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Electrohydrodynamic drift of a drop away from an insulating wall
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An isolated charge-neutral drop suspended in an unbounded medium does not migrate
in a uniform dc electric field. A nearby wall breaks the symmetry and causes the drop to
drift towards or away from the boundary, depending on the electric properties of the fluids
and the wall. In the case of an electrically insulating wall and an electric field applied
tangentially to the wall, the interaction of the drop with its electrostatic image gives rise to
repulsion by the wall. However, the electrohydrodynamic flow causes either repulsion for
a drop with R/P < 1, where R and P are the drop-to-medium ratios of conductivity and
permittivity, respectively, or attraction for R/P > 1. We experimentally measure droplet
trajectories and quantify the wall-induced electrohydrodynamic lift in the case R/P < 1.
Numerical simulations using the boundary integral method agree well with the experiment
and also explore the R/P > 1 case. The results show that the lateral migration of a drop in a
uniform electric field applied parallel to an insulating wall is dominated by the long-range
flow due to the image stresslet.

DOI: 10.1103/l8pb-9qxk

I. INTRODUCTION

Electric fields are widely used to manipulate particles such as colloids [1–4], droplets [5,6], cells
and cellular mimetics [7–9] or to assess properties of biomimetic membranes [10,11]. In many of
these applications, the particles are close to boundaries. In an applied uniform electric field, even
a charge-free particle can drift due to the interaction of the particle induced dipole and its image
[12–16]. This dielectrophoretic (DEP) interaction is attractive with an electrode, and repulsive with
an insulating wall. In the far field, the induced migration velocity decreases with the inverse fourth
power of the distance to the boundary.

Electrohydrodynamic (EHD) flows induce interaction that is longer-ranged compared to the DEP
one, decaying in the far field as the inverse second power of the distance to the boundary. To un-
derstand this interaction, it is useful to consider an analogy with the induced-charge electro-osmotic
(ICEO) flow around a polarizable particle, where fluid is drawn along the field axis and expelled
radially in the equatorial plane. Near a wall, this flow pumps fluid into the gap between the particle
and the wall, creating an effective repulsion [14,17]. The flow around a droplet in a uniform electric
field exhibits a pattern similar to the ICEO [18] and thus a drop is expected to migrate relative to
a nearby wall. However, unlike an ideally polarizable particle, the direction of droplet migration
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depends on the electric properties of the droplet and suspending fluid. The electrohydrodynamic
flow is driven by electric shear stresses due to induced surface charges [18,19]. For a drop in an
unbounded medium and subjected to a uniform electric field, the resulting flow is axisymmetric
about the applied field direction. In the case of a spherical drop, the interfacial velocity is

u(r = a, θ, φ) = βT sin 2θ θ̂ , (1)

where (r, θ, φ) are the spherical coordinates, with θ being the angle away from the applied field
direction, E0 = E0ẑ, and

βT = 9εE2
0 a

10μ

R − P

(1 + λ)(R + 2)2 , (2)

a is the drop radius, and λ = μd/μ is the viscosity ratio between the drop and suspending fluid. The
direction of the surface flow is determined by the difference of the conductivity ratio (R = σd/σ)
and the permittivity ratio (P = εd/ε) between the drop and the suspending fluid. If R/P < 1, the
surface flow is from pole to equator, i.e., the fluid is drawn in at the poles and pushed away from
the drop at the equator. The flow direction is reversed for R/P > 1. Accordingly, by analogy with
the ICEO effect on a particle near an insulating wall, the EHD flow is expected to repel a droplet
with R/P < 1 and attract one with R/P > 1.

