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The sedimentation of flexible filaments
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The dynamics of a flexible filament sedimenting in a viscous fluid are explored
analytically and numerically. Compared with the well-studied case of sedimenting
rigid rods, the introduction of filament compliance is shown to cause a significant
alteration in the long-time sedimentation orientation and filament geometry. A model
is developed by balancing viscous, elastic and gravitational forces in a slender-body
theory for zero-Reynolds-number flows, and the filament dynamics are characterized
by a dimensionless elasto-gravitation number. Filaments of both non-uniform and
uniform cross-sectional thickness are considered. In the weakly flexible regime,
a multiple-scale asymptotic expansion is used to obtain expressions for filament
translations, rotations and shapes. These are shown to match excellently with full
numerical simulations. Furthermore, we show that trajectories of sedimenting flexible
filaments, unlike their rigid counterparts, are restricted to a cloud whose envelope
is determined by the elasto-gravitation number. In the highly flexible regime we
show that a filament sedimenting along its long axis is susceptible to a buckling
instability. A linear stability analysis provides a dispersion relation, illustrating clearly
the competing effects of the compressive stress and the restoring elastic force in the
buckling process. The instability travels as a wave along the filament opposite the
direction of gravity as it grows and the predicted growth rates are shown to compare
favourably with numerical simulations. The linear eigenmodes of the governing
equation are also studied, which agree well with the finite-amplitude buckled shapes
arising in simulations.
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1. Introduction
The deformation and transport of elastic filaments in viscous fluids play central roles

in many biological and technological processes. In cellular biology, stiff biopolymers
such as actin and microtubules confer to cells their mechanical properties (Gardel
et al. 1995) and are essential for functions as diverse as cell division, differentiation
and morphogenesis (Reinsch & Gönczy 1998; Shinar et al. 2011), cell motility
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(Brennen & Winet 1977; Lauga & Powers 2009), reproduction (Fauci & Dillon
2006; Gaffney et al. 2011), mucus transport (Fulford & Blake 1986), wound healing
(Ehrlich, Grislis & Hunt 1977) and hearing (Tilney, Tilney & DeRosier 1992), among
others. In engineering applications, solutions of flexible and semiflexible polymers are
commonly used for their non-Newtonian rheological properties (Bird, Armstrong &
Hassager 1987), which can lead to a variety of complex flow behaviours including
hydrodynamic instabilities (Shaqfeh 1996; Pan et al. 2013) and chaotic mixing
(Groisman & Steinberg 2000; Thomases, Shelley & Thiffeault 2011).

Of particular interest to us in this work are slender elastic filaments that are both
compliant and inextensible: such is the case, to a first approximation, of stiff biological
polymers such as actin and microtubules, and of a wide range of polymers used
in engineering including xantham gum and carbon nanotubes. When such filaments
are placed in a fluid flow or external field, the competition of external forces,
viscous stresses and internal elastic forces can result in complex deformations and
dynamics, which in turn can have a significant impact on the macroscopic transport
properties of large-scale suspensions. There have been many studies, both experimental
and theoretical, of the dynamics of such filaments in various types of microscale
flows, including simple shear flow (Hinch 1976; Becker & Shelley 2001; Tornberg
& Shelley 2004; Munk et al. 2006; Young 2009; Harasim et al. 2013), extensional
flows (Guglielmini et al. 2012; Kantsler & Goldstein 2012), pressure-driven channel
flows (Steinhauser, Köster & Pfohl 2012), vortex arrays (Young & Shelley 2007;
Wandersman et al. 2010; Manikantan & Saintillan 2013) and other more complex
microfluidic flows (Autrusson et al. 2011; Wexler et al. 2013). Others have considered
the case of a filament subject to either external or internal forces, such as forcing
of various types at the filament ends (Seifert, Wintz & Nelson 1996; Wiggins &
Goldstein 1998), internal actuation (Lauga 2007; Spagnolie & Lauga 2010; Jayaraman
et al. 2012), two-body interactions (Llopis et al. 2007) and self-attraction as a result of
capillary interactions (Evans et al. 2013), to name a few.

