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Suspensions of self-propelled particles, such as swimming micro-organisms, are known to undergo
complex dynamics as a result of hydrodynamic interactions. To elucidate these dynamics, a kinetic
theory is developed and applied to study the linear stability and the nonlinear pattern formation in
these systems. The evolution of a suspension of self-propelled particles is modeled using a
conservation equation for the particle configurations, coupled to a mean-field description of the flow
arising from the stress exerted by the particles on the fluid. Based on this model, we first investigate
the stability of both aligned and isotropic suspensions. In aligned suspensions, an instability is
shown to always occur at finite wavelengths, a result that extends previous predictions by Simha and
Ramaswamy �“Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled
particles,” Phys. Rev. Lett. 89, 058101 �2002��. In isotropic suspensions, we demonstrate the
existence of an instability for the active particle stress, in which shear stresses are eigenmodes and
grow exponentially at long scales. Nonlinear effects are also investigated using numerical
simulations in two dimensions. These simulations confirm the results of the stability analysis, and
the long-time nonlinear behavior is shown to be characterized by the formation of strong density
fluctuations, which merge and breakup in time in a quasiperiodic fashion. These complex motions
result in very efficient fluid mixing, which we quantify by means of a multiscale mixing norm.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3041776�

I. INTRODUCTION

The complex dynamics that arise in large-scale collec-
tions of self-propelled interacting particles have received
much attention over the last several years. These systems,
also known as active suspensions, are common in nature,
where bacteria and other micro-organisms often develop in
large-scale colonies,1,2 but also occur in technological appli-
cations, as engineers have tried to design artificial swimmers
to perform various functions.3–7 As they propel themselves
through the fluid, swimming particles induce disturbance
flows, which cause them to interact hydrodynamically and
result in complex collective motions in large suspensions.
The chaotic nature of these motions has been observed in
experiments, where it was found that they lead to enhanced
hydrodynamic diffusion.8,9 In addition, in fairly concentrated
suspensions, large-scale swirling motions and concentration
patterns have also been reported.10–15 All of these effects
were also confirmed in numerical simulations.16–18 While
these patterns are common in situations where the particles
are interacting with boundaries or external fields, as in
bioconvection,1,2,19–21 they also occur in bulk
suspensions,10–12,18,22 suggesting that interactions in these
systems will cause a uniform suspension to evolve toward
inhomogeneous configurations. In this paper, we show that
these phenomena may be the result of fluid instabilities, and
we identify mechanisms leading to this pattern formation.

Different types of swimmers may use a wide variety of
swimming mechanisms, such as flagellar propulsion,5,6,23

beating cilia,23 surface distortions,24 chemical reactions,3,4,7

or actin-tail polymerization.25,26 In spite of the significant

differences between these various mechanisms, universal
features exist in the associated hydrodynamics. In particular,
a self-propelled particle exerts a propulsive force Fp on the
surrounding fluid, which must be balanced by the resistive
drag due to the fluid, or Fd=−Fp. To leading order, the par-
ticle therefore exerts a force dipole on the fluid, the strength
of which we denote by �0 in the subsequent discussion �cf.
Sec. II�. Depending on the mechanism for swimming, �0 can
be either positive or negative: A particle that swims using its
tail �pusher� will result in �0�0, whereas a particle that
swims using its head �puller� will result in �0�0. As we will
see, these two types of particles produce qualitatively differ-
ent dynamics. In all cases, however, this dipole forcing in-
duces a disturbance flow in the fluid, the characteristics of
which are universal in the far field �i.e., far away from the
particle surface� for a wide variety of particles. This obser-
vation has been the key to developing theoretical and nu-
merical models for active particle suspensions16,27,28 and is
the basis for the model described herein.

Hydrodynamic interactions among self-propelled par-
ticles have been studied in numerical simulations with vari-
ous levels of approximation. Detailed boundary integral
simulations have been proposed to accurately simulate inter-
actions between nearby swimmers:29 Such simulations, how-
ever, are very costly and typically limited to a few interacting
particles. In order to capture the large-scale patterns that oc-
cur when many particles interact, simpler models have been
developed based on the remark made above that the far-field
disturbance of an individual swimmer is a dipole flow. Such
a model was proposed by Hernández-Ortiz et al.,16,17 who
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represented self-propelled particles as rigid dumbbells exert-
ing a force dipole on the fluid. Based on this model, they
were able to simulate fairly large suspensions of interacting
swimmers in a parallel plate geometry and captured qualita-
tive features of experiments on bacterial suspensions.8 In
particular, they observed that, beyond a certain particle con-
centration, correlated motions started to appear and occurred
on length scales much larger than the particle dimensions.
They also reported an enhanced diffusion due to the motion
of the particles. Recently, Ishikawa et al.30–33 also performed
simulations of collections of swimming spheres based on a
Stokesian dynamics algorithm and reported similar findings.
Note that the majority of these previous simulations only
considered the case of pushers ��0�0�.

In our recent work,18 we proposed a detailed model
based on slender-body theory34 in which swimming particles
are modeled as rigid slender rods that propel themselves by
exerting an axisymmetric shear stress upon the surrounding
fluid. This may represent the integrated effect of beating cilia
on the surface of a micro-organism. Suspensions of up to
2500 particles with periodic boundary conditions and in thin
films were simulated, and similar features as obtained by
Hernández-Ortiz et al.16 were observed. In particular, large-
scale correlated motions were found to develop regardless of
the initial condition �aligned or random isotropic�. We also
found that the final microstructure at steady state in suspen-
sions of pushers was not random but contained large density
fluctuations, and that particles tended to align locally as a
result of hydrodynamic interactions. In these simulations, no
significant alignment was found in suspensions of pullers,
where correlated motions were also found to be much
weaker.

To overcome the size limitations of particle-based simu-
lations, which are typically very costly, kinetic models have
also become popular to describe suspensions over length
scales much larger than the particle dimensions. In the con-
text of self-propelled particles, such models have received
much attention to describe the phenomenon of flocking in
systems where interactions are purely local.35,36 Such mod-
els, however, cannot be applied to describe Stokes suspen-
sions �such as bacterial suspensions�, in which long-range
hydrodynamic interactions are predominant and cannot be
neglected. These models, however, can be generalized by
coupling the evolution equations for the particle configura-
tions to equations for the fluid flow. A noteworthy example
was performed by Ramaswamy and co-workers:27,36–38 In
their model, dynamical equations for liquid crystals were
adapted to the case of rodlike self-propelled particles and
coupled to the Navier–Stokes equations for the fluid flow, in
which a coarse-grained active stress tensor representing the
effect of the force dipole on individual particles was in-
cluded. Using their model, they were able to investigate the
stability of aligned suspensions and predicted that in the
Stokes flow regime aligned suspensions should be unstable
at long wavelengths for a specific range of wave angles with
respect to the direction of alignment.27

In the present work, we describe a simple kinetic model,
previously introduced in Ref. 28, to study the dynamics in
dilute suspensions of self-propelled particles embedded in a

Stokes fluid �Sec. II�. The model is based on first principles,
namely, a conservation equation for the particle configuration
distribution, coupled to equations of motion for a self-
propelled rod in a local linear flow and to the Stokes equa-
tions for the fluid motion, where an active stress representing
the forcing due to the particles is included. Similar models
have been used successfully in the past to describe the be-
havior of passive rod suspensions.39,40 Using this model in
Sec. III, we analyze the linear stability of both aligned and
isotropic suspensions: We show, in particular, that both types
of suspensions exhibit instabilities, and our results generalize
the long-wave predictions of Simha and Ramaswamy27 on
aligned suspensions. In Sec. IV, we complement and expand
upon the results from the linear stability analysis by perform-
ing nonlinear simulations in two dimensions. This allows us
to investigate the long-time evolution of the suspensions and
the pattern formation for the instabilities, as well as their
relation to fluid mixing. In particular, we find that the dy-
namics in suspensions of pushers result in very efficient mix-
ing, which we quantify using a multiscale mixing norm.

