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Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds
number have been performed using a fast algorithm. The mathematical formulation follows the
previous simulations by Butler and Shaqfehf“Dynamic simulations of the inhomogeneous
sedimentation of rigid fibres,” J. Fluid Mech.468, 205s2002dg. The motion of the fibers is described
using slender-body theory, and the line distribution of point forces along their lengths is
approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet
are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both
far-field hydrodynamic interactions and short-range lubrication forces are considered in all
simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for
large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald
sSPMEd algorithm previously used in molecular dynamics simulations. In SPME the slowly
decaying Green’s function is split into two fast-converging sums: the first involves the distribution
of point forces and accounts for the singular short-range part of the interactions, while the second
is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth
and long-range part. Because of its smoothness, the second sum can be computed efficiently on an
underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the
calculations. Systems of up to 512 fibers were simulated on a single-processor workstation,
providing a different insight into the formation, structure, and dynamics of the inhomogeneities that
occur in sedimenting fiber suspensions. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1862262g

I. INTRODUCTION

Sedimentation of small particles in a fluid occurs in a
very wide range of both natural phenomena and industrial
processes: sedimentation in a river, pollution in the atmo-
sphere, waste processing, or the production of composite ma-
terials are all instances in which particle settling plays a cen-
tral role. While being one of the simplest hydrodynamic
particulate flows, it also remains one of the least well under-
stood, and has been the subject of numerous experimental
and theoretical investigations. Batchelor,1 working on the
premise of homogeneity and diluteness, was the first to cal-
culate the correction to the sedimentation speed of non-
Brownian spheres in an infinite fluid. His result was con-
firmed by others,2–4 although it appears that the functional
dependence of the hindered settling velocity depends on the
statistical structure of the suspension.5 Later, Caflish and
Luke6 demonstrated that the average velocity in an infinite
suspension has little meaning since the variance is un-
bounded, growing like the linear dimension of the sediment-
ing system. This prediction is contradicted by experiments,
which suggest that the velocity fluctuations and hydrody-

namic diffusivities do not depend on the size of the
container.7 This raises the question of whether an initially
random suspension remains so during sedimentation. Several
interpretations have been proposed, including a screening
mechanism for the velocity disturbance of the particles.8

More recent investigations9–13 suggest that the presence of
container walls and of a small stratification in the suspension
create a decay of the velocity fluctuations.

The sedimentation of nonspherical particles such as fi-
bers is at least as complicated. Experiments demonstrate a
concentration instability, by which an initially homogeneous
distribution of fibers can become highly inhomogeneous:
high-concentration streamers made of distinct clusters tend
to form, surrounded by clarified regions. This clustering has
a strong effect on the sedimentation speed, which is en-
hanced in the dilute regime and can become larger than the
maximum possible value for an isolated fiber.14,15 This con-
centration instability was predicted theoretically by the linear
stability analysis of Koch and Shaqfeh,16 which demon-
strated that such a clustering for suspensions of nonspherical
axisymmetric particles is a consequence of a coupling be-
tween the mean flow fluctuations and the anisotropic mobil-
ity of the particles. Their linear analysis, however, predicted
that the density perturbations with the maximum growth rate
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are those of arbitrarily large wavelength, and hence was not
able to provide any information on the wavenumber selec-
tion observed in the experiments. Thus, this process is yet to
be elucidated.

Several attempts have been made to numerically simu-
late this instability. Mackaplow and Shaqfeh17 performed
both Monte Carlo simulations and point-particle dynamic
simulations, and managed to capture most of the qualitative
features of the instability in the dilute regime: formation of
streamers with increased sedimentation velocity and align-
ment of the fibers with gravity with occasional flipping.
Their simulations predicted the correct form of the steady-
state orientation distribution, but generally overestimated the
mean sedimentation speed. This discrepancy was attributed
to the influence of the dimensions of their periodic unit cell,
and to the absence of lubrication or contact forces in their
simulation method, where the latter would have the effect of
limiting cluster densification. Their study did not provide any
quantitative results on the velocity distributions, pair distri-
butions, or on the influence of the effective particle volume
fraction nl3.

Butler and Shaqfeh18 performed more sophisticated
simulations in which they accounted for both far-field hydro-
dynamic interactions and short-range lubrication forces. The
fibers were no longer approximated as point particles, but
modeled using slender-body theory as line distributions of
point forces. A spectral approximation of the line distribu-
tions was used, in which they retained the first two moments,
namely, the total force and dipole term, whose antisymmetric
and symmetric parts are the total torque and particle stresslet.
Short-range pairwise interactions were also included using
the lubrication approximation. The results they obtained
were dependent on the aspect ratio of their periodic simula-
tion box, but good orientation and velocity statistics were
obtained using boxes that were highly elongated in the direc-
tion of gravity. The size of the systems they were able to
simulate was, however, greatly limited by the cost of evalu-
ating the interparticle long-range hydrodynamic interactions,
so that only very few clusters were typically observed in
their simulations. Moreover the size of the clusters was in-
fluenced by the boundary conditions. In particular, the limi-
tations on the box aspect ratio and number of fibers did not
allow them to observe more than one streamer in the hori-
zontal direction. To reduce the influence of the boundary
conditions, and study in more details the structure of the
suspensionse.g., wavenumber selection, cluster size, and dy-
namicsd, larger systems need to be simulated: this can only
be achieved using efficient algorithms to evaluate the long-
range interactions.

In the Stokes flow regime, the disturbance of a point
force or Stokeslet on the flow decays as the inverse of the
distance from the force location, so that even distant particle
pairs can have significant interactions. Evaluating the distur-
bance velocity at each particle location due to the presence
and motion of the other particles is typically anOsN2d op-
eration, whereN is the number of particles, and can become
very prohibitive when the size of the system increases. Sev-
eral alternate methods for the summation of the interactions
have been suggested in the last few years, most of which

were inspired by existing algorithms used in molecular dy-
namics simulations, where the electrostatic potentials have
the same slow decay as the disturbance velocity in creeping
flow. Sangani and Mo19 developed anOsNd fast-multipole
method for hydrodynamic interactions, based on the famous
algorithm by Greengard and Rokhlin.20 In the fast-multipole
method the simulation domain is decomposed into a tree of
cells, and in each cell a compressed representation of the
flow disturbances is constructed using a truncated multipole
expansion. Far-field interactions with the particles located in
distant cells are then calculated by means of this compressed
representation. The fast-multipole method was also applied
more recently to suspensions of many deformable drops21

and to Stokesian dynamics simulations with finite numbers
of particles.22 Another efficient method was also developed
by Ladd23 and is based on a discretized Boltzmann equation
for the fluid phase; this technique, however, only applies to
finite Reynolds numbers.

The most notable method for both electrostatic and hy-
drodynamic interactions is the so-called particle-particle
particle-meshsPPPMd algorithm.24 This algorithm and its
many variants have been used for over a decade in plasma
simulations, astrophysics, and molecular dynamics, and are
based on a decomposition of the interactions into two fast-
converging contributions, one of which is efficiently evalu-
ated using an underlying grid and the fast Fourier transform
algorithm. A good choice of parameters allows one to reduce
the cost of evaluating the interactions toOsN ln Nd, which is
a significant improvement for large systems. A thorough re-
view of different variants of the method for electrostatic in-
teractions can be found in Deserno and Holm.25

A version of the PPPM algorithm, called particle-mesh
EwaldsPMEd, was first applied to hydrodynamic interactions
between suspended spheres by Guckel,26 and was subse-
quently systematized by Sierou and Brady27 in their acceler-
ated Stokesian dynamicssASDd. ASD is a new version of the
Stokesian dynamics method,28 in which the direct calculation
of the far-field grand mobility matrices is replaced by the use
of the PME algorithm along with an iterative solver for the
matrix inversion. ASD was proven to be very efficient in
evaluating the rheological properties of suspensions of
spheres,29 allowing one to simulate systems of up to 1000
spheres.

In this paper we are implementing a variant of the PME
algorithm, called smooth particle-mesh EwaldsSPMEd, and
based on the work by Essmanet al.30 for electrostatic inter-
actions. The main advantage of SPME over the original PME
method is the improved accuracy resulting from the new
force assignment and interpolation schemes used for the
Fourier sum, which are based on an approximation of struc-
ture factors using high-orderB-splines. The common points
and differences with accelerated Stokesian dynamics will be-
come apparent in the subsequent discussion. Section II gives
an overview of the mathematical formulation of the sedimen-
tation problem: the equations for the motion of the fibers,
lubrication forces, and hydrodynamic interactions are all pre-
sented in detail. We then proceed to explain the smooth
particle-mesh Ewald algorithm in Sec. III, and assess its per-
formance by comparing it to the standard Ewald summation
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technique. In Sec. IV we discuss the iterative method and
preconditioning techniques used to solve for the stresslets
and lubrication forces. Finally the results of the simulations
are given in Sec. V, where the structure of the suspension,
orientation, and velocity statistics are discussed in turn, and
we conclude in Sec. VI.

II. MATHEMATICAL FORMULATION

The simulation method follows the previous work by
Butler and Shaqfeh.18 Slender-body theory is used to model
the motion of the fibers, along with a spectral approximation
of the force distribution in which the total force, torque, and
particle stresslet are retained. The fundamental periodic so-
lution of the Stokes equation is used for the hydrodynamic
interactions, and short-range interactions are calculated using
the lubrication approximation. For more details and discus-
sion the reader is referred to the original paper.

A. Motion of the fibers: Slender-body theory

The position and orientation of each fibera is given by
the location of its center of massxa and a unit vectorpa

parallel to its major axis. The time evolution ofxa and pa

can be tracked using Batchelor’s slender-body theory,31

which represents the disturbance due to the presence and
motion of the fiber in the fluid by a line distribution of point
forces or Stokeslets. To a leading order approximation in
lns2Ad whereA is the fiber aspect ratio, the translational and
rotational velocitiesẋa and ṗa are related to the fluid distur-
bance velocity and force distribution along the fiber by

ẋa + sṗa − ua8sxa + spad =
lns2Ad

4p
sI + pa ^ padfassd, s1d

whereua8 is the disturbance velocity of the fluid surrounding
fiber a due to the motion of the other fibers,s is an abscissa
along the fiber length, andfa is the line distribution of point
forces. Equations1d has been nondimensionalized using the
following characteristic velocity, length, and time scales:

uc =
gVDr

4pml
lns2Ad, lc = l, tc = lc/uc =

4pml2

gVDr lns2Ad
,

where V and Dr are the volume and relative density of a
fiber, m is the viscosity of the solvent, andg is the accelera-
tion of gravity. The characteristic length scalel is the fiber
half-length, so that positionss along the fibers range from −1
to +1. The characteristic time scale, or Stokes time, is the
time required for an isolated vertical fiber to sediment over
its half-length.