Although seemingly simple, the sedimentation of elastic filaments in a constant
and uniform gravitational field has received limited attention and has yet to be fully
analysed even in the case of isolated filaments. The sedimentation of rigid fibres has
been the subject of many studies and is well understood. At zero Reynolds number a
rigid fibre with unit director t̂ sedimenting under gravity in an unbounded fluid will
maintain its orientation and travel at a constant velocity U = [µ⊥(I − t̂ t̂) + µ‖ t̂ t̂] ·FG,
where FG is the net gravitational force on the particle. The mobility coefficients µ⊥
and µ‖ depend on the exact shape of the particle (µ‖ ≈ 2µ⊥ for a slender body)
(Happel & Brenner 1965). Owing to its drag anisotropy, the particle does not generally
translate in the direction of gravity, but rather at a fixed angle θ that depends on its
orientation (θ = 0 when the fibre is either parallel or perpendicular to gravity). As first
predicted by Koch & Shaqfeh (1989), this very simple picture is seriously complicated
when multiple rigid fibres are allowed to interact hydrodynamically. In that case,
long-range interactions drive a concentration instability as a result of the coupling
between the orientation of the particles, which determines their settling direction, and
the disturbance flows they drive in the fluid, which reorient them. This instability
is indeed observed in both experiments (Metzger, Guazzelli & Butler 2005) and
simulations (Saintillan, Shaqfeh & Darve 2006; Gustavsson & Tornberg 2009) and
takes the form of dense dynamic particle clusters which settle at significantly higher
speeds than isolated particles. Even two sedimenting particles can undergo complex
periodic sedimentation dynamics (Jung et al. 2006).
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Any small amount of flexibility is expected to qualitatively change the dynamics
described above, even for an isolated filament. If the filament is allowed to bend as
it sediments, this loss of symmetry will result in a coupling between its translational
and rotational motions, leading to reorientation of the filament with respect to the
direction of gravity. Because the orientation of the filament directly determines the
direction of its velocity, we can also expect a non-trivial translational motion in both
vertical and horizontal directions. The effect of fibre asymmetry on the dynamics was
demonstrated experimentally by Tozzi et al. (2011) using rigid curved fibres, where
particle rotations and unsteady trajectories were reported; complex spatial dynamics
of curved fibres have also been observed in other situations such as in simple shear
flow (Wang et al. 2012). The situation is yet more complex in the presence of
flexibility, as the filament shape and grand mobility matrix evolve dynamically in time.
Using a model based on the slender-body theory of Cox (1970), Xu & Nadim (1994)
argued that this coupling should cause a weakly flexible filament to reorient in a
direction perpendicular to gravity regardless of its initial configuration and to assume
a steady ‘U’ shape that depends on the relative magnitude of gravitational and elastic
forces. These predictions were confirmed by Cosentino Lagomarsino, Pagonabarraga
& Lowe (2005) and Schlagberger & Netz (2005) using numerical simulations based
on a discrete model of a filament as a string of rigidly connected beads with bending
moments. However, a complete theoretical description of the shape evolution and
reorientation dynamics and their influence on spatial trajectories has yet to be realized.

The case of a floppy filament with weak bending resistance is even more
challenging, as large deformations may occur. For reasons that will be made clear
in § 5, a filament oriented parallel to gravity is subject to a compressive tension
profile which, in some cases, may overcome bending resistance and lead to a buckling
instability, much like that for a macroscopic Euler beam (Love 1892). Buckling
of elastic filaments in viscous fluid flows has already been reported in a number
of situations. Becker & Shelley (2001) simulated the dynamics of isolated elastic
filaments in simple shear flow and showed that buckling occurs when the filaments are
aligned with the axis of compression of the flow, resulting in normal stress differences;
these dynamics were also shown to persist at finite concentration (Tornberg & Shelley
2004). A theoretical analysis of this buckling was later provided by Young & Shelley
(2007) in a simpler setting, namely at the hyperbolic stagnation point of a two-
dimensional linear extensional flow when the filament is initially aligned with the axis
of compression. They demonstrated that above a critical flow strength compressive
viscous forces indeed induce buckling, and showed that a series of unstable modes
characterized by increasingly higher wavenumbers can become excited as the strain
rate is increased. Instability was also observed in more complex flows such as vortex
arrays in both simulations (Young & Shelley 2007; Manikantan & Saintillan 2013) and
experiments (Wandersman et al. 2010), where it was shown to have a strong impact
on the spatial transport of the filaments. As we discuss in § 5, a similar buckling
instability is also predicted under sedimentation for nearly vertical floppy filaments,
although more complex asymmetric mode shapes are expected as the base tension
profile can be shown to be compressive only over the leading half of the filament.

The paper is organized as follows. In § 2 we describe the energetics of a single
flexible filament under the influence of gravity and derive the equations for the
filament position and tension. The dynamics of the filament are characterized by a
dimensionless quantity which we term the elasto-gravitation number. Filaments of
both non-uniform and uniform cross-sectional thickness are considered. The numerical
method used to solve for the filament shapes and dynamics is the topic of § 3. In § 4
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we study weakly flexible filaments, where the elasto-gravitation number is large, and
show that the introduction of filament compliance can alter dramatically the long-
time sedimentation orientation and velocity. Equilibrium shapes are derived, and the
assumption of time-scale separation allows for predictions of slowly varying filament
shapes and rotation rates. The buckling instability of a sedimenting filament is studied
in § 5, where a linear stability analysis is used to predict the most unstable waveforms,
growth rates and wave speeds; the results are shown to compare favourably with
numerical simulations. We conclude with a discussion in § 6.

