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Abstract

An active fluid denotes a viscous suspension of particles, cells, or macro-
molecules able to convert chemical energy into mechanical work by gener-
ating stresses on the microscale. By virtue of this internal energy conversion,
these systems display unusual macroscopic rheological signatures, including
a curious transition to an apparent superfluid-like state where internal ac-
tivity exactly compensates viscous dissipation. These behaviors are unlike
those of classical complex fluids and result from the coupling of particle
configurations with both externally applied flows and internally generated
fluid disturbances. Focusing on the well-studied example of a suspension of
microswimmers, this review summarizes recent experiments, models, and
simulations in this area and highlights the critical role played by the rheo-
logical response of these active materials in a multitude of phenomena, from
the enhanced transport of passive suspended objects to the emergence of
spontaneous flows and collective motion.
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1. INTRODUCTION

An active fluid denotes a collection of particles, cells, or macromolecules, typically suspended in a
viscous fluid, which are able to convert chemical energy into mechanical work. Examples abound
in biology, from motile microorganisms that burn energy from nutrients to achieve locomotion
(Lauga & Powers 2009) to the cell cytoskeleton where molecular enzymes powered by ATP
(adenosine triphosphate) exert forces on structural filaments, for instance, during cell division
(Shelley 2016). Inspired by these living micromachines, materials scientists and engineers have
also found ways to design and manufacture active particles in the lab, which sometimes mimic
their biological counterparts. In other cases, they have relied on novel propulsion mechanisms
such as nonuniform surface chemical reactions (Moran & Posner 2017).

The recent interest in these active systems has been motivated by a variety of factors. On the
one hand, deciphering the complex collective dynamics and spontaneous organization that bio-
logical active matter often displays might yield a better understanding of fundamental processes in
biophysics, from the transport and spreading of bacterial colonies to the biomechanics of individ-
ual cells or subcellular units. On the other hand, engineered active suspensions may find uses in a
wide range of technological applications, from fluid mixing and pumping to the directed transport
of cargo on the microscale, for instance, in lab-on-a-chip devices or for drug delivery (Wang
2013).

Suspensions of active particles exhibit a rich phenomenology, which is very unlike that of pas-
sive systems. The mere propulsion of individual microswimmers can result in unusual transport
properties such as enhanced diffusion, accumulation near boundaries, and rectification (Elgeti et al.
2015). In more concentrated systems, interactions between particles often result in emergent col-
lective dynamics, such as sustained chaotic turbulent-like motions in the bulk (Sokolov & Aranson
2012) and spontaneous unidirectional flows under confinement (Wioland et al. 2015). The re-
sponse of active suspensions to external forcing can defy intuition, with rheological measurements
in simple flows reporting a peculiar transition to superfluid-like behavior (López et al. 2015).

Underlying many of these phenomena is the internal generation of mechanical energy, which is
expended towards locomotion but also drives disturbances in the suspending viscous medium. The
coupling of particle configurations with flow, whether externally imposed or self-induced, can thus
lead to bizarre rheological behaviors not observed in classic complex fluids. This review summarizes
these effects, as well as the models that have been developed to rationalize them. Many other
fascinating aspects of active suspensions not directly pertaining to their rheology are not covered;
the reader interested in these details is referred to existing reviews (Lauga & Powers 2009, Koch
& Subramanian 2011, Marchetti et al. 2013, Elgeti et al. 2015, Saintillan & Shelley 2015, Clément
et al. 2016, Lauga & Michelin 2016, Shelley 2016). Finally, this review focuses on the rheology of
microswimmer suspensions; other active systems that do not involve self-propelled particles also
exhibit interesting rheological properties, and a few examples are briefly discussed in Section 5.

2. MICROSCOPIC DESCRIPTION OF ACTIVE SUSPENSIONS

2.1. Swimming Particles: Mechanisms and Transport

An extensive body of literature exists on the analysis and modeling of single swimmer dynamics. I
only mention here a few key aspects that are important to understanding the rheology; more details
on swimming mechanisms can be found in previous reviews (Brennen & Winet 1977, Lauga &
Powers 2009, Ebbens & Howse 2010, Elgeti et al. 2015, Goldstein 2015, Lauga 2016). Typical
microswimmers, with sizes of the order of 1–100 µm and velocities of a few body lengths per
second, live in the world of low Reynolds numbers, where inertial effects are negligible and fluid
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Flagellum: flexible
thread-like appendage
with a helical
polymeric structure
used by many
microorganisms for
locomotion

Drag anisotropy: the
drag force on a slender
object translating in
Stokes flow is twice as
large perpendicular to
its main axis as it is
parallel to it

motions are dominated by viscous forces. The reversibility of the Stokes equations in this case
restricts the types of body deformations that enable propulsion to nonreciprocal trajectories in
phase space, so as to break Purcell’s (1977) celebrated scallop theorem. Flagellated organisms such
as many motile bacteria (including Escherichia coli and Bacilus subtilis), certain types of microalgae
(including Chlamydomonas reinhardtii ), and spermatozoa rely on long, flexible appendages termed
flagella, whose nonreciprocal deformations in the form of helical rotations or planar beating
motions impart a net thrust on the fluid by taking advantage of the drag anisotropy of slender
filaments in Stokes flow (Gray & Hancock 1955, Batchelor 1970b, Lighthill 1975). This thrust
balances the drag on other portions of the organism, resulting in a net unidirectional motion at
an average speed V 0. Other types of swimmers, such as Volvox carteri and Paramecia, use arrays
of short, hairlike filaments termed cilia, whose biological architecture is very similar to flagella.
By undulating these ciliary carpets in a coordinated fashion known as a metachronal wave, these
swimmers induce an effective surface flow, which also leads to net propulsion (Blake 2001).

Breakthroughs in materials science and nanofabrication over the last decade have also enabled
the design and manufacturing of a multitude of synthetic microswimmers (Ebbens & Howse 2010),
relying on a variety of propulsion mechanisms that in some cases mimic those found in biology.
Some of the most popular mechanisms involve self-diffusiophoresis using nonuniform surface
reactions (Moran & Posner 2017), self-electrophoresis using redox reactions (Paxton et al. 2004),
and bubble generation (Gibbs & Zhao 2009), among others. Although some of these particles
are very efficient swimmers, the macroscopic characterization of their rheological properties has
been lagging, in part due to sedimentation out of suspension and to the difficulty in concentrating
these particles without causing aggregation. For these reasons, the discussion centers on biological
swimmers, although many of the concepts and models are applicable to both.

Longtime transport properties of microswimmers hinge not only on their ability to self-propel,
but also on the importance of orientation decorrelation mechanisms, which tend to randomize
orientations and whose coupling with swimming motions results in diffusive random walks in
space. The case of swimming E. coli was studied in detail by Berg (2004), who observed that
periods of nearly straight swimming motions (runs) alternate with fast random reorientation events
(tumbles) caused by the unbundling and rebundling of the bacterial flagella (Figure 1a). Denoting
the direction of swimming by unit vector p, these tumbling events can be seen as stochastic changes
in p occurring with characteristic frequency τ−1

r , where τr is the mean duration of a run and is
on the order of a second. Assuming pre- and posttumble orientations are uncorrelated, E. coli
trajectories appear as random walks in space, with an average step length given by the run length
�r = V 0τr. A simple calculation (Berg 1993) then predicts a mean-square displacement growing
with time as 〈|r(t) − r(0)|2〉 ∼ 6Deff t, where 〈·〉 is the ensemble average. The effective swim
diffusivity Deff is found to be V 2

0 τr/6 for a constant run length and V 2
0 τr/3 for an exponentially

distributed random run length. In E. coli, pre- and posttumble directions are in fact correlated,
with an average change in orientation of 58 ± 40o during one tumble (Turner et al. 2000). This
correlation can be accounted for by introducing the conditional probability K (p′|p) for a tumble
from orientation p to p′, for which Subramanian & Koch (2009) proposed the following model:

K (p′|p) = ξ

4π sinh ξ
exp(ξp · p′). 1.

The parameter ξ quantifies the degree of correlation, with ξ → 0 corresponding to uncorrelated
tumbling and ξ → ∞ to infinitesimal changes in orientation; the value of ξ ≈ 1.5 captures
the case of E. coli. Although the tumbling rate can be assumed to be constant in homogeneous
environments, various external gradients can cause spatiotemporal variations in τr, which enables

www.annualreviews.org • Rheology of Active Fluids 565

Review in Advance first posted 
on October 23, 2017. (Changes 
may still occur before final 
publication.)

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
8.

50
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
10

/3
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FL50CH22_Saintillan ARI 14 October 2017 12:10

a       Run-and-tumble motion b       Rotary diffusion

V0p(t)

ℓr =

Deff = Deff = 

V2τr Constant τr6
0

Poisson
process

V2τr
3
0 6dr

V2
0

V2τr0

Figure 1
Random walks resulting from the coupling of self-propulsion and orientation decorrelation mechanisms. (a) Run-and-tumble motion,
consisting of straight runs of length �r = V 0τr interspersed with random tumbles occurring with mean frequency τ−1

r . (b ) Rotary
diffusion, in which the particle director performs a random walk on the unit sphere of orientations. Both types of trajectories exhibit
linear growth of the mean-square displacements at long times: 〈|r(t) − r(0)|2〉 ∼ 6Deff t.

bacteria to bias their random walks so as to migrate along the gradient direction, for instance,
during chemotaxis (Alt 1980).

