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Electric-field-induced ordering and pattern formation in colloidal suspensions
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The long-time dynamics and pattern formation in semidilute suspensions of colloidal spheres in a viscous
electrolyte under a uniform electric field are investigated using numerical simulations. The rapid chain formation
that occurs in the field direction as a result of dipolar interactions is found to be followed by a slow coarsening
process by which chains coalesce into hexagonal sheets and eventually rearrange to form mesoscale cellular
structures, in qualitative agreement with recent experiments. The morphology and characteristic wavelength of
the patterns that emerge at steady state are shown to depend on the suspension’s volume fraction, electrode
spacing, and field strength, suggesting additional ways of controlling effective suspension properties in practical
applications.
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I. INTRODUCTION

The ability to manipulate particles at the microscales and
nanoscales is critical to many laboratory-on-a-chip devices.
To this end, electric fields offer a simple and efficient method
for controlling particle motions and are commonly used in a
wide range of applications, including directed assembly and
nanomanufacturing [1–3], cell and macromolecular sorting
[4,5], particle trapping [6,7], among others. Particle motion can
be achieved via several types of electrokinetic phenomena, the
simplest of which is electrophoresis (EP) [8], or linear motion
of a charged particle in an applied electric field. More precise
control is sometimes possible using nonlinear electrokinetics,
and specifically dielectrophoresis (DEP) [9,10], in which
particle motion occurs along field gradients.

When several particles are subject to an external field, elec-
tric and hydrodynamic interactions between them may arise
and result in relative motions, possibly yielding unexpected or
undesirable effects. One such well-documented phenomenon
is particle chaining [11,12] that occurs as a result of dipolar
interactions between particles, an effect closely related to
DEP [13,14]. The resulting chains are also known to interact
and sometimes coalesce [15–19] leading to the formation of
larger structures [20,21]. The phases that result from these
interactions can be highly complex and have yet to be fully
characterized [22].

Particle chaining due to dipolar interactions has received
much attention in the fields of electrorheology and magne-
torheology [20,23–30] since the chains and complex structures
that form owing to interactions have a strong impact on
the effective viscosity of colloidal suspensions. Specifically,
structure formation results in a strong viscosity enhancement
that is reversible and controlled by the applied external field.
Such electrorheological fluids find a wealth of applications in
engineering where they are used, for example, in electrome-
chanical actuators. As their mechanical response is directly
related to their microstructure, a good understanding of the
structure formation in these systems is of fundamental interest
for the design of such devices.
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The present study is motivated by two recent and similar
sets of experiments by Kumar et al. [31] and Agarwal
and Yethiraj [32] that investigated the long-time dynamics
in dilute to semidilute colloidal suspensions placed in a
uniform alternating (ac) electric field between two parallel flat
electrodes. Both studies found that the rapid chain formation
due to dipolar interactions was followed by a very slow
coarsening process, in which large-scale particle-free voids
enclosed by particle-rich walls nucleated in the suspensions,
leading at steady state to unusual mesoscale cellular patterns
previously unobserved in simulations. They speculated that
this coarsening and pattern formation were the consequence
of chain-chain interactions, although detailed modeling of this
phenomenon remains lacking.

In this paper, we present results from large-scale numerical
simulations of semidilute suspensions of colloidal spheres
subjected to an ac electric field under confinement, with the aim
of elucidating this effect [31,32]. Using a detailed algorithm
presented in Sec. II, we are able to probe a long range
of time scales in suspensions of realistic sizes. Simulation
results are presented in Sec. III that reproduce the steady-state
cellular structures reported in experiments. Our simulations
demonstrate that dipolar interactions are the driving force for
this pattern formation, and the effects of the volume fraction,
electrode spacing, and electric field strength are analyzed.
We show that suspension microstructure can be tuned by
adjusting these parameters, yielding a rich variety of phases
including random distributions, isolated chains, hexagonal
sheets, columnar structures, and ordered cell patterns. Our
conclusions are presented in Sec. IV.

