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Abstract. Biologically active suspensions, such as suspensions of swimming mi-
croorganisms, exhibit fascinating dynamics including large-scale collective motions and
pattern formation, complex chaotic flows with good mixing properties, enhanced pass-
sive tracer diffusion, among others. There has been much recent interest in modeling
and understanding these effects, which often result from long-ranged fluid-mediated in-
teractions between swimming particles. This paper provides a general introduction to
a number of recent investigations on these systems based on a continuum mean-field
description of hydrodynamic interactions. A basic kinetic model is presented in detail,
and an overview of its applications to the analysis of coherent motions and pattern
formation, chemotactic interactions, and the effective rheology in active suspensions, is
given.
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1. Introduction. Microorganisms are present in every part of the
biosphere, ranging from harmful and beneficial bacteria in our bodies to
phytoplankton in the oceans. They play a central role in many biological
and ecological phenomena, among which pathogenic infection, digestion,
reproduction, CO2 capture and mixing in the oceans, and they are also at
the base of the marine food web. Understanding their behavior, motility,
dynamics, and interactions, is therefore a central step in the modeling of
these various phenomena.

Much previous work in this field has focused on the hydrodynamics
of single swimming microorganisms [27], which exhibit interesting and un-
usual strategies for locomotion in environments where viscous effects dom-
inate and inertia is negligible. In this regime of low Reynolds numbers,
the disturbance flows generated by moving particles (such as swimming
microorganisms) decay very slowly with the distance from the particle cen-
ter, thereby resulting in strong particle-particle hydrodynamic interactions
in suspensions of many swimmers. These interactions in turn are known
to result in a variety of complex and fascinating phenomena that have
been reported in experiments, including: enhanced passive tracer diffusion
[49, 26, 28, 30] and swimming speeds [13], large-scale chaotic flows with
unsteady jets and vortices [29, 13, 11, 44], emergence of density fluctu-
ations and patterns [13, 11], etc. Direct numerical simulations of these
systems have also been performed, using various models and levels of ap-
proximation, including: simple dumbbell models [19, 20], boundary inte-
gral simulations [25], slender-body models [37, 43], and Stokesian dynamics
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simulations [24]. These simulations are often successful at capturing the
qualitative features observed experimentally, and provide a wealth of use-
ful information on the details of interactions and on the structure of the
suspensions. Yet, they sometimes fail at elucidating the fundamental mech-
anisms leading to collective motion.

A different and complementary approach consists of developing con-
tinuum equations to capture the dynamics of various field variables such
as swimmer concentration and orientation. These models are typically
variants of existing kinetic theories for passive suspensions, liquid crystals,
or polymer solutions, which all share similarities with active suspensions.
The first notable model of this kind was proposed by Aditi Simha & Ra-
maswamy in a seminal paper [1], in which they adapted equations for the
dynamics of liquid crystals, coupled to the Navier-Stokes equations for the
fluid flow, to study the stability of aligned suspensions of active particles. A
number of similar models have been developed since then [4, 6, 31, 33, 48],
which have been applied to investigate collective effects in concentrated
active suspensions. These models, however, often include ad hoc terms
to account for near-field steric interactions, so that they are not always
appropriate to study the sole effect of hydrodynamic interactions.

Another simpler kinetic model was developed recently by Saintillan
& Shelley [38, 39], and is the focus of this paper.1 The model is based
on the use of a probability distribution function Ψ(x,p, t) of finding a
particle at position x with orientation p in the suspension (here p is a unit
vector pointing in the direction of swimming). A conservation equation
is written for the distribution function, with fluxes that depend on the
local fluid velocity. This fluid velocity is in turn obtained by solving the
Stokes equations with a coarse-grained effective stress tensor capturing the
effect of the swimming particles on the flow. These basic equations can
then either be analyzed theoretically (for instance in a stability analysis)
or integrated numerically in simulations.

Here, we review this basic kinetic model and some of its applications.
We briefly discuss single-particle hydrodynamics and derive an expression
for the effective stress tensor induced by a collection of particles in section 2.
The governing equations for the kinetic theory are exposed in section 3.
We then describe their application to the study of instabilities and coherent
motions in active suspensions in section 4, chemotaxis in thin bacterial films
in section 5, and the effective rheology of active suspensions in section 6.
We conclude and discuss directions for future work in section 7.