II. KINETIC MODEL

A. Governing equations

We represent the configuration of a suspension of rodlike
particles by means of a distribution function41 ��x ,p , t� of
the particle position x and director p, where p is a unit vector
defining the particle orientation and direction. The evolution
of the suspension is described by a conservation equation,

��

�t
= − �x · �ẋ�� − �p · �ṗ�� , �1�

where �p denotes the gradient operator on the unit sphere.
The distribution function is normalized as follows:

1

V
�

V

dx�
S

dp��x,p,t� = n , �2�

where V is volume of the region of interest, n is the mean
number density of particles in the suspension, and S is the
surface of the unit sphere. We also define the linear system
size as L=V1/3.

The conservation equation �1� involves flux velocities in
x and p, which for rodlike particles swimming at a velocity
U0p relative to a background flow can be modeled as

ẋ = U0p + u − D�x�ln �� , �3�

ṗ = �I − pp� · ���E + W� · p − dr�p�ln ��� . �4�

In Eq. �3�, the translational velocity of a particle is repre-
sented as the sum of its swimming velocity U0p with orien-
tation p and of the local fluid velocity u�x , t� induced by the
other particles in the suspension. We also model diffusion
through an isotropic translational diffusion coefficient D.
This may represent the effects of small-scale hydrodynamic
fluctuations �hydrodynamic dispersion� or of particle tum-
bling. In a more general model, D may be assumed to depend
on the director p. Similarly, the angular velocity in Eq. �4�
arises from the local linear flow and is modeled using
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Jeffery’s equation42,43 in terms of the fluid rate-of-strain ten-
sor E= ��u+�u†� /2 and vorticity tensor W= ��u−�u†� /2
and of a shape parameter −1���1 �for a spheroidal par-
ticle, �= �A2−1� / �A2+1�, where A is the particle aspect ratio,
and for a slender rod ��1�. Angular diffusion is included
through the rotary diffusion coefficient dr. Note that in the
present formulation, the two coefficients for translational and
rotary diffusion are assumed to be independent for simplic-
ity: This is not generally the case in suspensions of swim-
ming particles, where the hydrodynamic translational diffu-
sivity may be shown to be inversely proportional to the
rotary diffusivity.18

To close the equations, the velocity u�x , t� of the fluid
must be determined. In the low-Reynolds-number limit of
interest here, it satisfies the momentum and mass conserva-
tion equations,

− ��x
2u + �xq = �x · �p, �x · u = 0, �5�

where � denotes the viscosity of the suspending fluid and q
is the fluid pressure. The fluid motion arises from the active
particle stress �p�x , t� given by

�p�x,t� = �0�
S

��x,p,t��pp −
I
3
�dp . �6�

This expression can be derived based on Kirkwood theory.41

In particular, �p can be viewed as a configuration average
over all orientations p of the force dipoles �or stresslets�
�0�pp− I /3� exerted by the particles on the fluid �see
Batchelor44�; it may also be interpreted as a local nematic
order parameter weighted by the particle concentration. It
can be shown that the stresslet strength �0 arises from the
first moment of the force distribution on the particle
surface.18 In Eq. �6�, we neglect the contribution of the
stresslet from particle interactions and only retain the lowest-
order contribution from the single-particle swimming. In this
case, �0 can be shown from the micromechanics of swim-
ming to be related to the swimming velocity U0 by a relation
of the type18,27

�0

U0�l2 = 	 , �7�

where l is the characteristic dimension of the particles and 	
is a dimensionless O�1� constant which depends on the pre-
cise swimming mechanism. Note that the sign of �0 �and
therefore 	� may be either positive or negative depending on
the swimming mechanism. A particle which propels itself by
exerting a force near its tail �pusher� will result in �0�0
�and 	�0�, whereas a particle that propels itself using its
head �puller� will result in �0�0 �	�0�.16,18,27 In the fol-
lowing, we consider both cases but will focus on the case of
pushers ��0�0�, which is more common in nature and also
results in more interesting dynamics.

In addition to the distribution function ��x ,p , t�, it is
useful to define a local concentration field c�x , t� and a local
particle director field n�x , t� as follows:

c�x,t� = �
S

��x,p,t�dp , �8�

n�x,t� =
1

c�x,t��S

p��x,p,t�dp . �9�

Upon integration of the conservation equation �1� over p,
and using Eq. �3� for the flux velocity ẋ, it can be shown that
the concentration field c�x , t� satisfies the following evolu-
tion equation:

�c

�t
+ �x · ��U0n + u�c� − D�x

2c = 0, �10�

or equivalently, making use of the incompressibility condi-
tion �x ·u=0,

�c

�t
+ u · �xc − D�x

2c = − U0�x · �cn� . �11�

In particular, Eq. �11� identifies −U0�x · �cn� as a source term
for magnitude changes in the concentration field c, which is
otherwise advected by the fluid velocity u and smoothed by
translational diffusion.

B. Nondimensionalization

The governing equations are made dimensionless using
the following characteristic velocity, length, and time scales:

uc = U0, lc = �nl2�−1, tc = lc/uc. �12�

Note that lc= �V /Vp�l, where Vp=Nl3 is the effective volume
taken up by the swimming particles �if N is the total number
of particles in volume V�. This choice of characteristic scales
eliminates all parameters from the equations except for the
O�1� constant 	 and shape parameter �, as well as dimen-
sionless translational and rotary diffusion coefficients. Fur-
ther, the number density n now appears in the equations only
through the normalized system size, L / lc. The conservation
equation �1� remains unchanged with the distribution func-
tion now normalized as

1

V
�

V

dx�
S

dp��x,p,t� = 1, �13�

where now V= �L / lc�3 and � has conserved mean 1 /4
.
After nondimensionalization, the flux velocities become

ẋ = p + u − D�x�ln �� , �14�

ṗ = �I − pp� · ���E + W� · p − dr�p�ln ��� , �15�

where the diffusion coefficients D and dr are now dimension-
less. Finally, the momentum and continuity equations sim-
plify as

− �x
2u + �xq = �x · �p, �x · u = 0, �16�

with the following dimensionless particle stress:

�p�x,t� = 	�
S

��x,p,t��pp −
I
3
�dp . �17�
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C. The system entropy

The total entropy

S = �
V

dx�
S

dp
�

�0
ln� �

�0
� , �18�

where �0=1 /4
, plays the role of a system energy. Note
that S�0 and realizes its minimum value of zero only for
�	�0, that is, for the homogeneous and isotropic state.
Working only with the conservation equation �1�, one obtains
after some algebra

