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We investigate the effects of surface contamination, modeled as a thin dielectric coating, on the

dynamics in suspensions of ideally polarizable spheres in an applied electric field using large-scale direct

particle simulations. In the case of clean particles (no contamination), the suspensions are known to

undergo dipolophoresis, or a combination of dielectrophoresis, which tends to cause particle chaining

and aggregation, and induced-charge electrophoresis, which dominates the dynamics and drives

transient pairings, chaotic motions, and hydrodynamic diffusion at long times. As surface

contamination becomes significant, induced-charge electrophoresis is gradually suppressed, which

results in the simulations in a transition from diffusive dynamics to local aggregation and chaining as

a result of dielectrophoresis. This effect has a strong impact on the suspension microstructure, as well as

on particle velocities, which are strongly reduced for contaminated particles. This transition is also

visible in the particle mean-square displacements, which become sub-diffusive in the case of strong

contamination. We explain this sub-diffusive regime as a consequence of the slow dynamics of the

particles trapped inside clusters and chains, which result in non-integrable local waiting time

distributions.
1. Introduction

The ability to control and direct the motion of colloids and

nanoparticles suspended in a fluid is critical to many applications

in micro- and nanofluidics,1–6 as well as in materials processing

and manufacturing.7–10 As a result, there has been much interest

over the last few years in modeling and understanding the

dynamics of particles in electric fields, as these offer a simple and

low-cost means of directing particle motions. Specifically, linear

electrophoresis (EP), which results from the interaction of the

native Debye layer surrounding a charged particle in a viscous

electrolyte with an externally applied electric field, drives a net

linear motion in the direction of the local field, with a velocity

that scales linearly with field strength.11–13 Under the classic

assumptions of thin Debye layer, weak applied field, zero

polarizability and surface conduction, EP does not result in

relative motions between particles, which instead all migrate at

the same velocity, unaffected by interactions.14–17 Interactions

and relative motions, however, often arise when some of these

assumptions are relaxed, notably in moderate fields and with

polarizable particles.18
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First, any particle placed in an electric field disturbs the field

around it, resulting in a non-uniformMaxwell stress tensor in the

fluid, which can yield a non-zero force and torque on

surrounding particles.19,20 These dielectrophoretic (DEP) forces

and torques scale quadratically with the field magnitude, and can

lead to relative motions in particle suspensions under moderate

field strengths.18,21,22 Second, if the particle is ideally polarizable

(e.g. conducting), it also develops a non-uniform surface charge

distribution in addition to its native charge, which causes the

formation of a non-uniform electrical double layer around its

surface. The external field then drives an additional flow near the

particle surface, which results from the interaction of the induced

double layer with the applied field and also scales quadratically

with field strength.23–25 By symmetry, this induced-charge elec-

trophoresis (ICEP) does not result in a net motion in the case of

a single isolated spherical particle, but relative motions may arise

when several particles are present in a suspension.18,21,26,27

The motions resulting from DEP and ICEP have been

analyzed in the past.18,21,22 Dielectrophoretic interactions, in the

low-frequency and thin-Debye-layer case, result in the formation

of particle chains in the direction of the applied field,20,28–30 which

then often merge and rearrange to form complex structures

including particle sheets, labyrinthine and cellular patterns,

etc.22,31,32 In these suspensions, particle configurations evolve

slowly toward a frozen state where particles are trapped in chains

or larger structures and only undergo weak motions. On the

other hand, induced-charge electrophoresis results in transient

particle pairings, by which two nearby particles are attracted in
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the field direction, pair up, and separate in a transverse direc-

tion.18,21,26,27 These pairings have been shown to lead to diffusive

particle motions at long times, resulting in constant mixing and

reorganization of particle configurations.21,26 When both DEP

and ICEP occur, a situation known as dipolophoresis (DIP),33,34

ICEP has been found to dominate DEP and diffusive motions

are predicted.21

While the theory of induced-charge electrokinetic flows is well

established,23–25,35,36 quantitative comparisons with experimental

measurements have often yielded mixed results.27,35,37–42 Detailed

measurements of induced-charge flows around fixed posts or

electrodes have been described in the literature, and typically

show velocities that match theoretical predictions qualitatively

but are weaker than expected in magnitude.39 To model this

discrepancy, a fitting parameter or ‘‘correction factor’’ L is

commonly used and is defined as the factor by which the theo-

retically predicted induced zeta potential (or surface slip velocity)