To estimate the droplet migration velocity, we consider the far field of the unbounded EHD flow,
which is a stresslet flow,

u(r) = βT (−1 + 3 cos2 θ )
a2

r2
r̂. (3)

To satisfy the boundary conditions at the wall, a reflection to this velocity is introduced. Thus, for a
droplet far from the plane, the leading order droplet migration velocity is that of the flow velocity of
the stresslet image system evaluated at the position of the droplet; in particular, the drop migration
velocity UEHD normal to a rigid wall due to the electrohydrodynamic flow is proportional to the
stresslet component Snn in the direction of the plane unit normal [20],

UEHD = − 9Snn

64πμh2
, (4)

where h is the distance from the droplet center to the wall. In the configuration described in Fig. 2,
Snn = 8πμβT a2/3 and the corresponding migration velocity is

UEHD = − 1

h2

(
εE2

0 a3

μ

)[
27(R − P)

80(1 + λ)(2 + R)2

]
. (5)

The velocity induced by the electrohydrodynamic flow decays more slowly compared to the
migration velocity due to the DEP force [6,21], which is given by

UDEP = 1

h4

(
εE2

0 a5

μ

)[
3(1 + λ)

8(2 + 3λ)

(
1 − R

2 + R

)2]
. (6)

Note that Eqs. (5) and (6) are far-field descriptions of the drop velocity in the limit of no deformation
and negligible surface-charge convection.

In this paper, we test these theoretical predictions using a combination of experiment and
numerical simulations.

II. MATERIALS AND METHODS

A. Experiments

A polydimethylsiloxane (PDMS, hereafter referred to as silicone oil) drop is immersed in a castor
oil medium, both obtained from Sigma-Aldrich. The material properties are summarized in Table I.
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TABLE I. Material properties for the leaky dielectric drop (silicone oil) and medium (castor oil) used in
this study.

Density, ρ Conductivity, σ Viscosity, μ tEHD, μ

εE2
0

tc, ε

σ

Material (kg/m3) Relative permittivity, εr (pS/m) (Pa s) (s) (s)

Silicone oil 961.08 1.70 1.2 0.047 12.54
Castor oil 958.46 2.0 45 0.66 0.25–2.0 0.39


ρ = 2.62 kg/m3 P = 0.85 R = 0.027 λ = 0.07

The density of the fluids is measured directly from the weight of a known volume of the liquids.
Viscosity values are measured with a TA Instruments Discovery HR-30 rheometer. Permittivity
values are measured using a rheoimpedance spectroscopy stage and a 40 mm parallel plate for
a Discovery HR-30 rheometer obtained from TA Instruments connected to a Keysight E4990A
Impedance Analyzer. Conductivity values were measured in a previous work [22] and the reported
values correspond to permittivity ratio P = 0.85, conductivity ratio R = 0.027, and viscosity ratio
λ = 0.07. The material properties are validated by comparing the steady-state shape deformation
of a silicone oil drop in castor oil with Taylor’s small deformation theory [18] in the limit of weak
electric fields; see Fig. 1. The deformation parameter D is used to quantify the drop’s deviation from
a spherical shape and is defined as

D = l − b

l + b
, (7)

where l and b denote the drop’s major axes parallel and perpendicular to the applied electric field,
respectively.

The droplet dynamics in the electric field involves processes occurring on different time scales.
Of particular interest is the time scale of the electrohydrodynamic flow tEHD = μ/εE2

0 . The con-
duction of charges is dictated by the charge relaxation time tc = ε/σ, while the viscocapillary time
scale tγ = μa/γ governs the drop shape relaxation. The comparison of these time scales defines the

FIG. 1. Oblate drop deformation as a function of the electric capillary number. The red markers show the
experimental results and the blue line is from Taylor’s small deformation theory [18]. The error bar shows the
standard deviation from three experiments. The droplet radius is a = 1.8 mm.
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dimensionless parameters

CaE = tγ
tEHD

= ε a E2
0

γ
, ReE = tc

tEHD
= ε2 E2

0

μσ
. (8)

The electric capillary number CaE measures the relative strength of electric forces against surface
tension, while the electric Reynolds number ReE determines the significance of surface charge
convection relative to Ohmic conduction.