2. Single-particle hydrodynamics and coarse-graining. A large
body of work exists on the analysis and modeling of propulsion mechanisms
for microorganisms and on single-organism hydrodynamics, e.g. [27]. Here,
we only review a few basic features that we will use to construct an expres-

1Note that a very similar model was also proposed independently and around the
same time by Subramanian & Koch [47].
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Fig. 1. Propulsion of two model swimming microorganisms: (a) a pusher (such
as a bacterium) exerts a propulsive force near its tail, whereas (b) a puller (such as a
microalga) exerts a thrust near its head.

sion for the mean-field stress tensor generated by a collection of swimmers.
In nature, numerous swimming mechanisms exist at low Reynolds num-
bers, which all rely on non-reciprocal shape deformations as prescribed by
Purcell’s famous scallop theorem [34]. Most microorganisms make use of
flexible appendages named flagella, which are actuated in a non-reciprocal
fashion, thereby exerting a net thrust on the surrounding fluid. This is the
case of many types of bacteria such as the common Escherichia coli and
Bacillus subtilis, which use a bundle of flagella for propulsion, and of some
types of microphytes such as Chlamydomonas reinhardtii, which beats two
flagella in a breaststroke-like fashion (Fig. 1).

While the resulting propulsive force Fp will in general be time-depen-
dent, we will assume here for simplicity that it is steady: its value may be
interpreted as a time average over one beat cycle (an approximation that is
not necessarily easy to justify as unsteady effects may also have an impact
on hydrodynamic interactions). If gravitational effects can be neglected,
i.e. if the microorganism and the fluid have nearly matching densities, the
swimmer is force-free and must therefore exert an equal and opposite drag
force Fd = −Fp on the fluid: this drag force is likely to be exerted mostly
by those parts of the body that do not contribute to propulsion (i.e. the
cell body for bacteria and microalgae). Because the application points of
Fp and Fd differ by a distance l (of the order of the organism size), the
net leading-order effect on the surrounding fluid is that of a force dipole,
whose sign may depend on the mechanism for swimming. In the case of a
bacterium (Fig. 1(a)), the propulsive force is exerted near the rear of the
particle, and such a swimmer will be called a pusher. Conversely, an alga
swimming the breaststroke (Fig. 1(b)) exerts a thrust near its front, and
will be called a puller.
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The force dipole exerted by a swimmer can be characterized by the so-
called stresslet S, which is a second-order tensor defined as the symmetric
first moment of the two forces:

S = −
∑
i

[
1

2
(xiFi + Fixi)−

1

3
(xi · Fi)I

]
, (2.1)

where the sum is over the two forces Fp and Fd. In equation (2.1), xi is
the point of application of force Fi, and the last term on the right-hand
side involving the idem tensor I is added to make S traceless. In the case
of the two swimmers illustrated in Fig. 1, and defining the director p as a
unit vector pointing in the direction of swimming, it is straightforward to
simplify this expression to:

S = ±Fl
(

pp− I

3

)
, (2.2)

with F = |Fp|, and where the minus sign corresponds to the case of a
pusher and the plus sign is for a puller. In the following, we introduce
the dipole strength σ0 = ±Fl, with σ0 < 0 for a pusher and σ0 > 0 for a
puller. Note that the magnitude of σ0 is also related to the swimming speed
U0 of the particle. Indeed, a force balance on the body of the organism
yields F ∝ µU0l where the proportionality constant depends on the exact
shape, which leads to σ0 ∝ µU0l

2. In the following, it will be convenient
to define a dimensionless stresslet strength as α = σ0/µU0l

2, which is an
O(1) constant of the same sign as σ0.

Of course, the description of Fig. 1 in terms of two equal and opposite
point forces is simplistic, and in reality the microorganism exerts a distri-
bution of stresses over the entire surface of its body. The definition of the
stresslet (2.1) is then easily generalized as

S = −
∫
S

[
1

2
(xf + fx)− 1

3
(x · f)I

]
dS, (2.3)

where the integral is over the surface of body, and f(x) is the traction
(force per unit area) at any point x on the body. For an axisymmetric
microorganism, this expression must also simplify to

S = σ0

(
pp− I

3

)
, (2.4)

where the value of σ0 will depend on the details of the traction distribution.
This approach provides a more general and rigorous definition of pushers
and pullers than that provided above: a pusher can be defined as a self-
propelled particle for which σ0 < 0 in equation (2.4), whereas a puller is a
particle for which σ0 > 0. The case σ0 = 0, which corresponds to a zero net
force dipole, is unlikely to occur in nature as any small fore-aft asymmetry
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Fig. 2. Active suspension: the configuration of the particles at time t is modeled
in terms of a distribution function Ψ(x,p, t) of the center-of-mass x and director p of
the swimmers.

will result in σ0 6= 0, but it may occur for some types of artificial swimmers.
This case will not be considered further, as the kinetic model we introduce
below is based on a non-zero stresslet.