II. MODEL AND METHODS

We consider a suspension of N identical spherical par-
ticles of radius a, suspended in a viscous electrolyte (with
permittivity ε and viscosity η) between two parallel flat
electrodes. The suspension is doubly periodic in the x-y plane
of the electrodes, but nonperiodic along z, and we denote
by Lx,Ly,Lz the unit cell dimensions (where Lz is also the
electrode spacing). The particles are assumed to be charged and
nonpolarizable, a good approximation for dielectric colloids,
and fully screened by Debye layers of characteristic thickness
λD � a. In this regime, the particles and their Debye layers
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behave like insulators and their permittivity does not play a
role. A voltage difference is applied between the electrodes and
generates a uniform ac electric field E0(t) = ±E0ẑ given by a
square wave of frequency f . The field frequency is assumed
to be such that f � D/λ2

D (where D is the characteristic
diffusivity of the ions in the electrolyte), and f � εζE0/aη

(where ζ is the particle zeta potential), so that (i) the Debye
layers are assumed to remain at equilibrium, and (ii) the linear
EP motion of the particles is negligible. This corresponds to
high-frequency fields (f ∼ 1 MHz), which was indeed the
regime investigated in [32]. Under these assumptions, the
motion of the particles results entirely from nonlinear dipolar
interactions and Brownian motion.

The method of simulation is based on the calculation of pair
interactions of Saintillan [13] and on the numerical algorithm
described in detail in our previous work [14]. Particle positions
are advanced using a Langevin equation that models the
displacement of a given particle α over a time step of length �t

as a result of dipolar interactions and Brownian fluctuations as

�xα = vα�t +
√

2kBT �t

6πηa
n, (1)

where vα is the deterministic particle velocity arising from
particle-particle interactions, kBT is the thermal energy of the
solvent, and n is a random vector whose components follow a
Gaussian distribution with zero mean and unit variance.

The interaction velocity vα is obtained based on a pairwise
model [14] and is expressed as

vα = εaE2
0

η

N∑
β=1

M(Rαβ/a):ẑẑ, (2)

where M is a third-order dimensionless tensor capturing the
interaction of particles α and β. M is a function of the relative
configuration of the two spheres, and more specifically of
their separation vector Rαβ = xβ − xα . Based on symmetries,
it is possible to show that its calculation only involves
three scalar functions of the dimensionless inverse separation
distance λαβ = 2a/|Rαβ | [13] that have previously been
calculated using the method of reflections and the more
accurate method of twin multipole expansions. For two
widely separated spheres, the method of reflections yields the
following far-field expression for the tensor M:

MFF(R/a) = 1
12 T(R/a) + O(λ5), (3)

where T denotes the Green’s function for a potential
quadrupole, and is given in index notation as

Tijk(R) = − 6

R5
(δijRk + δikRj + δjkRi) + 30

RiRjRk

R7
. (4)

In the simulations, we use a periodic version of Eq. (3) that
accounts for interactions of particle α with particle β inside the
computational domain, as well as with all the periodic images
of particle β in the x and y directions. If particles α and
β become close to each other (typically when |Rαβ | < 4a),
the asymptotic expression Eq. (3) for the interaction tensor
becomes inaccurate, and MFF is replaced by a near-field
tensor MNF, which was calculated by Saintillan [13] using
the method of twin multipole expansions and is accurate down

to separation distances of the order of |Rαβ | ≈ 2.05a. Note that
the velocity vα obtained by Eq. (2) accounts for both electric
and hydrodynamic interactions between particles, but does
not capture long-range interactions with the electrodes. Such
interactions, which may have an effect on particle dynamics
in the direct vicinity of the electrodes [35], will be included in
future work.

The direct calculation of the sums in Eq. (2) is computa-
tionally intensive with a complexity of O(N2) if performed
directly. To accelerate the calculation of these sums, we use
the fast smooth-particle-mesh Ewald algorithm previously
developed by Saintillan et al. [33] for Stokes point force
interactions, and extended to potential quadrupole interactions
in our recent work [14]. This algorithm, which is based on
the Ewald summation formula of Hasimoto [34], makes use of
fast Fourier transforms, thereby reducing the cost of evaluating
Eq. (2) to O(N log N ). This allows us to simulate large systems
over very long time scales, which is necessary in order to
observe the pattern formation reported in the experiments
of Kumar et al. [31] and Agarwal and Yethiraj [32], as we
demonstrate in Sec. III.