2. Mathematical formulation
To model the dynamics of a slender elastic filament in a viscous fluid, we first

describe the energetics of the system from which a local force balance may be derived.
We then proceed to discuss the model for the fluid–body interactions; namely, we
solve the Stokes equations of viscous flow using the slender-body theory of Johnson
(1980).

2.1. Energy functional and local force balance
Consider a filament of length L with a centreline described by x(s, t), where s is
the arclength and t is time. The filament is assumed to be radially symmetric at each
cross-section with a thickness given by a ·r(s) (with r(s) dimensionless). The following
functional describes the energetics of the system,

E = 1
2

∫ L

0
B(s)|xss|2 ds+ 1

2

∫ L

0
T(s)(|xs|2 − 1) ds

−
∫ L

0
f (s) · x(s) ds−

∫ L

0
Fg(s) · x(s) ds, (2.1)

where the index s denotes differentiation with respect to arclength. The first term
corresponds to a Hookean bending energy, proportional to the curvature of the
filament: B(s) = EI(s) is the bending stiffness, with E the elastic modulus and
I(s) = πa4r(s)4/4 the area moment of inertia. The second term imposes filament
inextensibility, with the tension T(s) acting as a Lagrange multiplier. The third term
is due to the fluid force per unit length f (s) acting on the body at station s. Finally,
the last term is a gravitational potential energy, where Fg(s) = −πa2r(s)21ρgŷ. Here
1ρ is the density difference between the filament and the fluid, and g > 0 is the
gravitational acceleration.

By the principle of virtual work, the pointwise force on the filament is found by
taking a variational derivative of the energy (2.1). Perturbing x by εh(s) and taking
ε→ 0, we find

δE

δx
=
∫ L

0
B(s)xss ·hss ds+

∫ L

0
T(s)xs ·hs ds−

∫ L

0
(f (s)+ Fg(s)) ·h ds

=
∫ L

0
[−(T(s)xs)s + (B(s)xss)ss − f (s)− Fg(s)] ·h ds

+ [B(s)xss ·hs + (T(s)xs − (B(s)xss)s) ·h]L0 . (2.2)

Setting the above to zero for all perturbations h(s), we see that the fluid force acting
on the filament is given by

f (s)=−Fg(s)− (T(s)xs)s + (B(s)xss)ss, (2.3)
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and we also observe the boundary conditions for solvability,

(Bxss)(0)= 0, (Bxss)(L)= 0, (2.4)
(Txs)(0)= (Bxss)s(0), (Txs)(L)= (Bxss)s(L). (2.5)

As expected, the integrated fluid force along the filament is equivalent to the net
gravitational force,∫ L

0
f ds=

∫ L

0
[−Fg(s)− (T(s)xs)s + (Bxss)ss] ds=−

∫ L

0
Fg(s) ds=−FG. (2.6)

Scaling lengths upon L and forces upon the total gravitational force, FG = |FG|, the
dimensionless fluid force per unit length on the filament is given by

f̄ (s̄)=−F̄g(s̄)− (T̄(s̄)x̄s̄)s̄ + β(B̄(s̄)x̄s̄s̄)s̄s̄, (2.7)

where x = Lx̄, s = Ls̄, T = FGT̄ , B = (π/4)Ea4B̄ and F̄g(s̄) integrates to −ŷ. Here we
have introduced an elasto-gravitation number, β = πEa4/(4FGL2), which compares the
elastic forces acting on the filament with the gravitational force. With all variables now
understood to be dimensionless, we drop the bars in (2.7) for the duration of the paper.

2.2. Fluid–body interaction and filament dynamics
As a filament settles in a fluid, the elastic and gravitational forces acting along the
body are coupled to the body’s orientation and shape dynamics. When the Reynolds
number is small (Re = ρUL/µ� 1, with U a characteristic speed and µ the fluid
viscosity), the fluid flow is well-described by the Stokes equations,

−∇p+ µ1u= 0, ∇ ·u= 0, (2.8)

where u is the fluid velocity and p is the pressure. We assume that the filament moves
in an infinite quiescent fluid, and the boundary conditions are the no-slip condition
on the filament surface and u(x)→ 0 as |x| → ∞. Classical works have developed
slender-body theories for the velocities of slender filaments and the associated viscous
forces along the filament length (Batchelor 1970; Cox 1970; Keller & Rubinow 1976;
Johnson 1980). More recently, Tornberg & Shelley (2004) coupled the dynamics of a
flexible filament with the slender-body theory of viscous fluid–body interactions in an
environment absent of gravity. Using the small aspect ratio of the filament as a small
parameter, these asymptotic theories result in a relationship between the velocity of
the filament centreline and the viscous force along the entire body length through a
one-dimensional integral equation.