Integrating Eq.s1d along the fiber axis gives an expres-
sion for the translational velocity,

ẋa =
1

2
E

−1

1

ua8sxa + spadds+
lns2Ad

8p
sI + pa ^ padFa, s2d

while multiplying Eq.s1d with s, integrating, and taking two
cross products withpa yields the rotational velocity

ṗa =
3

2
sI − pa ^ padE

−1

1

sua8sxa + spadds−
3 lns2Ad

8p
pa 3 Ta.

s3d

We have introduced the total force and torque on fibera,

Fa =E
−1

1

fads, Ta =E
−1

1

pa 3 sfads.

GivenFa ,Ta, and the fluid velocityua8 along the axis due to
the motion of the other fibers, Eqs.s2d ands3d can be used to
integrate the motion of the fiber in time.

B. Forces and torques on the fibers

In addition to the long-range hydrodynamic interactions
which will be discussed in the following section, the forces
and torques on the fibers can come from three contributions:
gravity which causes sedimentation, lubrication forces when
two fibers get close to each otherstypically when the dis-
tance between their surfaces falls below one fiber diameterd,
and strong repulsive contact forces when this distance be-
comes of the order of the roughness length scale of the fiber
surfaces. Gravity poses no special difficulty and only creates
a force at the center of mass of the particle:

Fa
G = VDrg, Ta

G = 0.

The slender-body formulation of Sec. II A, which repre-
sents the fibers as line distributions of point forces, is a far-
field approximation and therefore does not capture the near-
field effects which are dependent on the exact geometry of
the fiber surfaces. These effects can be accounted for through
additional lubrication forces, as is commonly done in Stoke-
sian dynamics simulations.28 As sedimenting fiber suspen-
sions are known to form inhomogeneities, correctly captur-
ing these short-range interactions can be critical, and indeed
Butler and Shaqfeh18 observed that including lubrication
forces in their simulations modified the sedimentation rates
and pair probabilities. The modeling is quite straightforward
and is derived from the formulas of Claeys and Brady.32 Four
types of lubrication interactions can occur: body-body inter-
actions sparallel and nonparallel casesd, end-body interac-
tions, and end-end interactions. In each case the explicit form
of the lubrication force will differ, and the various formulas
can be found in the work by Butler and Shaqfeh.18 For the
most general case where the fibers interact along their
lengths and are nonparallel, the force between two fibersa
andb is given by

Fab
L = ±

6pḣ

A2upa 3 pbuh
n,

wheren is a unit vector normal to both fiber surfaces,h is the
minimum separation distance between the two surfaces, and

ḣ is the relative velocity projected alongn. The appropriate
sign is chosen such that the force is repulsive for approach-

ing fiberssḣ.0d and attractive for separating fiberssḣ,0d.
In all cases these lubrication forces also create a torque.

As argued by Harlen, Sundararajakumar, and Koch33 in
their similar simulations of neutrally buoyant fibers, lubrica-
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tion interactions between high-aspect ratio particles are quite
weak and will usually not be sufficient to prevent mechanical
contact. Harlenet al. treated these contacts by solving a con-
straint problem and determining exactly the normal reaction
forces that prevent fiber crossing. An alternate approach con-
sists in adding strong and very short-range repulsive forces
that act at the same points and in the same directions as the
lubrication forces:34

Fab
R = ± a0

te−th

1 − e−thn.

The values of the parametersa0 andt used in the simulations
are 1310−4 and 13103, respectively, and are chosen such
that the repulsive force remains small over most of the range
of the lubrication force; the actual values are typically shown
to have little impact on the simulation results.18,35

C. Hydrodynamic interactions

The hydrodynamic interactions are accounted for
through the disturbance velocityua8 in Eqs.s2d ands3d. Since
the fibers are approximated as line distributions of point
forces, the disturbance velocity is given by

u8sxa + sapad = o
b=1

N E
−1

1

Jsxa + sapa − xb

− sbpbdfbssbddsb, s4d

whereJ is the Green’s function, or fundamental solution of
the Stokes equation. For a finite number of point forces,J is
the Stokeslet, or Oseen–Burgers tensorK:

Ksxd =
1

8p
S I

r
+

x ^ x

r3 D ,

wherer = uxu. However, when the suspension is infinite, sum-
ming an infinite number of Stokeslets becomes intractable
and convergence is not guaranteed.36 This issue can be cir-
cumvented by using a periodic suspension obtained by rep-
licating a unit cell in all three space dimensions. In the case
of a periodic distribution of point forces an exact solutionKp

was derived by Hasimoto.37 The details of the Hasimoto so-
lution are given in Sec. III along with a discussion on the
method used to calculate it. Hence for a periodic suspension

Jsxa + sapa − xb − sbpbd

= HKpsxa + sapa − xb − sbpbd if a Þ b,

Kpssa − sbd − Kssa − sbd if a = b.
J s5d

When a=b, the Oseen–Burgers tensor must be subtracted
from the periodic solution so that the disturbance velocity
due to fibera is not included. Whena=b and sa=sb the
limit of Kpssa−sbd−Kssa−sbd is used.

D. Linearization of the force distribution

The system of equations, as presented in the preceding
sections, is an integral system for the force distributionfassd
along each fibera. In a method similar to the boundary in-
tegral method, one may choose to discretize the fibers and
solve for the value offa at each of the discretization points.

This was the approach adopted by Mackaplow and Shaqfeh17

in their Monte Carlo simulations. This method, however, is
very expensive as 3M +5 unknowns must be solved per fiber,
whereM is the number of discretization points and can be of
the order of 10.

A more tractable approach was suggested by Harlen
et al.,33 and used successfully by Butler and Shaqfeh.18 It
consists in expanding the force distribution in a Legendre
polynomial and retaining only the first two moments:

fassd .
1

2
E

−1

1

fassdds+
3s

2
E

−1

1

sfassdds.

Observing thatfa=spa ·fadpa−pa3 spa3 fad and using the
projection of Eq.s3d alongpa allows to rewrite the linearized
force distribution as

fassd .
1

2
Fa +

3s

2
sTa 3 pa + Sapad, s6d

whereSa is the particle stresslet, which is a scalar due to the
one dimensionality of the fibers:

Sa = −
2p

ln 2A
E

−1

1

spa ·ua8ds. s7d

This method is analogous in essence to that used by Claeys
and Brady in their Stokesian dynamics simulations of prolate
spheroids,38 although the path followed is different. Instead
of using a spectral expansion of the force distribution as in
our case, Stokesian dynamics is based on a multipole expan-
sion of the Green’s function into centered moments, which is
typically truncated after the dipole term. Claeys and Brady
then argue that in the case of spheroids the multipole mo-
ments are equivalent to distributed singularities along the
focal axis of the particles. The equations they obtain are
slightly more general as they also involve distributions of
potential dipoles and their derivatives, which arise from the
finite thickness of the particles but become negligible for
high-aspect ratios.

E. Method of solution

Substituting the linearized force, Eq.s6d, into the expres-
sion for the disturbance velocity, Eq.s4d, and then Eq.s4d
into the equations for the motion of the fibers, Eqs.s2d and
s3d, yields a general expression for the translational and ro-
tational velocities as functions of the gravity forceFG swhich
is the same for all fibersd, the stressletsSb, and the lubrica-
tion forcesFl

L, where the indexl =1,… ,M refers to a spe-
cific lubrication interaction between two fibers. It can be
written in the general form

ẋa = o
b=1

N

fLabFG + M abSbg + o
l=1

M

NalFl
L, s8d
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ṗa = o
b=1

N

fPabFG + QabSbg + o
l=1

M

RalFl
L. s9d

For a given pairsa ,bd ,Lab ,Nal ,Pab, and Ral are second-
order tensors, andM ab andQab are vectorsssince the stress-
lets are scalar quantitiesd.

The tensorsLab andPab give contribution to the veloci-
ties due to gravity, and can be shown to be

Lab =
1

4
E E

−1

1

Kssa,sbddsadsb + dab

lns2Ad
8p

sI + pa ^ pad,

Pab =
3

4
sI + pa ^ pad E E

−1

1

Kssa,sbdsadsadsb,

where in each caseKssa ,sbd stands for Ksxa+sapa−xb

−sbpbd and takes the form given in Eq.s5d. The vectorsM ab

andQab used to relate the fiber stressletsSb to the velocities
are also easily obtained:

M ab =
3

4
E E

−1

1

Kssa,sbdpbsbdsadsb,

Qab =
9

4
sI + pa ^ pad E E

−1

1

Kssa,sbdpbsasbdsadsb.

The two remaining tensorsNal andRal give the contri-
bution of lubrication forces to the velocity, which is of two
types: a direct contribution, through the second term on the
right-hand sides of Eqs.s2d ands3d and an indirect contribu-
tion through the disturbance velocity. This second contribu-
tion is a multibody interaction in the sense that each lubrica-
tion force affects all the fibers. Given a lubrication
interaction l s1ø l øMd, let a and b be the two fibers be-
tween which the interaction takes place, and letlla and llb

be the corresponding abscissas where the force is applied. If
Fl

L is the force on fibera, the force on fiberb will be −Fl
L.

Introduce the two matrices

Aal = daa − dab,

Bal = daalla − dabllb.

The two tensorsNal andRal then take on the following form:

Nal =
1

4
E E

−1

1

Kssa,sbdfI + 3llasasI − pa ^ padgdsadsa

−
1

4
E E

−1

1

Kssa,sbdfI + 3llbsbsI − pb ^ pbdgdsbdsa

+
lns2Ad

8p
sI + pa ^ padAal ,

Ral =
3

4
sI − pa ^ padFE E

−1

1

Kssa,sbdfI + 3llasasI − pa

^ padgdsasadsa −E E
−1

1

Kssa,sbdfI + 3llbsbsI − pb

^ pbdgdsbsadsa +
lns2Ad

2p
BalG .

The repulsive contact forces, which are not included in the
above equations, are treated in exactly the same way as the
lubrication forces.