In addition to run-and-tumble dynamics, microswimmers are also subject to noise, which re-
sults in orientational diffusion. Thermal Brownian motion only plays a weak role in the dynamics
of biological swimmers; other sources of noise may include fluctuations in flagellar beating pat-
terns. This orientational diffusion can be characterized by a rotary diffusivity dr; its coupling with
swimming also results in correlated random walks with a linear growth of mean-square displace-
ments (Figure 1b). The effective spatial diffusivity in this case can be calculated using generalized
Taylor dispersion theory (Brenner & Condiff 1974, Brenner 1980) as Deff = V 2

0 /6dr. The run
length �r = V 0d−1

r is now interpreted as the persistence length of swimmer trajectories, i.e.,
the characteristic distance a swimmer will traverse before losing memory of its initial orientation,
〈p(s )·p(s ′)〉 ∼ exp(−2|s −s ′|/�r), where s denotes the arclength along a trajectory. As is well under-
stood in the case of passive Brownian rods (Hinch & Leal 1972, 1976; Brenner 1974; Petrie 1999),
the competition between the randomization of particle orientations, either by run-and-tumble
dynamics or orientational diffusion, and the alignment imposed by external flows is expected to
result in non-Newtonian rheological properties; the finite timescale for the relaxation of particle
orientations in unsteady flows also hints at viscoelasticity.

Although sufficient to understand important aspects of suspension rheology, the paradigmatic
description of a microswimmer as a self-propelled particle with swimming velocity V 0p(t), where
the unit director p(t) undergoes random tumbles or rotary diffusion, omits many details of swim-
mer dynamics. On shorter timescales, swimmers can, for instance, exhibit unsteady motions due
to the periodic strokes they exert for self-propulsion. These effects have been characterized exper-
imentally for C. reinhardtii (Guasto et al. 2010, Garcia et al. 2011), where the direction of motion
is found to oscillate during one swimming stroke as a result of the back-and-forth beating of the
flagella, leading to zigzagging trajectories on very short length scales (Garcia et al. 2011).
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2.2. Disturbance Flows

Another key factor in the rheological response of active suspensions, in addition to microswimmer
transport properties, is the disturbance flows induced by individual particles. In the case of passive
objects, a disturbance velocity only arises if an external force or flow field is imposed; this is unlike
self-propelled particles, which drive fluid disturbances even in quiescent environments. The flow
field a swimmer generates depends in a complicated manner on body kinematics, surface stresses,
and possible surface slip (Lauga & Powers 2009, Lauga 2016). In the Stokes regime of microscopic
swimmers, the disturbance flow induced by any particle can be represented in general terms as a
linear function of surface tractions and velocities (Pozrikidis 1992):

v(x) = − 1
8πη0

∫
∂V

J(x − x0) · t(x0) dA0 + 1
4π

∫
∂V

n(x0) · K(x − x0) · v(x0) dA0, 2.

where ∂V denotes the surface of the particle with outward unit normal n, and t = n · σ is the
surface traction expressed in terms of the stress tensor σ in a fluid with viscosity η0. The kernels
J and K are given by the Oseen tensor and its symmetric gradient:

Ji j (x) = δi j

x
+ xi x j

x3
, Ki jk(x) = 1

2

(
∂Ji j

∂xk
+ ∂Jik

∂x j

)
= −3

xi x j xk

x5
. 3.

If the position of the point x where the velocity is evaluated is far from the particle, a Taylor
expansion of the Green’s functions provides a far-field representation of the flow in terms of
multipole moments M(n) of the tractions and velocities, which drive a superposition of singular
flows expressed in terms of J and its derivatives (Kim & Karrila 2005):

v(r) ≈ 1
8πη0

∞∑
n=0

∇ (n)J(r) : M(n). 4.

Positions r are now measured relative to the particle centroid, and terms of order n in this multipole
expansion decay as 1/rn+1, so that the velocity in the far field is dominated by the first few nonzero
moments. Singularities of order n = 0 and 1, which are discussed in the sidebar titled Stokes
Flow Singularities and sketched in Figure 2, involve the Stokeslet (n = 0), which represents the
net force F on the fluid, and Stokes doublet (n = 1), whose symmetric and antisymmetric parts
represent the first symmetric force moment S (or stresslet) and net torque L (or rotlet) on the
fluid, respectively. Subsequent terms in the multipole expansion involve higher-order moments
and are subdominant; they are, however, useful in describing near-field swimmer interactions
(Liao et al. 2007), as well as swimmer–wall scattering dynamics (Spagnolie & Lauga 2012). As
shown in Section 3, the rheological behavior of the suspensions is primarily governed by the
stresslet and rotlet terms.

The expansion of the disturbance flows around particles in terms of Stokes singularities provides
a low-order irreducible description of microswimmers (Ghose & Adhikari 2014), where the various
moments such as F, S, and L can be inferred from experiments or models. For a force- and
torque-free swimmer (F = L = 0), which is the case of many motile microorganisms, the leading
singularity is the stresslet. If the swimmer is also axisymmetric with director p, symmetry dictates
that the tensor S be of the form S = σ0pp, where the scalar stresslet σ0 is a signed coefficient
depending on the details of propulsion. For reasons that become clear below, extensile swimmers
with σ0 < 0 are often called pushers, whereas contractile particles with σ0 > 0 are termed pullers.

The detailed flow fields around individual swimming microorganisms have been measured
in a number of studies using particle image velocimetry, as illustrated in Figure 3. The case of
swimming E. coli shown in Figure 3a was considered by Drescher et al. (2011), who found that
the far-field velocity is well approximated by a stresslet flow with σ0 ≈ −7.98 × 10−19 N·m. The
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STOKES FLOW SINGULARITIES

Stokeslet

The leading-order term (n = 0) in the multipole expansion of Equation 4 is expressed as

v
(0)
i (r) = 1

8πη0
Ji j (r)M (0)

j = 1
8πη0

(
δi j

r
+ rir j

r3

)
M (0)

j , with M (0)
j = −

∫
∂V
σ j knk dA = Fj ,

where F denotes the net force exerted by the particle on the fluid.

Stresslet and rotlet

At the next order (n = 1), the Stokes doublet is given by

v
(1)
i (r) = 1

8πη0

∂Ji j

∂rk
M (1)

j k , with M (1)
j k =

∫
∂V

[
σ j l nl xk + η0(v j nk + vkn j )

]
dA.

Decomposing M(1) into its symmetric and antisymmetric parts yields the alternate form

v
(1)
i (r) = 1

8πη0

[(
riδ j k

r3
− 3

rir j rk

r5

)
Sjk + εi j k L j

rk

r3

]
,

where S and L respectively denote the first symmetric force moment (stresslet) and net torque (rotlet) on the fluid:

Si j =
∫
∂V

[
1
2

(σikx j + σ j kxi )nk − η0(vi n j + v j ni )
]

dA, Li = εi j k

∫
∂V
σ j l xknl dA.

absence of a Stokeslet is a simple consequence of the density of the cell, which is nearly the same
as that of water. The origin of the stresslet is easily rationalized: The rotation of the flagellar
bundle results in a net thrust −F0p, which must balance the viscous drag force F0p exerted by
the cell body as it translates through the fluid. This extensile force dipole results in a net stresslet
with magnitude σ0 ≈ −F0�, where � is a characteristic length on the order of the cell dimensions
and the negative sign of σ0 is the signature of a pusher, which uses its flagellar tail to push itself

Stokeslet Stresslet Rotlet

Figure 2
Streamlines driven by Stokeslet, stresslet, and rotlet singularities in Stokes flow. Expressions for the flow fields are provided in the
sidebar titled Stokes Flow Singularities.
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Figure 3
Disturbance flows induced by swimming microorganisms. (a) Drescher et al.’s (2011) particle image velocimetry measurements around
individual Escherichia coli cells (bottom) compared to a theoretical stresslet flow (top). (b) Drescher et al.’s (2010) time-averaged particle
image velocimetry measurements using Chlamydomonas reinhardtii show a complex flow in the near field that is well approximated by
three off-centered point forces.

through the fluid. Drescher et al. (2011) obtained the values of � = 1.9 µm and F0 = 0.42 pN,
which are consistent with optical trap measurements (Chattopadhyay et al. 2006) and resistive
force theory calculations (Darnton et al. 2007). Although the stresslet is shown to capture the
single-cell disturbance very well in the far field, significant departures are observed near the cell
body where higher-order singularities play a role; in particular, we expect a rotlet dipole (with a
decay rate 1/r3) to arise due to the equal and opposite torques exerted by the flagellar bundle and
cell body as they counter-rotate (Lauga et al. 2006).