Because lubrication interactions are not included in the
present model, and because of the use of finite time steps, care
must be taken to prevent particle overlaps. To this end, we use a
contact algorithm developed in our previous work [14] that can
be shown to prevent all overlaps within roundoff errors without
introducing any unphysical long-range interactions, as would
be the case with a soft potential. A similar algorithm is also
employed to capture excluded volume interactions with the
cell electrodes and prevent particles from leaving the domain.

In the following, all variables are made dimensionless using
the following length, velocity, and time scales:

lc = a, uc = εaE2
0

η
, tc = η

εE2
0

. (5)

Upon nondimensionalization of Eq. (1), a single dimensionless
parameter emerges that compares the relative magnitude of
particle convection as a result of dipolar interactions and
Brownian diffusion. This electric Péclet number, defined as

Pe = εa3E2
0

kBT
, (6)

is also often referred to as the dipole strength in the electrorhe-
ological literature [24].

III. RESULTS

A. Pattern formation

We first consider the case of negligible Brownian motion
(Pe = ∞). Figure 1 shows snapshots from a simulation at a
volume fraction of φ = 20% in a cell of thickness Lz = 20.5.
Starting from a random distribution, the electric field is
applied at t = 0 and quickly leads to particle chaining in
the z direction. This process occurs on a fast time scale
(t ≈ 200), and is followed by a slow rearrangement of the
chains in the x-y plane. Nearby chains are first observed
to coalesce into sheetlike aggregates with a clear hexagonal
structure [Fig. 1(c)] that had previously been observed in other
simulations [15,20]. Interactions between sheets and isolated
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FIG. 1. (Color online) Snapshots of particle distributions in a
suspension of 2000 spheres in a cell of dimensions Lx × Ly ×
Lz = 452 × 20.5 (Pe = ∞, φ = 20%) at times (a) t = 0 (random
distribution), and (b) t = 1400. (c) Zoom on a particle sheet in the
configuration of (b). (d) Time evolution of the suspension in the x-y
plane. See Ref. [36] for a movie showing the dynamics.

chains are observed to result in further sheet growth [36]. As
the sheets become large enough, they connect and end up
forming cellular patterns of particle-free voids surrounded by
particle-rich walls [Fig. 1(d), t = 1400] that are reminiscent
of the experimental observations [31,32]. This coarsening
process is much slower than the initial chain formation. It
eventually slows down, and while it is not fully clear whether
an actual steady state is reached, the observed patterns do not
evolve significantly after t ≈ 1000.

We quantify the typical size of the voids in the steady-
state patterns in Fig. 2. For a given particle distribution
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FIG. 2. (Color online) (a) Steady-state configuration in a non-
Brownian suspension of 2000 spheres in a cell of dimensions Lx ×
Ly × Lz = 62.52 × 10.5 (Pe = ∞, φ = 20%). (b) Two-dimensional
Fourier transform of (a). (c) Circumferentially averaged intensity
profile from (b). The dominant wave number corresponds to the
characteristic distance dc between structures. (d) Characteristic
distance dc as a function of electrode spacing Lz.

[Fig. 2(a)], we take a two-dimensional Fourier transform of
the entire suspension in the x-y plane in Fig. 2(b). The
Fourier transform exhibits a bright isotropic ring. After a
circumferential averaging, the radial intensity profile shows
a clear peak at a dominant wave number k that corresponds to
the characteristic void size (or distance between structures) dc

in the configuration of Fig. 2(a). This process can be repeated
for different electrode spacings Lz and dc is plotted versus
Lz in Fig. 2(d). The first observation is that dc exceeds the
particle dimensions by an order of magnitude. It is also found
to increase almost linearly with Lz over the range of electrode
spacings considered in our simulations. Both of these findings
are consistent with experiments [31,32], as is the order of
magnitude of dc found here compared to experimental runs
with similar geometries and volume fractions.