The silicone oil/castor oil system is commonly used in electrohydrodynamic studies due to the
relatively small density difference between the two materials, with 
ρ/ρ ∼ O(10−3). This density
difference results in drop migration due to buoyancy on a time scale that is significantly longer than
the electrohydrodynamic time scale in our system, with tEHD/tb ∼ O(10−2) at most. The buoyancy
time scale, tb = 3μ

2ag
ρ
( 2+3λ

1+λ
), is estimated from the Hadamard-Rybczynski settling velocity [23].

Finally, the inertial-viscous Reynolds number, Re = ρa2εE2
0 /μ2, is estimated, using typical mate-

rial properties and experimental electric field strengths, to be Re ∼ O(10−3). Consequently, inertial
effects are negligible in this system.

The experimental setup consists of a rectangular chamber formed by four glass plates mounted
in a 3D-printed base. Two opposing sides (75 mm × 50 mm) are made from indium-tin oxide (ITO)
coated glass (Delta Technologies), allowing the plates to serve as transparent electrodes. The other
two plates (75 mm × 25 mm) are nonconductive, providing visual access to the experiment and
create d = 25 mm spacing between the electrodes. A rectangular Teflon insert (thickness 12.7 mm)
is placed at the base of the chamber, serving as the insulating wall. Attached to the ITO-coated glass
are high-voltage wires connected to an Ultravolt 40A12-P4 high-voltage converter powered by an
Agilent E646A dc power supply.

In the experiments, a constant dc voltage V is applied to generate a uniform electric field of
strength E0 = V/d . In this study, the strength of electric field is varied between 1.37 kV/cm and
3.8 kV/cm. The trajectories of the drop are recorded using a Thorlab DCU224M camera with
Navitar Zoom 7000 lens collecting images at 15 frames per second.

The experiment is prepared by injecting a silicone oil drop of radius a ∼ 1.5–2 mm into the
chamber filled with castor oil. Due to the slight density mismatch in the materials (Table I), the drop
slowly sediments towards the Teflon base. When it gets close to the base, at a distance h0, the signal
generator is switched on to apply the voltage, providing a constant dc electric field. The ensuing
motion of the drop is monitored for approximately 30 s and saved as a video.

Figure 2 shows snapshots of a drop drifting away from the wall. The application of the electric
field causes the drop to deform oblately, taking the appearance of an ellipse from the perspective
of the camera. The droplet trajectories are calculated using MATLAB to track the position of the
ellipse center as a function of time, creating a data set of the drop height relative to the wall: h (mm),
as a function of time, t (s). Time t = 0 is defined as the frame in which the drop just begins to lift
off from the wall.

B. Numerical simulations

This section presents the governing equations used in the numerical simulations, expressed
in nondimensional form. The characteristic quantities used for nondimensionalization are length
a, time tc = ε/σ , velocity a/tEHD, pressure εE2

0 , charge εE0, and electric potential a E0. All
equations presented hereafter are expressed in these dimensionless terms. We consider a neutrally
buoyant drop of leaky dielectric fluid occupying a volume V −, immersed in a semi-infinite body
of another leaky dielectric fluid V +, positioned near a flat wall. The system is subject to a uniform
electric field oriented parallel to the wall. Following the Taylor-Melcher leaky dielectric model
[19], we assume that any free charge in the system is confined to the interface ∂V and the bulk of
the fluids remains electroneutral. Consequently, the electric potential within the bulk is governed by
Laplace’s equation. The electric problem can be formulated in an integral form [25–27]. For every
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FIG. 2. Droplet migrating away from an insulating wall under an electric field applied parallel to the
boundary. The figure shows experimental images (panels 1–4), see video [24], and a simulation result (last
panel on the right) for a drop with (R, P, λ) = (0.027, 0.85, 0.07) migrating away from an insulating wall
in an electric field, applied tangentially to the wall, corresponding to an electric capillary number CaE = 0.43.
The color on the drop from the numerical simulations represents the induced surface charge, while the overlaid
vectors illustrate the interfacial velocity field.