The disturbance flow induced by swimming C. reinhardtii (Figure 3b) was also measured by
Drescher et al. (2010) in three dimensions and by Guasto et al. (2010) in quasi-two-dimensional
(2D) liquid films. In this case, the flow field shows a complex spatiotemporal dependence in the
near field due to the unsteady beating of the two flagella. However, the time-averaged flow is
found once again to be dominated by a stresslet, resulting from the equal and opposite thrust and
drag forces exerted by the flagella and cell body on the surrounding medium. In this case, the
stresslet strength σ0 is positive, which is the signature of a puller. In the near field, a more faithful
representation of the flow field can be achieved using three off-centered point forces capturing
the active forces −F0p/2 on both flagella and the drag force F0p on the cell body. As evidenced by
Guasto et al.’s (2010) time-resolved measurements, the averaged flow fails to capture many details
of the swimming stroke, during which the sign of the stresslet magnitude even reverses (Klindt &
Friedrich 2015). The implications of time-dependent strokes on hydrodynamic instabilities and
collective motion have been addressed in a few models (Fürthauer & Ramaswamy 2013, Leoni
& Liverpool 2014, Brotto et al. 2015), some of which predict the possibility of hydrodynamic
synchronization. In dilute systems and in the absence of synchronization, unsteady swimming
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is not expected to affect suspension rheology on timescales longer than the stroke period under
steady applied flows; its effect in unsteady flows is unclear.

Although the prototypical cases of E. coli and C. reinhardtii provide a basis for understanding
the disturbances induced by typical microorganisms in terms of stresslets, other types of flow
singularities become useful in some situations. In particular, nonneutrally buoyant microorganisms
are subject to a nonzero Stokeslet, as is the case of V. carteri, which is denser than water and
swims against gravity (Drescher et al. 2010). Swimmers subject to an external torque, such as
gravitactic algae (Pedley & Kessler 1990) and magnetotactic bacteria (Blakemore 1982), can also
drive rotlet flows. The flows around autophoretic colloids and other synthetic self-propelled
particles have received limited attention; theoretical calculations based on a simple phoretic slip
model for spheroidal Janus particles of varying aspect ratios predict both pusher and puller behavior
depending on particle shape (Lauga & Michelin 2016).

3. RHEOLOGY: EXPERIMENTS AND MODELS

3.1. Active Hydrodynamic Stress

In this section, we discuss the hydrodynamic contribution to the active rheology, which arises
from the stresslet disturbances induced by active particles in the surrounding fluid as a result of
self-propulsion. Another distinct contribution to the stress arising from the diffusive character of
the swimming motions is discussed in Section 3.2.

3.1.1. Basic mechanism. The disturbance flows induced by active particles can interact with
external flows to modify the rheological response of their suspensions. This active contribution
to the rheology can be interpreted as an internal active stress of hydrodynamic origin and comes
in addition to the basic stress contributions that would arise in flowing suspensions of passive
elongated particles (Hinch & Leal 1972, 1976; Brenner 1974; Petrie 1999). Elongated particles are
a useful baseline for this discussion because they have a fundamental orientation, just as any active
particle must. The basic mechanism for viscosity modification by a suspension of microswimmers,
first explained by Hatwalne et al. (2004), is illustrated in Figure 4 for pusher and puller particles
in steady simple shear flow and compared to the case of a passive particle. A slender non-Brownian
rod in shear flow undergoes a periodic tumbling motion known as a Jeffery orbit ( Jeffery 1922,

y

x

U(x) =   yxγ.

Passive rod Pusher
(σ0 < 0)

Puller
(σ0 > 0)

Figure 4
Basic mechanism for the active hydrodynamic contribution to the rheology in a uniform imposed shear flow
(Hatwalne et al. 2004, Saintillan 2010b), comparing the case of a pusher and a puller to that of a passive
rodlike particle. Flow-induced forces exerted by a passive particle (black arrows) and active forces exerted by
the swimmers on the fluid as a result of self-propulsion (blue arrows) drive disturbance flows ( purple arrows).
In the case of a pusher such as Escherichia coli (σ0 < 0), the disturbance enhances the applied flow, thus
reducing the apparent viscosity; the effect is reversed for a puller such as Chlamydomonas reinhardtii (σ0 > 0).
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Bretherton 1962); during one such orbit, the particle spends most of its time nearly aligned with
the flow direction, but with equal amounts of time in the extensional and compressional quadrants.
This picture changes qualitatively in the presence of orientation decorrelation mechanisms such
as rotational diffusion or run-and-tumble dynamics: Although the shear flow still causes tumbling
motions, the orbits are now stochastic with an orientation probability distribution function that
peaks in the extensional quadrant, resulting in a mean orientation, such as for the passive rod
depicted in Figure 4 (Chen & Jiang 1999). In this configuration, the particle experiences an
extensional flow that tries to stretch it. If the particle is rigid or finitely extensible, this tension is
resisted by an induced contractile stresslet that has the net effect of impeding the flow and thus
enhances the effective viscosity of the system. In the case of an active swimmer, this mechanism
is still present, but the particle exerts in addition a net active stresslet σ0 due to self-propulsion,
whose sign is dictated by the swimming mechanism and is independent of the flow experienced
by the swimmer. In the case of an extensile swimmer such as E. coli, the active stresslet opposes
the passive flow-induced stresslet and drives a disturbance that tends to reinforce the applied flow,
thus reducing the shear stress required to drive the flow and decreasing the effective viscosity of the
system. The situation is reversed in the case of a contractile swimmer such as C. reinhardtii, which
drives an active flow that opposes the applied shear and thus increases the effective viscosity.
It is interesting to note that an oblate particle should align with its major axis pointing in the
compressional quadrant, and the predicted trends should reverse (Bechtel & Khair 2017); common
biological and synthetic swimmers have prolate shapes.

3.1.2. Experimental observations. The basic qualitative picture of Figure 4, which predicts
a decrease in viscosity for pushers and an increase for pullers, has been confirmed in a number
of experimental studies, though accurate measurements of the viscosity of active suspensions are
technically challenging for two main reasons. Firstly, the viscosities are typically close to that of
water (or even less in the case of pusher suspensions), whereas standard commercial rheometers
function best with more viscous fluids. Secondly, the effects of activity on the rheology, as explained
below, manifest themselves at very low shear rates where the noise in the measurements is most
significant. This has prompted experimentalists to design new rheometers to overcome these
constraints. The first viscosity measurement in a suspension of swimming microorganisms was
performed by Sokolov & Aranson (2009), who confined B. subtilis bacteria, which are pushers, in a
quasi-2D stabilized liquid film. The viscosity was estimated using two complementary experiments,
one based on the timescale for the viscous decay of a macroscopic vortex and the other on torque
measurements on a rotating probe immersed inside the film. Both experiments yielded viscosity
estimates below that of the solvent at low concentrations, sometimes by up to a factor of 7; the
viscosity was then found to increase and exceed that of the solvent at higher densities. However,
the unusual geometry and nonviscometric nature of the flow made it difficult to compare these
macroscopic estimates with model predictions.

More precise measurements using E. coli bacteria were obtained recently by Gachelin et al.
(2013) and López et al. (2015) and are summarized in Figure 5. Gachelin et al. (2013) devised
a microfluidic rheometer based on a Y-shaped junction in a Hele–Shaw geometry (Figure 5a),
where they measured the deflection of the interface between two coflowing streams with equal
flow rates, one of a bacterial suspension and one of a pure solvent, as they meet in the main
channel. Assuming a Poiseuille law across the Hele–Shaw gap, this deflection directly provides the
relative viscosity ηr between the two fluids. Live bacteria are indeed found to decrease the viscosity
below that of the solvent at low flow rates; however, ηr increases with shear rate γ̇ , reaching a
maximum above unity before shear thinning again. Suspensions of dead bacteria, however, behave
similarly to passive rods with ηr > 1 and display shear thinning over the whole range of flow
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Figure 5
Steady shear experiments. (a) Gachelin et al. (2013) used a microfluidic rheometer to measure the relative viscosity ηr of dilute
Escherichia coli suspensions as a function of wall shear rate γ̇ . (b ) López et al.’s (2015) experiments using E. coli in a Taylor–Couette
device showed that ηr decays towards zero with increasing volume fraction φ. (c ) Rafaı̈ et al.’s (2010) Taylor–Couette measurements of
Chlamydomonas reinhardtii suspensions show an increase in viscosity due to activity.

rates (Brenner 1974). López et al. (2015) performed their experiments, shown in Figure 5b, in a
conventional Taylor–Couette rheometer specially designed to handle low torques and viscosities.
The relative viscosity in their case displayed similar trends with shear rate, with a low-shear-
rate plateau with η0

r < 1 caused by activity, followed by shear thickening. Increasing the density
of bacteria was found to decrease the value of the plateau towards zero: η0

r → 0. The measured
viscosity, within experimental uncertainty, actually vanishes in oxygenated suspensions for volume
fractions in excess of 1%. This surprising superfluid-like behavior should not be seen as a violation
of thermodynamic principles, as the bacteria consume chemical energy. Rather, it suggests that the
viscous dissipation in the flowing suspension is macroscopically balanced by the input of energy
from swimming, thus allowing for a sustained flow without any applied torque.