4
Ṡ =
3�

	
�

V

dxE:�p − �
V

dx�
S

dp�D
�x ln �
2

+ dr
�p ln �
2�� . �19�

The latter terms on the right-hand side plainly arise from
diffusive processes, while the first term arises from the flux
term �p · �ṗ��, where use has been made of the identity

�p · ��I − pp� · ��E + W� · p� = − 3�pp:E , �20�

the expression �17� for �p, and fluid incompressibility. This
first right-hand term in Eq. �19� is proportional to the active
input power generated by the particles as they propel them-
selves through the fluid and is of definite sign. The momen-
tum equation �16� can be recast as

�x · �qI − 2E� = �x · �p. �21�

Taking the dot product of Eq. �21� with u, integrating over
the fluid domain V, yields the identity

�
V

2E:Edx = − �
V

E:�pdx , �22�

where use is made of integration by parts, fluid incompress-
ibility, and symmetry of E. The left-hand side in Eq. �22� is
the rate of viscous dissipation in the fluid and is balanced by
the active input power. Hence,

4
Ṡ = −
6�

	
�

V

dxE:E − �
V

dx�
S

dp�D
�x ln �
2

+ dr
�p ln �
2�� . �23�

Note that for 	�0, the entropy is driven down by both dif-
fusive processes and by the positive definiteness of the rate
of viscous dissipation term. Hence, for suspensions of pull-
ers, where 	�0, and in the absence of any external forcing
or boundary effects, fluctuations from the isotropic state as
measured by the entropy are expected to monotonically dis-
sipate. This expectation is borne out by the results of our
linear stability analysis of the isotropic state, as well as by
the results of our nonlinear simulations, both given below.

For suspension of pushers, where 	�0, the situation is
entirely different as the leading term now enters with a posi-
tive sign and suggests a feedback loop wherein fluctuations
create velocity gradients which increase fluctuations �as mea-
sured by the entropy�, with this process only limited, and
eventually balanced, by the diffusive processes in the system.
Again, this picture seems borne out by our results below.

The derivation of Eq. �23� also makes clear that the
source of instability in this system lies not in the presence of
the propulsive term p in the center of mass flux �i.e., in Eq.
�3��, but rather in the sign, through negative 	, of the force
dipoles induced by the swimmers. The Doi model for dilute
suspensions of rigid rods41 is essentially identical to our
model here, although obviously lacking the additional swim-
mer flux term and has an extra stress term identical to ours
but with a positive 	, which arises through calculating the
extra stress induced by thermodynamic fluctuations of the
rods rather than from self-propulsion �see Otto and
Tzavaras45 for use of system entropy in analyzing the
smoothness of solutions to Doi’s rod suspension theory�.

D. Reduced equations for locally aligned case

In the case where a single particle director exists at a
given location x, and when particle diffusion can be ne-
glected �D	0, dr	0�, a set of reduced equations for the
local concentration and director field can be derived. More
specifically, consider a distribution function in the form
��x ,p , t�=c�x , t���p−n�x , t��, where � denotes the Dirac
delta function.

In this case, the fluid velocity still satisfies Eq. �16�, with
the particle stress tensor

�p�x,t� = 	c�x,t��nn −
I
3
� . �24�

Equation �10� for the evolution of the concentration field
simplifies directly to

�c

�t
+ �x · ��n + u�c� = 0. �25�

In addition, we can also obtain an equation for n by multi-
plying Eq. �1� by p and integrating over p. This yields

�

�t
�nc� = − �x · ��n + u�nc� + c�I − nn� · ��E + W� · n ,

�26�

where we made use of Eq. �15� for the angular flux velocity
and of the integration by parts formula

�
S

p�p · �ṗ��dp = − �
S

ṗ�dp . �27�

Expanding the derivatives in Eq. �26� and using Eq. �25� to
eliminate c, we find the evolution equation for the director
field,

�n

�t
= − �n + u� · �xn + �I − nn� · ��E + W� · n . �28�

To summarize, the evolution of the concentration and
director fields in a suspension of locally aligned particles, in
which diffusion is negligible, is determined by Eqs. �25� and
�28�, in which the fluid velocity satisfies Eq. �16� with the
simplified expression �24� for the active particle stress.
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III. LINEAR STABILITY ANALYSES

A. Nearly aligned suspension

We first analyze the linear stability of a nearly aligned
suspension using the reduced equations of Sec. II D. We con-
sider a nearly uniform suspension in which the particles are
all nearly aligned along the ẑ-direction: c�x , t�=1+c��x , t�,
n�x , t�= ẑ+n��x , t�, where n� · ẑ=0 �which ensures that the
length of n remains 1 to order 2 for 

�1�. Define also the
perturbation fluid velocity and pressure fields: u�x�=u��x�
and q�x�=q��x�, respectively. We will determine the evolu-
tion of the perturbation variables c� and n� in the limit where


�1.

Expanding Eqs. �25� and �28� and retaining terms of
order , we find

�c�

�t
+ ẑ · �xc� + �x · n� = 0, �29�

�n�

�t
+ ẑ · �xn� = �I − ẑẑ� · ��E� + W�� · ẑ . �30�

The momentum and continuity equations for the fluid veloc-
ity field become

− �2u� + �xq� = 	�x · �n�ẑ + ẑn� + c�ẑẑ� , �31�

�x · u� = 0. �32�

We seek solutions written as plane waves with wave
vector k, c��x , t�= c̃�k�exp�ik ·x+�t�, with similar expres-
sions for all the other perturbation variables. Equations �31�
and �32� can be solved by Fourier transform for the coeffi-
cient ũ�k� of the fluid velocity as

ũ�k� =
i	

k2 �I − k̂k̂� · �ñẑ + ẑñ + c̃ẑẑ� · k , �33�

where k= 
k
 and k̂=k /k. The rate-of-strain and vorticity ten-
sors are then easily obtained as

Ẽ =
i

2
�ũk + kũ�, W̃ =

i

2
�ũk − kũ� . �34�

From Eq. �33�, it can be seen that only the components
of the wave vector that lie in the �ẑ , ñ� plane will result in a
nonzero velocity. Without loss of generality, we can therefore
assume that k lies in this plane and define � as the angle
between k and ẑ: k=k�cos �ẑ+sin �ñ / ñ� �where ñ= 
ñ
�.
With these notations, and after substitution of Eq. �34� into
the linearized equations �29� and �30�, we arrive at

�c̃ = − ik sin �ñ , �35�

�ñ = −
	

2
��� + 1�cos2 � − �� − 1�sin2 ��

��cos 2�ñ − sin � cos �c̃� , �36�

where we have defined �=�+ ik cos �. This is an eigenvalue
problem for the variable �, the solution for which is obtained
as

�� =
1

2
f���cos 2��1 � �1 + 4ik

sin2 � cos �

f���cos2 2�
1/2� , �37�

where f���=−	���+1�cos2 �− ��−1�sin2 �� /2. The growth
rate, or real part of �, is plotted as a function of the wave-
number k in Fig. 1 for a variety of wave angles � and for the
choice of parameters 	=−1, �=1 �the case 	= +1 is ob-
tained by simply changing the sign of Re����.