Having obtained the stresslet S, it is then possible to determine the
effective extra stress induced by a collection of swimmers as a volume av-
erage. This classic result, sometimes known as the Kirkwood formula, was
originally derived to model the stress in polymer solutions [12]. It was
adapted to the case of suspensions by Batchelor [7], who expressed the ex-
tra stress tensor Σp for a suspension of torque-free particles in a volume V
as a volume average of the stresslets on all the particles (with index α):

Σp =
1

V

∑
α

Sα. (2.5)

If we model the configuration of a suspension at time t in terms of a prob-
ability distribution function Ψ(x,p, t) of finding a particle with center-of-
mass x and director p (see Fig. 2), the particle extra stress at point x is
then more readily expressed as

Σp(x, t) =

∫
Ω

Ψ(x,p, t)S dp = σ0

∫
Ω

Ψ(x,p, t)

(
pp− I

3

)
dp, (2.6)

where Ω denotes the unit sphere. The expression (2.6) for the coarse-
grained particle stress tensor is valid for describing the flow generated by
a suspension of swimmers on length scales much greater than the particle
dimensions, and will be the basis of the kinetic model of section 3. Also
note that the stress tensor (2.6) can also be interpreted as a local nematic
order parameter: indeed, Σp = 0 for a suspension that is locally isotropic,
whereas Σp 6= 0 for a suspension exhibiting a local nematic alignment.
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A few comments on the generality of the above results are in order.
The main assumption that allowed us to derive equation (2.6) for the ac-
tive stress tensor is that the swimmers are force- and torque-free and exert
a steady force dipole on the fluid. While this may be a good approxima-
tion for some types of microorganisms, others do not satisfy all of these
assumptions [42]. In particular, some microorganisms have a density that
is significantly different from that of water, so that they exert a net force
on the fluid and have interactions that may resemble those between sed-
imenting particles: this is the case of Volvox carteri, which exerts a net
force on the fluid and has a negligible stresslet [14]. Other microorganisms,
called gyrotactic, are subject to a buoyant torque as their center of mass
and center of buoyancy do not coincide [32]. Finally, some microorgan-
isms, including Chlamydomonas reinhardtii, drive oscillatory flows in time
as they swim, that sometimes even result in a reversal of the stresslet over
the course of one swimming stroke [16]. For simplicity, all of these effects
are neglected here, though we realize that they should be incorporated into
more detailed theories.

3. Basic kinetic model. The basic model of interest here was first
introduced by Saintillan & Shelley [38, 39] and is based on an evolution
equation for the distribution function Ψ(x,p, t) defined in section 2, coupled
to an equation for the fluid motion. By conservation of particles, Ψ must
indeed satisfy a Smoluchowski equation [12]:

∂Ψ

∂t
+∇x · (ẋΨ) +∇p · (ṗΨ) = 0, (3.1)

where ∇p is the gradient on the unit sphere Ω. Ψ is also normalized as

1

V

∫
V

∫
Ω

Ψ(x,p, t) dp dx = n, (3.2)

where V is the volume of interest and n is the number density (number of
particles per unit volume). The solution of equation (3.1) requires knowl-
edge of the center-of-mass and rotational flux velocities ẋ and ṗ, which
describe the dynamics of a given swimmer. In a dilute suspension, these
can be modeled as

ẋ = U0p + u(x)−D∇x(ln Ψ), (3.3)

ṗ = (I− pp) · ∇xu · p− d∇p(ln Ψ). (3.4)

Specifically, the center-of-mass velocity of a particle is modeled as the sum
of its swimming velocity U0p, which is assumed to be unchanged by in-
teractions, and of the local fluid velocity u(x), which may result from an
external flow or from hydrodynamic interactions. Similarly, the particle
rotational velocity is modeled using Jeffery’s equation [10] in terms of the
velocity gradient ∇xu. Both flux velocities also account for diffusion, with
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isotropic diffusivities D and d which are assumed to be independent of x
and p. These may model hydrodynamic fluctuations in the suspension [37],
or thermal fluctuations if the swimmers are small enough to be affected by
Brownian motion (generally not the case for microorganisms).