x0 ∈ V ±, ∂V ,

ϕ(x0) = −x0 · E0 −
∫

∂V
n · [[∇ϕ(x)]]Gw(x0; x) ds(x), (9)

where Gw(x0; x) = (4πr)−1 + (4π r̃)−1 is the Green’s function describing the electric potential due
to a point charge near an insulating wall located at xw = 0. Here, x̃0 is the mirror image of x0 with
respect to the wall, with r = x0 − x, r = |r| and r̃ = x̃0 − x, r̃ = |r̃|. The operator [[g]] := g+ − g−
denotes the jump in any variable g across the interface ∂V . According to Gauss’s law, the surface
charge density is related to the jump in the normal electric field across the interface as q(x) =
n · (E+ − PE−), where x ∈ ∂V . Taking the gradient of Eq. (9) with respect to x0 and considering
the jump across the interface, we derive an integral equation for the jump in the normal electric
field. For x0 ∈ ∂V ,

1

2
[[En(x)]] = En

0 (x0) −
∫
−

∂V
[[En(x)]][n(x0) · ∇0Gw] ds(x). (10)

The surface charge evolves due to bulk Ohmic and convective surface currents, satisfying the
conservation equation

∂t q + n · (E+ − RE−) + ReE∇s · (qu) = 0, x ∈ ∂V, (11)

where ∇s = (I − nn) · ∇ denotes the surface gradient operator.
In the absence of inertial and buoyancy effects, the velocity and pressure fields are governed

by the Stokes and continuity equations. The flow problem is then recast as a boundary integral
equation [28,29]. For every x0 ∈ ∂V ,

u(x0) = −K
∫

∂V
[[ f H(x)]] · Gw(x0; x) ds(x) + (1 − λ)K

∫
−

∂V
u(x) · Tw(x0; x) · n(x) ds(x), (12)

where K = 1/[4π (1 + λ)]. Here, Gw(x0; x) is Blake’s Green’s function for the flow due to a unit
point force near a plane wall and Tw(x0; x) is the corresponding stress tensor [30,31].
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FIG. 3. Comparison between the migration velocity computed numerically and theoretically from
Eqs. (5) and (6). Migration velocity as a function of distance from the wall for a drop with (R, P, λ) =
(0.027, 0.85, 0.07) and (CaE, ReE ) = (0.14, 0.19) with and without charge convection. Results from bound-
ary integral simulations are compared with the theoretical predictions from Eqs. (5) and (6). The drop is initially
positioned at h0/a = 1.1 in the simulations.

The balance of external and internal forces at the interface is governed by

[[ f H]] + [[ f E]] = Ca−1
E

(∇s · n) n, x ∈ ∂V. (13)

This dynamic boundary condition ensures that the jump in hydrodynamic and electric tractions
is balanced by capillary forces, assuming uniform surface tension (∇sγ = 0). Hydrodynamic and
electric tractions are expressed in terms of the Newtonian and Maxwell stress tensors, respectively:

[[ f H]] = n · [(−pI + (∇u + ∇uT ))+ − (−pI + λ(∇u + ∇uT ))−], (14)

[[ f E]] = n · [(
EE − 1

2 E2I
)+ − P

(
EE − 1

2 E2I
)−]

. (15)

Finally, the drop’s shape evolves according to the normal velocity at the interface:

∂t x = ReE (u · n)n, x ∈ ∂V. (16)

The velocity of the drop’s center of volume, U c, is calculated as

U c(t ) = 1

Vd

∫
V −

u dv = 1

Vd

∫
∂V

x (n · u) ds, (17)

where Vd is the drop volume. In our system, the velocity is aligned with the x axis, such that
U c = Uc ex.