Scaling time upon a sedimentation time scale of 8πµL2/FG, the dimensionless
velocity of a point s along the body centreline is approximated as

xt =−Λ[ f ] − K [ f ], (2.9)

where f is the scaled fluid force acting on the body given by (2.7) (Johnson 1980).
This expression is accurate to order O(ε2) for the force f and O(ε2 log(ε)) for the
velocity xt, where ε = a/L� 1 is the body aspect ratio. The local and non-local
operators in (2.9) are associated with a distribution of singular solutions of the Stokes
equations along the filament centreline (see Johnson 1980; Götz 2000), and are given
by

Λ[ f ](s)= [(c(s)+ 1)I + (c(s)− 3)ŝ(s)ŝ(s)
] · f (s), (2.10)
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K [ f ](s)=
∫ 1

0

(
I + R̂(s, s′)R̂(s, s′)
|R(s, s′)| · f (s′)− I + ŝ(s)ŝ(s)

|s− s′| · f (s)
)

ds′, (2.11)

where ŝ = xs, R(s, s′) = x(s) − x(s′), R̂(s, s′) = R(s, s′)/|R(s, s′)|, c(s) = log(4s(1 −
s)/ε2r(s)2), and ŝŝ and R̂R̂ are dyadic products. Using the local inextensibility
condition xs · xs = 1, the filament position equation (2.9) can be manipulated to give an
equation for the tension (see Tornberg & Shelley 2004),

−2(c− 1)Tss + (c+ 1)|xss|2T − 2csTs − xs · ∂sK [(Txs)s]
= (7c− 5)βB(s)xss · xssss + 6(c− 1)βB(s)|xsss|2 + 6βcsB(s)xss · xsss

+β(4csBs + (5c− 3)Bss)|xss|2 + 4(4c− 3)βBsxss · xsss − βxs · ∂sK [(Bxss)ss]
+ (c− 3)xss ·Fg + 2(c− 1)xs · ∂sFg + 2csxs ·Fg + xs · ∂sK [Fg(s)]. (2.12)

If the filament is cylindrical with constant cross-section (r(s) = 1), then Fg(s) = −ŷ
and B(s)= B are constants, while c(s)= log(4s(1− s)/ε2) varies, although the slender-
body theory loses accuracy at the endpoints in this case (Johnson 1980). Instead, if
the filament thickness is described by the spheroidal profile r(s) = 2

√
s(1− s), we

have c(s) = c = log(1/ε2), a constant. For such a filament shape, assuming uniform
material distribution, the gravitational force is spatially varying, Fg(s) = −6s(1 − s)ŷ,
as is the bending stiffness, B(s) = r(s)4 = 16s2(1− s)2. In this case the boundary
condition (2.4) disappears. This limiting case is singular and is associated with an
elastic boundary layer at the endpoints. Throughout this paper, we shall alternatingly
discuss theoretical results for both geometries, and compare the case of a spheroidal
profile with corresponding numerical simulations.

Finally, for convenience, we define here two integral operators that will appear in
the asymptotic evaluation of (2.11),

S[g](s)=
∫ 1

0

g(s′)− g(s)

|s′ − s| ds′, P[g](s)=
∫ 1

0

1g(s, s′)− gs(s′)
|s′ − s| ds′, (2.13)

where

1g(s, s′)= g(s)− g(s′)
s− s′

. (2.14)

3. Numerical method
The governing equations are solved numerically using a variation of the method

suggested by Tornberg & Shelley (2004). We denote by a superscript n quantities at
time tn. Given the filament position at t = tn, the tension Tn(s) is first determined by
solving a modification of (2.12),

−2(c− 1)Tn
ss + (c+ 1)|xss|2Tn − xs · ∂sKδ[(Tnxs)s]

= (7c− 5)βxss · xssss + 6(c− 1)β|xsss|2 − βxs · ∂sKδ[xssss] + (c− 3)xss ·Fn
g

+ 2(c− 1)xs · ∂sFn
g + xs · ∂sKδ[Fn

g(s)] + σ(1− xs · xs), (3.1)

where the position x and its derivatives are evaluated at time tn. We have chosen
c(s) = c a constant and Fg(s) = −6s(1 − s)ŷ as described previously, but we have
assumed B(s)= 1, an approximation that we justify later. Furthermore, we have added
a restoring spring force (with a fitted parameter σ ) that acts to correct numerical errors
to filament inextensibility. We have introduced a regularized integral operator Kδ[ f ],
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where

Kδ[ f ](s)=
∫ 1

0

(
I + R̂(s, s′)R̂(s, s′)√|R(s, s′)|2 + δ2

· f (s′)− I + ŝ(s)ŝ(s)√|s− s′|2 + δ2
· f (s)

)
ds′. (3.2)

A constant regularization parameter is chosen, δ = 2ε, where ε is the filament aspect
ratio. The error introduced by this regularization is O(ε2 log(ε)) in the interior of the
filament and O(ε) near the filament ends, which could be further improved by use
of a non-uniform regularization parameter δ(s) as in the work of Tornberg & Shelley
(2004). Discretizing the arclength as sj = j/N, j= 0, 1, . . . ,N, equations (3.1) and (3.2)
are recast into a system of coupled linear equations for Tn(sj). We note that this
system is dense owing to the non-local nature of the hydrodynamic interactions.