The method of solution proceeds as follows. In Eqs.s8d
and s9d the tensorsLab ,Nal ,Pab, andRal and vectorsM ab

andQab are only functions of the positions and orientations
of the fibers and are hence known. The gravitational forceFG

and the repulsive forcesFl
R are also known, so that the un-

knowns are the translational and rotational velocitiesẋa and
ṗa, of the fibers, as well as the stressletsSa and lubrication
forcesFl

L. The first step consists in solving for the latter two
in the following manner. Substituting the linearized force
distribution fEq. s6dg swhere the total force and torque are
functions of the lubrication interactions and stresslets which
are unknownd into the disturbance velocity, Eq.s4d, and in
turn substituting Eq.s4d into the definition of the stresslets,
Eq. s7d, yields a linear system for the stresslets and magni-
tudes of the lubrication forces. Once this system is inverted,
using an iterative solver discussed in Sec. IV, Eqs.s8d ands9d
can be used to obtain the velocities of the fibers. The posi-
tions of the fibers can then be advanced using a fourth-order
Runge–Kutta time-marching method. The time step is chosen
so as to avoid collisions or fiber overlap, and so that no fiber
moves by more than half a fiber diameter at each step. For a
more extensive discussion on the time integration method,
the reader is referred to Butler and Shaqfeh.18

III. THE SMOOTH PARTICLE-MESH EWALD
ALGORITHM

A. Periodic fundamental solution and Ewald
summation formula

The disturbance velocity Eq.s4d must be evaluated along
each fiber. In practical simulations the integrals over the
lengths of the fibers are computed numerically using Gauss–
Legendre quadrature, so that we are left with calculating the
disturbance field created by a distribution of point forces at
each point force location. Consider a distribution ofN point
forcesF1,F2,… ,FN at positionsx1,x2,… ,xN in a unit cell
of volume t0; to alleviate the notations, assume that the
quadrature weights resulting from the discretization of the
integrals have been included in the force vectorsFn. Denote
by ai, i =1, 2, 3, the lattice vectors forming the edges of the
unit cell. To simulate an infinite suspension we use periodic
boundary conditions, so that each point forceFn at position
xn has periodic images at all the locationsxn+p1a1+p2a2

+p3a3 for all integersp1, p2, p3. With these notations, the
disturbance velocity at locationxm created by the point
forces other thanFm is written as
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usxmd = o
p

o
n=1

N

Ksxn − xm + pdFn, m= 1,…,N, s10d

whereK is the Oseen–Burgers tensor. The term correspond-
ing to n=m andp=0 is omitted in the sum. Because of the
decay of the Oseen–Burgers tensor as 1/r, the infinite sum in
Eq. s10d is generally divergent. This is typically remedied by
realizing that the average forcekFlÞ0 creates a backflow,
and that only the velocity relative to this backflow has a
physical significance.28,36 Hasimoto37 took advantage of the
spatial periodicity of the problem and used Fourier series to
derive a convergent expression for Eq.s10d. His solution can
be written as

usxmd =
1

4p
fS1 − = s= ·S2dg, s11d

whereS1 andS2 are the following sums:

S2 = −
1

4p3t0
o
kÞ0

e2pik·xm

k4 F̂skd,

S1 = ¹2S2 =
1

pt0
o
kÞ0

e2pik·xm

k2 F̂skd. s12d

The vectorsk are the reciprocal lattice unit vectors:k
=k1b1+k2b2+k3b3, where the vectorsbi, i =1, 2, 3, define the
unit cell in the reciprocal or Fourier space:

b1 =
a2 3 a3

t0
, b2 =

a3 3 a1

t0
, b3 =

a1 3 a2

t0
.

F̂skd is the Fourier transform of the distribution of point
forces, or structure factor:

F̂skd = o
n=1

N

Fne
2pik·xn. s13d

The presence of this structure factor in the periodic funda-
mental solution suggests that the disturbance velocity could
be evaluated using the fast Fourier transform algorithm; this
observation will be exploited below. It is important to note
the absence of the termk =0 in the Fourier representation of
the velocity: this term corresponds to the mean backflow
alluded to above and should be set to zero if the fluid is
globally quiescent. The absence of this term arises naturally
in the derivation of Eq.s11d, where it is shown that the mean

pressure gradient cancels exactly the mean force termF̂s0d,
so that the latter does not contribute to the disturbance
velocity.37

Equationss11d and s12d constitute an exact and abso-
lutely convergent expression for the disturbance velocity, and
can be used as such in computations. However, the relatively
slow decay in 1/k2 makes this direct method quite inefficient
as many terms are needed to achieve a reasonable accuracy.
The convergence can be accelerated by recasting Eqs.s11d
and s12d into a slightly different form called Ewald summa-
tion formula. It was first used by Ewald for electrostatic
interactions,39 and the present form for hydrodynamic inter-
actions is due to Hasimoto.37 The starting point is an integral
representation for 1/k2m for m=1, 2, and the introduction in

the integral of a cutoff parametera, called Ewald coefficient.
The derivation is classic27,30,37,39and is not repeated here.
The final result expresses the disturbance velocity as follows:

usxmd = o
p

o
n=1

N

Asa,xm − xn + pdFn

+ o
kÞ0

e−2pik·xmBsa,kdF̂skd, m= 1,…,N. s14d

The two tensorsA andB are given by

Asa,xd =
p

a3/2f1/2Spr2

a
Dsr2I + x ^ xd −

2

a1/2e−pr2/aI,

Bsa,kd =
pa2

t0
f1spak2dsk2I − k ^ kd,

where the functionsfn are incompleteg functions:

f1/2sxd =
e−x

x
+

1

2x
erfcsÎxd, f1sxd =

e−x

x2 s1 + xd.

The Ewald coefficienta is a user-defined parameter that
determines the relative importance of the two sums: its
choice is typically dictated by cost considerations. The two
tensorsA and B decay exponentially inr2= uxu2 and k2

= uk u2, respectively, so that both sums in Eq.s14d converge
rapidly.

B. Description of the algorithm

The Ewald summation formula Eq.s14d is the basis for
most simulations with periodic boundary conditions. A stan-
dard and widely used method, sometimes called Ewald sum-
mation technique, consists in truncating both sums after a
few terms and choosing the coefficienta so as to minimize
the overall cost.17,18,36 In spite of the rapid convergence of
the sums, this direct method can still be quite expensive for
very large systems. Also, it does not typically exploit the
presence of the Fourier transform in the second sum. The
smooth particle-mesh Ewald method proceeds quite differ-
ently: the parametera is chosen so as to reduce the cost of
the first sumsor real sumd, and a fast algorithm based on the
fast Fourier transform on a Cartesian grid is used for the
second sumsor Fourier sumd. More details are provided in
the next sections.

1. Real sum

The calculation of the real sum at all the point force
locationsxm is a priori an OsN2d operation as it involves
summing over all the other point forces and their images.
However, the exponential decay of the tensorA can be ex-
ploited to restrict the evaluation of the sum to close particle
pairs. Given a tolerancee and a cutoff radiusrc, the Ewald
coefficienta can be chosen to make all the coefficients of
Asa ,xd less thane wheneveruxuù rc. Once a is obtained
following this procedure, the real sum in Eq.s14d only needs
to be performed over the point forces located within a sphere
of radius rc, i.e., over a small number independent of the
system size. The evaluation of the sum at all the point force
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locationsxm then has anOsNd cost, with a constant of pro-
portionality that can be adjusted through the cutoff radius.

2. Fourier sum

The real gain is achieved in the evaluation of the Fourier
sum. As mentioned previously, the presence of the structure
factors suggests use of the fast Fourier transform algorithm.
As the point forces can be located anywhere inside the unit
cell, prior interpolation to a Cartesian grid is necessary. This
can be done formally using CardinalB-splines, which are
introduced briefly in the Appendix. A mesh is defined inside
the reciprocal unit cell by choosing three integersK1,K2, and
K3 corresponding to the numbers of points along the recip-
rocal lattice vectorsb1,b2, andb3. Given a pointx in the unit
cell, we define its scaled fractional coordinates byji

=Kibi ·x for i =1, 2, 3.

We wish to approximate the structure factorF̂skd using a
discrete Fourier transform on the grid defined above. This is
achieved by interpolating the complex exponentials in the

definition of F̂skd using CardinalB-splines. The Appendix
shows that in one dimension we have

expS2pi
kj

K
D . bskd o

m=−`

+`

Mpsj − mdexpS2pi
km

K
D , s15d

where the coefficientsbskd andMp can be computed using a
recursive definition.p is the order of interpolation, and the
sum overm is in fact limited top terms as the functionsMp

have compact support. Generalizing Eq.s15d to three dimen-
sions we obtain the following approximation for the structure
factor:

F̂skd . b1sk1db2sk2db3sk3dFsQdskd, s16d

whereFsQd is the three-dimensional discrete Fourier trans-
form of the following arrayQsmd:

Qsmd = o
n=1

N

o
p1,p2,p3

FnMpsj1
n − m1 + p1K1dMpsj2

n − m2

+ p2K2dMpsj3
n − m3 + p3K3d. s17d

The algorithm for the computation of the Fourier sum
can now be summarized. The first step is the assignment of
the point forcesFn to the Cartesian grid using Cardinal
B-splines, i.e., the calculation of the arrayQsmd using the
interpolation formula Eq.s17d. The discrete Fourier trans-
form FsQd is then computed using the fast Fourier transform
algorithm sFFTd, and is multiplied in turn bybiskid to yield
the approximation to the structure factor Eq.s16d, and by the
Fourier convolution kernelBsa ,kd. The result is multiplied
by bi

*skid swhere * denotes the complex conjugated and the
inverse FFT is applied, yielding the Fourier sum in Eq.s14d
but evaluated at the grid points. The sum can then be inter-
polated from the grid points to the particle locations, again
usingB-splinesftranspose operation of the force assignment
Eq. s17dg.

As we explained above, the real sum need only be per-
formed on a small number of neighbors for each point force,
resulting in anOsNd cost for N point forces. The cost of

computing the Fourier sum using the previous algorithm is
limited by the two fast Fourier transforms, which have a cost
of OsK ln Kd whereK is the number of points in each direc-
tion on the Cartesian mesh, and is chosen proportional to the
system sizeN. Therefore the total cost of the method scales
asN ln N, which can be a significant improvement for large
systems compared to the original cost ofOsN2d. Compari-
sons of the CPU times for the traditional Ewald summation
technique and the smooth particle-mesh Ewald algorithm are
presented in Sec. III D.