has to be multiplied to match the experimental data.35,37,38,41,42

Values of L can vary wildly and have ranged from 0.0018 to 0.85

in experiments.35

While a comprehensive theory explaining this discrepancy is

still lacking, evidence points at surface contamination as

a possible factor leading to this reduction in velocity.41 As

a model for surface contamination, Pascall and Squires41 studied

the induced-charge flow near a metal electrode coated with a thin

dielectric layer of SiO2, with permittivity 3s and thickness ls, as

illustrated in Fig. 1(a) in the case of a spherical particle. This

coating has the effect of introducing an additional capacitance

Cs ¼ 3s/ls in series with the Debye layer capacitance CD ¼ 3/lD,

where 3 is the permittivity of the electrolyte and lD is the Debye

length [Fig. 1(b)]. The resulting induced zeta potential is then

expressed as

z ¼ DV

1þ d
; (1)

where DV is the total potential drop and d is the ratio of the

Debye layer capacitance to the dielectric layer capacitance, d ¼
CD/Cs. Within this model, the correction factor is naturally

obtained as L ¼ (1 + d)�1. This model is appropriate to capture

the effects of a solvation (Stern) layer on the electrode or particle

surface. Additional effects may also modify the value of L,

including the dissociation of protons from the dielectric coating
Fig. 1 (a) Model for surface contamination: an ideally polarizable

sphere is coated with a thin dielectric layer (not to scale). (b) Circuit

model for the situation of (a). (c) Circuit model for the situation of (a)

with additional effective buffer capacitance to model dissociation of

protons from the dielectric layer.
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into the Debye layer via the chemical reaction SiOH 4 SiO� +

H+, which introduces an effective buffer capacitance, Cbuff, in

parallel with the Debye layer capacitance [Fig. 1(c)], and modifies

the zeta potential as

z ¼ DV

1þ dþ b
; (2)

where b ¼ Cbuff/Cs. This results in a correction factor given by

L ¼ (1 + d + b)�1. These models have been tested against

experiments with SiO2 coatings,41 as well as self-assembled

monolayers of alkanethiol chains,42 and good agreement has

been shown with theory at low frequencies.

In a suspension of particles undergoing dipolophoresis in an

electrolyte, we expect surface contamination to affect the value of

the induced zeta potential leading to induced-charge electro-

phoresis by a factor of L, while dielectrophoretic interactions

should be unaffected.18 The precise effects of such contamination

on the suspension dynamics have not been considered to date,

and are the subject of the present study. For weak surface

contamination (L z 1), ICEP is still expected to dominate DEP

and lead to diffusive particle motions, whereas stronger

contamination (L � 1) should nearly suppress ICEP and the

formation of chains can be expected as a result of DEP. The

dynamics for intermediate values ofL have not been modeled yet

and, as we show below, are characterized by a gradual transition

from diffusive motions to local aggregation, chaining, and

pattern formation as L is decreased. To study this transition, we

present a simulation method in section 2 based on our previous

model21 for a periodic suspension of ideally polarizable particles

undergoing DIP, in which we introduce the correction factor L

as a prefactor modulating the magnitude of ICEP with respect to

DEP. Results are presented in section 3, where we analyze the

effect of L on the microstructure, velocity fluctuations, and

hydrodynamic diffusion inside the suspensions. We summarize

our findings in section 4.
2. Simulation method

We consider a collection of M identical neutrally buoyant

polarizable spheres of radius a, suspended in a viscous electrolyte

with permittivity 3 and viscosity h. A cubic periodic domain of

linear dimension L is used to simulate an infinite suspension, and

a uniform electric field E0 is applied in the z-direction: E0 ¼ E0ẑ.

The particles are assumed to carry no net charge, in which case

linear electrophoresis does not occur; it could easily be accounted

for by simply adding the constant electrophoretic velocity (3z/h)

E0 to the velocity of each sphere.