Following the solution of the tension at time tn, the position of the filament at
a time tn+1 is then determined by a semi-implicit integration of (2.9). The stiffest
part of the equation (the fourth derivative of the position) is treated implicitly, while
the remaining terms such as the tension and lower derivatives of the position are
extrapolated from previous data. The position at tn+1 is given to second-order accuracy
by

1
21t

(3xn+1 − 4xn + xn−1)=M(2xn − xn−1, xn+1
ssss )+ 2N(xn)− N(xn−1). (3.3)

Here, M denotes all of the terms that include the stiff operator, while N collects the
contributions of tension and gravity. The non-local integrals are evaluated explicitly at
time tn and are supplied to (3.3). Solution of that equation then only requires inversion
of a matrix of the form −(1 + c)D4 + (3 − c)(2xn

s − xn−1
s )(2xn

s − xn−1
s ), where D is a

finite difference operator. An Euler scheme is used for the first time step.
The spatial derivatives in (3.1) and (3.3) are discretized using second-order divided

differences. Boundary conditions from (2.4) and (2.5) are translated onto the discrete
points via one-sided finite differences. For all of the results presented in this work,
we use N = 256 and σ = 400. This value of N is chosen to ensure that the minimum
radius of curvature remains at least an order of magnitude larger than the grid spacing,
1s = 1/(N − 1), even in the case of the severely buckled shapes in § 5. The value
of σ is chosen based on numerical stability (quantified in terms of contour length
error), and the selected value is such that numerical errors in the filament length do
not exceed 0.1 % in the weakly flexible case in § 4, and remain under 4 % in the most
buckled case described in § 5. The dimensionless time step is 1t = 10−5, except for
the linear stability results of § 5 where it is further reduced to 10−6. The filament
aspect ratio ε is fixed at 0.01 throughout.

4. Weakly flexible filaments
It is a well-known result that straight, rigid rods sediment in an infinite viscous fluid

without any body reorientation (Kim & Karrila 1991). Curved filaments, however, have
been shown to rotate during sedimentation until an equilibrium orientation is achieved
(Tozzi et al. 2011). The introduction of filament flexibility, then, can result in filament
shape changes but can also lead to complex body reorientation. To investigate the first
effects of elasticity, we focus on the dynamics of a weakly flexible filament, where the
elasto-gravitation number β is assumed to be large.

There are two different effects that can lead to shape changes of a weakly
flexible sedimenting filament. As we will show, the leading-order effect is due to
non-uniformity of the filament thickness along its length. Consider a filament of
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g

(a) (b)

FIGURE 1. (Colour online) Illustration of the source of bending in model ‘filaments’. (a) The
leading-order effect: larger bodies sediment faster than smaller bodies in a viscous fluid, and
filaments of non-uniform thickness will bend as a consequence. (b) The secondary effect: the
central bodies in a line of identical sedimenting spheres experience a stronger disturbance
fluid flow, and will sediment faster than those near the ends.

non-uniform thickness sedimenting in the direction of its minor axis, and for the sake
of intuition consider as a simple model the distribution of sedimenting spheres of
varying radii shown in figure 1(a). In a highly viscous fluid, a sphere of radius a
settles with speed U = 21ρga2/µ (see Happel & Brenner 1965). The spheres near the
centre of the row will sediment faster than those near the ends, resulting in bending
of the assemblage as depicted. A filament of uniform thickness is also expected to
bend but as a consequence of a secondary effect, namely by non-local hydrodynamic
interactions. Modelling such a filament as a row of identical spheres, as illustrated
in figure 1(b), note that the disturbance flow experienced by the central spheres, due
to the motion of the other spheres, will increase the sedimentation speed of the
former. Bending from non-local hydrodynamics will be shown to be a higher-order
effect. In this section we will study the behaviour of spheroidal filaments, where
r(s) = 2

√
s(1− s), while similar calculations for the case r(s) = 1 are included in

appendix A.
Returning to the full model described in § 2, the complex interactions between shape

changes and body reorientation can be seen in the numerical results of figure 2. In
figure 2(a), an initially straight filament is released at the origin in a nearly vertical
orientation and is allowed to deform and sediment freely under gravity. The initial
angle between the tangent at the particle centre and gravity is θ0 = π/64, and we
choose what we will find to be a relatively large value of β = 0.02. As a result of its
flexibility, weak deformations arise which cause the slow reorientation of the filament
to a direction perpendicular to gravity, as shown in figure 2(b). As the filament rotates
away from its initial orientation, its settling motion incurs a lateral drift, which is
strongest when the mean orientation forms an angle of approximately π/4 with the
direction of gravity. As the filament eventually aligns horizontally, the drift slows and
the trajectory asymptotes to a vertical line. Movie 1 in the supplementary material
shows the changing filament shapes and trajectories for two different initial orientation
angles, and is available online at http://dx.doi.org/10.1017/jfm.2013.512.