The case of puller swimmers was addressed by Rafaı̈ et al. (2010), who measured the viscosity
of C. reinhardtii suspensions over a wide range of volume fractions (φ ∼ 0–25%) in a Taylor–
Couette cell (Figure 5c). The suspension viscosity was always found to exceed that of the medium
(ηr > 1) and to increase with concentration following an approximate Krieger–Dougherty law
(Krieger & Dougherty 1959), ηr ≈ (1 − φ/φm)−αφm , where φm = 0.62 is the maximum packing
fraction. The effect of activity was highlighted by comparing live and dead samples, where live
suspensions (α ≈ 4.5) were found to be significantly more viscous than dead ones (α ≈ 2.5,
similar to passive spheres), as expected for pullers (Figure 4). Weak shear thinning was reported
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Krieger–Dougherty
law: common
semi-empirical law
used to describe the
relative viscosity of
concentrated sphere
suspensions

in all suspensions, although the range of shear rates considered was limited. Direct observations of
single-cell dynamics were also reported, where live and dead cells showed distinct motions under
shear, likely as a result of the interaction of the beating flagella with the flow: Whereas dead cells
followed approximate Jeffery orbits, live cells were shown to swim in nearly straight lines with
occasional rapid flips. Experiments by Mussler et al. (2013) in a cone-plate rheometer yielded
similar results.

A direct comparison of three different types of swimmers was recently performed by McDon-
nell et al. (2015) in an acoustically driven microfluidic capillary breakup extensional rheometer.
They considered suspensions of Dunaliella tertiolecta (a marine alga resembling C. reinhardtii ),
E. coli bacteria, and mouse spermatozoa; in each case, they compared live and dead cells. The vis-
cosities measured were always above that of the suspending medium, yet the effects of activity in
this extensional device were consistent with those predicted and measured in shear flow: Whereas
living algae suspensions were more viscous than dead ones, both E. coli and sperm appeared less
viscous when alive than dead.

3.1.3. Continuum kinetic theories. Many of these experimental observations have been ra-
tionalized using kinetic models that coarse-grain microscopic swimmer mechanics to provide
predictions for the macroscopic stress resulting from the coupling of flow and activity (Marchetti
et al. 2013, Saintillan & Shelley 2015). These models, which formalize the heuristic mechanism
of Figure 4, typically either extend classic theories for rodlike particle suspensions (Hinch & Leal
1972, 1976; Brenner 1974) or rodlike liquid crystals (Ericksen 1962, de Gennes & Prost 2002) to
account for the effect of activity. I outline here the suspension models (Saintillan 2010a,b; Alonso-
Matilla et al. 2016), which rely on a description of particle configurations based on a probability
density function �(x, p, t) of finding a particle at position x with orientation p at time t (although
there is no dependence on x in a dilute unbounded system, we retain it as it becomes important
in confined geometries). Conservation of particles is typically expressed using the Fokker–Planck
equation (Doi & Edwards 1986, Subramanian & Koch 2009),

∂�

∂t
+ ∇x · Jx + ∇p · Jp = − 1

τr

[
� −

∫
�

K (p|p′)�(x, p′, t) dp′
]

, 5.

where changes in � arise from translational and orientational fluxes as well as run-and-tumble
dynamics. The spatial flux Jx accounts for propulsion with velocity V 0 in the direction of p,
transport by the fluid velocity v(x) (which in general includes both externally applied flows and
swimmer-induced disturbances), and translational diffusion with constant diffusivity dt:

Jx = [V 0p + v(x)]� − dt∇x�. 6.

The rotational flux Jp , on the other hand, describes rotation and alignment in the local velocity
gradient according to Jeffery’s equation ( Jeffery 1922, Bretherton 1962),

Jp =
[

1
2
� × p + β(I − pp) · E · p

]
� − dr∇p�, 7.

where � = ∇ × v is the vorticity, E = (∇v + ∇vT )/2 is the rate-of-strain tensor, and β denotes
Bretherton’s constant. For a spheroidal particle of aspect ratio r , one finds that β = (r2 − 1)/(r2 +
1) and β ≈ 1 for a slender swimmer. Rotational diffusion with diffusivity dr is also included.
Equations 6 and 7 assume that the swimmers are force- and torque-free but are easily generalized.

The right-hand side of Equation 5 models run-and-tumble dynamics as a Poisson process caus-
ing random stochastic reorientations of the director p with mean recurrence time τr corresponding
to the duration of a run (Bearon & Pedley 2000). We assume τr to be constant, although allowing
it to depend on an external field can be used to model taxis phenomena (Ezhilan et al. 2012, Kasyap
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& Koch 2012). Correlations between pre- and post-tumble orientations are captured by K (p|p′),
which was introduced in Section 2.1.

In a dilute suspension (φ → 0), particle–particle interactions are negligible, and velocity dis-
turbances induced by swimmers thus do not affect the configuration of the suspension, which
can be obtained by solving the above equations with v(x) = U(x), where U denotes the imposed
flow. As the volume fraction φ increases, the effect of disturbances on the distribution of particles
can no longer be neglected, and the total velocity becomes v(x) = U(x) + vd(x), where vd is the
mean-field disturbance flow, with associated pressure field qd. In the creeping flow regime, it sat-
isfies the Stokes equations forced by a non-Newtonian particle stress contribution: ∇ · vd = 0 and
−η0∇2vd + ∇qd = ∇ · �p. A key aspect of the model, especially for the calculation of rheological
properties, is the description of the particle extra stress �p, which encapsulates the average effect
of the microswimmers on the flow.

The starting point for the modeling of �p is Batchelor’s calculation of the average stress tensor
in a suspension of particles (Batchelor 1970b), which is outlined in the sidebar titled Particle Extra
Stress: Batchelor’s Result and generalizes the Kirkwood formula commonly used for molecular
systems (Irving & Kirkwood 1950). The key result of Batchelor’s theory expresses the mean particle
stress inside a volume V as the average particle stresslet; particles subjected to internal rotations
also contribute an antisymmetric stress related to the average torque. In the continuum framework
used here, the particle stress at a point in a suspension of identical particles can be expressed by
identifying the volume average with a local orientational average, yielding

�
p
i j (x, t) = n〈Si j 〉 + 1

2
nεi j k〈Lk〉, where 〈Si j 〉 = 1

n

∫
�

Si j�(x, p, t) dp 8.

and likewise for 〈Lk〉. Much work has been done to model �p for passive rodlike particles in
various external flows (Batchelor 1971, 1974; Hinch & Leal 1972, 1976; Brenner 1974), which
requires solving for the particle stresslet. For passive torque-free rods (L = 0), contributions to the
stresslet arise from the external flow (Figure 4) as well as Brownian rotations; active swimmers are
additionally subject to the permanent active stresslet σ0pp discussed in Section 2.2. For particles
with high aspect ratios (r 
 1), these various contributions can be obtained using slender-body
theory for Stokes flow (Batchelor 1970a), yielding

Flow-induced stress: �f = πn�3η0

6 ln 2r

[
〈pppp〉 − I

3
〈pp〉

]
: E, 9.

Brownian stress: �b = 3nkBT
[
〈pp〉 − 〈I〉

3

]
, 10.

Active stress: �a = nσ0

[
〈pp〉 − 〈I〉

3

]
. 11.

Here, E is the rate-of-strain tensor of the local flow, and kBT is the thermal energy unit. The
tensors have been made trace free, which only affects the pressure in the Stokes equations. If
the particles are not slender, additional terms enter the expression for �f (Hinch & Leal 1976) but
are omitted here for brevity. Equations 9–11 demonstrate that the stress is entirely determined
by the second and fourth moments, 〈pp〉 and 〈pppp〉, of orientations. Calculating these moments
requires knowledge of the local orientation distribution, which is determined by the balance of
transport, alignment by the flow, and diffusion according to the Fokker–Planck Equation 5. In
the general case of a nondilute suspension, Equation 5 must be solved concurrently with the
Stokes equations, which involve the unknown stress. The determination of the stress simplifies
significantly in the dilute limit where vd = 0. In this case, the distribution of particles is unaffected
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PARTICLE EXTRA STRESS: BATCHELOR’S RESULT

A calculation of the particle extra stress in a suspension of force-free particles was provided by Batchelor (1970b),
who expressed the average of the Cauchy stress tensor σ over a representative volume V as

〈σ〉 = 1
V

∫
V

σ(x) dV = −〈q 〉I + η0[〈∇v〉 + 〈∇v〉T ] + �p,

where 〈q 〉 and 〈∇v〉 denote the average pressure and velocity gradient, respectively. The non-Newtonian behavior
is captured in the contribution �p, which, upon application of Cauchy’s equation ∇ · σ = 0, can be written as a
sum over all the particles α inside volume V . In index notation, one obtains

�
p
i j = 1

V

N∑
α=1

∫
∂Vα

[
σikx j nαk − η0(vi nαj + v j nαi )

]
dA = 1

V

N∑
α=1

Sαi j + 1
2V

N∑
α=1

εi j k Lαk ,

where Sα and Lα denote the stresslet and torque on particle α, respectively:

Sαi j =
∫
∂Vα

[
1
2

(σikx j + σ j kxi )nαk − η0(vi nαj + v j nαi )
]

dA, Lαi = εi j k

∫
∂Vα

σ j l xknl dA.

For force- and torque-free particles, the particle extra stress is therefore simply given by the average particle stresslet.
External torques, however, result in an additional asymmetric stress contribution.

by the particle stress and only depends on the known applied flow; the distribution can therefore
be obtained by directly solving the Fokker–Planck equation, which then provides the information
necessary to estimate �p using Equations 9–11.