We adopt the simulation method developed in our previous

work,21 which was used to simulate the motion of ideally

polarizable spheres under DIP, and is based on the calculation of

DEP and ICEP interactions by Saintillan.18 The formulation is

valid in the limit of thin Debye layers and for weak constant

electric fields, and neglects surface conduction (zero Dukhin

number). The reader is referred to these two previous papers18,21

for a detailed description of the method and algorithm, which are

only outlined here. To model surface contamination, we use the

correction factor, L, introduced above, which modifies the

surface slip velocity induced by the electric field:
Soft Matter, 2011, 7, 10720–10727 | 10721



Fig. 2 Steady-state particle distributions in suspensions of M ¼ 2000

spheres in a periodic cubic box of dimension L¼ 55 (volume fraction fz
5%), for different correction factors: (a)–(d) L ¼ 1.0, (b)–(e) L ¼ 0.05,

(c)–(f) L ¼ 0.001. Top row: three-dimensional view of the full suspen-

sions; bottom row: vertical slices of thickness 5. Also see accompanying

movie in the Supplementary Materials.†
usðxÞ ¼ L
3ziðxÞEðxÞ

h
; (3)

which drives ICEP fluid motion and particle interactions. As

a result, the translational velocity Ua of particle a located at xa,

which we had calculated in our previous work21 for clean parti-

cles (L ¼ 1), becomes:

Ua ¼ 3aE2
0

h

XM

b¼1

½MdepðRab=aÞ þLMicepðRab=aÞ� : ẑẑ (4)

where Mdep and Micep are third-order dimensionless tensors

accounting for both electric and hydrodynamic interactions of

particles a and b under DEP and ICEP, respectively, and Rab

denotes the separation vector between the two spheres: Rab ¼ xb
� xa. The only difference between eqn (4) and that of our

previous work21 is the prefactor L, which controls the relative

magnitude of DEP and ICEP interactions as a result of

contamination. Denoting by l ¼ 2a/|R| the dimensionless inverse

separation distance, Saintillan18 showed that, based on symme-

tries, these two tensors are entirely determined by three scalar

functions of l. For far-field interactions (l � 1), asymptotic

expressions for these two tensors have been obtained and can be

expressed to orderO(l4) in terms of fundamental solutions of the

Stokes equations:

Mdep
FF ðR=aÞ ¼

1

12
TðR=aÞ þOðl5Þ; (5)

M
icep
FF ðR=aÞ ¼ � 9

8
SðR=aÞ � 11

24
TðR=aÞ þOðl5Þ; (6)

where S and T ¼ P2S denote the Green’s functions for a Stokes

dipole and for a potential quadrupole, respectively, and are given

in index notation as43

SijkðRÞ ¼ � 1

R3
ðdijRk � dikRj � djkRiÞ � 3

RiRjRk

R5
; (7)

TijkðRÞ ¼ � 6

R5
ðdijRk þ dikRj þ djkRiÞ þ 30

RiRjRk

R7
: (8)

From the above interaction tensors, it can be seen that ICEP

interactions decay slowly in the far-field as O(l2), as opposed to

DEP interactions that decay more rapidly asO(l4); this results, in

the absence of surface contamination, in the dominance of ICEP

as demonstrated in our previous study.21

In order to use periodic boundary conditions, the periodic

analogs of eqn (5)–(6) are used, in conjunction with an efficient

smooth particle-mesh Ewald algorithm44 to accelerate the evalua-

tionof the sums in eqn (4) toO(M logM) operations.As the far-field

tensors of eqn (5)–(6) are only accurate at large separation distances

(typically when |Rab| > 4a), near-field corrections are applied at

shorter distances using the method of twin multipole expansions,18

which provides very accurate solutions down to separation

distances on the order of |Rab| z 2.05a. In addition, a contact

algorithm is also used to prevent particle overlaps, which would

otherwiseoccur becauseof the use of finite time steps; this algorithm

was shown previously to prevent all overlapswithin roundoff errors

without introducing any unphysical long-range interactions.21

In the remainder of the paper, we make all variables dimen-

sionless using the following characteristic length, velocity and

time scales:
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lc ¼ a; uc ¼ 3aE2
0

h
; tc ¼ h

3E2
0

: (9)

Unless otherwise noted, all the simulations described were per-

formed for a suspension of M ¼ 2000 spheres in a periodic cubic

box of linear dimension L ¼ 55, corresponding to a volume

fraction of f z 5%.
3. Results and discussion

3.1 Suspension microstructure

Typical particle distributions in suspensions of 2000 spheres are

shown in Fig. 2 for different values of the correction factor L

(also see accompanying movie in the SupplementaryMaterials†).