We numerically solve Eqs. (10)–(13) and (16) using a spectral boundary integral solver developed
for electrohydrodynamic flows in viscous drops [32,33]. Figure 2 compares snapshots of a drop
migrating away from the wall in experiments and simulations, with good agreement between the
two. Figure 3 provides a more precise validation of the numerical method. It illustrates the evolution
of the droplet migration velocity upon application of the field obtained from simulations. After an
initial transient, due to droplet deformation and polarization, the velocity approaches the theoretical
result (5). We performed two sets of simulations: one that fully accounts for charge conservation as
described in Eq. (11) and another in which the convective term is neglected. The results show that
charge convection has little impact on the migration velocity. Consequently, charge convection is
omitted in the simulations for the remainder of this study. At higher electric field strengths, however,
the role of charge convection becomes more pronounced. For oblate drops with low viscosity ratios,
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EHD

FIG. 4. Droplet drift away from an insulating wall. Droplet height above the wall as a function of time at
increasing values of the electric field represented by the electric capillary number CaE = εaE 2

0 /γ , for a droplet
of radius a = 1.90 mm. The dimensional trajectories are shown in (a), where the lines and error bars show
the average migration height and total error from three different experiments combined with the error due to
optical distortion and contour detection, respectively. The nondimensionalized trajectories are shown in (b).

it is known that charge convection can generate steep charge gradients, leading to charge density
shocks [32,34,35] resulting in equatorial streaming [36–38] or electrorotational instabilities [39–41].
In the experiments, however, the range of CaE corresponds to values of ReE from 0.2 to 1.53, well
below the conditions for such instabilities to occur.

III. RESULTS AND DISCUSSION

A. Oblate drops

Figure 4 shows the drift of the leaky dielectric drop away from the wall, demonstrating the
existence of the migration phenomenon and indicating that the migration speed increases with
capillary number (and therefore with electric field strength, CaE ∼ E2

0 ). Figure 4(a) shows the
dimensional trajectories, while the nondimensional trajectories are shown in Fig. 4(b).

In Figs. 5(a) and 5(b), the trajectories of two drop sizes a = 1.46 mm and 1.90 mm, respectively,
from experiments, subject to electric fields from E0 = 1.37 kV/cm to 3.8 kV/cm, are plotted as
solid lines on a log-log scale, with the elevation h (distance between the drop center and the
wall) and time t nondimensionalized by the drop radius a and by the electrohydrodynamic time
tEHD = μ/εE2

0 , respectively. The color indicates the value of the electric capillary number CaE ,
which varies from CaE = 0.1 to 1. The cube of the initial position is subtracted from the cube
of the distance from the wall and has been plotted as a function of time, which eliminates the
dependence on the initial location. The EHD theory of Eq. (5) is plotted as a black dashed line.
The long-term behavior of the experimental trajectories is well matched by the theory; however,
the velocity in the near-wall region is overpredicted by Eq. (5)—likely due to near-wall effects
not accounted for in the theory, including non-negligible contributions of higher-order images. The
droplet trajectories computed from numerical simulations are also plotted as solid lines in Fig. 5(c),
showing favorable agreement with both the theory and experiments. Experimental trajectories for
CaE = 0.32 and CaE = 0.89 are also plotted as circular markers in Fig. 5(c) to demonstrate this
agreement. The choice to plot this in a log-log scale was made for two reasons: (1) it more clearly
highlights the long term power-law scaling and (2) it collapses the data for experiments in which the
EHD time, which scales with E2

0 , varies over a wide range (from 0.25 s to 2 s). In the simulations,
the drop is initially positioned at h/a = 1.1 with zero charge. Consequently, its early migration is
primarily driven by DEP interactions at initial times. As charge accumulates on the drop’s surface,
EHD effects intensify, leading to increased migration velocities. During this transient regime, the
distance from the wall does not follow the scaling behavior predicted by Eq. (5) or (6). Eventually,
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EHD EHD EHD