We observe in the weakly flexible regime that the only stable filament orientation
is such that the body length is perpendicular to the direction of gravity. In this
configuration, the filament assumes a symmetric, nearly parabolic shape as shown in
figure 2(b). The steady ‘terminal’ shapes of more flexible filaments are plotted in
figure 2(c) for a decreasing sequence of values of the elasto–gravitation number, where
more flexible filaments are seen to adopt horseshoe shapes. Furthermore, the steady
shapes obtained in simulations in the limit of weak flexibility are found to collapse
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FIGURE 2. (Colour online) (a) Trajectory of a filament with initial orientation angle
θ0 = π/64, with ‘large’ elasto-gravitation number β = 0.02, from numerical simulations.
(b) Shape of the filament as it sediments in a frame moving with its midpoint, also showing
the reorientation process. Snapshots correspond to indicated points on the trajectory in (a)
(see also supplementary movie 1, which shows simultaneously the changing filament shapes
and trajectories for two different initial orientation angles). (c) Steady-state shapes for β
in the range 0.00125–0.02, obtained in numerical simulation with r(s) = 2

√
s(1− s) and

B(s)= 1. The deflections are shown in a frame moving with the filament midpoint.

onto a single self-similar curve h(s), as shown in figure 3(a), upon normalization by
β (and as will be shown theoretically in the following section). The final extent of
bending can be characterized by the maximum deflection d̃ of the filament, which
is shown in figure 3(b) against 1/β, exhibiting linear growth in the weakly flexible
regime that extends as far down as β ≈ 0.02. For elasto-gravitation numbers β . 0.01,
the curve plateaus with the appearance of the horseshoe shape towards the maximum
possible symmetric deflection value of one half. The weakly flexible regime may
therefore be defined by ‘large’ values of the elasto-gravitation number, β & 0.01.

4.1. Asymptotics in the weakly flexible regime: a separation of time scales
We now set out to describe the filament shapes and dynamics analytically in the
weakly flexible regime. The position of the filament centreline at time t can be written
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FIGURE 3. (Colour online) (a) The final sedimenting shape, normalized by β, corresponding
to β = 8 (circles) and β = 0.02 (triangles) from simulations, along with the prediction from
equation (4.26) (solid line) showing the validity of the theory down to relatively small values
of β. Here, h(s) is the scaled deflection perpendicular to the straightened state at parametric
position s. (b) Maximum deflection of the filament shape d̃ = max[n̂ · d(s)] as a function of
1/β. Also shown by the solid line is the theoretical prediction following (4.26). The dashed
line shows a correction to the theoretical prediction in which the filament shape was rescaled
to preserve length.

without loss of generality as

x(s, t)= r(t)+ (s− 1/2)t̂(θ(t))+ d(s, t), (4.1)

where r(t) = x(1/2, t) is the position of the filament centre, t̂ = xs(1/2, t) is the unit
tangent vector there, and d(s, t) is the time-dependent deviation of the filament from
its straightened state (with d(1/2, t) = 0). The filament is illustrated in figure 4. The
natural coordinate system that rotates in time with the body is then described by

t̂(θ)=− cos θ ŷ+ sin θ x̂, (4.2)
n̂(θ)= sin θ ŷ+ cos θ x̂, (4.3)

where θ = θ(t) measures the angle between −ŷ and the unit tangent vector t̂ and n̂
is the vector normal to the filament at its midpoint. The translational velocity of the
midpoint is written as r′(t)= U(t)= U(t)t̂ + V(t)n̂.

As we have observed in the numerical simulations of figure 2, when the elasto-
gravitation number is large the filament rotates in a time much longer than is required
for the body to traverse many body lengths. Meanwhile, the filament is relatively
stiff, so for a given orientation angle the body rapidly reaches its equilibrium shape.
These observations suggest that there is a separation of time scales that will aid in the
analysis of the system; the filament shape can be determined separately from the body
rotation rate, and the rotation rate can be determined given a fixed body shape.