In Fig. 2, the top panel shows three-dimensional views of the

entire suspensions, whereas the bottom panel shows vertical sli-

ces of thickness 5. The case of ideally polarizable spheres with no

surface contamination (L ¼ 1), which was analyzed in detail in

our previous work,21 is characterized by frequent transient

particle pairings, by which pairs of particles are attracted in the

field direction, pair up briefly, and are repelled and separate in

a transverse direction. These pairings also result in a weakly non-

homogeneous distribution of particles, with local clusters sur-

rounded by clarified regions [Fig. 2(a) and (d)]. As the effective

polarizability of the particles is decreased as a result of surface

contamination, these transient pairings gradually give way to the

formation of larger and denser localized clusters, surrounded by

large particle-free regions, as seen in Fig. 2(b) and (e). These

clusters, at moderate values of L, are still transient, and keep

forming and breaking up in time with no fixed membership. As

surface contamination becomes yet more significant, induced-

charge electrophoresis becomes nearly negligible, and the

dynamics become dominated by DEP interactions, which cause

the particles to form long chains in the direction of the electric

field [Fig. 2(c) and (f)]. These chains, which span the entire height

of the simulation box, slowly rearrange and sometimes merge, as
This journal is ª The Royal Society of Chemistry 2011



Fig. 4 (a) Particle occupancy distributions for hNi ¼ 10 at different L.

(b) Standard deviations of the number of particles as a function of hNi for
various L.
is known to be the case in suspensions undergoing dipolar

interactions.29–32,45–48 These dynamics, in particular, were inves-

tigated more precisely in a previous study,22 where we found that

in sufficiently dense confined suspensions (volume fraction f z
20% and higher) particles end up forming cellular patterns of

particle-rich walls enclosing particle-free voids, in qualitative

agreement with previous experiments.49,50

The transition from transient unstable pairings to stable

pairings and chain formation as surface contamination increases

(i.e. as L decreases) is easily understood from the calculation of

pair interactions of Saintillan.18 Indeed, while both DEP and

ICEP interactions are attractive in the field direction but repul-

sive in the transverse directions, the paired-up configuration (two

touching spheres aligned with the field direction) can be shown to

be unstable under ICEP but stable under DEP.18,21As the relative

magnitude of DEP and ICEP is varied as a result of contami-

nation (via the correction factor), we therefore expect the nature

of the dynamics to change qualitatively. This is described more

precisely in Fig. 3, showing the critical value Lc of the correction

factor below which DEP starts dominating ICEP, as a function

of the distance between the two spheres. More precisely, Lc is

defined as the value of L for which the relative velocity between

two interacting spheres at a given separation distance has zero

component in the direction normal to the line of centers (see inset

of Fig. 3). In particular, for two touching spheres (|R| ¼ 2a), we

find that the paired-up configuration will be stable if L # Lc z
0.03: below this value of L, we expect chaining to take place in

the suspensions, whereas chaining should not occur above this

value. The critical value of Lc z 0.03 for the transition from

diffusive dynamics to chaining is consistent with the observations

of Fig. 2, as well as with the rest of the data as we show below.

To further characterize the particle distributions observed in

Fig. 2, we calculate particle occupancy statistics, which provide

information on the number density fluctuations at arbitrary

length scales. Specifically, Fig. 4(a) shows the distribution P(N)
Fig. 3 Critical value Lc of the correction factor below which DEP

interactions start dominating ICEP interactions, as a function of the

distance between two spheres. Inset: Relative tangential velocity between

two spheres as a function of the angle Q between the direction of the

spheres and the direction of the field, for various values of L, for two

spheres at a distance of 2.5a.
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of the numberN of particles found in a cubic interrogation cell of

a size such that it should contain hNi ¼ 10 particles on average.