FIG. 5. Droplet height evolution. Experimental measurements of droplet elevation, normalized by the drop
radius, plotted as a function of time, normalized by the electrohydrodynamic time, for drops of radius 1.46 mm
and 1.90 mm, are shown in (a) and (b), respectively, as solid lines. The color of the trajectories denotes the
value of the electric capillary number, which varies from approximately CaE = 0.1 to 1, showing favorable
agreement with Eq. (5). The theory predicts the scaling (h/a)3 ∼ t/tEHD (black dashed line), emphasizing the
dominance of EHD forcing in the far field. The (cube of the) initial height is subtracted from the ordinate
to more clearly demonstrate this scaling. The results from boundary integral (BIM) simulations for a drop
of radius 1.90 mm and different capillary numbers are plotted in (c) as solid lines and agree well with the
experiments, plotted as circular markers for CaE = 0.32 and CaE = 0.89.

as the charge density approaches its steady distribution and the drop moves farther from the wall,
EHD interactions dominate, and the distance from the wall exhibits the scaling predicted by Eq. (5).

The EHD flow, along with the streaming flow induced by drop migration, sweeps the charges
accumulated on the droplet surface. The extent of the convection effect by the EHD flow is quantified
by the electric Reynolds number, which is found to be ReE ≈ 0.2 at the lower values of the electric
capillary number, CaE = 0.14. This regime, characterized by weak charge convection, is where our
theory and simulations are expected to be most accurate. The charge convection due to the droplet
translation is quantified as Re∗

E
= εUt/aσ , where Ut is the droplet translation velocity from our

experiments. In this case, we estimate Re∗
E

∼ O(10−2), indicating that charge convection due to the
streaming flow around the translating drop is negligible in our system.

Figure 5 demonstrates favorable agreement with Eq. (5) at long times, which suggests negligible
contribution from dielectrophoresis. The ratio of the two velocity contributions,

UDEP

UEHD
= −10

9

(1 + λ)2(1 − R)2

(2 + 3λ)(R − P)

(
a

h

)2

, (18)

is, for the present leaky dielectric system, at most 0.66 at h/a = 1 (i.e., for a drop touching the wall)
and is 0.1 at h/a = 2.5. However, note that for an electrohydrodynamic system with a smaller value
of (R/P − 1) (the factor that sets the EHD flow strength) or a larger drop viscosity (and thereby a
larger λ; silicone oil, for example, is available at a viscosity 200 times larger than that used here
such that λ ∼ 14), the dielectrophoretic force can become consequential in the near-wall migration
behavior.

For a mobile interface (i.e., a fluid drop with λ < ∞), at distances sufficiently far away from the
wall, EHD forcing will eventually overtake DEP forcing, due to the slower, 1/h2, decay of UEHD. For
a solid “drop” (particle), λ → ∞ and the EHD flow is supressed. Accordingly, there is no EHD-
induced migration and the migration is purely due to dielectrophoresis. It is worth emphasizing
that these equations are far-field descriptions of the flow field—higher-order descriptions of the
flow singularity are unaccounted for, though these contributions are expected to be significant
close to the wall h/a ∼ O(1). Despite these approximations, Fig. 5 demonstrates the existence
of the electrohydrodynamic migration phenomenon and its domination over the dielectrophoretic
migration in leaky dielectric systems.
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EHD

EHD

DEP

DEP

FIG. 6. Antagonistic EHD and DEP interactions can result in a hovering drop. Migration velocity as a
function of distance from the wall in a drop with (R, P, λ) = (0.25, 0.063, 10) at various electric capillary
numbers, compared with theoretical predictions from Eqs. (5) and (6). In all simulations, the drop is initially
positioned at h0/a = 1.1 from the wall and its trajectory is subsequently computed. Solid lines indicate positive
migration velocities (away from the wall), while dotted lines indicate negative velocities (towards the wall).
The inset shows the deformation parameter at the hovering point in each case. The arrow indicates the hovering
height determined by the theory.