For k�0 the two growth rates have opposite signs. This
means that there is always a positive growth rate, i.e., sus-
pensions of aligned particles are always unstable to density
and orientation perturbations. This is consistent with particle
simulations, which show an instability for all wave angles �
and wave numbers k.18 In the long-wave limit �k→0�, the
two eigenvalues become

�+ = f���cos 2�, �− = 0. �38�

The first eigenvalue is that previously obtained by Simha and
Ramaswamy,27 who concluded that only certain ranges of
wave angles were subject to an instability. The nature of their
analysis misses the k-dependence and, in particular, the fact
that for k�0 the second eigenvalue �− becomes nonzero
�and oppositely signed as well�. Note that this additional ei-
genvalue has also been found by Pedley.46 At high wavenum-
bers, our theory predicts an increase in growth rate with k: In
a real system, however, one should expect diffusion to stabi-
lize and damp high-wavenumber fluctuations.

FIG. 1. Growth rates Re��� in a suspension of nearly aligned swimming
particles as function of �a� the wavevector k for various wave angles and �b�
the wave angle � for various wavenumbers, obtained from Eq. �37�. Repro-
duced with permission from Ref. 28.
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B. Nearly isotropic suspension

1. Eigenvalue problem

We now consider the stability of a nearly uniform and
isotropic suspension, for which the distribution function can
be written as

��x,p,t� =
1

4

�1 + ���x,p,t�� , �39�

with 

�1. For simplicity, we neglect angular diffusion
�dr	0�, as including it would significantly complicate the
analysis, but we retain translational diffusion. Substituting
Eq. �39� into Eq. �1� and linearizing lead to

���

�t
= − p · �x�� + D�x

2�� + 3�pp:E�, �40�

where we have used Eqs. �14� and �15� for the flux velocities
as well as the antisymmetric property of the vorticity tensor.
The momentum and continuity equations �16� for the fluid
motion also apply for the perturbation variables, with the
following stress tensor:

��p�x,t� =
	

4

�

S

���x,p,t��pp −
I
3
�dp . �41�

Once again, we consider a plane wave perturbation for

the distribution function, ���x ,p , t�=�̃�p ,k�exp�ik ·x+�t�,
and for all other perturbation variables. We solve for the
Fourier amplitude ũ�k� of the fluid velocity as

ũ =
i

k
�I − k̂k̂� · �̃p · k̂ , �42�

and the rate-of-strain tensor is inferred as

Ẽ =
i

2
�ũk + kũ� . �43�

Equations �40�, �42�, and �43� can be combined to yield an

expression for �̃�k ,p�. After some algebra, we find

�̃ =
− 3��k̂ · p�

� + k2D + ik · p
p · �I − k̂k̂� · �̃p · k̂ . �44�

Recalling the definition of the active stress �̃p, this may also
be written as

�̃ = −
3	�

4


�k̂ · p�
� + k2D + ik · p

p · F��̃� , �45�

where we have defined the operator F as

F��̃� = �I − k̂k̂� · �
S

p��p� · k̂��̃dp�. �46�

To obtain an eigenvalue relation, apply F to both sides of Eq.
�45� to yield

F��̃� = −
3	�

4

�

S

�k̂ · p�2

� + k2D + ik · p
�I − k̂k̂� · p

� p · F��̃�dp . �47�

Observe that Eq. �47� is invariant under rotation, so that
without loss of generality we can choose a coordinate system

such that k̂= ẑ. In spherical coordinates with polar axis k̂, we
have p= �sin � cos � , sin � sin � , cos �� and dp=sin �d�d�
with �� �0,2
� and �� �0,
�. With these notations, Eq.
�47� becomes

F��̃� = −
3	�

4

�

0


 cos2 � sin3 �

� + k2D + ik cos �
d�

��
0

2


�cos2 �x̂x̂ + sin2 �ŷŷ� · F��̃�d� . �48�

Performing the integral over � and using the fact that F��̃�
lies in the x̂-ŷ plane �cf. Eq. �46��, we obtain

F��̃� = −
3	�

4
�

0


 cos2 � sin3 �

� + k2D + ik cos �
d�F��̃� , �49�

from which the dispersion relation is inferred as

−
3	�

4
�

0


 cos2 � sin3�

� + k2D + ik cos �
d� = 1. �50�

The integral over � in Eq. �50� may also be performed ana-
lytically, yielding

3i	�

4k
�2a3 −

4

3
a + �a4 − a2�log�a − 1

a + 1
� = 1, �51�

where we have defined a=−i��+Dk2� /k.

2. Eigenmodes

The above analysis shows that the only requirement on

the vector F��̃� is that it lie in the x̂-ŷ plane, i.e., that it is

perpendicular to k̂. Using Eq. �45�, we therefore find that the
eigenmodes for the distribution function are of the form

�̃�k,p� =
�k̂ · p��k̂� · p�

� + k2D + ik�k̂ · p�
, �52�

where k̂� is any unit vector perpendicular to k̂. The spatial
variations in the distribution function are then obtained as

���x ,p , t�=�̃�k ,p�exp�ik ·x+�t�. It should be noted that
the eigenmodes �52� are not a complete basis for fluctuations

in p, as can be seen, for instance, since �̃�k ,p� only includes
the first harmonic in the azimuthal angle �. Therefore, not
every linear perturbation in the distribution function can be
decomposed as superposition of eigenmodes, even when an
eigenvalue exists.

An interesting property of Eq. �52� is that its correspond-
ing concentration field is uniform in space,
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c��x,t� = �
S

���x,p,t�dp = 0, �53�

i.e., the linear stability analysis does not predict the growth
of any concentration fluctuations. We will see, however, in
Sec. IV that concentration fluctuations do occur as a result of
nonlinearities. The corresponding stress tensor, however, is
nonzero. Substituting Eq. �52� into the definition of the ac-
tive particle stress easily shows, by making use of the dis-
persion relation, Eq. �50�, that the active stress eigenmodes
are shear stresses of the form

�̃p = k̂k̂� + k̂�k̂ . �54�

3. Solution of the dispersion relation

The dispersion relation �51�, in which a=−i��+Dk2� /k,
can be solved numerically for ��k� for various choices of the
parameters 	, �, and D. The solution for 	=−1, �=1, and
D=0 �no diffusion� is shown in Fig. 2, where the real and
imaginary parts of � are plotted versus k. In particular, we
observe that at low wavenumbers, Re����0 �positive
growth rate�, and Im���	0, which suggests that low-
wavenumber shear stress fluctuations will amplify exponen-
tially in suspensions of pushers. At higher wavenumbers
�above k�0.17�, Im��� becomes positive, showing that
stress oscillations will occur and amplify. At wavenumber
k�0.55, Re��� becomes zero; beyond this value, the dynam-
ics are no longer described by an eigenfunction, and the

stress fluctuations become damped.47 Including translational
diffusion �D�0� simply shifts the solution for Re��� by
−Dk2, which results in a more rapid damping of the instabil-
ity at high wavenumbers; low wavenumbers, however, al-
ways remain unstable. Rotational diffusion, which is not in-
cluded in the present theory, can also be shown to have a
damping effect and may, in fact, stabilize even low-
wavenumber fluctuations.47 In the case of pullers �	�0�, the
sign of Re��� changes in Fig. 2�a�, which suggests that no
instability takes place in that case: This fact is confirmed in
numerical simulations, as we discuss in Sec. IV.