This distribution, in the case of a fully random suspension

obeying Poisson statistics, should follow the Poisson law:

PðNÞ ¼ hNiNe�hNi

N!
; (10)

and departures from this law provide information on the struc-

ture of the suspension on the scale of the interrogation cell. In the

absence of surface contamination (L ¼ 1), we find that the

distribution P(N) is slightly narrower than the Poisson distri-

bution, which indicates smaller number density fluctuations than

in a random suspension; this observation is likely an effect of the

moderate volume fraction used in the simulations, whereas the

Poisson distribution does not account for excluded volume and

should therefore only be observed in the limit of infinite dilution.

However, as L decreases, the distribution P(N) is found to

become flatter and broader than the Poisson distribution, which

indicates the presence of clusters and depleted regions in the

suspension, in agreement with the observations on Fig. 2. To

quantify the influence of scale, i.e. of hNi, on these distributions,

we also plot in Fig. 4(b) the standard deviation sN of the

distributions vs. the expected value hNi, for three values of L. In

the case of a Poisson distribution, a power law with exponent 1/2

is theoretically predicted: sN ¼ hNi1/2. Here, we find that the

standard deviations are also well-fitted by a power law, sN ¼
hNin, with an exponent n that deviates slightly from 1/2 and

depends on the importance of surface contamination. In agree-

ment with Fig. 4(a), we observe that n( 1/2 forL¼ 1, whereas it

increases beyond 1/2 as L decreases, indicating an increase in

number density fluctuations at all scales as a result of the

dominant DEP interactions.
3.2 Pairing dynamics

As mentioned in section 3.1, the distinct microstructures that

develop in the suspensions depending on the value of the

correction factorL can be explained in terms of pair interactions,

which cause transient pairings when Lc < L # 1 as a result of

ICEP, and the formation of clusters and chains when L # Lc as

a result of DEP. Here, we further analyze pair dynamics in our

simulations, and show in Fig. 5 the time evolution of the sepa-

ration distance between a test sphere in the suspension and its

nearest neighbor. In the absence of contamination [L ¼ 1, Fig. 5

(a)], the minimum distance constantly fluctuates between a value
Soft Matter, 2011, 7, 10720–10727 | 10723



Fig. 5 Separation distance from a test sphere to its nearest neighbor at

different correction factors L.
of two particle radii, corresponding to near contact between the

test sphere and its closest neighbor, to a larger value on the order

of the mean interparticle distance af�1/3. These oscillations,

which are consistent with our previous work,21 again demon-

strate the transient character of particle pairings under ICEP, by

which a particle keeps pairing with its neighbors without forming

lasting clusters. As surface contamination becomes significant,

the distance to the nearest neighbor is found to decrease, and

fluctuates near a value that is close to two particle radii: this

indicates that pairings now become long-lasting, as expected

from DEP interactions, which become more significant. This is

very clear for low values of the correction factor [especially L ¼
0.001, Fig. 5(d)], when the test particle is seen to pair up quickly

with another particle and then remain attached to it (or possibly

another particle) for the remainder of the simulation, as

demonstrated by a distance of exactly 2a to the nearest particle.

Another way of quantifying these pairings is to consider the

pair distribution function in the suspension, p(r, z), in cylindrical

coordinates (where r2 ¼ x2 + y2). This function describes the

probability of finding a particle at position (r, z) knowing that

a particle is located at the origin. This function is shown in Fig. 6

for two different values of the correction factor L. In both cases,

a region of excluded volume is observed inside the circle of radius

2a, and the distribution function exhibits a sharp peak near the

pole of the particle, corresponding to a high probability of

finding two particles paired up and aligned in the field direction.

On the other hand, a low-probability depletion region is
Fig. 6 Steady-state pair distribution functions for various correction

factors: (a) L ¼ 1.0 and (b) L ¼ 0.1.
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observed near the equator, as two particles that are side by side

are repelled under both DEP and ICEP. Similar findings had

been made in previous studies on DIP of sphere suspensions

without surface contamination,21 and on ICEP in suspensions of

rod-like particles.26,27 The peak near the pole in Fig. 6 is observed

for both L ¼ 1 and L ¼ 0.1, as both DEP and ICEP result in

pairings, but the peak is found to be stronger and more

concentrated at the pole for lower values ofL, as the pairings are

longer-lasting owing to stronger DEP interactions.