The use of the CardinalB-splines for the force assign-
ment and interpolation schemes is the major difference be-
tween SPME and the accelerated Stokesian dynamics
method of Sierou and Brady.27 Accelerated Stokesian dy-
namics uses a Taylor series expansion to assign the forces to
the grid, after which it applies the fast Fourier transform
algorithm; Lagrange interpolation is then used to go back
from the grid to the particle locations. Exploiting instead the
interpolation properties of CardinalB-splines for complex
exponentials gives directly a smooth approximation to the
structure factors,30,40 which are the relevant quantities ap-
pearing in the Fourier sum of the Ewald summation formula.
The final interpolation is done again usingB-splines and is
completely analogous to the force assignment, as it should be
considering the symmetric nature of the two operations. An-
other advantage of usingB-splines is their smooth behavior
at high interpolation order, while Lagrange interpolation is
known to become unstable as the order increases. Essmann
et al.30 compared both methods for electrostatic interactions,
and obtained better accuracies usingB-splines for both the
forces and interaction energies.

C. Accuracy

The accuracy and efficiency of the method depend on
several parameters: the tolerancee and cutoff radiusrc for
the real sumsthe two of which uniquely define the Ewald
coefficienta, as explained in Sec. III B 1d, and the number of
grid pointsK and the orderp of theB-spline interpolation for
the evaluation of the Fourier sum. These parameters are typi-
cally adjusted to maximize the accuracy while minimizing
the cost.

To investigate the accuracy of the method and the influ-
ence of the parameters in more detail, tests are performed in
a square box with a distribution of 100 point forces at ran-
dom locations, with random orientations and unit strengths.
In all the tests, the value of the real-space tolerance is set to
e=10−10. The disturbance velocity at the force locations is
computed using the smooth particle-mesh Ewald method,
and is compared to the solution obtained with converged
Ewald sums. The measure of accuracy used here is the root-
mean squaresrmsd error between the two solutions:

Du = F 1

N
o
n=1

N

fuSPMEsxnd − uEWALDsxndg2G1/2

.

Since our method is based on evaluation of sums such as Eq.
s4d which only involve point force distributions, we limit our
attention to this measure of accuracy. It should be noted,
however, that such a measure does not guarantee that other
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quantities such as higher force moments are as adequately
captured.

The rms error as a function of the cutoff radius at con-
stant values ofK andp is plotted in Fig. 1. The three curves
correspond to the three grid sizesK=32, 64, and 128. In all
cases the rms error becomes large asrc→0, but decays very
rapidly whenrc increases; for large values ofrc, it reaches a
plateau at aroundDu=10−9. These curves are easily inter-
preted. Whatever the value of the cutoff radius, the error in
the real sum is of ordere and accounts for the plateau at
around 10−9: indeed the Ewald coefficient is chosen precisely
so as to make the real sum converge withine. The remainder
of the errorsi.e., all the values above the plateaud stems from
the evaluation of the structure factor using the discrete Fou-
rier transform, and from the assignment of the point forces to
the grid and back. The Fourier sum accounts for the smooth
and long-range part of the solution and cannot capture the
short-range singular part; this explains why for a given num-
ber of grid pointsK the error increases rapidly when the
cutoff and hence the Ewald coefficient become small.

The influence ofK and p on the accuracy is shown in
Fig. 2. As already suggested in Fig. 1, increasing the number
of points for the fast Fourier transform improves the accu-
racy of the Fourier sum: Fig. 2sad shows the decay of the
error with increasingK at constant cutoff radius and interpo-
lation order. On a log-log plot the curves are essentially
straight, suggesting an algebraic decay; the exponents ob-
tained from the curves in Fig. 2sad are, respectively, −6.7 and
−8.5 and are close to the value of the interpolation orderp,
confirming the scaling of the error withK−p for the B-spline
interpolation.30,40 Another way of making the Fourier sum
more accurate is to choose a higher order of interpolation for
the force assignment scheme, and is illustrated in Fig. 2sbd.
IncreasingK or p has the same effect on the accuracy, so that
either one or both can be done and the final decision depends
on the computational expense.

D. Efficiency

The efficiency of the method is assessed by comparing
the CPU times required by the traditional Ewald summation
technique and our smooth particle-mesh Ewald algorithm.
These are shown in Fig. 3, where simulations were per-
formed for the same systems as in the preceding section
sunit-strength forces with random locations and orientationsd,
for different system sizesN and levels of accuracy. A quick
observation of Fig. 3 suffices to show the superiority of the
SPME method in terms of efficiency. Except for very small
systems, the CPU times are all smaller for SPME than for the
Ewald sums at a given accuracy. In fact, even the high-
accuracy SPME is more advantageous than the low-accuracy
Ewald sums. It becomes even more so for large systems: at
the same level of accuracysroot-mean square error of the
order of 10−9d, SPME is about 40 times faster than the Ewald
sums for 1000 point forces and 300 times faster for 5000
points forces. While the cost scales quadratically with size
for the Ewald sums, it increases almost linearly with SPME
when the grid size is fixed in Fourier spacesthe three curves
for SPME correspond to three different grid resolutions in
Fourier spaced.

It must still be noted that the CPU times of Fig. 3 are for
the calculation of the disturbance velocity only. To assess the
actual cost of our simulations, we should also take into ac-

FIG. 1. Velocity rms error as a function of the cutoff radiusrc. The three
curves correspond to the three different grid sizesK=32, 64, and 128 for the
evaluation of the Fourier sum.

FIG. 2. Velocity rms error as a function ofsad the number of grid pointsK
used for the evaluation of the Fourier sum andsbd the interpolation orderp
of the force assignment scheme.
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count the inversion of the linear system for the stresslets and
lubrication forces, which cannot be performed using standard
elimination procedures when SPME is used. The additional
cost of this system inversion does somewhat impede the per-
formance of SPME, but for large systems it still remains far
superior to the standard Ewald sums. A detailed discussion
on the system inversion follows.

IV. THE ITERATIVE SOLVER

A. Generalities

Solving for the particle stresslets and amplitudes of the
lubrication forces involves inverting a linear system. This
operation, which in general can be quite costly, becomes
more complicated when the SPME method is used. Indeed in
SPME the coefficients in the Ewald summation formula Eq.
s10d are not computed directly, and the reciprocal sum in-
stead is calculated as a whole using the fast Fourier trans-
form. In other words, the matrix that needs to be inverted is
not explicitly accessible: the SPME algorithm provides us
with a “black box” that performs matrix-vector multiplica-
tions in an efficient manner. Classical methods for inverting
linear systems such as the LU factorization used by Butler
and Shaqfeh18 are therefore not applicable, and we must re-
sort to a different approach. An attractive method is the use
of an iterative solver to compute an approximate solution,

such as the generalized minimum residualsGMRESd method
of Saad and Schultz,41 which applies to large nonsymmetric
linear systems. At each iteration of the solver, only one
matrix-vector multiplication is needed, so that this type of
method can be used in conjunction with SPME.54

In SPME, the real sum in Eq.s10d is still computed
directly, and is written as the multiplication of a matrixA
with a vector containing the point forces. The coefficients of
the matrix depend on the spatial configuration of the suspen-
sion, and therefore do not change from one solver iteration to
the next within a given time step. This seemingly benign
observation allows one to precompute the real-space matrix
before applying GMRES, so that at each iteration of the
solver the real sum is simply obtained by a matrix-vector
multiplication of a stored matrix with the current iterate. This
spares the expense of computing the real sum coefficients at
each step and reduces the time of the algorithm by an order
of magnitude, the only downside being the additional storage
of the matrix.

B. Preconditioning

To benefit fully from the efficiency of the SPME
method, the number of iterations required by the solver to
achieve a reasonable convergence must be kept to a mini-
mum. This number of iterations is a function of the condition
number of the linear system, defined as the ratio of the larg-
est over the smallest eigenvalue. For our problem, the con-
dition number was shown not to increase significantly with
the problem size at a given fiber concentration, but rather to
depend on the spatial configuration of the fibers and on the
presence of lubrication forces: for very dense or inhomoge-
neous suspensions with many lubrication interactionsssuch
as the ones that occur when the sedimenting fibers form clus-
tersd, the linear system is typically quite stiff and a large
number of iterations is required. This is illustrated in Table I,
which shows how the condition number increases over the
course of a simulation as a result of the concentration insta-
bility. Sangani and Mo19 already encountered this issue with
their fast-multipole method, where they observed that the
inclusion of lubrication forces in their simulations of sedi-
menting spheres greatly decreased their convergence rates. A
similar problem was reported in accelerated Stokesian dy-
namics simulations.27

The classic approach to accelerate convergence is the
preconditioning of the system, which consists in multiplying
it by an approximate inverse of the original matrix. Numer-

FIG. 3. CPU times for the calculation of the Ewald sums usingsad the
traditional Ewald summation technique andsbd the SPME method, as a
function of the system size.

TABLE I. Dependence of the condition number on the inhomogeneity of the
suspension and on the presence of lubrication interactions. The results are
for 200 fibers,A=11, nl3=0.1, and a box of aspect ratiodx:dy:dz=1:1:2.

Time t
sStokes unitsd

Number of
lubrication
interactions

Condition
number

0 19 8

50 134 55

100 218 381

150 251 729
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ous methods are available:42 sparse approximate inverse, in-
complete LU factorization, etc., which are typically very ef-
ficient for large sparse matrices. Our problem, however, is
quite atypical in a few ways. First the coefficients of the
matrix are not known if SPME is used: applying any kind of
preconditioner will require calculating some of these coeffi-
cients using direct summation of the Ewald sums, which is
an expensive operation as was established earlier. Second,
the matrix is full, whereas most preconditioners are designed
for the sparse systems arising in finite difference and finite
element codes. Finally, the matrix is relatively small, from a
few hundred to a few thousand rows and columns: unlike
most situations where iterative solvers are used, the limiting
factor is not the system size but the difficulty of constructing
the matrix efficiently.