Insight into the long-wave behavior can be obtained by
seeking an asymptotic solution for ��k�. Expanding the dis-
persion relation for 
k
�1, we arrive at an algebraic equation
for ��k�,

�3 +
	�

5
�2 +

	�Dk2

5
� −

3	�k2

35
+ O�k3� = 0. �55�

We seek a solution in the form: �=�0+�2k2+O�k3�. Substi-
tuting this expansion into Eq. �55�, expanding to O�k2�, and
identifying powers of k, we can solve for �0 and �2 as

�0 = −
	�

5
, �56�

�2 = − D + 15
7 �	��−1, �57�

from which we infer the long-wave solution of Eq. �51�,

� = −
	�

5
+ �15

7
�	��−1 − Dk2 + O�k3� . �58�

As expected, we find that � is real at low wavenumbers and
that Re����0 for 	�0. We also find that Re��� decreases
quadratically for small k, in particular, as a result of transla-
tional diffusion.

A full eigenmode for this system, obtained for k̂= ẑ and

k̂�= x̂ and calculated using Eq. �52� and the numerical solu-
tion of the dispersion relation, is illustrated in Figs. 3 and 4.
Figure 3 shows the perturbation shear stress �xz� and velocity
u��x , t�=ux��z�x̂, as well as the first and second moments of

FIG. 2. �a� Real part Re��� and �b� imaginary part Im��� of the complex
growth rate � as a function of the wavenumber k in a nearly isotropic
suspension of active particles, in the case 	=−1, �=1, and D=0 �no diffu-
sion�, obtained by numerically solving the dispersion relation �51�. Repro-
duced with permission from Ref. 28.

FIG. 3. Unstable eigenmode for a nearly isotropic suspension of pushers
�	=−1, �=1� for wavevector k=0.2ẑ: �a� perturbation shear stress �xz� �z�
and disturbance velocity ux��z�; �b� first and second moments of the distri-
bution function with respect to the director field, �px�� and �px�pz��.
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the distribution function with respect to the director fields,
�px�� and �px�pz��. The full distribution function at various val-
ues of kz=k ·x, within a given wavelength, is shown in Fig.
4.

IV. NONLINEAR SIMULATIONS

A. Simulation method

In this section, we perform numerical simulations of the
kinetic equations of Sec. II to investigate the long-time evo-
lution of the suspensions. In three dimensions, the kinetic
model involves five configuration variables �three spatial
variables and two angles�, rendering simulation intractable.
We therefore restrict our attention to two-dimensional peri-
odic systems, in which the particles are constrained to move
and rotate only in the �x ,y�-plane with direction param-
etrized by an angle �� �0,2
�, and for which the distribu-
tion function � is invariant along the z-direction: ��x ,p , t�
=��x ,y ,� , t� �in particular, p= �cos � , sin � ,0��.

In this case the governing equations are easily integrated
as follows. The fluid flow equations �16� are solved spec-
trally using the fast Fourier transform algorithm by expand-
ing the flow variables in Fourier series and truncating the
series after a finite number of modes �128–256 modes in
each spatial direction were used in the simulations presented
here�. Once the fluid velocity is known, the conservation
equation �1� for the distribution function can be integrated in
time using second-order finite differences for the flux terms
and a second-order Adams–Bashforth time-marching

scheme. Translational and angular diffusions are included in
all simulations to ensure that the distribution function re-
mains bounded �typical values of D=dr=0.025 were used in
most simulations�. Almost all the results presented below are
for suspensions of pushers for which 	=−1, �=1. A few
simulations are also described for suspensions of pullers �	
�0�, but do not exhibit any instability, in agreement with the
predictions of the stability analysis of Sec. III B.

B. Nonlinear dynamics and pattern formation

To study the development of instability and pattern for-
mation in random suspensions, simulations are performed in
which the initial condition is a uniform and isotropic suspen-
sion perturbed as

��x,�,0� =
1

2
�1 + �
i

i cos�ki · x + �i�Pi��� , �59�

where i is a random coefficient of small magnitude �
i

�1�, �i is an arbitrary phase, and Pi��� is a low order poly-
nomial in cos � and sin �. In the results presented below, the
coefficients i were chosen randomly in the interval
�−0.01;0.01�, and the polynomials Pi were third-order poly-
nomials with random O�1� coefficients. The initial random
perturbation used in the simulations is band limited: Typi-
cally only the 15 longest modes are included in Eq. �59�.

The typical evolution of a suspension of pushers is
shown in Fig. 5, where maps of the mean concentration field
c, mean director field n, active particle shear stress �xy

p , and
disturbance fluid velocity u are plotted at various times in a
square box of linear dimension L=50. In particular, this
choice of box dimension ensures that the initial perturbation
spans both unstable and stable modes, with roughly the first
five wavenumbers yielding linearly unstable modes �cf. Sec.
III B�. At t=0, the imposed distribution contains fluctuations
at many length scales, and correspondingly, the mean direc-
tor field only exhibits correlation over very short scales. At
short times, the evolution of the distribution is mainly char-
acterized by the decay of these short-scale fluctuations: Both
the concentration field and the shear stress field become
smoother, but still exhibit weak fluctuations scaling on the
box size. The mean director field and the velocity field also
change quite drastically and quickly become very smooth
and correlated over scales of the order of the box size. At
longer times, both the concentration field and the shear stress
field begin to develop strong fluctuations at long wave-
lengths, typically of the order of the box size, as seen in Figs.
5�b�–5�d�. The director and velocity fields remain correlated
over large scales. These strong fluctuations are not steady in
time: While their magnitude stabilizes as a result of diffu-
sion, the position and shape of the fluctuations keep evolving
in time, with dense regions constantly merging, breaking up,
and reorganizing. In suspensions of pullers, however, none of
these dynamics are observed: In fact, we find that all the
fluctuations decay leading at long times to a uniform isotro-
pic suspension with zero disturbance velocity. Note that this
decay occurs even when the initial perturbation is of large
magnitude.

FIG. 4. �Color online� Unstable eigenmode for the distribution function �
for a nearly isotropic suspension of pushers �	=−1, �=1� for wavevector
k=0.2ẑ: orientation distributions at various positions z in the wave
direction, where the angles � and � are defined by: p
= �sin � cos � , sin � sin � , cos ��.
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In Fig. 5, the director field n and the velocity field u
seem to be correlated in some regions. This is confirmed in
Fig. 6, which shows the spatially averaged contraction �u ·n�
of these two fields, defined as

�u · n��t� = �
V

c�x,t�u�x,t� · n�x,t�dx . �60�

In particular, we find that for pushers, �u ·n�, which is ini-
tially close to zero, grows to reach a plateau at approximately
0.2. This suggests that pushers tend to align in the local
disturbance flow and swim in the direction of the flow. While
alignment with the flow was easy to anticipate since the par-
ticles align in the local shear according to Jeffery’s equation
�15�, the fact that they on average tend to swim in the direc-
tion of the local velocity was a priori unexpected and is an
interesting result. In particular, this preferred alignment and
orientation result in an increase in the effective swimming
velocity for pusher particles, a phenomenon already reported
in our previous particle simulations.18 Note that for pullers
�Fig. 6�b��, �u ·n� rapidly decays to zero, which is simply a
consequence of the quick dissipation of the disturbance flow
since no instability takes place in that case.