B. Effect of volume fraction

The effects of the volume fraction φ on pattern formation
are analyzed in Figs. 3 and 4, where φ is varied from 5
to 15% for a fixed Lz and for Pe = ∞. As observed in
Fig. 3, the steady-state morphology of the suspensions changes
drastically. In very dilute suspensions, chains and sheets still
form but do not connect into a cellular network as is the case
at higher φ. This appears to differ from experiments where
cellular patterns were observed even at very strong dilution
(φ ∼ 1%). This discrepancy may be a consequence of the
small gap sizes that our simulations are limited to owing to
their high computational cost.

The time dynamics and kinetics of pattern formation are
illustrated more quantitatively in Fig. 4, where, following
Kumar et al. [31], we plot the gray level G(t) of the images
of Fig. 4(a), which is defined as the relative brightness of the
images with a range of 0 (black) to 255 (white), averaged in the
x-y directions. Initially, all the curves exhibit a rapid increase
in G(t) owing to particle chaining in the z direction that causes

FIG. 3. (Color online) Steady-state patterns obtained in non-
Brownian suspensions (Pe = ∞) at volume fractions φ = 5%, 10%,

and 15% in a cell of dimensions Lx × Ly × Lz = 452 × 20.5.
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FIG. 4. (Color online) (a) Average gray level and (b) normalized
gray level vs t for simulations at different volume fractions. (a) also
shows a double-exponential fit in the case φ = 20%.

the formation of small voids in the images [e.g., see Fig. 1(d)
at t = 200]. This sharp and rapid increase is then followed
by a slower phase in which G(t) keeps increasing slowly and
eventually asymptotes. This second phase corresponds to the
slow reorganization of the chains into sheets and eventually
cells in the x-y plane. As expected, the average gray level is
significantly larger for low φ but, interestingly, all the curves
collapse when G(t) is normalized as

G̃(t) = G(t) − G(t = 0)

G(t = tf ) − G(t = 0)
. (7)

To confirm the existence of two disparate time scales
for the dynamics, we calculate a least-squares fit of the
curves in Fig. 4(b) using a double exponential of the form
G̃(t) = 1 − c1e

−t/τ1 − c2e
−t/τ2 , where the constants τ1 and τ2

(τ1 < τ2) should be interpreted as the characteristic time scales
for chain formation and for mesoscale structure formation,
respectively. Such a fit, shown in Fig. 4(a), is found to
capture the time dynamics very well (residual norm ≈ 0.27)
and significantly better than with a single exponential (norm
≈ 0.74). Typical values of the time constants are τ1 ≈ 261 and
τ2 ≈ 743, which are consistent with the coarse estimates of the
time scales obtained by inspection on Fig. 1. Both time scales
τ1 and τ2 are found to increase with Lz and decrease with Pe,
but do not vary significantly with φ.

Pe = ∞

Pe = 1

Pe = 10

Pe = 5

FIG. 5. (Color online) Effect of Brownian motion on pattern
formation. Steady-state patterns obtained in suspensions of volume
fraction φ = 20% in a cell of dimensions Lx × Ly × Lz = 452 ×
20.5 at various Péclet numbers.

C. Effect of Brownian motion

The effects of Brownian motion are considered in Fig. 5,
where electric field strength is varied systematically. At
very low Pe (Pe � 2, strong Brownian motion) no clear
structure formation is observed in the simulations owing
to the predominance of thermal fluctuations that randomize
particle configurations. As field strength increases (Pe = 5)
voids appear in the suspensions indicating chain formation
but the structure remains fairly random without any clear
cellular patterns. It is instead composed of thick columnar
structures (with widths of a few particle radii) that fluctuate
but do not rearrange into sheets. As the Péclet number keeps
increasing the structures become cleaner, with the formation of
sheets and cellular patterns starting to occur beyond Pe ≈ 10.
Above Pe ≈ 100, the effects of Brownian motion become
negligible and steady-state structures become very similar
to the non-Brownian case of Fig. 1. These observations are
confirmed in Fig. 6, showing G(t) and G̃(t) for various
values of Pe. Beyond Pe = 100, the various curves become
indistinguishable.