B. Prolate drops

We extend our analysis to prolate drops, characterized by R/P > 1. In this regime, EHD and DEP
effects act in opposition, potentially leading to a steady hovering state where the two forces balance.
However, prolate systems are harder to realize experimentally, especially since they are unstable and
prone to breakup at high electric field strengths needed to induce significant migration. Therefore,
our analysis in this section relies on asymptotic theory and numerical simulations. Figure 6 presents
the magnitude of the migration velocity as a function of wall separation for a prolate drop. Solid
lines indicate motion away from the wall, while dotted lines denote motion toward it. As described
by Eqs. (5) and (6), DEP and EHD interactions counteract each other: short-range DEP repulsion
and long-range EHD attraction establish a steady hovering state at a predicted equilibrium distance
of h/a ≈ 3.5 from the wall. We note that the hovering position observed in numerical simulations
deviates from theoretical predictions. Additionally, for a viscosity ratio of λ = 1, no hovering state
is observed and the drop instead migrates toward the wall. These discrepancies arise from near-wall
hydrodynamic effects, which are not accounted for in the asymptotic theory. Furthermore, increasing
the electric capillary number CaE shifts the hovering point further from the wall.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the dynamics of oblate droplets (R/P < 1), for which
the electrohydrodynamic flow induces migration with velocity UEHD ∼ 1/h2 away from the wall,
considerably stronger than the dielectrophoretic attraction to the wall (UDEP ∼ 1/h4), leading to a
pronounced lift. This work highlights the importance of boundaries on droplet behavior in electric
fields and develops a simple theory describing the migration velocity in terms of the leading flow
singularity, a stresslet. Since boundaries are always present in applications like microfluidics, droplet
migration driven by EHD flow may play an important role. Our paper quantifies this effect and
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shows that the drift can be accurately predicted using asymptotic theory, which estimates droplet
migration due to the stresslet-image-induced flow—a result that was not obvious a priori.
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APPENDIX: STOKES GREEN’S FUNCTIONS FOR THE FLOW NEAR A PLANE WALL

In their seminal work, Blake and Chwang derived the Stokes Green’s function associated with a
point force near a plane wall [29–31]. The velocity tensor near a wall located at x = xw is given by

Gw
i j (x0; x) = GFS

i j (r) − GFS
i j (r̃) + 2 d2

0 Di j (r̃) − 2 d0 Qi j (r̃), (A1)

where d0 = x0 − xw is the distance of the point force from the wall. Here, x̃0 denotes the mirror
image of x0 with respect to the wall, with r = x0 − x, r = |r| and r̃ = x̃0 − x, r̃ = |r̃|. The first
two terms on the right-hand side of (A1) represent the primary and image Stokeslets in free space.
The terms Di j and Qi j correspond to the potential dipole and point force doublet, respectively:

GFS
i j (r) = δi j

r
+ ri r j

r3
, (A2)

Di j (r) = ±
(

δi j

r3
− 3

ri r j

r5

)
, (A3)

Qi j (r) = r1Di j (r) ±
(

δ j1 ri − δi1 r j

r3

)
. (A4)

The minus sign corresponds to j = 1 (x direction) and the positive sign applies to j = 2, 3 (y and z
directions).

The associated stress tensor for this Green’s function is

T w
i jk (x0; x) = T FS

i jk (r) − T FS
i jk (r̃) + 2 d2

0 T D
i jk (r̃) − 2 d0 T Q

i jk (r̃), (A5)

where

T FS
i jk (r) = −6

ri r j rk

r5
, (A6)

T D
i j (r) = ± 6

(
−δi j rk + δikr j + δk jri

r5
+ 5

ri r j rk

r7

)
, (A7)

T Q
i j (r) = r1T D

i jk (r) ± 6

(
δik r j r1 − δ j1 ri rk

r5

)
. (A8)

Similarly, the minus sign corresponds to j = 1 and the positive sign applies to j = 2, 3.
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