In accelerated Stokesian dynamics Sierou and Brady27

showed that using an incomplete Cholesky preconditioner
greatly improved the efficiency of their solver. This method,
however, is only valid for symmetric matrices, which is not
the case of the system in our simulation method. Other pre-
conditioning techniques were therefore investigated, and the
convergence rates are compared in Fig. 4. The first method

consists in calculating the diagonal of the matrix, which is
very dominant, and preconditioning the system by this diag-
onal. This alone reduces the number of iterations by a factor
of 2 or 3, but is not quite sufficient for very inhomogeneous
systems. The next step consists in calculating a sparse ap-
proximation of the matrix, trying to compute the terms of
large magnitude. The relative importance of the different
terms in the matrix depends on the configuration of the sus-
pension and cannot be known exactlya priori, but a good
rule of thumb is to assume that the interactions between
close particles dominate. A sparse approximate matrix is
therefore obtained by only computing the interactions be-
tween particles within a cutoff distancedc, which is chosen
by trial and error to minimize the number of iterations while
keeping the cost of computing the approximate matrix small.
This sparse matrix is then inverted, either exactly using LU
factorization or approximately using incomplete LU factor-
ization, and the inverse is used to precondition GMRES. A
good choice ofdc can reduce the number of iterations by an
order of magnitude, and cut the total time for the system
inversion by a factor of 4 for a system of 200 fibers. Table II
gives more details on the efficiency of these preconditioners.
In all cases the terms in the approximate matrix must be
calculated directly using Ewald summation; however, since
the sparse matrix is only approximate the Ewald summation
need not be fully converged and the first few terms in the
sums are typically sufficient to improve convergence.

V. SIMULATION RESULTS AND DISCUSSION

A. General remarks

This section presents some simulations results, all ob-
tained on a single-processor workstation. We first show some
comparisons with the Monte Carlo simulations of Macka-
plow and Shaqfeh17 for random dispersions. Mackaplow and
Shaqfeh used slender-body theory combined with a boundary
integral formulation to compute the sedimentation rate of
fixed random arrays of fibers: comparing our results to theirs
is therefore a good way of evaluating the consequences of
the force linearization described in Sec. II D. Figure 5 shows
sedimentation rates for random arrays of high-aspect ratio

FIG. 4. Convergence of the GMRES solver depending on the precondi-
tioner, for an inhomogeneous system of 200 fibers,A=11, nl3=0.1, and a
box aspect ratio ofdx:dy:dz=1:1:2.

TABLE II. Efficiency of various preconditioning techniques for an inhomogeneous system of 200 fibers of
aspect ratioA=11 atnl3=0.1 in a box of aspect ratiodx:dy:dz=1:1:2. Using fuller and fuller matrix approxi-
mations decreases the number of GMRES iterations, but increases the overhead cost of computing the sparse
matrix. For this example, the optimal value for the cutoff distance is arounddc=1.2.

Type of
preconditioner

Number of
GMRES
iterations

Number of
terms in the
sparse matrix

CPU time
to compute
the sparse
matrix ssd

Total CPU
time to

solve the
systemssd

No preconditioner 138 ¯ ¯ 558

Diagonal preconditioner 56 451s0.2 %d 12 242

Sparse matrix,dc=0.4 46 11 237s5.5 %d 12 232

Sparse matrix,dc=0.8 26 18 432s9.1 %d 27 154

Sparse matrix,dc=1.2 19 25 260s12.5 %d 48 144

Sparse matrix,dc=1.6 14 32 047s15.7 %d 75 148

Sparse matrix,dc=2.0 13 38 580s18.9 %d 101 171
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particlessA=100d as a function of the effective volume frac-
tion nl3 swheren is the particle number density andl is the
fiber half-lengthd; the velocities are normalized by the ve-
locities at infinite dilution. Our method slightly overesti-
mates the sedimentation rates, but the agreement is within
error bars up tonl3=1, which is quite remarkable as the force
linearization cannot be expected to perform well at high con-
centrations. Other differences between the two methods may
also contribute to the differences observed in the sedimenta-
tion rates: Mackaplow and Shaqfeh retained an additional
term in the slender-body theory asymptotic expansion Eq.
s1d, but did not include lubrication interactions which should
become more and more important at high concentrations.
Given these differences, the agreement with our data shown
in Fig. 5 is quite good, and we can expect our method to
perform well in the dilute regime.

The code was also benchmarked by comparison with the
previous work of Butler and Shaqfeh18 for small systems of
up to 128 fibers: the results obtained with our implementa-
tion were in all respects similar, so that only larger simula-
tions of 512 fibers are discussed below. For ease of compari-
son with the experimental results of Herzhaft and
Guazzelli,15 all the simulations presented in the next sections
are for a fiber aspect ratio ofA=11 and an average effective
volume fraction ofnl3=0.05. A systematic investigation of
the effects of slenderness and volume fraction will be de-
ferred to a subsequent study.

Unless otherwise mentioned, all the initial distributions
were obtained by assigning the fibers to random positions
and with random orientations. In the event of two fibers in-
tersecting, one of them was repositioned at another random
location in the box. This ensured that the initial suspensions
were homogeneous, as would be the case with a well-mixed
suspension in an experiment. As already observed on small
systems, the local concentration fluctuations inherently
present in such a random distribution cause the suspension to
evolve towards very inhomogeneous states where the fibers

form concentrated streamers surrounded by clarified fluid.
By adjusting the dimensions of the periodic unit cell, we
were able to observe the formation of one to two or three
streamers for the system sizes considered here. We study in
turn the structure of the suspension in the vertical direction
sinside a given streamerd and in the horizontal directionsfor-
mation of distinct streamersd.

B. Suspension microstructure and cluster formation

1. Vertical structure

Figure 6 shows the evolution of the suspension for a
simulation box of high-aspect ratiosdx:dy:dz=1:1:8d. Ini-
tially small clusters of only a few fibers form at random
locations in the simulation box. These clusters have an in-
creased sedimentation rate and entrain the fluid around them,
creating a backflow in the other areas, and eventually con-
verge to form a streamer of high velocity. The correlation
between the position of the streamers and the fluid velocity is
very obvious, as shown in Fig. 7. Because the fluid is glo-
bally quiescent, a relatively strong backflow exists outside
the streamer, capable of carrying isolated fibers upwards.

FIG. 5. Sedimentation rates of fixed random arrays of fibers as a function of
the effective volume fractionnl3, obtained with our simulation method
sopen symbolsd and by Mackaplow and ShaqfehsRef. 17d sfull symbolsd.
The sedimentation rates are scaled by their value at infinite dilution. The
results were obtained by averaging over 20 random configurations of<300
fibers in a square unit cell. The error bars are 95% confidence intervals.

FIG. 6. Fiber distribution in the simulation box att=0.0 srandom homoge-
neous distributiond, t=60.0, andt=120.0sleft to rightd. The simulation is for
512 fibers of aspect ratioA=11 with an average concentration ofnl3=0.05.
The box aspect ratio isdx:dy:dz=1:1:8.
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As can be observed in Fig. 6, the streamers are not uni-
form in the vertical direction, but composed of several dis-
tinct clusters of various sizes. Because they have different
sizes, they also have different sedimentation velocities, so
that their relative positions inside the streamers change: large
clusters catch up with smaller ones, forming yet larger clus-
ters and so on. The clusters do not always contain the same
fibers, as fibers constantly enter and leave the clusters as they
sediment. These interesting dynamics can be quantified using
the following procedure, summarized in Fig. 8. A density
function of the vertical positions of the fibers at a given time
can be computed by dividing the simulation box along the
vertical axis into equally sized bins and counting the number
of fibers in each bin: such a function presents peaks at the
locations of the clusters and valleys between them, and the
heights and breadths of the peaks are good indicators of the
cluster sizes. More precisely we define a cluster as a region
where the local particle volume fraction peaks above a
threshold of 1.3 times its average valuenl3, and the limits of

the cluster are taken to be the locations on each side where it
decreases below 0.8 times the averagenl3. Integrating the
particle density function over the extent of the cluster then
provides an estimate of the number of fibers inside the clus-
ter. Quite obviously the values of the two thresholds could be
chosen differently: the values suggested here are such that
the clusters defined by this procedure correspond to what one
would define to be clusters by simply looking at the
suspension.

The procedure is easily programmed on a computer and
can be repeated at different times, allowing one to track the
cluster positions and to perform statistics on their numbers
and sizes. Figure 9 shows the evolution in time of the num-
bers of larges.30 fibersd and smalls,30 fibersd clusters in
the simulation of Fig. 6. To remove the high-frequency noise
present in the original data, the curves have been smoothed
by convolution with a top-hat function of widthDt=8 and
unit area, which explains the noninteger values for the num-
bers of clusters. The early valuessup to t=15 approximatelyd
are not very significant as the streamer is not properly
formed yet, and are therefore omitted on the graph. Both
curves initially present slow oscillations at nearly the same
frequency, where the peaks in the number of small clusters
correlate with the valleys in the number of large clusters and
vice versa. This observation has an easy interpretation and
confirms the dynamics alluded to above: up to approximately
t=100, there is a periodic build-up mechanism by which
small clusters merge into larger clusters, which end up break-
ing up into small clusters again and so forth. Progressively
the number of small clusters decreases to the benefit of larger

FIG. 7. Vertically averaged local number densitynl3 sad and fluid vertical
velocity kuzl sbd for the simulation of Fig. 6. Positive values ofkuzl corre-
spond to downward velocities. The position of the streamer is where the two
maxima occur. Note the negative velocitiessbackflowd outside the streamer.

FIG. 8. Procedure for the systematic determination of cluster positions and
sizes. A density function of the vertical distribution of fibers is obtained by
dividing the box into bins and counting the fibers in each bin. Clusters are
defined as regions where the local particle volume fraction peaks above 1.3
times its average valuenl3 and always remains above 0.8 times the average
nl3. In the example shown, the procedure finds five clusters of sizes 52, 47,
30, 17, and 12 fibers.
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clusters, until a steady state is reached where a combination
of clusters of different sizes cohabitstwo small and two large
clusters on averaged. Note that some oscillations can still be
observed after the steady state is reached, but typically at a
higher frequency and weaker amplitude.

The periodic boundary conditions in the vertical direc-
tion can be expected to have a significant influence on the
observed oscillations. In fact it can be seen that the period of
the oscillations is of the same order as the time that it takes
for a fiber to sediment one box height at the mean sedimen-
tation speedssee Sec. V D for a discussion on the sedimen-
tation rated. The decrease of the period that can observed in
Fig. 9 is therefore a direct consequence of the increase in the
sedimentation velocity as a result of the streamer formation.
This periodicity can be understood in the following way: big
clusters attaining the bottom of the simulation box reappear
at the top and therefore catch up with the smaller clusters
that they left behind during the previous period of oscilla-
tion. It is unlikely that such oscillations would be observed in
an experiment, where a segregation would occur between the
different cluster sizesswith the large clusters reaching the
bottom of the vessel firstd. However, the fact that very big
clusters break up and that the cluster size reaches a steady
state in Fig. 9 bears some significance: it suggests that there
is a maximum size beyond which cluster growth becomes
unfavorable and clusters either break up or abandon fibers in
their wakes.