Pair distributions in the case of strong contamination (L ¼
0.001) are also shown in Fig. 7, where the logarithm of p(r, z) is

shown at different times (where t ¼ 0 corresponds to a random

distribution of particles). At this low value of L, we know from

Fig. 2 that particles aggregate into chains in the field direction.

This is reflected in the distribution function, which develops

a clear succession of peaks along the z-axis at z ¼ 2a, 4a, 6a, and

8a. Circles emanating from these peaks are also observed, as the

chains are not completely straight in the z-direction but often

curve, see Fig. 2(f). In addition to these primary peaks, other

weaker peaks are also observed at z ¼ 2
ffiffiffi
3

p
a, 4

ffiffiffi
2

p
a, etc. These

cannot be explained by the formation of straight chains, but

instead result from the coalescence of nearby chain segments into

hexagonal structures (typically sheets), as previously observed in

other simulations.22
3.3 Hydrodynamic dispersion and velocity fluctuations

Previous investigations have shown that dipolophoresis, in the

absence of surface contamination, results in an effective diffusive

motion of the suspended particles at long times, as a result of the

frequent pairings driven by hydrodynamic interactions.21,26 This

hydrodynamic diffusion is a consequence of ICEP, which

constantly causes the particle configurations to rearrange

without the formation of any long-lasting structures or clusters.

If surface contamination becomes significant, we have shown
Fig. 7 Time evolution of the pair distribution function for a correction

factor of L ¼ 0.001.

This journal is ª The Royal Society of Chemistry 2011



Fig. 9 (a) Exponents of mean-square displacement curves at long times

(f ¼ 5%). Note the inverted scale for L. (b) Exponents of mean-square

displacement curves at long times forL¼ 0.001 versus volume fraction f.
that DEP interactions become more important and eventually

dominate, in which case pairings are no longer transient and

instead result in the formation of chains. In this case, we no

longer expect the particle motions to be diffusive, as particles get

effectively trapped in chains or larger structures, which hinders

their ability to diffuse in space.

To quantify this effect more precisely, we plot mean-square

particle displacements vs. time in Fig. 8 for different values of the

correction factor L. All plots first exhibit a quadratic growth at

short times (as demonstrated by a slope of 2 in a log–log plot),

corresponding to a ballistic regime. This ballistic regime is then

followed by a second regime characterized by a slower growth of

the mean-square displacements. For weak surface contamination

[L ¼ 1.0 and 0.1, Fig.8(a)–(b)], this second regime is diffusive as

demonstrated by a slope of 1 in a log–log plot: this is consistent

with previous investigations,21,26 and is a result of the unstable

pairings that occur in the suspensions and cause particles to

constantly travel in a chaotic fashion. Interestingly, when surface

contamination becomes more significant, the ballistic regime

gives way to a sub-diffusive regime, with a growth of mean-

square displacements as ta with an exponent a < 1 that differs

between the field direction (z-direction) and transverse directions

(x- and y-directions). This is illustrated more precisely, in Fig. 9

(a), showing the dependence of the long-time exponent a versus

the correction factor L, in both the x- and z-directions. While

both exponents are 1 forLT 0.05, they are observed to decay to

sub-diffusive values at lower values of L. The dependence on

volume fraction is also shown in Fig. 9(b) in the case of strong

contamination (L ¼ 0.001), where it is seen that the exponent

a increases with f, as a result of the stronger fluctuations arising

from interactions in more concentrated suspensions. Note in

Fig. 9 that the exponents for the x-direction seem to be less

affected by the transition than they are for the z-direction: this

can be explained by the alignment of the chains with the field

direction, which strongly constrains particle motions in the

z-direction while still allowing motions in the transverse x- and

y-directions.
Fig. 8 Mean-square particle displacements in the x- and z-directions for

various values of L, in log–log scale. Insets: linear plots.
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The transition from diffusive motion as a result of pairings to