More specifically, there are three distinct time scales of note in the simulations. For
large values of the elasto-gravitation number, β � 1, the first is a very short elastic
relaxation time scale of O(β−1). The second is the time scale of O(1) on which
the body sediments a distance comparable with its length. The third is a very long
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FIGURE 4. (Colour online) Filament illustration: the unit tangent and unit normal vectors at
the single point r(t)= x(s= 1/2, t) are given by t̂ and n̂, respectively. Here θ(t) measures the
angle between t̂ and the direction of gravity, −ŷ.

time scale of O(β) on which the body may reorient on account of its non-trivial
shape. Our aim is to study the shape changes of the filament on the latter two time
scales, during which the body translates and rotates through the fluid. Defining the
scaled time τ = β−1t, we analyse the system by the method of multiple scales wherein
variables are assumed to have a separate explicit dependence upon both t and τ (see
Bender & Orszag 1999). A uniform solution to equations (2.9) and (2.12) is then
sought by assuming regular expansions of the tension and filament shape in powers of
the small number β−1 of the form

T(s, t, τ ;β)= T (0)(s, t, τ )+ β−1T (1)(s, t, τ )+ O(β−2). (4.4)

Upon inspection of (2.7), we observe that the sedimentation and elastic effects are
balanced when β(B(s)dss)ss = O(Fg), and we have that Fg = O(1). Therefore, when
these effects are balanced the deflection of the filament is such that d = O(β−1). A
pedestrian expansion of d is then given by

d(s, t, τ ;β)= β−1u(s, t, τ )n̂(θ)+ β−2u1(s, t, τ )n̂(θ)+ β−2v1(s, t, τ )t̂(θ)+ O
(
β−3
)
,

(4.5)

with the functions u, u1 and v1 to be determined. Here we have also used the filament
inextensibility, which requires that the only filament deflections at first order in β−1

are normal to t̂. The definition of d implies ds(1/2, t, τ ;β) = 0. The translational
velocity and orientation angle are similarly expressed,

U(t, τ ;β)= U(0)(t, τ )+ β−1U(1)(t, τ )+ O(β−2), (4.6)

V(t, τ ;β)= V (0)(t, τ )+ β−1V (1)(t, τ )+ O(β−2), (4.7)

θ(t, τ ;β)= θ (0)(t, τ )+ β−1θ (1)(t, τ )+ O(β−2). (4.8)

Inserting the expressions above into (2.9), and dotting separately with either t̂(θ) and
n̂(θ), we find the leading-order relations,

U(0) = 2(c− 1)[T (0)s − Fg cos θ (0)] + 2S[T (0)s − Fg cos θ (0)], (4.9)

V (0) + (s− 1/2)θ (0)t =−(c+ 1)[(Buss)ss − Fg sin θ (0)] − S[(Buss)ss − Fg sin θ (0)], (4.10)
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where S[·] is the non-local hydrodynamic contribution for a straight filament defined
in (2.13). Recall that B = B(s), Fg = Fg(s) and c = log(1/ε2). Denoting by Ln(s) the
nth shifted Legendre polynomial (defined on s ∈ [0, 1]), we have S[Ln(s)] = λnLn(s),
with λn = −2

∑n
i=1(1/i). Hence, the equations above are made tractable by expressing

variables in the Legendre polynomial basis (see Götz 2000). Using the orthogonality of
the Legendre polynomials, we recover the leading-order sedimentation velocity,

U (0) = 2(c− 1) cos θ (0) t̂(θ (0))− (c+ 1) sin θ (0) n̂(θ (0)), (4.11)

and in addition we find

T (0)s − Fg cos θ (0) = cos θ (0), (4.12)

(Buss)ss − (Fg + 1) sin θ (0) = s− 1/2
1− c

θ (0)t . (4.13)

The case of uniform filament thickness, with Fg(s)=−1, is considered in appendix A.
The leading-order effect illustrated in figure 1 is studied now by inserting Fg(s) =
−6s(1− s), which results in the leading-order tension,

T (0) = s(1− 2s)(1− s) cos θ (0). (4.14)

Meanwhile, multiplying (4.13) by (s − 1/2) and integrating, we find θ (0)t = 0. The
filament therefore does not rotate on the time scale t, but may still rotate on the longer
time scale, θ (0)(t, τ ) = θ (0)(τ ). The leading-order deflection of the filament from its
straightened state can now be determined by integrating (4.13) (inserting θ (0)t = 0 and
Fg =−6s(1− s)) and imposing the boundary conditions in (2.4), giving

u(s, τ )= h(s) sin θ (0)(τ ), (4.15)

with

B(s)hss = 1
2 s2(1− s)2, (4.16)

h(1/2)= hs(1/2)= 0. (4.17)

If the filament is composed of a uniform material, a corresponding bending stiffness
B(s)= r(s)4 = 16s2(1− s)2 then results in the filament deflection profile

h(s)= 1
64(s− 1

2)
2
. (4.18)