Since the spatial wavelength in the vertical direction and
the cluster size distributionsin terms of number of fibersd
reach steady-state values, it is interesting to investigate the
densification of clusters through the pair distribution func-
tion, which specifies the fraction of pairs of fibers having a
center-to-center separation at a given distance. The pair dis-
tribution function in the horizontal plane, which is the most
interesting, is shown in Fig. 10. Each curve corresponds to
the time average of the function over a different time inter-
val. Note that the functions are only plotted over half a box
width dx/2, whereas the maximum horizontal distance be-

tween two fibers isÎ2dx/2 sowing to the periodicity inx and
yd. Starting from a linear profile, corresponding to a uniform
distribution of fibers, the function evolves until a maximum
appears at a finite distance, which represents the most prob-
able separation between two fibers in the horizontal plane.
This peak in the distribution function slowly increases and
migrates towards lower values, while the amplitude of the
tail decreases. The interpretation is rather simple: the
streamer progressively becomes thinner and denser, captur-
ing more and more fibers into its core. This process appears
to be extremely slow, and continues even after the cluster
distribution reaches its steady state in Fig. 9. We can expect
this densification to eventually slow down and stop, as ex-
cluded volume effects become more and more important as
the fibers get more tightly packed. Limitations in computa-
tion time, however, did not allow us to run our simulations
until a true steady state was observed.

2. Horizontal structure and wavenumber selection

Obtaining more than one concentrated streamer in the
lateral direction is a challenging task. In all the previous
computational studies only one streamer was obtained, and it
was not clear whether this was an artefact of the periodic
boundary conditions or a consequence of the limited size of
the simulated systems. Neither the horizontal extent of the
streamers nor the wavelength of the instability have been
studied systematically in the published experiments,14,15 and
they are not predicted either by the linear stability analysis,16

so that no information is available on the requirements for
the simulation box dimensions or number of fibers.

By increasing the horizontal dimensions of our simula-
tion box we were able to obtain more than one streamer in
the lateral direction, as shown in Fig. 11 for instance. For the
system sizes that we considered, the only way to achieve this
was to drastically reduce the height of the box as well as its
width in one horizontal direction: the aspect ratio of the box
in Fig. 11 is dx:dy:dz=10:1:2.This choice of box dimen-
sions is likely to have an influence on the structure of the
suspension, first because choosing very different values ofdx

and dy introduces an artificial anisotropy in the horizontal

FIG. 9. Time evolution of the numbers of clusters of a given size in a
streamer. The results are for the same simulation as in Fig. 6: 512 fibers,
A=11, nl3=0.05, anddx:dy:dz=1:1:8. Theestimates of the numbers of
clusters were obtained using the procedure described in Fig. 8. To remove
the high-frequency noise, the curves have been smoothed by convolution
with a unit-area top-hat function of widthDt=8.

FIG. 10. Pair distribution function in thesx,yd plane for the simulation of
Fig. 6, averaged over various time intervals. The pair distribution function
specifies the fraction of fibers with a center-to-center separation at a given
distance.
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plane, and second because the small values ofdy and dz

make the suspension essentially homogeneous in both they
and z directions. The precise consequences are difficult to
assess until larger simulations are performed, so one should
be cautious when trying to extrapolate the results presented
here to full-scale suspensions.

The structure of the suspension in Fig. 11 is quite inter-
esting, as it exhibits a broad region between the core of the
streamers and the clarified fluid where most of the fibers are
very well oriented with gravity, and simply sediment verti-
cally with little horizontal motion; a more detailed observa-
tion shows that fibers in this region slowly migrate towards
the streamers. The vertically averaged fluid velocity field for
the simulation of Fig. 11 is shown in Fig. 12 and provides an
explanation. As expected the vertical fluid velocity peaks in
the core of the streamers, and presents a backflow in the
clarified regions; between those two, a large region of shear
exists where the velocity varies almost linearly. The align-
ment of the fibers in the direction of the velocity is then a
simple consequence of Eq.s3d for the slender-body orienta-
tion dynamics, which predicts a stable equilibrium with no
rotational velocity in linear shear when the fiber is aligned in
the direction of shear. The reorientation of fiber suspensions
in a simple shear flow is a well-known phenomenon.43–46

Unless subjected to lubrication or contact forces, the fibers
located in this region can undergo horizontal motion only as

a result of the velocity fluctuations around the mean: this
process, termed hydrodynamic dispersion, is diffusive in na-
ture and therefore rather slow.47 It is worthwhile here to con-
sider the limitations of this simulation. First the orientation
dynamics as described by slender-body theory are inexact as
they cannot predict the tumbling motion of an isolated par-
ticle in shear flow: the consequences of this approximation
are discussed in more detail in Sec. V E. Second and perhaps
most importantly, the quasihomogeneity of the suspension in
the vertical direction as created by the small box dimension
and periodic boundary conditions helps make the configura-
tion of Fig. 11 stable: inhomogeneities in the vertical direc-
tion would quite likely perturb this configuration at least dur-
ing the onset of the instability, and may disrupt these large
regions of shear.

The simulation of Fig. 11 was repeated for different ran-
dom initial distributions: sometimes only one streamer
formed, and in very rare cases three streamers were ob-
served. This strong dependence of the structure formation on
the initial distribution calls for a more systematic investiga-
tion. Simulations were run in which the initial distribution
was perturbed artificially by a superposition of two planar
waves in thex direction of wavenumbersk=1 and k=2
swhere k is nondimensionalized by the box lengthdxd:
csx,y,zd= ĉ0+ ĉ1exps2pix/dxd+ ĉ2exps4pix/dxd; the ratio
ĉ1/ ĉ2 of the amplitudes of the two waves was varied. The
initial velocity fields were computed and compared to the
final fiber distributions, and the results are summarized in
Table III. Several observations can be made. Depending on
the ratio of the two initial wave amplitudes, either one or two
streamers form; only for very small values ofĉ1/ ĉ2 do two
concentrated streamers develop, and in all other cases only
one streamer is observed. It is enlightening to compare these
observations to the initial velocity fields, and more precisely
to the ratio û1/ û2 of the k=1 and k=2 coefficients of the
Fourier transform in thex direction of the vertical component
of the velocity, and to the number of distinct backflow re-
gions in the velocity field. The number of concentrated
streamers in the final distribution seems to be correlated to
the number of backflow regions, which itself is determined
by the ratioû1/ û2. More precisely, backflow regions seem to

FIG. 11. Distribution of fibers att=140 for a highly elongated box in the
horizontal directionsbox aspect ratio:dx:dy:dz=10:1:2d; the top plotsad
shows a side view of the suspension while the bottom plotsbd provides a
vertical view. The simulation is for 512 fibers of aspect ratioA=11 with an
average effective volume fraction ofnl3=0.05. Two distinct streamers sepa-
rated by clarified regions can be observed.

FIG. 12. Vertically averaged vertical velocity field for the simulation of Fig.
11. The positive values correspond to downward velocities. The two peaks
are located at the core of the concentrated streamers, and a backflow occurs
in the clarified regions. Large regions of almost linear shear exist between
streamers and clarified fluid.

TABLE III. Influence of the initial distribution on the streamer formation.
Simulations were performed in boxes of aspect ratiodx:dy:dz=10:1:2, in
which the initial random distribution was perturbed by the superposition of
two waves of wavenumbersk=1 and k=2: csx,y,zd= ĉ0+ ĉ1exps2pix/dxd
+ ĉ2exps4pix/dxd. The ratioĉ1/ ĉ2 of the amplitudes of the two waves was
varied. The table reports the ratioû1/ û2 of the k=1 andk=2 coefficients of
the Fourier transform in thex direction of the vertical component of the
initial disturbance velocity field; the number of distinct backflow regions in
the initial velocity field; the number of concentrated streamers in the final
distribution.

ĉ1/ ĉ2 û1/ û2 Backflow regions Streamers

0.20 0.88 2 2

0.66 3.07 1 1

0.87 3.86 1 1

1.29 5.80 1 1

1.59 7.07 1 1
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act as barriers that cause the fibers to rotate and migrate
towards the denser “velocity wells.” Since, from the periodic
fundamental solution Eq.s11d, the Fourier coefficients of the
velocity scale asûk, ĉk/k2, the flow is typically dominated
by thek=1 mode and only one streamer forms.

At the other end of the spectrum, it is observed that
perturbations in concentration usually decay at high wave
numbers. Simulations were run in which a high-frequency
perturbationsk=4 to 7d was applied to the initial distribution;
in most cases fewer streamers were obtained than initial
waves. This phenomenon, that we term streamer coales-
cence, is illustrated in Fig. 13 for the casek=6. Starting from
six initial waves, only four concentrated streamers are ob-
served in the final distributionfFig. 13sadg. The initial verti-
cal velocity fieldfFig. 13sbdg somewhat modifies our previ-
ous criterion and shows that streamers form in the local
minima or “wells” of the velocity field, although they need
not be surrounded by independent backflows. Figure 14
shows the discrete Fourier transforms in thex direction of
the initial concentration perturbation and of the initial veloc-
ity field. Although thek=6 mode dominates the initial con-
centration, it only creates a very small disturbance in the
velocity spectrum, which is swamped by the low-
wavenumber modessmostly k=1d arising from random con-
centration fluctuations. Therefore high-wavenumber pertur-
bations cannot survive as even tiny low-wavenumber
fluctuations will typically dominate the velocity field.

The presence in most simulations of this strongk=1
mode in the velocity field is reminiscent of the large recircu-
lation vortices observed in experiments on sphere suspen-
sions. Guazzelli48 studied the sedimentation of suspensions
of spheres using particle image velocimetry, and observed
that during the initial moments of her experiments the veloc-
ity field is dominated by large vortices of the size of the
container; after a while these vortices decay and leave place
to smaller vortices whose size is found to be independent of
the container dimensions. As explained by Hinch,49 these
large convection currents in the initial times are due to the
difference in weight between the two sides of the suspension;
these currents have the effect of homogenizing the two sides,
after which they decay. The strongk=1 mode observed in
our simulations has the same origin, but is not allowed to

decay because of the periodic boundary conditions in the
vertical direction, which effectively prevent the horizontal
convection currents that would otherwise occur in a bounded
system. Fiber suspensions are more complex due to the
strong coupling between the concentration and velocity
fields, and even though a similar recirculation as in sphere
suspensions may occur in a container with a bottom wall and
may lead to some type of homogenization, the instability on
the contrary acts against the homogenization of the suspen-
sion and tends to accentuate the fluctuations. The combina-
tion of these two effects may lead to a qualitatively different
behavior than is observed in sphere suspensions, and more
work is needed to determine whether the physical picture
described by Guazzelli48 by which the initial recirculation
vortex diminishes and is replaced by smaller less intense
vortices still holds; understanding this process may be the
key to explaining the wavenumber selection of the
instability.