sub-diffusion as a result of aggregation and chaining also has

a strong impact on the magnitude of particle velocities, which are

strongly reduced when chaining takes place. This is illustrated in

Fig. 10, showing the standard deviation of the x and z compo-

nents of the particle velocities as functions of the correction

factor (note that the mean velocity of the suspension is exactly

zero in the absence of linear electrophoresis). We find that as L

decreases (i.e. as contamination increases) particle velocities

become very weak in both directions. Interestingly, while veloc-

ities in the field direction (z-direction) are the strongest when L

z 1 (in agreement with our previous study21), horizontal veloc-

ities become dominant when chaining occurs at lower values of

L, owing once again to the constraint on vertical motions when

particles are trapped inside chains.

To elucidate the transition from diffusion to sub-diffusion

with decreasing L, we picture the dynamics of a particle in the

suspension as a succession of random displacements separated by

waiting periods during which the particle stops (or nearly stops)

moving in space (typically during a pairing event, or because it

gets trapped in a cluster or chain). Defining the waiting times sx
and sz as the times during which either |Ux| or |Uz| remains less

than 25% of the velocity standard deviation in that direction, we

plot in Fig. 11 the distributions 4(sx) and 4(sz) of waiting times in

the field and transverse directions for different values ofL. When

surface contamination is weak (L ¼ 1.0 and 0.1), the distribu-

tions decay faster than algebraically. This changes qualitatively

for stronger contamination (L ¼ 0.01 and 0.001), where the

distributions start exhibiting a power-law decay of the form 4(s)
Fig. 10 Standard deviation of particle velocities in the x- and z-direc-

tions as functions of L.
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Fig. 11 Distributions 4(sx) and 4(sz) of waiting times in the (a) x- and

(b) z-directions, for different values ofL. A waiting time sx or sz is defined
a period of time during which |Ux| or |Uz| remains less than 25% of the

velocity standard deviation in that direction.
� s �(1+a), with a < 1. Such non-integrable distributions of waiting

times have been shown previously to result in sub-diffusion,51,52

with mean-square displacements growing as�ta. The value of the

coefficient a, extracted from the distributions of Fig. 11, ranges

fromz0.4 toz0.7. While these estimates do not perfectly match

the growth exponents found in Fig. 9 for the mean-square

displacements, they are fairly close in magnitude. This strongly

suggests that the sub-diffusive regime discussed above is indeed

a consequence of the long waiting times (with non-integrable

distributions) that arise once particles form larger structures and

become trapped inside clusters and chains.
4. Summary

We have used numerical simulations to study the effects of

surface contamination on the dynamics of suspensions

of polarizable spheres under dipolophoresis, or combination of

dielectrophoresis and induced-charge electrophoresis. Following

previous investigations in this area, we modeled surface

contamination by means of a correction factor L # 1 that

multiplies the induced-charge slip velocity driving ICEP, and

therefore modulates the relative importance of DEP and ICEP

interactions in dipolophoresis. This correction factor, which is

generally measured in experiments, can be rationalized from

simple models of surface contamination based on thin dielectric

coatings or ion surface adsorption.

The main finding from our simulations is the existence of

a transition as surface contamination becomes significant (i.e. as

L decreases) from transient local pairing dynamics (owing to the

dominant ICEP interactions in the case of clean particles) to local

aggregation, cluster formation and chaining (owing to the

dominant DEP interactions in the case of contaminated particles,

for which ICEP is nearly suppressed). This transition can be

explained based on a simple analysis of pair interactions, which

shows that particle chaining is stable under DEP but unstable

under ICEP. In addition to qualitatively modifying the micro-

structure and morphology of the suspension, this transition has

a significant impact on particle velocities, which are strongly

reduced, in particular in the field direction. It also modifies

qualitatively the statistical nature of particle motions at long

times, which is diffusive in the case of clean particles, but sub-

diffusive in the case of contaminated particles. Further, this sub-

diffusive regime was shown to be linked to the slow decay of the

local waiting time distributions, which become non-integrable
10726 | Soft Matter, 2011, 7, 10720–10727
after the transition to chaining owing to the frequent trapping of

particles inside larger structures.
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