We illustrate the model predictions by describing the basic case of steady simple shear flow
of an unbounded dilute suspension of torque-free particles (Saintillan 2010b): U(x) = γ̇ y x̂ and
vd(x) = 0. Translational invariance then dictates that the distribution of particles be uniform in
space and only depend on p: �(x, p, t) = �(p), with significant simplifications to the Fokker–
Planck equation. Knowledge of �(p) allows for the direct evaluation of the particle stress, from
which the relative shear viscosity is inferred as

ηr = η

η0
= σxy +�

p
xy

η0γ̇
= 1 + πn�3

6 ln 2r
〈p2

x p2
y 〉 + 3nkBT + nσ0

η0γ̇
〈px py 〉. 12.

In the weak-flow limit (γ̇ /dr → 0 and γ̇ τr → 0), one can understand the effects of activity by
solving for � using a regular asymptotic expansion. In the case of smooth swimmers that do not
tumble (τr → ∞), it is straightforward to show that 〈p2

x p2
y 〉 → 1/15 and that 〈px py 〉 → βγ̇ /30dr,

yielding the low-shear-rate viscosity estimate

η0
r = lim

γ̇→0
ηr = 1 + πn�3

30 ln 2r

⎡
⎣(

β + 1
3

)
︸ ︷︷ ︸

passive

+β σ0

kBT︸ ︷︷ ︸
active

⎤
⎦, 13.

where we have used the rotational diffusivity of a Brownian rod: dr = 3kBT ln 2r/πη0�
3 (Doi &

Edwards 1986). The first term on the right-hand side simply corresponds to the solvent viscos-
ity. The second term, which is always positive, captures the zero-shear-rate particle contribution
to the viscosity in a suspension of passive rods. Finally, the third term, which describes the ef-
fect of activity, involves the swimming stresslet σ0 and can be either positive or negative. In
suspensions of pullers (σ0 > 0), activity always increases ηr, whereas it tends to decrease ηr in
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Figure 6
Model predictions for dilute suspensions of smooth swimmers (no run and tumble, τr → ∞) in steady simple shear flow.
(a) Orientation distributions at two distinct flow strengths: γ̇ /dr = 1 (top) and γ̇ /dr = 10 (bottom). Typical dependence of (b ) relative
particle viscosity ηr − 1 and (c ) first normal-stress difference coefficient ψ1 on dimensionless flow rate γ̇ /dr for pushers, pullers, and
passive rods. Adapted from Saintillan (2010b).

suspensions of pushers (σ0 < 0). If active stresses dominate passive contributions from the flow
and Brownian rotations, Equation 13 predicts a linear decrease of the viscosity with increasing
volume fraction in suspensions of pushers. This is in agreement with experimental observations
(Figure 5b) and predicts a transition to superfluid-like behavior above a critical concentration of
n�3 = −90 ln 2r/[π (1 + 3β + 3βσ0/kBT )]. Of course, this estimate is based on a dilute assump-
tion, and particle–particle interactions are likely to play a role in experimental systems before the
transition is reached.

For arbitrary flow strengths, the Fokker–Planck equation must be solved numerically, for
instance, by finite differences (Chen & Jiang 1999) or spectral methods (Chen & Koch 1996,
Saintillan 2010b). As expected, typical orientation distributions in Figure 6a exhibit a peak in the
extensional quadrant, which becomes sharper and tends to align towards the flow direction with
increasing shear rate. As a result, both 〈p2

x p2
y 〉 and 〈px py 〉 tend to decrease with increasing γ̇ . This

decrease underlies the shear thinning of suspensions of passive rods and of pullers (Figure 6b). In
suspensions of pushers, it leads to a complex dependence of the viscosity on flow strength: Even
when active stresses dominate at low shear rates so that ηr < 0, they decay more rapidly than passive
stresses with increasing flow strength, resulting in an increase in ηr to a value above unity. At very
high shear rates, all stresses decay again, leading to shear thinning. All of these trends are consistent
with the experimental observations of Gachelin et al. (2013) and López et al. (2015) (Figure 5).
The same model can also be used to estimate normal-stress difference coefficients (Saintillan
2010b). The case of ψ1 = [�p

xx − �
p
yy ]/γ̇ 2 is illustrated in Figure 6c, where ψ1 > 0 for passive

rods and pullers; the sign of ψ1 is reversed in pusher suspensions. Similar trends are observed on
ψ2 = [�p

yy−�p
zz]/γ̇ 2, albeit with opposite signs. There are no experimental data on these quantities.

Several variants of the dilute model presented here have also been proposed (Haines et al. 2009,
Moradi & Najafi 2015), yielding similar conclusions; similar predictions also apply to 2D and 3D
extensional flows (Saintillan 2010a), where analytical solutions for the relative viscosity and normal-
stress difference coefficients exist for all strain rates. Other models have used a complementary
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approach based on phenomenological equations for liquid crystals (Ericksen 1962, de Gennes &
Prost 2002), which can be extended to account for activity (Simha & Ramaswamy 2002, Hatwalne
et al. 2004, Ramaswamy 2010, Marchetti et al. 2013). One feature that distinguishes these theories
from the one described above is that an elastic energy associated with steric interactions was
generally included, which provided a mechanism for nematic alignment of the particles even in the
absence of flow. Negative viscosities in extensile suspensions were also predicted by these studies
(Giomi et al. 2010, Heidenreich et al. 2011), which additionally suggested that the nonmonotonic
behavior of η(γ̇ ) may give rise to shear banding and hysteresis.

3.1.4. Unsteady flows and linear viscoelasticity. Although most experimental measurements
and theoretical models have focused on the steady-flow rheology, we anticipate the competition
between flow alignment and orientational relaxation by run-and-tumble and rotary diffusion pro-
ducing viscoelastic behavior in unsteady flows. López et al.’s (2015) experiments using E. coli
bacteria in a Taylor–Couette rheometer also analyzed the transient stress response upon startup
and cessation of shear flow, and these data are summarized in Figure 7. Whereas the steady
plateau reached after the transient simply corresponds to the steady viscosity measurements of
Figure 5b, the unsteady response is unusual and exhibits stress overshoots followed by relaxation,
which are indicative of elasticity. The deduced stress relaxation time τs is found to be nearly con-
stant and on the order of a few seconds, which is consistent with the timescale for relaxation of
orientations due to run-and-tumble dynamics; a decrease of τs with concentration is observed in
the semi-dilute regime. The shape of the transient in these experiments was recently explained
by Nambiar et al. (2017): Upon startup of rotation, an initial viscous stress jump occurs primarily
due to the solvent viscosity; after this initial jump, particle orientations relax on a timescale of τs,
leading to a decrease in the measured viscosity as a result of the extensile stresslet σ0 < 0; when
rotation stops, the negative active stress persists for a duration on the order of τs, leading to a
negative undershoot in the stress response, which corresponds to a retrograde torque. Nambiar
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Figure 7
Transient rheological measurements in Escherichia coli suspensions in a Taylor–Couette device. (a) Transient shear stress �xy (t)
normalized by the applied shear rate γ̇ upon startup and cessation of rotation, showing ( gray lines) pure fluid (φ = 0) and (colored lines) a
bacterial suspension (φ = 0.67%). (b ) Stress relaxation time τs, obtained by fitting an exponential to the stress response, as a function of
the mean distance φ−1/3 between particles. Open and closed symbols denote deoxygenated and oxygenated conditions, respectively.
Blue and red symbols correspond to two distinct E. coli strains. Adapted from López et al. (2015).
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et al. (2017) also developed a transient kinetic model similar to that of Section 3.1.3, which showed
good agreement with the observed stress profiles.

The unsteady rheological response can also be understood using linear viscoelasticity theory,
which predicts the viscous and elastic components of the complex particle viscosity, η∗

p(ω) =
η′

p + iη′′
p, in a small-amplitude oscillatory shear flow γ̇ (t) = γ̇0 cosωt as

η′
p

η0
= 1 + πn�3

30 ln 2r

[
1
3

+ β

1 + ω2

(
1 + σ0

kBT

)]
,

η′′
p

η0
= πn�3

30 ln 2r
β ω

1 + ω2

(
1 + σ0

kBT

)
, 14.

where ω = ω/6dr and where we assumed smooth high-aspect-ratio swimmers subject to Brown-
ian rotational diffusion; generalizations of this result to run-and-tumble particles and nonslender
shapes were derived by Nambiar et al. (2017) and Bechtel & Khair (2017), respectively. In the
low-frequency limit (ω → 0), the expression for η′

p agrees with the steady weak-flow result of
Equation 13. In fact, Bechtel & Khair (2017) verified a modified Cox–Merz rule, where the
frequency-dependent linear viscosity approximately matches the steady shear viscosity at the max-
imum shear rate: η′

p(ω) ≈ ηp(γ̇0). The elastic component η′′
p(ω) is nonzero and peaks at intermediate

frequencies, as could have been anticipated from the case of rigid rods; however, its sign can be
negative in the case of pushers, which is at the origin of the stress undershoot after the cessation of
rotation in Figure 7a. Nonlinear effects in finite-amplitude unsteady flows were also recently ana-
lyzed by Bozorgi & Underhill (2014), who derived expressions for the first few intrinsic nonlinear
material functions in large-amplitude oscillatory shear flow (Ewoldt & Bharadwaj 2013).