The various dynamics observed in Fig. 5 are confirmed
in Fig. 7, which shows the time evolution of several modes

in the Fourier decomposition of the mean concentration field
c, divergence of the concentration-weighted mean director
field �x · �cn�, and active particle shear stress �xy

p . All three
quantities show fairly similar behavior. Initially all Fourier
modes are small and of similar magnitudes. As the simula-
tion progresses, high-wavenumber modes �for instance, k

FIG. 6. Spatially averaged contraction of the velocity and director fields
�u ·n� �Eq. �60��, in typical simulations of �a� pushers �	=−1� and �b� pull-
ers �	=1�, in a square box of linear dimension L=50, using 15 random
initial modes.

FIG. 5. �Color online� Snapshots of the local concentration c, mean director field n, active particle shear stress �xy
p , and disturbance velocity field u at various

times: �a� t=0, �b� t=50, �c� t=100, and �d� t=150. The simulation shown was performed for pushers �	=−1, �=1� in a square box of linear dimension L=50
using 15 random initial modes.
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=2
 /L� �6,0� in Fig. 7� are observed to decay, sometimes
exhibiting oscillations �in particular, in the case of c and
�x · �cn��. This decay of high-wavenumber modes is fol-
lowed by the growth of low-wavenumber modes, which very
quickly dominate the spectrum. At long times these low-
wavenumber modes oscillate, corresponding to the breaking
up and merging of the dense regions mentioned above. An-
other interesting feature observed in Fig. 7 is the time se-
quence for the growth of these various quantities: In all
simulations performed, it is observed that the shear stresses
develop first �in agreement with the results of the linear sta-
bility analysis�, only after which the fluctuations in the di-
vergence of cn and in the concentration field start to grow.

Many of the dynamics observed in Figs. 5 and 7 can be
understood in the light of the stability analysis of Sec. III B.
In particular, we found that high-wavenumber stress fluctua-
tions should decay and oscillate, whereas low-wavenumber
fluctuations are expected to amplify without any oscillations
�Fig. 2�. This is consistent with the observations of Fig. 7�c�
for the active shear stress. The precise evolution of the con-
centration field, however, is not predicted by the linear sta-
bility. It should also be noted that the fact that the longest
wavelength dominates the pattern formation is not simply a
consequence of the linear dispersion relation that predicts
that the longest modes grow the fastest. In fact, simulations
in which only high wavenumbers are present in the initial
distribution function �59� also evolve toward the same state
as a result of nonlinearities, by which high-wavenumber
fluctuations couple nonlinearly to create low-wavenumber
modes.

The evolution of the particle orientations is described
more precisely in Fig. 8, showing the orientation distribution
at an arbitrary point at various times over the course of a
simulation. Initially, the distribution is nearly isotropic, cor-
responding to the initial condition �59�. As the instability
develops, it becomes strongly anisotropic and typically pre-
sents two peaks separated by approximately 180°, which cor-
responds to particles pointing in diametrically opposite direc-
tions. This suggests a local nematic ordering of the particles,
which could have been expected from the shear stress insta-
bility of Sec. III B, since the active shear stress �6� can be
viewed as a nematic order parameter weighted by the local
concentration. However, the two peaks typically have differ-
ent magnitudes, which results in a nonzero net director field
n �i.e., a local polar ordering� as observed above in Fig. 5.
This observation had already been made in our previous
work using direct numerical simulations18 and is key to un-
derstanding the growth of the concentration fluctuations as
explained below.

While the stability analysis of Sec. III B was not able to
predict the evolution of the concentration field �the linear
theory indeed predicts no density fluctuations�, the formation
of the concentration fluctuations at long times can still be
understood by considering Eq. �11�. As noted earlier,
−�x · �cn� is the only source term in the evolution equation
for the concentration field, which is otherwise simply ad-
vected by the disturbance velocity field u and smoothed by
translational diffusion. We should therefore expect any ob-
served density fluctuations to arise due to this term. This can
be confirmed by examining maps of the concentration field c
and of �x · �cn� at a given time during a simulation, as shown
in Fig. 9. Specifically, Fig. 9 shows these two fields at t
=50 during the initial growth of the fluctuations. We indeed
find that both fields exhibit similar spatial patterns, and a
clear anticorrelation between c and �x · �cn� can be observed,
with convergent regions in the concentration-weighted direc-
tor field occurring in the more concentrated areas.

The formation of strong density fluctuations in active
suspensions had been predicted previously by Simha and
Ramaswamy27,38 and also observed in our previous direct
numerical simulations.18 The present analysis and simula-

FIG. 7. Time evolution of the magnitude of various Fourier modes of the
mean concentration field c, divergence of the concentration-weighted direc-
tor field �x · �cn�, and active particle shear stress �xy

p in the simulation of
Fig. 5.

FIG. 8. Orientation distribution at an arbitrary point x0 at various times over
the course of a simulation. Initially the distribution is nearly uniform �iso-
tropic distribution�, but at later times it becomes double peaked, with both
peaks separated by approximately 180° �opposite directions�.
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tions allow us to explain these density fluctuations as the
nonlinear consequence of the shear stress instability. More
precisely, the shear stress instability results in the local align-
ment of the particles over large length scales. While this
alignment in principle may only be nematic, the randomness
in the suspension always results in local polar ordering, i.e.,
a nonzero mean director field n which varies smoothly over
large length scales �see Fig. 5, for instance�. The resulting
concentration-weighted director field cn is not divergence-
free, in general, and since it determines the local direction of
the swimming of the particles, it will cause an aggregation of
particles in regions where �x · �cn��0 and a depletion in
regions where �x · �cn��0, hence the formation of density
gradients �cf. Eq. �11��. The spatial gradients are then stabi-
lized by translational diffusion, while the local alignment is
stabilized by rotational diffusion, and the magnitude of the
density fluctuations at long times is determined by the
balance of these various effects �particle aggregation and
diffusion�.

At long times, the configuration of the suspension is not
steady but constantly fluctuates in time. In particular, we
observe that the dense regions are typically in the form of
bands as shown in Figs. 5�c� and 5�d�. As these bands get
denser, they also become unstable and fold onto themselves
as is taking place in Fig. 5�d�. After folding, they break up
and reorganize as new bands in the transverse direction.
These dynamics repeat in time in a quasiperiodic fashion,
which underlies the slow oscillations in the Fourier modes of
the active shear stress in Fig. 7�c�. While the precise mecha-
nism leading to the formation and breakup of these bands is
not entirely clear, insight can be gained by considering the
disturbance flow field, which is shown at two different times
in Fig. 10. In Fig. 10�a�, shear layers can be observed and
surround the dense bands in the concentration field. These
layers, however, become unstable and evolve into vortices
which cause the breakup of the concentration bands. As the
bands reform in the transverse direction, these dynamics re-
peat in time. An interesting observation is the qualitative
similarity between these banded states and the eigenmodes
of the linearized problem �compare Fig. 10�a� to Fig. 3�, with
the caveat that the linear eigenmodes are not associated with
concentration fluctuations. Note also that very similar dy-
namics, with the formation of concentration bands that form

and break up in time, had been observed previously in our
direct numerical simulations of periodic suspensions of self-
propelled rods.18 This suggests that these special configura-
tions play a fundamental role in the dynamics of these sys-
tems, and we speculate that this phenomenon may also be
analogous to the instances of “jetting” previously reported in
experiments on bacterial suspensions.10,12

An interesting interpretation of the dynamics can be ob-
tained in terms of the input power generated by the swim-
ming particles in the suspension. Recalling Eqs. �22� and
�17�, we rewrite Eq. �22� as