To close the equations, a model for the fluid velocity u appearing in
equations (3.3)–(3.4) is needed. Here we consider the situation where there
is no external flow, in which case u is simply the velocity driven by the
swimming particles themselves. As we argued in section 2, swimming par-
ticles (in most cases) exert force dipoles on the surrounding fluid, which
can be captured in a mean-field description using the active stress tensor
of equation (2.6). More precisely, the flow field driven by the distribu-
tion of dipoles on all the particles satisfies the momentum and continuity
equations:

−µ∇2
xu +∇xq = ∇x ·Σp, ∇x · u = 0, (3.5)

where Σp is obtained in terms of Ψ using equation (2.6). Equations (3.1),
together with (3.3)–(3.5), form a closed system that may in principle be
integrated in time for the distribution function Ψ and fluid velocity u in
the suspension, given an initial condition.

4. Instabilities and coherent motions. The first study of interest
that we describe here concerns the evolution of an initially isotropic and
uniform suspension of swimmers [38, 39, 22]. This situation can first be
analyzed as a stability problem: given a small perturbation in such a sys-
tem, under which conditions will this perturbation grow or decay? This
question was addressed by Saintillan & Shelley [38, 39], who considered a
plane-wave perturbation at wavenumber k:

Ψ(x,p, t) =
n

4π

[
1 + εΨ̃(p,k) exp(ik · x + σt)

]
. (4.1)

By substituting (4.1) into the kinetic equations of section 3, linearizing
to order ε, and neglecting rotational diffusion, it is possible to reduce the
equations to an eigenvalue problem for the active particle stress tensor [38]:

Σ̃
p
(k) = Π(k, σ) : Σ̃

p
(k), (4.2)

where

Σ̃
p
(k) =

∫
Ω

Ψ̃(p,k)

(
pp− I

3

)
dp, (4.3)

and the operator Π(k, σ) is a fourth-order tensor. A dispersion relation for
this eigenvalue problem can be obtained as [38, 39, 22]

−3α

4

∫ π

0

cos2 θ sin3 θ

σ + k2D + ik cos θ
dθ = 1. (4.4)



8 DAVID SAINTILLAN

1

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4(a) (b)

Re(σ)

nl2U0

Im(σ)

nl2U0

k/nl2 k/nl2

Fig. 3. (a) Real and (b) imaginary parts of the complex growth rate σ (normalized
by nl2U0), as functions of the wavenumber k in a suspension of pushers with α = −1
and D = d = 0. Adapted with permission from [39].

This equation can be solved numerically for the complex growth rate σ in
terms of the wavenumber k = |k|, and such a solution is shown in Fig. 3 for
a suspension of pushers (α = −1) in the absence of diffusion (D = d = 0).
The main conclusion of this study is the existence of a positive growth rate
Re(σ) below a critical wavenumber kc ≈ 0.55nl2 in suspensions of pushers.
The case of pullers (α > 0) is simply obtained by changing the sign of
Re(σ) and is therefore characterized by a negative growth rate. Beyond
the critical wavenumber kc, a more detailed analysis by Hohenegger &
Shelley [22] demonstrated that both types of suspensions are stable when
diffusion is included. Also note that the numerical factor in the expression
for kc depends on diffusion, and decreases as either D or d increases.

This critical wavenumber can be interpreted as corresponding to the
smallest linear system size L above which an instability will occur in a
suspension of pushers. In other words, the fluctuations in equation (4.1)
will grow if the system size L satisfies:

2π

L
< 0.55nl2, (4.5)

or equivalently, (
L

l

)
× nl3 > 2π

0.55
, (4.6)

i.e. when the product of the system size L (normalized by the characteristic
dimension l of the swimmers) by the effective volume fraction nl3 exceeds
a given threshold. It is important to realize that this linear instability
pertains to the active stress tensor (4.3), which as we mentioned earlier can
be viewed as a nematic order parameter: the instability will therefore result
in a local nematic alignment of the particles, but the linear eigenmodes
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Fig. 4. Hydrodynamic interaction of two pushers. The arrows illustrate the dis-
turbance flow field driven by the force dipole exerted on the fluid, in the reference frame
of the particle. When two pushers come together, they tend to align as a result of these
flows.

can be shown not to be associated with spatial concentration fluctuations
[39, 22]. This local alignment of pushers can be understood qualitatively by
simply considering the disturbance flow induced by the force dipole exerted
by a pusher on the fluid (Fig. 2): as two pushers come together, it is easy
to see that their disturbance flows will tend to align them, whereas the
disturbance flow driven by a puller is of opposite direction. This effect was
also observed in direct numerical simulations [37].