3.1.5. Effect of geometry: accumulation and migration. A defining feature of swimmer sus-
pensions is the strong effect of geometry and confinement on the distribution of particles, which
tend to accumulate near boundaries. Although the details of swimmer–wall interactions can vary,
this accumulation is ubiquitous in suspensions of bacteria (Berke et al. 2008, Figueroa-Morales
et al. 2015, Bianchi et al. 2017) as well as sperm (Denissenko et al. 2012), where concentrations
near walls can exceed bulk concentrations by several factors. A variety of effects can explain these
distributions (Schaar et al. 2015), including kinematic and hydrodynamic mechanisms. In the ab-
sence of hydrodynamic interactions, the continuum model of Section 3.1.3, subject to a no-flux
condition at the walls, predicts accumulation as a consequence of the balance of self-propulsion and
diffusive processes over a boundary layer of thickness θ = δ/

√
2(1 + (�r/δ)2/6), where �r = V 0d−1

r

is the run length and δ = √
dt/dr is a purely diffusive length scale on the order of particle size

(Ezhilan & Saintillan 2015, Yan & Brady 2015). Swimmer–wall hydrodynamic interactions also
influence accumulation, which is enhanced in the case of pushers but reduced for pullers (Berke
et al. 2008, Spagnolie & Lauga 2012).

Nonuniform particle distributions have also been reported under flow. In strong pressure-
driven flows, both experiments (Rusconi et al. 2014) and models (Bearon & Hazel 2015, Ezhilan
& Saintillan 2015) show the formation of a depletion layer near the channel centerline, with an
accumulation of particles in high-shear near-wall regions. In nonuniform channels, accumulation is
observed downstream of constrictions (Altschuler et al. 2013). Several other migration phenomena
specific to microswimmers have also been reported, including upstream swimming in pressure-
driven flows (Kaya & Koser 2012), rheotaxis under shear due to the chirality of the flagellar
bundle (Marcos et al. 2012), and the preferential swimming of microalgae along the vorticity axis
in both steady (Chengala et al. 2013) and unsteady flows (Hope et al. 2016). Although the full
consequences of these effects on the rheology have yet to be analyzed, the simple case of pressure-
driven channel flow was addressed by Alonso-Matilla et al. (2016) using the model of Section 3.1.3.
Similar trends as in uniform shear were observed, with a predicted transition to superfluidity. The
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accumulation of swimmers in high-shear near-wall regions was shown to have a quantitative effect
on the viscosity by enhancing the particle contribution to the stress.

3.1.6. Microrheology and vanishing drag. The rheological behavior of the suspensions also
has direct implications for the transport of passive suspended objects, whether freely suspended
or driven by an external force. In a Newtonian viscous fluid, the linearity of the Stokes equations
at low Reynolds numbers prescribes a linear relation between the forces and torques on a particle
and its linear and angular velocities (Guazzelli & Morris 2012):[

Fext + Fbr

Text + Tbr

]
= η0R ·

[
U
�

]
, 15.

where η0R is the shape-dependent resistance tensor. Clearly, we should not expect Equation 15
to apply to a particle suspended in an active suspension, due to viscoelastic and shear-thinning/-
thickening properties that render the resistance problem nonlinear and to the importance of
geometry on the rheology. Nonetheless, we can expect that an effective decrease in viscosity due
to the presence of pushers would result in the faster motion of a probe under a given force and in
seemingly more intense thermal fluctuations. The apparent transition to superfluidity may even
allow for frictionless translational or rotational motion in the absence of external forces or torques
by a symmetry-breaking mechanism reminiscent of that predicted for symmetric phoretic colloids
(Michelin et al. 2013). Finally, the elastic character of the response to shear may result in velocity
overshoots in which a forced probe keeps translating for a finite time after the force is turned off;
this effect would be the active counterpart of the elastic recoil that would be observed in a passive
viscoelastic gel.

Detailed active microrheology experiments, under either oscillatory or steady forcing, could
confirm some of these predictions but have yet to be performed. The motion of freely suspended
passive probes nonetheless offers some insight into these effects. Since the work of Wu & Libchaber
(2000), it is well known that passive spheres placed in a bacterial bath exhibit enhanced diffusion as a
result of both direct scattering interactions with individual bacteria and transport in the fluid flows
induced by swimmer motions. Steady directional motion of symmetric swimmers without external
force has not yet been observed; however, mean-square displacements of random probe motions
typically exhibit superdiffusive growth at short times, which is indicative of directed motion on
short timescales. The nonmonotonic dependence of the long-time diffusivity with probe size also
suggests a complex non-Stokesian mechanism for drag (Patteson et al. 2016). Unusual couplings
between translational and rotational motions that are not permitted by Equation 15 have also been
observed with ellipsoidal probes (Peng et al. 2016). The directed translational or rotational motion
of passive objects can be forced by breaking the fore–aft or clockwise symmetry, respectively—for
instance, using wedges (Kaiser et al. 2014) or gears (Di Leonardo et al. 2010). The motion in these
examples derives primarily from direct interactions with the swimmers (Yan & Brady 2015) rather
than from a hydrodynamic transition to superfluid-like behavior.

Models and simulations of passive or driven motions of passive objects in active fluids have
been scarce. An active nematic model by Foffano et al. (2012b) did reproduce some of the effects
discussed above, including the nonlinear dependence of drag on probe size and a transition to
negative apparent drag as a result of activity. However, the anchoring boundary conditions used
for swimmer orientations on the surface were found to have a strong effect on the results; in an
actual experiment, orientations are typically unconstrained and in fact adjust to the local flow.
As expected based on the strong effect of geometry on swimmer configurations, the viscosity
calculated numerically in a microrheology model did not match that obtained in simple shear flow
(Foffano et al. 2012a).
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3.1.7. Effects of concentration. The effects of microswimmer density on the rheology of puller
suspensions is relatively simple, with experiments using C. reinhardtii showing a monotonic in-
crease of the relative viscosity with density from dilute to dense concentrations (Rafaı̈ et al. 2010).
The case of pusher suspensions, however, is still not fully understood. In fairly dilute suspensions
under uniform shear, increasing density has the effect of amplifying the particle stress, thus reduc-
ing the viscosity in weak flows and enhancing it in strong flows (Figure 5). In a Taylor–Couette
device, this decrease in viscosity leads to an apparent transition to frictionless flow (López et al.
2015), with spontaneous directed motion in the absence of external forcing (Section 4.2). Other
experiments (Sokolov & Aranson 2009, Gachelin et al. 2013), however, report a nonmonotonic
dependence on density, with the viscosity reduction observed in weak flows giving way to an
increase at high concentrations. In very dense suspensions, the emergence of bacterial turbulence
(Section 4.1) leads to a complex rheology (Karmakar et al. 2014), with unexpected trends with
respect to shear rate that are likely due to the interaction of the applied flow with the large-scale
collective motions (Alizadeh & Saintillan 2011, Saracco et al. 2011, Clément et al. 2016, Secchi
et al. 2016).

Deriving kinetic theories to account for concentration effects is challenging owing to particle–
particle interactions. Continuum models for semidilute suspensions, some based on renormaliza-
tion theory (Gyrya et al. 2011, Gluzman et al. 2013), have been limited; one interesting conclusion
of these two studies is the role of interactions, which provide an additional mechanism for orien-
tation decorrelation and thus affect the rheology via the mean orientation distribution. Numerical
simulations of discrete swimmer suspensions have been more successful at investigating this regime
(Ishikawa & Pedley 2007, Gyrya et al. 2011, Pagonabarraga & Llopis 2013, Potomkin et al. 2016)
and have been able to capture the nonmonotonic dependence of η on density (Ryan et al. 2011).

3.2. Active Swim Stress

An additional mechanism for stress production in suspensions of self-propelled particles was very
recently uncovered by Takatori & Brady (2017). The origin of this stress is not hydrodynamic,
but rather stems from the effective diffusion of the swimmers. In the absence of flow, we saw in
Section 2.1 that a microswimmer subject to either run-and-tumble dynamics or rotary diffusion
performs a random walk in space, with the long-time diffusivity Deff given by either V 2

0 τr/6 or
V 2

0 /6dr, respectively. In an unbounded domain, a cloud of microswimmers therefore spreads
diffusively as the particles swim away; in confinement, this diffusive motion instead gives rise to an
effective pressure on the container boundaries, which is not unlike the osmotic pressure exerted
by Brownian solutes. This so-called swim pressure (Takatori et al. 2014, Solon et al. 2015) can
be calculated from the trace of the swim stress, which is provided by the virial theorem as the
first moment of a swim force Fs: �s = −n〈xFs〉. Here, Fs should be interpreted as the negative
of the force one needs to apply to hold a swimmer fixed in space and depends linearly on its
velocity: Fs(t) = ζV(t), where ζ is the translational friction coefficient of the swimmer. Simple
manipulations then yield the expression

�s = −nζ
∫

〈V(t′)V(t)〉 dt′ = −nζDeff , 16.

which directly relates the swim stress to the effective diffusion tensor via the Green–Kubo formula.
In an isotropic system, this reduces to �s = −�sI, with a scalar swim pressure �s = nζDeff . This
pressure manifests itself, for instance, by driving the spontaneous motion of passive asymmetric
objects immersed in microswimmer baths (Di Leonardo et al. 2010, Kaiser et al. 2014, Yan &
Brady 2015).
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Figure 8
Rheological consequences of the active swim stress. (a) In a shear flow, the effective diffusive motion of a swimming particle undergoing
run-and-tumble or orientation diffusion is anisotropic and tends to stretch the fluid along the straining direction. (b ) Dependence of the
effective diffusivity tensor on shear rate for both spherical (β = 0) and prolate (β = 0.8) swimmers. (c ) Effective viscosity in suspensions
of pullers predicted by theory and Brownian dynamics (BD) simulations is compared to Rafaı̈ et al.’s (2010) experimental results.
Adapted from Takatori & Brady (2017).