�
V

2E:Edx = − �
V

dx�
S

dp�	p · E · p���x,p,t� . �61�

Again, the left-hand side in Eq. �61� is the rate of viscous
dissipation in the fluid, balanced on the right-hand side by
the active input power generated by the particles. This allows
us to define a local active power density p�x , t� as

p�x,t� = − 	�
S

�p · E · p���x,p,t�dp , �62�

from which the global input power P�t� is inferred as

P�t� = �
V

p�x,t�dx . �63�

Note that the definition �62� for the power density is consis-
tent with a configuration average of the power generated by
self-propelled particles in a micromechanical model for
swimming.48

An interesting consequence of Eq. �61� is that for push-
ers �	�0�, the input power is largest when the particles are
aligned with the axes of extension of the rate-of-strain tensor.
This alignment occurs naturally for any particle whose angu-
lar dynamics are governed by Jeffery’s equation �15�, and we
should therefore expect the input power to grow in time in
agreement with the existence of an instability. Conversely, in
the case of pullers �	�0�, we expect any disturbance flow to
dissipate rapidly, as otherwise the alignment of the particles
with the flow would lead to p�x , t��0 and violate the re-
quirement that the rate of viscous dissipation must remain
positive in Eq. �61�.

FIG. 9. �Color online� Local concentration field c and divergence of the
concentration-weighted director field �x · �cn� at time t=50 in the simulation
of Fig. 5. Regions of high concentration are correlated with regions of
negative �x · �cn�, suggesting that the concentration fluctuations are driven
by evolution of the director field through the swimming of the particles.

FIG. 10. Disturbance velocity field at two successive times �a� t=90 and �b�
t=95 during a simulation. At t=90, shear layers surround the dense concen-
tration bands. These layers become unstable as visible at t=95, leading to
the formation of vortices that cause the breakup of the bands.
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These observations are indeed confirmed by simulations.
Figure 11 shows the evolution of the global input power P�t�
during a simulation for both pushers and pullers. As ex-
pected, we find that P�t� in suspensions of pullers quickly
decays to zero as the disturbance flow dissipates. In suspen-
sions of pushers, P�t� increases with time as the instability
takes place, to reach a plateau at long times. It also exhibits
oscillations which correspond to the quasiperiodic dynamics
described above for the particle configurations. Note also
that the power density p�x , t� is highly nonuniform in space.
This is illustrated in Fig. 12�a�, which shows p�x , t� as a
function of space at a given time during a simulation of
pushers. Figure 12�b� also shows the corresponding plot for
the largest eigenvalue �max�x� of the rate-of-strain tensor E.
As expected from the definition of the power density, we find
that p�x , t� and �max�x� are strongly correlated, which con-
firms that the regions where the strongest power is generated
are those where fluid stretching is the strongest.

As we showed in Sec. II C, it is the global input power
P�t� that drives increases in fluctuations, interpreted in terms
of the total system entropy S�t�, which itself grows accord-
ing to Eq. �23�. The system entropy is shown in Fig. 13 for
both suspensions of pushers and pullers. As expected, we
find that S�t� grows in the suspension of pullers as the insta-

bility takes place. By t=150 the entropy growth has satu-
rated, and the system has presumably entered a state of sta-
tistical equilibrium where the active input power is balanced
by diffusive processes �cf. Eq. �23��. In suspensions of pull-
ers, however, S�t� quickly decays as no instability takes
place and becomes almost zero at steady state, which corre-
sponds to a homogeneous isotropic suspension.

All the simulation results presented so far have been
obtained in a relatively large simulation box of linear dimen-
sion L=50 using 15 initial modes, spanning both stable and
unstable wavenumbers according to the stability analysis of
Sec. III B. Based on this stability analysis, we expect the
dynamics to change depending on L, as the simulation size
indeed sets the scale for the longest and most unstable modes
in the system. Simulations in boxes of other dimensions were
therefore also performed. In relatively small boxes, we find
that the instability disappears altogether, which corresponds
to the case where the smallest wavenumber �or longest wave-
length� falls beyond the stability limit found in Fig. 2�b�: In
that case the dynamics are damped even in the case of push-
ers, and the disturbance flow introduced by the initial condi-
tion simply dissipates.

Qualitatively different dynamics are, however, observed
when the system size is chosen to be near the stability limit.
In that case, based on the stability analysis of Sec. III B, we
expect only the very few longest modes to be unstable and to
exhibit oscillations. This is indeed observed in simulations,
as depicted in Fig. 14: In a box of dimension L=17.5, in
which only one mode is linearly unstable, we observe the
formation of a low-wavenumber standing wave for the con-
centration field, which shows an oscillatory behavior in time
but never evolves toward the complex dynamics observed in
larger boxes �Fig. 5�. In particular, the band formation de-
scribed above is not observed, even at very long times. The
quasiperiodic nature of the dynamics in these standing waves
is confirmed in Fig. 15, which shows the evolution of two
low-wavenumber modes in the Fourier decomposition of the
concentration field in the simulation of Fig. 14: The spectrum
is dominated by the k=2
 /L� �1,1� mode, which oscillates
periodically and grows in time as a result of the stress insta-
bility; at long times its magnitude becomes stabilized by
diffusion.

FIG. 11. Global input power P�t� �Eq. �63�� as a function of time in sus-
pensions of �a� pushers �	=−1� and �b� pullers �	=1�.

FIG. 12. �Color online� �a� Input power density p�x� and �b� largest eigen-
value �max�x� of the rate-of-strain tensor E as a function of position at t
=100 in a suspension of pushers �	=−1�. The simulation was performed in
a box of linear dimension L=50 with 15 random initial modes.

FIG. 13. Total system entropy S�t� �Eq. �18�� as a function of time in
suspensions of �a� pushers �	=−1� and �b� pullers �	=1�.
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C. Fluid mixing

The dynamics described in Sec. IV B, by which concen-
trated bands grow, become unstable, and break up to reform
in the transverse direction, suggest that efficient convective
mixing may be taking place. To investigate this further, we
consider the evolution of a passive scalar field s�x , t� which
is convected by the disturbance velocity u as follows:

�s

�t
= − u�x,t� · �s + d�2s , �64�

where the diffusive term is added to smooth gradients at
short scales and may represent the effects of molecular dif-
fusion. Equation �64� was integrated numerically in time us-
ing a semi-implicit fully spectral code, starting from the fol-
lowing initial condition:

s0�x� = sin�2
y

L
� . �65�

The evolution of the scalar field during a representative
simulation is shown in Fig. 16. At short times, little mixing
occurs as the disturbance flow in a nearly uniform and iso-

tropic suspension is very weak. However, as the instability
takes place, the disturbance flow becomes stronger and
causes the repeated stretching and folding of fluid elements
along the direction of the concentration bands. At t=200,
patches of uniform color are still visible, albeit much smaller
than at earlier times as a few stretch-fold cycles have already
taken place. At t=300, most of the patches have disappeared
and fairly good mixing has already been achieved. Figure 17
also shows the evolution of the maximum value smax of the
scalar field for the same simulation. At short times before the
onset of the instability, smax only decreases very slowly as a
result of the scalar diffusivity d. As convective mixing be-
gins to take place, smax starts decreasing much more rapidly
as stronger spatial gradients appear and allow diffusion to
smooth s �note than in the case d	0, smax would be expected
to remain 1�.