C. Orientation dynamics

Both experiments15 and previous simulations18 showed a
reorientation of the fibers in the direction of gravity, with
occasional flippings. This is confirmed in our results and is
illustrated in Fig. 15, which shows the evolution of the pro-
jected angle of a typical sedimenting fibersthe projected
angle being defined as the angle between the major axis of
the fiber and the horizontal planed. After a transient phase

FIG. 13. Final fiber distributionsad and initial disturbance velocity fieldsbd
for an initial plane wave perturbation at wavenumberk=6: csx,y,zd= ĉ0

+ ĉ6exps12pix/dxd. Only four concentrated streamers can be observed,
which are located in the wells of the initial velocity field.

FIG. 14. Magnitude of the coefficients of the Fourier transform in thex
direction ofsad the initial concentration field andsbd the vertical component
of the initial disturbance field for the simulation of Fig. 13. A strong peak at
k=6 can be observed in the initial concentration field; the velocity field,
however, is dominated by the random low-wavenumber fluctuationssk=1d.
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lasting untilt=100 approximately, the fiber ends up spending
most of its time aligned in the vertical direction. The trajec-
tory of Fig. 15 is very similar to those observed in
experiments.15

The evolution of the orientation statistics can be studied
by looking at the average square orientation of the fibers in
the direction of gravitykp3stdp3stdl. Its time evolution is pre-
sented in Fig. 16 for three simulations with the same num-
bers of fibers, aspect ratios, and volume fractions but differ-
ent periodic cell dimensions. In all three simulations
kp3stdp3stdl starts from a value close to 1/3 corresponding to
an initial distribution with random orientations, and increases
progressively as the fibers begin to align. The three curves
eventually reach a steady state, the value of which differs in
each case and gives an indication of the average orientation.
A lower steady state value is obtained with high-aspect ratio
boxes, corresponding to fewer fibers being aligned with
gravity: this had already been observed in smaller
simulations,18 and is corroborated by the orientation distribu-

tions presented below. The time to steady state also depends
on the simulation box dimensions: it is much quicker in gen-
eral for low-aspect ratio boxes.

Figure 17 compares the orientation distributions of the
two simulations of Figs. 6 and 11 to the experimental results
of Herzhaft and Guazzelli.15 In all three cases the distribution
presents a clear peak slightly belowp /2, which was ex-
pected and indicates that a large number of fibers are almost
aligned in the vertical direction. A second local maximum
near zero can also be observed in the experimental data,

FIG. 15. Time evolution of the projected angle for a typical fibersangle
between the major axis of the fiber and the horizontald. After a transient
phase, the fiber spends most of its time almost aligned with gravityspro-
jected angle of ±p /2d with occasional flippings.

FIG. 16. Time evolution of the average square orientation in the direction of
gravity. All three curves are for 512 fibers,A=11 andnl3=0.05, and differ-
ent box dimensions. Note how the time to steady state and the value of the
steady state depend on the periodic cell aspect ratio.

FIG. 17. Comparison of the orientation distributions of two different simu-
lations with the experiments of Herzhaft and GuazzellisRef. 15d. The two
upper plots are for simulations of 512 fibers of aspect ratioA=11, with an
average effective volume fraction ofnl3=0.05 and different simulation box
aspect ratios:sad dx:dy:dz=1:1:8 ssimulation of Fig. 6d, sbd dx:dy:dz

=10:1:2ssimulation of Fig. 11d. The bottom plotscd shows the experimen-
tal distribution, obtained for the same particle volume fraction and fiber
aspect ratio.
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showing that the horizontal direction is also a preferred fiber
orientation, but this maximum is not reproduced by either of
the two simulations.

The breadth and height of the main peak differs greatly
between the two simulations. In the first caseshigh-aspect
ratio periodic celld, the peak is rather broad and weak, and
the tail of the distribution is quite thick, indicating that quite
a large number of fibers are not aligned; in the case of the
second simulationswide and thin periodic celld, the peak is
quite higher and narrower and the tail is finer, and the overall
profile of the distribution compares somewhat more favor-
ably with the experimental data. This is consistent with the
findings of Fig. 16, where we observed two different values
for the steady-state average square orientations. A simple in-
spection of the suspensions of Figs. 6 and 11 provides an
explanation. In the case of the high simulation box, only the
core of the streamers is really captured, where most of the
fibers are entangled inside clusters and are not free to align.
Figure 11, however, demonstrates that in a wider box the
streamers are surrounded by large regions of shear where the
fibers are isolated and can align freely with gravity. In Fig.
17sbd the height of the peak is slightly overestimated: this
may be a consequence of the very short height of the box and
of the periodic boundary conditions, as in a real system in-
homogeneities in the vertical direction would perturb to
some extent the shear regions between the streamers. Still
these results suggest that these large regions should not be
ignored if we want to obtain accurate orientation statistics,
hence the necessity to use wide enough boxes to capture the
full extent of the horizontal structures.

D. Sedimentation rate and velocity statistics

The formation of dense clusters has a strong influence on
the average sedimentation speed of the suspension, which is
enhanced in the dilute and semidilute regimes. This phenom-
enon is really a consequence of the concentration instability,
as the velocity is generally hindered in dilute suspensions
such as homogeneous suspensions of spheres.1 Note that in
the concentrated regime suspensions of fibers also exhibit
velocity hindering,50 presumably because strong entangle-
ments present in concentrated suspensions prevent the insta-
bility from developing.

In their small simulations, Butler and Shaqfeh18 ob-
served that the average sedimentation rate of the fibers
slowly increases as the instability develops and eventually
reaches a plateau, the value of which depends on the aspect
ratio of the periodic cell. For the larger systems considered in
this study, the time to steady state was generally very long
stypically more than 200 time unitsd, so that most of the
simulations were stopped before reaching a steady-state ve-
locity sFig. 18d. This is easily understood in the light of the
earlier discussion on the pair probability functions: in the
Stokes flow regime the sedimentation velocity is a function
of the spatial configuration of the suspension only, and as
was observed in Sec. V B 1 the clusters keep getting denser
and denser even after the cluster distribution and orientation
statistics have reached their steady state. However, we also
argued in Sec. V B 1 that the densification should eventually

slow down due to excluded volume effects, and it is likely
that a steady sedimentation rate would be reached if the
simulations were run long enough.

Figure 18 also shows a strong dependence of the sedi-
mentation rate on the dimensions of the periodic cell: lower
sedimentation rates are obtained in high-aspect ratio boxes,
in better agreement with the experimental values. Figure 19
compares the velocity distributions for such a simulation to

FIG. 18. Time evolution of the average sedimentation rate for simulations of
128 and 512 fibers. In each caseA=11 andnl3=0.05. While a steady state is
reached rapidly with 128 fibers, the sedimentation rate keeps increasing with
512 fibers, and its value depends on the periodic cell aspect ratio.

FIG. 19. Comparison of the velocity distributions with the experimental
data of Herzhaft and GuazzellisRef. 15d. The upper plotsad corresponds to
the simulation of Fig. 6s512 fibers,A=11,nl3=0.05,dx:dy:dz=1:1:8d. The
bottom plotsbd shows the experimental distribution, obtained for the same
particle volume fraction and fiber aspect ratio.
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the experimental results of Herzhaft and Guazzelli:15 while
the horizontal velocities are captured reasonably well, the
vertical velocity distribution predicted by our simulation is
slightly shifted to the right and somewhat broader than in the
experiments; both the mean and the variance of the vertical
velocity are overestimated, and this generally gets worse as
the simulation box gets wider. Butler and Shaqfeh18 encoun-
tered the same difficulty and came up with the following
heuristic rule: for the system sizes they considered, they ob-
served that setting the aspect ratio of the periodic cell to
dz/dx=N/16, whereN is the number of fibers, enabled them
to obtain the right sedimentation rate and fairly good velocity
distributions. Their rule, however, is not easily applied in the
case of very large systems, as it would require extremely
high and thin boxes, and preclude the capture of more that
the core of a single streamer. If we want to resolve the large
shear regions between the streamers, which as we established
are important for obtaining correct orientation statistics, yet
larger systems may be needed, in which both the lateral and
vertical box dimensions are large compared to the length of a
fiber. Using a bottom wall and nonperiodic boundary condi-
tions in the vertical direction may also provide a solution.

E. Validation of the slender-body approximation

Earlier mention was made of the limitations of the
slender-body approximation. The significant feature of the
model is that slender bodies in a linear shear flow simply
align in the direction of the flow, while exact Stokes flow
solutions suggest that an ellipsoid51 and in fact any body of
revolution52 should undergo a periodic tumbling motion
known as Jeffery’s orbits. These poor orientation dynamics
may influence our results in two ways: by modifying the
dynamics inside the large shear regions observed around the
streamers in Sec. V B 2, which in turn may have an impact
on the orientation statistics presented in Sec. V C. In particu-
lar, we may expect the migration towards the streamers to be
enhanced in the presence of tumbling.

To assess more precisely the consequences of the
slender-body dynamics, we implemented a slightly different
model in which Eq.s3d for the orientation dynamics was
replaced by the following:

ṗa =
3

4
sI − pa ^ padE

−1

1

s1 − s2dSA2 − 1

A2 + 1
Essd + VssdDpads

−
3 lns2Ad

8p
pa 3 Ta, s18d

where Essd=h=u8ssd+f=u8ssdgTj /2 and Vssd=h=u8ssd
−f=u8ssdgTj /2 are, respectively, the rate of strain and rate of
rotation tensors of the disturbance velocity field, evaluated at
positionxa+spa along the axis of the fiber. Equations18d is
a simplified version of the exact equation for the orientation
dynamics of a spheroid,53 in which we neglected an addi-
tional term involving the Laplacian of the rate of strain on
the basis that its coefficient 1/8sA2−1d is very small for
high-aspect ratio particles. LettingA→` in Eq. s18d and
performing an integration by parts allows one to recover Eq.
s3d for the slender-body dynamics. Equations18d can still be

implemented using SPME: indeed taking the gradient of the
velocity in Eq.s14d allows one to derive similar Ewald sum-
mation formulas for the components of the rate of strain and
rate of rotation tensors, which are then computed following
the same algorithm as for the disturbance velocitysSec.
III B d. While analytical expressions were used for the real
sums, the Fourier sum of the gradient was computed numeri-
cally on the Fourier space grid using a fourth-order central
finite difference scheme.