Further insight can be gained into the effects of nonlinearities and into
the long-time dynamics in the suspensions by calculating numerical solu-
tions of the kinetic equations, starting from a weakly perturbed homoge-
neous and isotropic distribution function. Such simulations were performed
in two dimensions by Saintillan & Shelley [38, 39], and in three dimensions
by Alizadeh Pahlavan & Saintillan [2]. These simulations confirm the sta-
bility of puller suspensions, and the instability criterion (4.6) for pusher
suspensions. In unstable suspensions, local nematic alignment of the par-
ticles is observed in agreement with the prediction of the linear analysis,
but this alignment is followed by the growth of density fluctuations on
the scale of the system. These fluctuations eventually saturate as a result
of diffusion, and undergo complex time dynamics in which dense sheet-
like structures form and break up repeatedly in time, see Fig. 5(a). This
growth of concentration fluctuations, which is a nonlinear effect, can be ex-
plained as a result of the swimming of the particles, which causes them to
aggregate in regions of negative divergence of the mean director field [39].
The dynamics in the unstable suspensions are complex and chaotic, and
are characterized by large-scale flows with jets and vortices, efficient fluid
mixing, enhanced swimming speeds, and correlated dynamics on length
scales of the order of the system size, in good qualitative agreement with
experimental observations.

Note that the prediction of equation (4.6) was also recently tested in
direct particle simulations using a slender-body model [43]. In these sim-
ulations, where individual particles are tracked and interact hydrodynami-
cally, a transition from uncorrelated to correlated motions is also observed
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Fig. 5. Pattern formation in suspensions of swimming microorganisms: concen-
tration iso-surfaces at c = 1.5, (a) in a quiescent suspension (no imposed flow), and
(b) when a weak external shear flow is imposed. Adapted with permission from [2].

at a critical volume fraction (for a fixed system size) that matches the
prediction of (4.6) within a factor of 2. The transition manifests itself in
many different ways, and for instance affects velocity correlation lengths
and times, swimming velocities, density fluctuations, passive tracer mixing
rates and diffusivities, among others.

While the analysis and simulations described above considered swim-
mer dynamics and interactions in a quiescent fluid, microorganisms in na-
ture often evolve in complex flow environments, e.g. in the oceans. It is
therefore interesting and important to understand how an external flow
may affect these instabilities and dynamics. Such a study is also important
to understand the effective rheology of microorganism suspensions, as we
discuss further in section 6. The case of a simple shear flow was recently
analyzed by Alizadeh Pahlavan & Saintillan [2], using both a stability the-
ory and continuum simulations. The main finding of this study is that
an external shear flow tends to stabilize the suspensions by controlling the
orientation of the particles. A sample simulation in a weak shear flow is
illustrated in Fig. 5(b), and shows alignment of the density patterns with
a 45o axis with respect to the flow direction. As shear rate increases, the
instabilities can be shown to become weaker and are eventually suppressed.
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5. Chemotaxis. The previous analysis, in which boundaries and ex-
ternal fields were entirely neglected, provides useful insight into the dy-
namics in active suspensions, but is highly idealistic and may be difficult
to recreate in a laboratory experiment. Swimming microorganisms indeed
often interact with boundaries and chemical cues. Here, we describe how
the kinetic model of section 3 can be amended to include some of these
effects, and we specifically discuss the modeling of a thin active suspen-
sion film surrounded on both sides by an oxygen bath [3]. This study is
motivated by the many experiments on active suspensions that have been
performed in stabilized liquid films [49, 44, 16], and more specifically by the
recent investigation of Sokolov et al. [45]. In this latter study, the dynamics
in a free-standing thin film containing a suspension of Bacillus subtilis were
observed, and demonstrated a transition from quasi-two-dimensional col-
lective motion to three-dimensional chaotic behavior as the film thickness
was increased. Migration of the bacteria towards the boundaries where the
strongest concentration in oxygen occurs was also reported. The existence
of this transition is not too surprising in light of equation (4.6), which pre-
dicts instabilities only above a critical system size, but a more accurate
model should include coupling with the oxygen field and interactions with
the free surfaces.