To assess the actual mixing in the simulation of Fig. 16
more quantitatively, we calculate the following multiscale
norm for the scalar field s:

FIG. 14. �Color online� Snapshots of the local concentration field c�x� at
various times: �a� t=200, �b� t=400, �c� t=600, and �d� t=800, in a square
box of linear dimension L=17.5, in which we used 15 random modes in the
initial condition. With this box dimension, the solution is a two-dimensional
standing wave, the amplitude of which grows with time.

FIG. 15. Time evolution of magnitude of various Fourier modes of the
concentration field c�x� in the simulation of Fig. 14.

FIG. 16. �Color online� Fluid mixing by an active suspension of pushers
�	=−1�. The figure shows the configuration of a passive scalar field in the
suspension at different times: �a� t=0, �b� t=100, �c� t=200, and �d� t
=300 over the course of a simulation. In this simulation, the scalar diffusiv-
ity was set to d=3�10−4. The simulation was performed in a box of linear
dimension L=50 with 15 random initial modes.

FIG. 17. Evolution of the maximum value smax of the scalar field s�x , t� in
the simulation of Fig. 16.
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�s� = ��
k

1

�1 + k2�1/2 
sk
21/2

, �66�

where sk denotes the Fourier coefficient at wavevector k in a
Fourier expansion of the scalar field. In particular, �s� can be
shown to be mathematically equivalent to the mixing norm
defined by Mathew et al.49,50 This norm is shown as a func-
tion of time in Fig. 18, and we find that in suspensions of
pushers it decays with time to become almost zero at long
times, an indication of good mixing. More specifically, we
find that the decay is exponential, with an exponent of ap-
proximately −4.8�10−3 in the case d=6�10−4. This expo-
nent depends weakly on the chosen value of the scalar dif-
fusivity d and is slightly higher for higher diffusivities as
expected. Note, however, that up to t=400 the decay of �s� is
mainly the consequence of convective mixing and not of
diffusion, since no significant decrease in smax has occurred
yet. Figure 18 also shows the evolution of �s� in a suspension
of pullers �for the same simulation parameters�, and no sig-
nificant decay of the norm is observed, suggesting that no
mixing occurs: This was expected as no instability takes
place in suspensions of pullers and any large-scale flow is
damped very rapidly before it can significantly affect the
scalar field.

Fluid mixing in active suspensions has been reported in
experiments and may present uses for technological applica-
tions in which efficient mixing is required but cannot be
achieved using inertia.9 Our simulations cast light on one
origin of mixing on the macroscopic scale, which is related
to the constant breakup and merging of concentrated regions
as a consequence of the active particle stress instability.

V. CONCLUDING REMARKS

We have used a kinetic model to investigate the dynam-
ics in dilute suspensions of swimming particles. The model,
based on a conservation equation for the particle positions
and orientations, coupled with fluid flow equations in which
the effect of the particles is represented by means of an ef-
fective active particle stress tensor, generalizes phenomeno-
logical models previously proposed by others.27,38 The model
was also shown to simplify in situations where particles are
polar ordered locally, in which case it reduces to two evolu-
tion equations for the local concentration and director fields
�both functions of position and time only�.

Based on this model, we were able to analyze the linear
stability of both aligned and isotropic suspensions. In the
aligned case, which had previously been considered by
Simha and Ramaswamy,27 we found that the suspensions are
always unstable at finite wavelengths as a result of hydrody-
namic interactions, in agreement with observations from di-
rect numerical simulations.18 This result differs from the pre-
diction of Simha and Ramaswamy, who had found that the
suspensions were unstable only for some range of wave ori-
entations with a growth rate that did not depend on wave-
number. The reason our model predicts a different result is
that it includes full coupling between orientations and local
concentration, which had been omitted in the long-wave
analysis of Simha and Ramaswamy and results in a different
dispersion relation. As the wavenumber goes to zero �infinite
wavelength perturbations�, the results of Simha and
Ramaswamy are recovered by our model.

The case of an isotropic and uniform suspension had not
been addressed in detail previously, and a linear stability
analysis shows that an instability occurs in these suspensions
as well. Rather than pertaining directly to the mean concen-
tration or director fields, the instability concerns the active
particle stress exerted by the particles on the fluid. It is found
that active shear stresses are unstable at long wavelengths in
the case of pushers �	�0�. More specifically, low-
wavenumber fluctuations are expected to amplify exponen-
tially at short times. Intermediate wavenumbers should am-
plify as well, albeit at a lower rate, and may exhibit
oscillations. Finally, high-wavenumber fluctuations will de-
cay while also exhibiting oscillations. In particular, accord-
ing to this theory, the longest wavelengths in the system �set
by the dimensions of the container� are expected to grow the
fastest and therefore dominate the dynamics.

The long-time evolution of the suspensions and, in par-
ticular, the pattern formation of the instabilities are not pre-
dicted by the linear theory and were addressed using nonlin-
ear simulations of the kinetic equations in two dimensions.
The results of the linear stability analysis in the isotropic

FIG. 18. Time evolution of the multiscale mixing norm �s� defined by Eq.
�66� for a passive scalar field convected by the disturbance velocity field in
an active suspension: �a� linear plot and �b� semilog plot. Results for both
suspensions of pushers and pullers are shown. Mixing �as demonstrated by
the exponential decay of the norm� is only found to occur in the case of
pushers.
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case were confirmed, and large-scale shear stress fluctuations
are indeed observed to grow. These correspond to a local
alignment of the particles �since the particle active stress is
directly related to the nematic order parameter in the suspen-
sion�, which manifests itself by the formation of large-scale
correlated regions in the mean director field. Because the
mean director field, which determines the swimming direc-
tion of the particles relative to the fluid velocity, is not
divergence-free, particles aggregate in regions of negative
�x · �cn�, resulting in strong concentration fluctuations over
large length scales, in agreement with previous predictions27

and experimental observations.12 These fluctuations are dy-
namically unstable and constantly break up and merge in
time in a quasiperiodic fashion. An important consequence of
these flows is the efficient fluid mixing that results in agree-
ment with previous experiments and simulations:9,16 in the
present work we characterized mixing by looking at the evo-
lution of a passive scalar and evaluating its level of mixed-
ness using a multiscale mixing norm. In particular, we found
that efficient mixing takes place in suspensions of pushers
�such as E. Coli or B. Subtilis� but should not occur in sus-
pensions of pullers �such as Chlamydomonas�: This predic-
tion has yet to be tested experimentally, as almost all previ-
ous studies have used pusher particles.

The present study has focused on bulk suspensions, in
which boundary effects and external fields or flows can be
neglected. This allowed us to identify intrinsic mechanisms
leading to the formation of large-scale inhomogeneities in
active suspensions in a general and idealized setting. Other
interesting effects are known to occur when such suspensions
are placed in confined geometries16,18 or in a gravitational
field:20,12 these situations could also be tackled numerically
using our kinetic model, by solving the governing equations
with the appropriate boundary conditions and by introducing
additional terms capturing the effects of external fields such
as gravity on the particle and fluid dynamics. Our current
model is also limited to dilute suspensions in which interac-
tions between particles are adequately captured by a mean-
field description of the disturbance flow: In more concen-
trated suspensions, other effects related to near-field
interactions may become relevant and would require im-
provements to our formulation.51
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