For the aspect ratios considered in this study, the modi-
fications entailed by the use of Eq.s18d were minor in gen-
eral. This is illustrated in Fig. 20, which compares the final
distributions obtained with the two different formulations. In
particular, the streamer formation is not affected, and neither
are the shear regions surrounding the streamers where the
alignment of the fibers is sensibly the same. Figure 21 com-
pares for both simulations the time evolution of the average
square orientation in the direction of gravity, which quanti-
fies the degree of alignment of the suspension: the differ-
ences observed are within the statistical fluctuations of the
data. This can be interpreted as follows: even though slender
bodies in a simple shear flow align with the flow, the distur-
bance field between the streamers is not exactly linear and

FIG. 20. Comparison of the final fiber distributions obtained using the origi-
nal slender-body formulation of Eq.s3d sad, and the finite aspect ratio for-
mulation of Eq.s18d sbd. The simulation is for 512 fibers,A=11, nl3=0.05,
and dx:dy:dz=10:1:2. The two simulations agree qualitatively, which jus-
tifies the use of the slender-body approximation.

FIG. 21. Time evolution of the average square orientation in the direction of
gravity for the two simulations of Fig. 20. Both modelsfslender-body for-
mulation Eq.s3d, and finite aspect ratio formulation Eq.s18dg give very
similar results, confirming the validity of the slender-body approximation.
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fluctuations in this disturbance field can still cause tumbling
sand indeed such tumbling or “flipping” events can be ob-
served in Fig. 15d. Furthermore the correction entailed by
Eq. s18d is quite weak: the coefficientsA2−1d / sA2+1d only
changes from 1 to 0.98 when the aspect ratio is varied from
infinity to 11. This suggests that the flipping induced by the
velocity fluctuations dominates the tumbling due to the finite
thickness of the particles, and under the assumption that the
Laplacian term that we neglected to obtain Eq.s18d is indeed
small, these results confirm the validity of the slender-body
approximation for simulations of high-aspect ratio particles.

VI. CONCLUSION

We have implemented a fast algorithm, called smooth
particle-mesh Ewald, which allows one to compute effi-
ciently the hydrodynamic interactions between small par-
ticles suspended in a fluid. SPME is comparable to the ac-
celerated Stokesian dynamics method of Sierou and Brady27

for spherical particles, but is characterized by different force
assignment and interpolation schemes using Cardinal
B-splines, which are particularly well suited for complex ex-
ponentials and provide stability at high orders of interpola-
tion. The method, which allows one to efficiently compute
the disturbance field induced by periodic distributions of
point forces, has been applied to infinite suspensions of slen-
der bodiessline distributions of point forcesd in a gravity
field, but could easily be applied to different particle shapes
sdisks or platelike particles for instance, or arbitrary solid
surfaces in a boundary element simulationd, as well as dif-
ferent flow conditionssparticulate flows in an imposed ve-
locity field, pressure-driven flows, etc.d. The algorithm can
also be easily parallelized, as it is based on a summation of
close particle pair interactions for which a domain decompo-
sition is suitable, and on the fast Fourier transform algorithm
for which parallel implementations are already available.

When applied to the sedimentation of rigid fibers at zero
Reynolds number, our fast algorithm has allowed us to simu-
late large systems of up to 512 fibers on a single processor,
while maintaining a good level of approximation in our
simulation method where the force moments on each fiber
are retained up to the stresslet term. In particular, the con-
centration instability observed in sedimenting suspensions of
nonspherical particles was captured very convincingly, and
our simulations of larger systems have provided valuable in-
formation on the microstructure of this type of suspensions.

Using very elongated boxes in the direction of gravity,
we were able to study the dynamics inside the core of the
streamers that form as the fibers sediment. We observed that
the streamers are in fact composed of distinct clusters of
various sizes and velocities, which can either merge or break
up. As the instability begins to develop, our simulations ex-
hibited a mechanism by which small clusters aggregate into
larger clusters, which can again break up. After a transient
phase, a steady state is observed in which a combination of
clusters of different sizes cohabit on average. The break-up
phenomenon, along with the presence of a steady state, sug-
gests that clusters beyond a certain size become unstable, and
either break up or abandon fibers in their wakes.

More interestingly, our simulations managed to capture
several concentrated streamers in the horizontal direction.
This was made possible by drastically increasing one of the
horizontal dimensions of our simulation box. These simula-
tions in wide boxes highlighted the presence of broad shear
regions between the core of the streamers and the clarified
fluid, where most of the fibers sediment almost vertically
with little horizontal motion. These regions of shear had not
been captured in previous simulations owing to the insuffi-
cient size of the periodic cells, and seem to account for some
discrepancies that had been observed in the orientation dis-
tributions. While the exact process leading to the wavenum-
ber selection is still poorly understood, our simulations pro-
vided partial answers: the formation of concentrated
streamers seems to be linked to the presence of velocity
wells in the initial disturbance field, created by concentration
fluctuations in the distribution of fibers. A simple argument
shows that for a random suspension the initial disturbance
field is dominated by perturbations of long wavelengthssk
=1 moded. While experiments on the sedimentation of
spheres suggest that this initial recirculation cell should de-
cay, this is not observed in our simulations owing to the
periodic boundary conditions in the vertical direction.

Obtaining accurate sedimentation rates and velocity dis-
tributions remains a very difficult task, as these two quanti-
ties depend strongly on the aspect ratio of the periodic cell.
Using high-aspect ratio boxes in general gives acceptable
results, but the rule defined previously by Butler and
Shaqfeh18 on the box aspect ratio does not allow to capture
more that the core of the streamers. In order to capture cor-
rect velocity statistics while resolving the horizontal struc-
ture of the suspension, we speculate that yet larger systems
are required.
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APPENDIX: CARDINAL B-SPLINE INTERPOLATION

This appendix presents a few basic results on the Cardi-
nal B-splines used for the interpolation in the SPME algo-
rithm. A similar, somewhat more detailed discussion can be
found in the work of Essmannet al.,30 or in the work of
Schoenberg.40

A Cardinal spline of orderp is a function defined over
the set of real numbersR, of classCp−2 si.e., p−2 times
continuously differentiabled, and such that its restriction to
any intervalfm,m+1d for any integerm is a polynomial of
degree less than or equal top−1. The set of Cardinal splines
of order p is denotedSp and is easily shown to be a vector
space. Quite obviously,Sp is stable by integer translation,
i.e., if fsud is in Sp, so is fsu−md for any integerm. A linear
basis for this vector space is provided by the Cardinal
B-splines, which are defined as follows. For any real number
uPR, introduce the notationsu+=maxsu,0d=su+ uuud /2 and
u+

p=su+dp. Define the following function overR:
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Mpsud =
1

sp − 1d! ok=0

p

s− 1dk p!

k ! sp − kd!
su − kd+

p−1, u P R.

sA1d

It can be shown thatMpsud is a Cardinal spline, and that the
set of its integer translatesMpsu−md, called Cardinal
B-splines, forms a basis ofSp. This means, in particular, that
any functionfsud in Sp can be written uniquely as

fsud = o
m=−`

+`

cmMpsu − md.

The function Mpsud can be shown to have the following
interesting properties:

s1d Mpsud.0 for uP s0,pd andMpsud=0 otherwise. In par-
ticular, this shows that all thepth order Cardinal
B-splines have compact support of lengthp+1.

s2d Mpsud is symmetric with respect to the center of its sup-
port: Mpsp−ud=Mpsud.

s3d The CardinalB-splines sum up to 1:om=−`
+` Mpsu−md

=1.
s4d Thepth orderB-splines can be obtained from the lower-

orderB-splines by a recursion formula

Mpsud =
u

p − 1
Mp−1sud +

p − u

p − 1
Mp−1su − 1d. sA2d

In practice Eq.sA2d is used to compute the Cardinal
B-splines, rather than the definition Eq.sA1d.

s5d The derivatives of theB-splines can be obtained from
lower-orderB-splines:

d

du
Mpsud = Mp−1sud + Mp−1su − 1d.

A list of the CardinalB-splines of orders 1–7 can be found in
Deserno and Holm.25

Let us now proceed to show how the CardinalB-splines
can be used to interpolate complex exponentials. Consider
the complex-valued functiongsud=exps2piku/Kd, whereu
is a real number, andk andK are fixed integers. To alleviate
the notations we will setz=exps2pik/Kd, so that nowgsud
=zu wherez is some fixed complex number. Quite obviously,
we have the property thatgsu+1d=zgsud. We wish to inter-
polate the functiong by a pth order splinegpPSp which
satisfies the same property,gpsu+1d=zgpsud. Sincegpsud is a
Cardinal spline, it can be decomposed on the basis of
B-splines,

gpsud = o
m=−`

+`

cmMpsu − md, sA3d

and also

gpsu + 1d = o
m=−`

+`

cmMpsu + 1 −md = o
m=−`

+`

cm+1Mpsu − md.

sA4d

Invoking the uniqueness of the decompositions Eqs.sA3d
and sA4d, we must havecm+1=zcm for all integersm for the

propertygpsu+1d=zgpsud to be satisfied. A simple recursion
leads tocm=zmc0 for all integersm, and hence

gpsud = c0Fpsud, where Fpsud = o
m=−`

+`

zmMpsu − md.

sA5d

If Fps0d is nonzero, we can choose the coefficientc0 to be
1/Fps0d. Then we have by constructiongps0d=1 and
gpsmd=zgpsm−1d for any integerm, so that by simple recur-
sion gpsmd=zmgps0d=zm. It can be shown that the only case
whereFps0d=0 is whenp is odd and 2uku=K. In all other
cases we have constructed apth order spline which interpo-
lates the functiongsud at all the integers. Recalling the origi-
nal definition ofz, and defining

bskd =
1

Fps0d
=

expF2pi
k

K
sp − 1dG

o
m=0

p−2

Mpsm+ 1dexpS2pi
km

K
D

,

we obtain

expS2pi
ku

K
D . bskd o

m=−`

`

Mpsu − mdexpS2pi
km

K
D , sA6d

which is the same as Eq.s15d. The error in the approximation
Eq. sA6d can be shown to be bounded bys2uku /Kdp.
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