The first modification consists in coupling the equations of motion to
the dynamics of the oxygen field, whose concentration we denote by s(x, t).
It obeys an advection-diffusion equation:

∂s

∂t
+ u(x) · ∇xs− d0∇2

xs = −κs(x, t)c(x, t), (5.1)

which expresses transport of the oxygen by the disturbance flow u(x) driven
by the microorganisms, and diffusion with constant diffusivity d0. The last
term on the right-hand side of equation (5.1) models consumption of oxygen
by the swimmers as a second-order reaction. If we were to model the release
of a chemical cue by the swimmers (as would arise in a simulation of quorum
sensing [36]), this term may be replaced by +κc(x, t).

Secondly, the effect of the oxygen concentration on the microorganism
dynamics must also be modeled. This coupling is more subtle, and here we
mention two different approaches:

• Gradient-detecting model : this model, which is the simplest of the
two but also the least realistic, assumes that the swimmers are able
to detect the local oxygen gradient and adjust their orientation to
swim towards the regions of high oxygen concentration. This is
achieved by adding an extra deterministic torque that aligns par-
ticles with the oxygen gradient in equation (3.4) for the rotational
velocity, which becomes:

ṗ = (I− pp) · [∇xu · p + χ∇xs]− d∇p(ln Ψ). (5.2)
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• Run-and-tumble model : In reality, bacteria for instance are unable
to sense local concentration gradients, but instead use a stochastic
process of random orientation changes (so-called ‘tumbling’ events)
whose characteristic frequency depends on the local oxygen con-
centration. The net effect of this biased random walk is a migration
towards the regions of high oxygen concentration [9]. As explained
in detail by Bearon & Pedley [8], this effect may be captured by a
modification of the conservation equation (3.1) as follows:

∂Ψ

∂t
+∇x · (ẋΨ) +∇p · (ṗΨ) = −λΨ +

∫
Ω

λΨ(x,p′, t) dp′, (5.3)

where the quantity λ(x,p, t) is the stopping rate and is related to
the probability for a bacterium to undergo a tumbling event over
a fixed time interval. This stopping rate depends on the oxygen
field sampled by the bacterium as it swims, and is modeled as

λ(x,p, t) = λ0

(
1− ξDs

Dt

)
, (5.4)

where

Ds

Dt
=
∂s

∂t
+ [U0p + u(x)] · ∇xs (5.5)

is akin to a material derivative, and denotes the rate of change of
s(x, t) sampled by a swimmer along its trajectory.

Thirdly, non-periodic boundary conditions need to be implemented
to account for the free surfaces of the liquid film. A natural boundary
condition for the disturbance velocity field is zero shear stress (although
the no-slip boundary condition may be more appropriate if surfactants are
present). Boundary conditions for the distribution function Ψ are slightly
more subtle and must express the inability of the swimmers to cross the
boundaries. This can be achieved by letting the normal component of the
center-of-mass flux velocity (3.3) vanish at the free surface: n ·ẋ = 0, where
n is the unit normal at the boundary. A slightly weaker condition consists
in prescribing zero net concentration flux, and is expressed as

n ·
∫

Ω

ẋ dp = 0. (5.6)

The zero-shear-stress boundary condition, together with (5.6), can be im-
plemented in simulations using a reflection method, and details of the nu-
merical algorithm are forthcoming [3].

Two typical simulations are illustrated in Fig. 6 for two different film
thicknesses: (a) Ly = 20(nl2)−1, and (b) Ly = 20(nl2)−1. These simu-
lations were performed using the run-and-tumble model of equation (5.3),
although the gradient detecting method is found to qualitatively produce
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Fig. 6. Simulations of chemotaxis performed using the run-and-tumble model of
equation (5.3). The domains are doubly-periodic in the x and z directions, with inter-
faces in the y-direction. Two film thicknesses are shown: a) Ly = 20(nl2)−1, and (b)
Ly = 20(nl2)−1. The left column shows the local swimmer concentration, whereas the
right panel shows the oxygen concentration.