In a sheared suspension, the coupling of the straining motion with swimming and rotational
dynamics results in an anisotropic diffusion tensor, which can also be obtained using generalized
Taylor dispersion theory (Brenner 1980, Manela & Frankel 2003, Takatori & Brady 2017). The
effect of the shear in weak flows is to bias the random walk of swimmers towards the extensional
quadrant, as illustrated in Figure 8a, which causes the diffusive stress to effectively stretch the
fluid along this direction, thus reducing the apparent viscosity. This is confirmed by a calculation
of Deff

xy , which is indeed positive in weak flows but becomes negative in strong flows (Figure 8b).
Viscosity trends qualitatively similar to those found in pusher suspensions as a result of active
extensile stresses are therefore anticipated. Furthermore, an interesting prediction of the model
is that the swim stress is independent of swimmer type (pusher versus puller) and even arises in
sphere suspensions. In particular, Takatori & Brady (2017) anticipate that even puller suspensions
should exhibit a viscosity reduction under very weak forcing (Figure 8c), though as yet there exist
no experimental data at sufficiently low shear rates to test this prediction.

4. HYDRODYNAMIC INSTABILITIES AND SPONTANEOUS FLOWS

4.1. Bulk Instabilities and Collective Motion

Dense suspensions of pushers, and in particular bacterial suspensions, are well known to display
emergent collective motions (Koch & Subramanian 2011). This so-called bacterial turbulence,
which is internally driven by particle activity, has been characterized in detail in experiments
(Cisneros et al. 2007, Sokolov & Aranson 2012) and simulations (Saintillan & Shelley 2012),
which both exhibit unsteady vortices, jets, and swirls on length scales much greater than particle
dimensions and with typical velocities also exceeding those of isolated swimmers. These chaotic
motions are accompanied by unsteady microstructural changes, with swimmers tending to con-
centrate and align with their neighbors. A vast number of models have been developed to address
this phenomenon, as reviewed, for instance, by Marchetti et al. (2013) and Saintillan & Shelley
(2015). Both steric interactions between slender swimmers and long-ranged hydrodynamic inter-
actions driven by active stresslets are thought to be responsible for the motions. Hydrodynamic
theories have been based on stability analyses of the uniform isotropic base state and predict
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a longwave instability resulting from the coupling of active stresses and particle orientations
(Saintillan & Shelley 2008, Baskaran & Marchetti 2009). More precisely, a weak-plane wave ve-
locity perturbation induces nematic alignment of slender swimmers along the extensional axis of
the flow, which tends to reinforce the initial velocity perturbation via active stresses in the case
of pushers; no such instability occurs for pullers. An alternate interpretation, proposed by Subra-
manian & Koch (2009), is in terms of the apparent viscosity of the system, which is observed to
become negative at the marginal stability limit. The emergence of spontaneous flows as viscosity
approaches zero should not come as a surprise: Any infinitesimally weak flow disturbance experi-
encing zero apparent resistance will amplify until a nonlinear flowing state is achieved in which
viscous dissipation in the solvent balances the active power input generated by the coordinated
swimming motions (Saintillan & Shelley 2015).

4.2. Spontaneous Flows in Confinement

Recent experiments and models have shown that the chaotic flows observed in bulk suspensions can
be stabilized by confinement, leading to regular spontaneous flow patterns controlled by geometry.
The simple case of a circular domain was analyzed experimentally by Wioland et al. (2013), using
a dense E. coli suspension in a drop squeezed between two coverslips. After a transient, bacteria
spontaneously organized into a steady vortex surrounded by a thin counterrotating boundary layer
in the periphery of the drop. This effect was also observed in discrete simulations (Lushi et al.
2014), which underscored the role of stresslet disturbances in driving the vortex flow. Bacteria
were found to swim against the net induced flow by an effect similar to upstream swimming,
leading to an apparent counterrotation near the boundary. The kinetic theory of Theillard et al.
(2017) also produced similar results and explained the transition to the double vortex as a linear
instability of the equilibrium quiescent state due to mean-field hydrodynamic interactions.

Directed spontaneous flows have also been observed in periodic channels. Wioland et al.’s
(2015) experiments using E. coli in racetrack geometries displayed a symmetry-breaking bifurca-
tion leading to flow in an arbitrary direction (Figure 9a). This flow was unidirectional in narrow
channels, but sinusoidal streamlines with traveling waves emerged with increasing channel width,
ultimately leading to chaotic motions. The imaging of individual bacteria demonstrated once
again their propensity to align against the self-induced flow, which is driven by the coordinated
swimming activity. The case of dense sperm suspensions was also studied by Creppy et al. (2016)
in circular channels, where spontaneous net pumping also occurred above a critical sperm den-
sity. Using a continuum model, Theillard et al. (2017) simulated spontaneous flows in circular
annuli (Figure 9b) and captured the same phenomenology as in experiments. The initial transi-
tion to flow was again explained as a linear instability of the equilibrium state; interestingly, the
marginal stability limit was also shown to match the transition to apparent superfluidity predicted
in Poiseuille flow by Alonso-Matilla et al. (2016) in the zero-shear-rate limit. Spontaneous flows
are also predicted by kinetic models of active nematics in both straight (Hemingway et al. 2015)
and circular (Fürthauer et al. 2012) channels, although the role played by anchoring boundary
conditions in these theories is unclear. Using one such model, Fürthauer et al. (2012) suggested
that the active power driving spontaneous flows in a Taylor–Couette device might be harnessed to
drive a motor, should one of the two cylinders be fixed and the other free to rotate; this prediction
is supported in principle by López et al.’s (2015) measurements in a Taylor–Couette rheometer,
where finite torques were measured in the absence of any imposed rotation in the superfluid-like
regime. As a final comment, we emphasize the importance of boundary conditions on the emer-
gence of these flows. That the transition to zero apparent viscosity was observed by López et al.
(2015) and Wioland et al. (2015) but not by Gachelin et al. (2013) may be a consequence of the
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Figure 9
Spontaneous flows of pusher suspensions in periodic channels. (a) Wioland et al.’s (2015) experiments showing spontaneous flows in
Escherichia coli suspensions confined inside microfluidic racetracks. (b ) Theillard et al.’s (2017) kinetic model and simulations inside an
annulus. Increasing activity (α = nσ0/η0dr < 0 for pushers) or decreasing confinement (Pes = V 0/dr H , where H denotes channel
width) causes a transition from equilibrium to spontaneous azimuthal flow with net flow rate |V θ |. Traveling density waves eventually
appear followed by spatiotemporal chaos. The dark gray curve shows a theoretical linear prediction for the marginal stability limit of
the equilibrium state; it also matches the transition to superfluidity predicted by Alonso-Matilla et al.’s (2016) model in Poiseuille flow
in the zero-flow-rate limit.

differing geometries: Although up- and downstream conditions in Gachelin et al.’s (2013) device
may have prevented the transition from occurring, it is unhindered in periodic channels where
only the lateral wall spacing plays a role.

5. OTHER ACTIVE MATTER SYSTEMS

5.1. Cytoskeletal Extracts

Active fluids and materials abound in biological systems besides the oft-studied case of microswim-
mer suspensions. One fascinating example is the cell cytoskeleton (Mofrad 2009), which comprises
cross-linked polymeric elastic filaments such as F-actin and microtubules (MTs). The activity of
this network arises from the work performed by various ATP-powered molecular enzymes on the
filaments for functions such as cell division, locomotion, or intracellular transport. Although the
bulk characterization of these materials is not practical, the cytoskeleton can be probed in vivo
using microrheological techniques (Wirtz 2009).

www.annualreviews.org • Rheology of Active Fluids 583

Review in Advance first posted 
on October 23, 2017. (Changes 
may still occur before final 
publication.)

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
8.

50
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
10

/3
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FL50CH22_Saintillan ARI 14 October 2017 12:10

a

p

c vL

vR

MICROTUBULE b

Figure 10
(a) Mechanism for extensile stress production in microtubule (MT)/motor-protein solutions. Multiheaded kinesin clusters marching
along the polar MTs inside a bundle cause MTs of opposite polarities to slide in opposite directions, resulting in the bundle being
extended. (b ) Sanchez et al.’s (2012) experiments on the same system. The extension of MT bundles causes buckling instabilities and
unstable transport. In the dense nematic phase, the dynamics are driven by the motion and interaction of active orientational defects
( yellow arrows). Adapted from Shelley (2016).

