe a significant increase in the mean settling
speed as time progresses; this increase is strongest for high values of De, with a peak velocity
increase of up to 30 % when De = 1. This enhancement of the settling speed is a direct consequence
of the instability, by which dense clusters settle more rapidly than isolated particles. Once most
clusters have reached the bottom of the container, the settling velocity starts decreasing again to
reach values close to the Stokes velocity in the later stages of the sedimentation process. Similar
trends are observed on the velocity fluctuations in Fig. 5(b): the clustering instability in the vis-
coelastic case causes an increase in the standard deviation of the vertical velocity, a consequence
of the significant difference in settling speed between particles captured inside clusters and par-
ticles suspended in clarified regions. Regardless of the value of the Deborah number, we find,
however, that the velocity fluctuations are rapidly damped in the suspensions, a likely consequence
of the small system sizes used in the simulations and of the developing stratification observed
on Fig. 4.

The density fluctuations resulting from the concentration instability can be characterized more
quantitatively by considering the evolution of particle occupancy statistics in the suspensions.5, 13

Given a small cubic interrogation cell of volume V placed inside the suspension, the mean number
of particles inside the cell is expected to be 〈N 〉 = φ0V/Vp, where Vp = 4πa3/3 is the volume
of a particle. When such a cell is placed at an arbitrary location in the suspension, it contains a
number N of particles that will in general differ from the expected value of 〈N〉 owing to fluctuations,
and follows a distribution P(N). In a perfectly random suspension following Poisson statistics, this
distribution is given by P(N) = 〈N〉Nexp ( − 〈N〉)/N!, with a standard deviation of σ N = 〈N〉1/2.
Departures from this law are indicative of the level of number density fluctuations on the scale of
the interrogation cell. Distributions P(N), for 〈N〉 = 10, are shown at different times in Figs. 6(a)
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FIG. 6. (a)–(b) Particle occupancy distributions P(N) for 〈N〉 = 10 at various times t at two different Deborah num-
bers: (a) De = 0 (Newtonian), and (b) De = 1 (viscoelastic). The distributions are compared to the Poisson distribution
P(N) = 〈N〉Nexp ( − 〈N〉)/N! (c) Standard deviation σN of P(N) versus 〈N〉 at t = 400. The standard deviation exhibits a
power-law dependence σ ∼ 〈N〉α , with an exponent of 1/2 for a random suspension with Poisson statistics. (d) Evolution of
the exponent α as a function of time for various Deborah numbers.

and 6(b) in the Newtonian and viscoelastic cases, and are compared to the Poisson distribution.
When De = 0 [Fig. 6(a)], the particle occupancy distributions agree very well with the Poisson
distribution at all times, and do not significantly evolve during sedimentation. Such is not the case
for De = 1.0, where we see that the distributions are close to the Poisson distribution early on
(indeed, the initial distribution is chosen to be perfectly random), but tend to become broader and
flatter as sedimentation takes place. These giant number fluctuations indicate that a large number of
interrogation cells contain either too many or too few particles (compared to a random distribution),
which is consistent with the local clustering of the particles discussed above.

The effect of scale is analyzed in Fig. 6(c), where the standard deviation σ N of the distributions
is plotted versus the mean 〈N〉 at t = 400. A power-law dependence σ N ∼ 〈N〉α is observed in
all cases. In the Newtonian case, the exponent is found to be very close to 1/2 as expected for
a random suspension with Poisson statistics. The exponent α is, however, found to increase with
Deborah number when viscoelasticity is present. This is further confirmed in Fig. 6(d), showing the
evolution of α with time at different Deborah numbers. Only a weak evolution is observed in the
Newtonian case: we indeed see that α decreases slightly below the value of 1/2, which corresponds to
a suppression of fluctuations during sedimentation, an effect previously reported in other simulations
as well.7 However, α increases with time in viscoelastic suspensions as clusters form and grow, and
reaches a statistical steady state at a value that depends on the Deborah number and can be as high
as ≈0.57 for De = 1.
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IV. CONCLUDING REMARKS

Using a linear stability analysis, we have shown that a suspension of spherical particles sedi-
menting under gravity in a viscoelastic fluid is unstable to concentration fluctuations. This instability,
which shares strong similarities with other concentration instabilities occurring in sedimenting sus-
pensions of anisotropic or deformable particles in Newtonian fluids,26, 32 results from the nonlinear
coupling between the mobility of a sphere and the local flow field around the particle driven by
the density fluctuations in the suspension through hydrodynamic interactions. While the present
analysis is specifically concerned with a second-order fluid, we anticipate that qualitatively similar
results may hold for other types of viscoelastic fluids too, as the only requirement for the coupling
between mobility and local flow is a nonlinear constitutive relation. The instability described herein
is consistent with and may explain the recent experimental findings of Mora et al.,21 who observed
the formation of inhomogeneities in sedimenting suspensions in polymeric solutions.

To further analyze the long-time evolution of the suspensions in the nonlinear regime, as well
as investigate the effects of finite system sizes and random initial distributions, we also developed
a simple simulation method based on a point-particle approximation and on a weakly nonlinear
solution of the momentum equation for the mean-field fluid velocity in the suspension. These
simulations confirmed the existence of an instability, which manifests itself in the form of dense
cluster separated by clarified fluid. Our simulations suggest that these clusters tend to organize in
vertical columns and that a horizontal wavenumber selection not predicted by the linear analysis
may be taking place. While further work is needed to fully characterize this effect, a possible
mechanism for such a wavenumber selection is the strong stratification that was found to develop in
the suspensions.33 The instability was also found to result in a significant enhancement of the mean
settling speed (by up to 30 % for De = 1.0) and of velocity fluctuations. Both effects are again easily
understood as consequences of the clustering.

It should be noted that both the theory and simulations described herein are valid only for a
second-order fluid in the limit of weak viscoelasticity (small Deborah number), a case amenable to
asymptotic solutions and perturbation methods. It is unclear whether the concentration instability
presented in this work would arise in more complex types of non-Newtonian fluids, where the effects
of shear-thinning for instance may introduce qualitatively new dynamics. A detailed analysis for
arbitrary Deborah numbers or other constitutive relations may not be amenable to an analytical
treatment, and will likely require more sophisticated numerical simulations.
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