very similar results. The figure shows both swimmer concentration and
oxygen concentration. In thin films (Fig. 6(a)), the dynamics are found
to be quasi two dimensional: the swimming microorganisms still organize
into dense patterns that form and break up repeatedly in time, but these
patterns are nearly uniform in the y-direction, and all the dynamics take
place in the x-z plane. As the film thickness increases (Fig. 6(b)), a tran-
sition occurs to three-dimensional chaotic behavior: the density patterns
are no longer uniform in the y-direction, and the dynamics near both inter-
faces become uncorrelated on average. This also leads to the emergence of
three-dimensional flows, which drive more fluctuations in the oxygen field,
with the formation of oxygen plumes that penetrate into the bulk of the
film. This has in turn the effect of enhancing oxygen transport and mixing
into the film [3], with clear benefits to the microorganisms. This transition
as film thickness increases is qualitatively similar to that reported in the
experiments of Sokolov et al. [45], suggesting that the effect is likely a result
of hydrodynamic interactions between swimmers.
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6. Effective rheology. As a final application, we discuss the effec-
tive rheology of suspensions of microorganisms, which has recently received
significant attention. Only a few attempts have been made at measuring
the effective viscosity of active suspensions, and have demonstrated very
peculiar trends. In a first study, Sokolov & Aranson [46] measured the
drag on a rotating magnetic particle immersed in a liquid film containing
swimming bacteria, and used it to infer a value for the effective viscosity
of the suspension. The value they obtained was significantly lower than
that for pure solvent, by up to a factor of 7, and this decrease was found
to correlate with the swimming speed of the bacteria. This decrease in
viscosity is quite unusual, as particulate suspensions typically exhibit en-
hanced viscosities owing to the additional viscous dissipation taking place
near the particle surfaces. In a second study, Rafäı et al. [35] measured
the viscosity of a suspension of swimming microalgae, and compared it to
that of a suspension of dead algae: they observed a significant increase in
viscosity as a result of the swimming activity. While the results of both
studies seem to contradict each other, this discrepancy is easily resolved by
realizing that bacteria are pushers whereas microalgae are pullers.

A number of models [18, 17, 15] and numerical simulations [23] have
been proposed to address this problem. Here, we briefly discuss the analysis
of Saintillan [40, 41], which uses a model very similar to that of section 3.
In a dilute suspension, hydrodynamic interactions between microorganisms
can be neglected to a first approximation, and particle positions become
uncorrelated. In this limit, the configuration of a spatially homogeneous
suspension is entirely captured by an orientation distribution Ψ(p, t), which
satisfies a special case of equation (3.1):

∂Ψ

∂t
+∇p · (ṗΨ) = 0. (6.1)

If an external linear flow with constant velocity gradient A is applied, the
angular flux velocity ṗ captures the rotation and alignment of the swimmers
in the flow:

ṗ = (I− pp) · A · p− d∇p(ln Ψ). (6.2)

Steady-state solutions Ψ(p) of equations (6.1)–(6.2) can be obtained ana-
lytically for irrotational flows [41], and numerically for other types of linear
flows such as a simple shear flow [40]. Once Ψ(p) is known, it can be used
to calculate the effective particle stress tensor Σp in the suspension as a
configurational average of the force dipoles (or stresslets) on the swimmers
according to equation (2.5). Note that for particles in an external flow, an
additional stresslet must be included, which arises from the inability of the
particles to stretch under flow. This flow-induced stresslet, which is added
to the permanent stresslet (2.4), can be shown to be of the form [21]:

S = C(pp : A)

(
pp− I

3

)
, (6.3)
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Fig. 7. (a) Effective viscosity ηp, and (b) first normal stress difference coefficient
νp, as functions of dimensionless shear rate ˜̇γ in suspensions of pushers and pullers in
a simple shear flow. Adapted with permission from [41].

where the constant C depends on the shape of the particle. Having deter-
mined the extra stress tensor, quantities such as the effective viscosity ηp,
and first and second normal stress difference coefficients νp and κp, can be
inferred as functions of flow strength as

ηp =
Σpxy
γ̇
, νp =

Σpxx − Σpyy
γ̇2

, κp =
Σpyy − Σpzz

γ̇2
, (6.4)

where γ̇ denotes the deformation rate and is obtained as: γ̇ = (A : A)1/2.
A more detailed discussion of the model and its underlying assumptions
can be found in [40, 41].