The transition from disordered to ordered states as Pe
increases is demonstrated clearly in the inset of Fig. 6(b),
showing the characteristic void size dc versus Pe. In particular,
dc exhibits a sharp transition around Pe ≈ 5 from the low
value of ≈ 2 to 3a to the significantly higher mesoscale value
of ≈ 9a, indicative of the onset of order and pattern formation
under the action of the field. A similar increase was also
reported in experiments, where the transition also occurred
around Pe ≈ 5 [32]. This disorder-order transition, in which
Pe plays the role of a control parameter, suggests an easy way
of adjusting the microstructure and corresponding effective
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FIG. 6. (Color online) (a) Average gray level and (b) normalized
gray level vs t for different values of Pe. Inset: characteristic distance
dc between structures (measured by the method of Fig. 2) vs Péclet
number.

properties (e.g., optical transmittance, thermal conductivity)
of colloidal suspensions in practical applications by simply
tuning up the strength of the applied electric field.

D. Chain-chain interactions

Because dipolar interactions are the only driving force in
our simulations, it is natural to assume that the observed pattern
formation is a consequence of dipolar interactions between
chains. This was already speculated by Agarwal and Yethiraj
[32]. To test this hypothesis and gain insight into the wave
number selection, we calculate the relative velocity between
two straight finite particle chains using the same algorithm
as used in the suspension simulations. The relative velocity
[Fig. 7(a)] is found to be attractive in the near field but repulsive
in the far field, with a transition occurring at a critical distance
Dc, which is a function of chain length (or Lz). The dependence
of Dc on Lz is shown in Fig. 7(b) and follows a power law
with exponent ≈ 0.50. While this dependence differs from the
linear law obtained in Fig. 2(d) for the characteristic distance
dc between structures, replotting both sets of data together in
the inset of Fig. 7(b) shows that the increase in Dc with Lz is
also well captured by a linear law over the range of electrode
spacings considered in the simulations. We also note a direct
correspondence between dc and Dc over this range, with an
approximate law given by dc ≈ 2Dc. This strongly suggests
that the size of the cellular patterns is controlled by the balance
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FIG. 7. (Color online) (a) Relative velocity Ur between two
straight and parallel chains of length Lz vs distance d between
the chains. Inset: geometry of the two chains in the case Lz = 20,
where the arrows show the individual particle velocities. (b) Critical
distance Dc at which Ur = 0 as a function of chain length Lz. Inset:
characteristic distance dc between structures [from Fig. 2(d)] and
critical distance Dc [from Fig. 5(b)] over the range Lz = 10–30.

between near-field attraction and far-field repulsion between
chains, yielding steady-state structures with a characteristic
wavelength of the order of the equilibrium distance Dc.

IV. CONCLUDING REMARKS

We have presented a computational study of the long-time
structure formation occurring in colloidal sphere suspensions
in an electric field using a detailed algorithm that accounts
for dipolar interactions (including both near-field and far-field
electric and hydrodynamic interactions), as well as Brownian
motion. Using a fast smooth-particle-mesh Ewald algorithm
we were able to simulate large systems efficiently, which
allowed us to probe long-time scales. We found in our
simulations that the rapid chain formation that takes place
initially as a result of dipolar interactions is followed by
a slow coarsening process, characterized by the formation
of hexagonal sheets, that eventually leads to mesoscale cell
patterns, in good agreement with experiments [31,32]. This
coarsening process was shown to be a result of interactions
between chains. While the precise physical mechanism for
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this coarsening and for the wave number selection is not fully
understood, our simulations suggest that the pattern formation
observed in the suspensions may be determined by the
balance between near-field attraction and far-field repulsion
between particle chains. Most interestingly, our simulations
demonstrate that the suspension’s volume fraction, electrode
spacing, and field strength all have a significant impact on the
morphology and characteristic size of the rich structures that
emerge at steady state, suggesting novel ways of controlling

and manipulating the microstructure and effective properties
of colloidal suspensions in technological applications.
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