Cytoskeletal extracts provide a simpler platform for studying the effects of ATP-driven activity
on internal cellular mechanics. In recent experiments, Suzuki et al. (2017) visualized the dynamics
in small liquid droplets containing Xenopus egg extract and reported the emergence of circular
streaming flows attributed to the activity of kinesin motors on MTs. Using purified extracts,
one can gain fundamental insight into MT–molecular motor interactions and their rheological
consequences, as in the remarkable system proposed by Sanchez et al. (2012) (Figure 10). In
their experiments, bundles of multiple MTs, which are polar elastic filaments with nominal plus
and minus ends, are first assembled using a depletant agent. Multiheaded clusters composed of
kinesin motors that bind to the polar MTs and walk towards their plus ends in the presence of
ATP are used to induce the relative sliding of filaments of opposite polarities, causing the bundle
to extend, which in turn exerts an extensile stresslet on the fluid (Shelley 2016) (Figure 10a).
In dilute systems, this extension results in the buckling and destruction of the bundles, which
reform spontaneously, leading to unsteady chaotic dynamics. In dense nematic phases, large-scale
correlated motions are observed that appear to be driven by the active motion of orientational
defects (DeCamp et al. 2015, Gao et al. 2015) (Figure 10b).

As in the case of bacterial suspensions, the chaotic motions observed in bulk systems can be
stabilized and harnessed to drive steady unidirectional flows in microfluidic periodic channels with
lengths up to 1 m (Wu et al. 2017). The strong phenomenological resemblance that these dynamics
bear with spontaneous flows in bacterial suspensions hints at a similar rheology. It is indeed easy to
imagine how an extending MT bundle orienting in an applied shear flow could drive a reduction in
viscosity by the same effect as slender pushers (Figure 4), and existing hydrodynamic theories of
MT/motor-protein suspensions give credit to this mechanism (Gao et al. 2015). This hypothesis
is also consistent with observations of the microstructure in Wu et al.’s (2017) experiments, where
alignment of the MTs with the self-induced flow was visible in the near-wall region. Standard
rheological measurements of these active fluids have yet to be performed.

5.2. Quincke Rotors

Another way that suspended particles can modify the effective rheology is by exerting torques on
the fluid. Although biological swimmers are typically torque free, with notable exceptions such
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Figure 11
(a) Quincke electrorotation of an isolated particle. In weak fields (E0 < Ec), a weakly conducting particle (τp > τf ) acquires an induced
dipole moment that is antiparallel with the field. As the field exceeds the critical value Ec, spontaneous rotation occurs at a constant
angular velocity � with a steady dipole moment that forms an angle with the field. (b ) Under an applied shear flow, particle angular
velocities align on average with the vorticity direction, causing a reduction in viscosity. (c ) Viscosity measurements in a suspension of
polymethyl methacrylate particles in oil (volume fraction 22%) in a circular Couette device under various field strengths (Lobry &
Lemaire 1999), showing the reduction in viscosity. The solid and dashed lines show a theoretical prediction based on a dilute
assumption.

as gravitactic microorganisms (Kessler 1986, Pedley & Kessler 1990) and magnetotatic bacteria
(Blakemore 1982, Waisbord et al. 2016), synthetic microrotors subject to an external torque can
be realized experimentally and indeed show interesting rheological properties. One such system
is a suspension of weakly conducting dielectric particles suspended in a dielectric liquid under an
applied electric field E0. In strong fields, such particles can start spontaneously spinning around
an axis perpendicular to the field by an effect known as Quincke electrorotation (Quincke 1896).
This effect, illustrated in Figure 11, occurs when the charge relaxation time τp of the particle is
greater than that τf of the fluid, where τ = ε/σ is the ratio of the dielectric permittivity to the
electric conductivity. The electrostatic dipole P induced inside the particle is then antiparallel
with the applied field, which, when perturbed, results in an electric torque L = 4πεf P × E0

that tries to align P with E0. However, the dipole moment does not follow the particle’s rigid
body rotation as charge from the bulk continues to accumulate and privileges the antiparallel
orientation. The balance of these two effects results in a steady state where the particle rotates at a
constant angular velocity � = L/8πη0a3, whereas the dipole moment forms an angle with the field
direction (Figure 11a). A theoretical analysis of this problem using Melcher & Taylor’s (1969)
leaky dielectric model predicts the transition to electrorotation as a supercritical linear instability
of the equilibrium state above a critical field strength ( Jones 1984, Das & Saintillan 2013), with a
steady angular velocity whose magnitude is given by

|�| = 1
τMW

√(
E0

Ec

)2

− 1, with Ec =
√

2η0

εfτMW(χ∞ − χ0)
. 17.

Here τMW = (εp + 2εf )/(σp + 2σf ) is the Maxwell–Wagner time or characteristic timescale for
polarization of the particle, and χ0 = (σp − σf )/(σp + 2σf ) and χ∞ = (εp − εf )/(εp + 2εf ) denote
the low- and high-frequency Clausius–Mossotti factors, respectively ( Jones 2005). The direction
of rotation is perpendicular to the applied field (� · E0 = 0) but is otherwise arbitrary.

When placed in an applied shear flow U(x) = γ̇ y x̂, the axis of rotation of the particles tends to
align with the imposed vorticity (Figure 11b). In this configuration, particles spin at an angular
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velocity that exceeds that of the imposed flow and thus tend to decrease the resistance to flow.
This amounts to a reduction in the effective shear viscosity, which can be estimated in the dilute
limit based on Batchelor’s theory for the particle stress (Batchelor 1970b, Brenner 1970, Jibuti
et al. 2012):

ηr = σxy +�
p
xy

η0γ̇
= 1 + 5

2
φ + 3

2
φ �, with � = Lz

4πa3η0γ̇
= 1 + �z

γ̇ /2
. 18.

For torque-free particles (Lz = 0), the angular velocity is well known to be half the flow vorticity
(�z = −γ̇ /2), so that � = 0 and Equation 18 reduces to the classic Einstein result for a dilute
sphere suspension (Guazzelli & Morris 2012). For Quincke rotors, the angular velocity is enhanced
by the electric torque so that � < 0, and a decrease in ηr is expected. This prediction was
confirmed by Lobry & Lemaire (1999), who performed viscosity measurements in a circular
Couette device (Figure 11c): Increasing field strength beyond the critical value was indeed shown
to cause a dramatic decrease in viscosity. A similar effect was also reported in pressure-driven
Poiseuille flow, where the application of a transverse electric field produces an increase in flow
rate at a fixed pressure gradient (Lemaire et al. 2006, Peters et al. 2010). Curiously, the data of
Figure 11c show a low-shear-rate viscosity that appears to become zero in strong fields, indicating
an apparent transition to superfluidity akin to that observed in bacterial suspensions. This transition
suggests once again the possible emergence of spontaneous flows, which have yet to be observed.
Theoretical calculations for a pair of spheres indeed suggest that particle–particle interactions can
lead to the synchronization of angular motions (Das & Saintillan 2013), and spontaneous collective
dynamics have been reported in confined 2D suspensions of Quincke rotors (Bricard et al. 2013,
2015). No detailed data exist, however, on microstructural dynamics in bulk systems, whether in
shear or quiescent conditions.

SUMMARY POINTS

1. The ability of microswimmers to generate fluid flows on the microscale as a result of self-
propulsion enables them to modify their macroscopic rheological response in unusual
ways. The nature of this response hinges on the details of propulsion (pusher versus
puller) and on the particle configurations under flow, which result from the balance of
shear alignment and orientation decorrelation mechanisms.

2. In slender pusher suspensions such as motile bacteria, this coupling leads to an effective
decrease in the viscosity of the system in weak flows, which can even reach zero in certain
geometries.

3. This apparent transition to superfluidity has wide-ranging consequences in semi-dilute
and dense suspensions and underlies the emergence of spontaneous flows in confinement
and of chaotic collective motion in bulk systems.

4. The finite relaxation time of particle orientations also confers viscoelastic properties on
suspensions in unsteady flows, with pushers displaying stress overshoots at the startup of
shear flow and negative stress undershoots after the flow has stopped.

DISCLOSURE STATEMENT

The author is not aware of biases that might be perceived as affecting the objectivity of this review.

586 Saintillan

Review in Advance first posted 
on October 23, 2017. (Changes 
may still occur before final 
publication.)

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
8.

50
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
10

/3
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FL50CH22_Saintillan ARI 14 October 2017 12:10

ACKNOWLEDGMENTS

I acknowledge financial support from the National Science Foundation grants DMS-0920931,
CBET-1150590, and DMS-1463965. I thank A. Lindner, M. Shelley, J. Brady, E. Clément, Z.
Dogic, and E. Lemaire for many insightful conversations on various topics discussed in this review,
as well as graduate students B. Ezhilan, R. Alonso-Matilla, and D. Das and postdoc M. Theillard
for their contributions to this research. This review is dedicated to my father Daniel Saintillan
(1937–2017).

LITERATURE CITED

Alizadeh PA, Saintillan D. 2011. Instability regimes in flowing suspensions of swimming micro-organisms
Phys. Fluids 23:011901

Alonso-Matilla R, Ezhilan B, Saintillan D. 2016. Microfluidic rheology of active particle suspensions: kinetic
theory. Biomicrofluidics 10:043505

Alt W. 1980. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol.
9:147–77
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