Results for the effective viscosity ηp and first normal stress difference
coefficient νp in a simple shear flow are shown in Fig. 7. In this figure, we
have defined a dimensionless flow strength as ˜̇γ = γ̇tc and a dimensionless
rotary diffusivity as d̃ = dtc, where the time scale tc is defined as

tc =
πµl3

6|σ0| ln(2/ε)
. (6.5)

Here, ε is the inverse aspect ratio of the microswimmer, which is assumed
to be an axisymmetric slender body. Suspensions of pullers (full symbols)
exhibit a shear-thinning behavior and a positive first normal stress differ-
ence coefficient, much like suspensions of passive rodlike particles. As the
swimming activity becomes stronger (i.e. as the dimensionless diffusivity d̃
decreases), both ηp and νp are found to increase. The trends are reversed
in suspensions of pushers (open symbols): activity causes a decrease in
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effective viscosity at low shear rates, which can even result in a negative
value of ηp at low values of d̃, corresponding to a strong level of activity.
Swimming activity also results in a sign change in νp at low flow rates.
These unusual findings are consistent with experimental observations that
reported an increase in viscosity in suspensions of microalgae [35] but a
decrease in suspensions of motile bacteria [46]. Similar effects have been
predicted in other types of flows as well, including uniaxial extensional and
compressional flows and planar extensional flow [40]. All of these previous
studies have only considered dilute suspensions and have neglected particle-
particle interactions; such interactions may be accounted for by including
an external shear flow in the kinetic model of section 3, see Fig. 5(b) [2].

7. Conclusions and outlook. We have presented a simple kinetic
model for suspensions of self-propelled particles such as swimming microor-
ganisms based on a continuum description of the particle phase, that was
first proposed by Saintillan & Shelley [38, 39]. This model, which is simply
based on a conservation equation for the distribution of particles, coupled
to the Stokes equations for the fluid motion driven by the force dipoles
on the particles, was developed with the aim of understanding the effects
of hydrodynamic interactions in these systems. The model was applied to
study the emergence of collective motion in bacterial suspensions: as we
demonstrated, such collective motion is predicted to arise when the prod-
uct of the system size by the volume fraction exceeds a given threshold, in
agreement with results from recent numerical simulations [43]. Other more
complex applications also include the modeling of chemotaxis in external
chemical fields, and the effective rheology of active suspensions.

Quite naturally, these models are only useful and valid inasmuch as
they faithfully capture and explain phenomena observed in physical or bi-
ological systems. Suspensions of microorganisms are extremely complex
systems, in which effects such as swimming noise, steric interactions, chem-
ical cues, gravity, temperature variations, surfactants, among others, may
all play a role in the observed dynamics. The kinetic model presented in
this work neglected most of these effects, with the aim of isolating the con-
tribution of mean-field hydrodynamic interactions. While this approach is
useful from a fundamental and theoretical standpoint, attempts at quanti-
tatively capturing the dynamics in bacterial suspensions will likely require
improvements of our model to capture some of these more complex effects.
Of ongoing interest to us are:

• Steric interactions: Experiments on bacterial suspensions are often
performed at high concentrations, where excluded volume interac-
tions between swimmers become important [11, 44]. In fact, the
emergence of collective motion discussed in section 4 often occurs
in the semi-dilute to concentrated regime, in which the mean-field
description of interactions may no longer be appropriate. While
including direct particle-particle contacts and interactions is fairly
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natural in direct particle simulations [37, 43], it is far from trivial
in continuum models. One possible approach is the inclusion of
an interaction potential that causes particles to align with their
neighbors as a result of steric interactions, in the manner of the
classic model of Doi & Edwards for the isotropic-nematic transi-
tion in passive rod suspensions [12]. This additional interaction
potential significantly complicates the analysis of the model, but
numerical progress is still possible.

• Confinement : Most theoretical calculations and simulations de-
scribed herein assumed periodic boundary conditions, both for
convenience and as a means to model the dynamics in bulk sus-
pensions away from boundaries. The effects of boundaries and of
confinement, however, are non-trivial in real systems, as we dis-
cussed briefly in section 5. The boundary condition (5.6) of zero
net concentration flux, while physically justified, does not include
any details of the particle interactions with the boundary. Such
details are again difficult to include in a continuum model, but
may become significant in highly confined systems.

• Unsteady swimming actuation: Finally, as we mentioned briefly in
section 3, swimming microorganisms do not exert a steady force
dipole on the fluid around them, but rather perform repeated swim-
ming cycles during which the flow field around them fluctuates pe-
riodically [16]. These fluctuations are likely to add noise to the
dynamics, but their precise effects remain unknown. A previous
model on a related system suggests that the effects of these fluc-
tuations on coherent motions and ordering may be significant [5].
Amending the present kinetic model to account for unsteady swim-
ming is not straightforward, but will be attempted in future work.
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