Surprisingly, the shape of the filament is symmetric about its midpoint at leading order
for any orientation, and the scaling of the deflection with the orientation angle is given
simply by sin θ (0)(τ ). In order to determine the orientation angle θ (0)(τ ), we must look
to higher order. At O(β−1), equation (2.9) yields the expression

V (1) + (s− 1/2)(θ (0)τ + θ (1)t )= (c+ 1)[(T (0)us)s − (Bu1,ss)ss + θ (1) cos θ (0)Fg]
+ (c− 3)us cos θ (0) + S[(T (0)us)s − (Bu1,ss)ss + θ (1) cos θ (0)Fg]
+ cos θ (0)S[us] + cos θ (0)P[u], (4.19)

where the integral operator P[·] is defined in (2.13). Multiplying (4.19) by (s − 1/2)
and integrating, we have

θ (0)τ + θ (1)t =
A

2
sin(2θ (0)), (4.20)

A= 12((c− 1)I1 + (c− 5)I2 + I3), (4.21)
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where

I1 =
∫ 1

0
(1− 6s+ 6s2)h(s) ds, (4.22)

I2 =
∫ 1

0
(s− 1/2)hs(s) ds, (4.23)

I3 =
∫ 1

0
(s− 1/2)P[h](s) ds. (4.24)

The secular behaviour in the expansion is removed by taking θ (1) = θ (1)(τ ), and we are
left with an equation for the dynamics of θ (0),

θ (0)τ =
A

2
sin(2θ (0)). (4.25)

Inserting the expression for h(s) obtained in (4.18), we have I1 = 1/1920 and
I2 = I3 = 1/384, so that A = 3(c − 7/2)/80 = 3(log(1/ε2) − 7/2)/80. The constant
A is positive (and the result is physical) in the slender-body regime, or specifically
when ε < exp(−7/4) ≈ 0.17. We therefore have that the orientation angle θ = 0 is
unstable, and that θ = ±π/2 are stable. From (4.25) we see that the filament will
reorient on a time scale O(β/c) until its central tangent vector is perpendicular to
gravity. This matches our prediction of reorientation on a time scale of O(β), but
includes a coefficient that depends on the filament aspect ratio.

In the calculation above, if we were to take the bending stiffness to be constant
along the centreline (B(s)= 1), we instead find

h(s)= 1
64 [(s− 1

2)
2 − 4

3(s− 1
2)

4 + 16
15(s− 1

2)
6], (4.26)

which matches (4.18) in the interior of the filament, but predictably leads to a slightly
smaller filament deflection from the horizontal plane. The corresponding orientation
dynamics are still given by (4.25), but now we have I1 = 1/2520, I2 = 1/560 and
I3 = 101/50 400, so that A = 11(c − 369/110)/420. We still find A > 0 in a similar
range of body aspect ratios, ε . 0.19. This calculation is not to be confused with
that for a filament of uniform thickness, as described in appendix A. However, the
similarity between (4.18) and (4.26) suggests that computing with the assumption
B(s) = 1 even for a spheroidal body, which avoids the computational issues related
to an elastic boundary layer, is reasonable. We therefore choose B(s) = 1 for our
computations for the remainder of the paper (and in the previous section).

The body shapes predicted by (4.26) are shown in figure 3(a) as a solid line,
from which we see excellent agreement with the results of the numerical simulations
(shown as symbols) all the way down to β ≈ 0.02. The maximum deflection of the
filament shape is shown in figure 3(b), with the results from the full simulations
shown as circles and from the prediction as a solid line, which provides a quantitative
measure of the accuracy and breakdown of the simple theory. At the order of our
consideration the filament is not inextensible, and as a consequence we observe a
systematic overestimation of the numerical results. A simple improvement of the
prediction is obtained by rescaling the shape to unit length, as shown by a dashed line
in figure 3(b).

For β . 0.01, the shapes are no longer self-similar and depart significantly from the
expression in (4.26). Viscous stresses associated with the gravitational forcing are now
strong enough to overwhelm the elastic stiffness, and a horseshoe-like shape emerges



718 L. Li, H. Manikantan, D. Saintillan and S. E. Spagnolie

as seen from numerical simulations in figure 2(c). The two ends of the filament
approach one another for smaller β, and for β . 0.001 the filament can overlap itself
unless steric effects are taken into account.

4.2. Filament trajectories and particle clouds
We have shown that appreciable changes in the filament shape and orientation are
found on the scale over which the filament sediments many body lengths through the
fluid. Writing the dynamics from (4.25) in terms of the single time t, the filament
rotation rate at leading order is given by

θt = A

2β
sin(2θ), (4.27)

with A = 3(c − 7/2)/80 for B(s) = 16s2(1− s)2. Integrating (4.27) and setting
θ(0)= θ0, we find

tan(θ(t))= tan(θ0) exp(At/β). (4.28)

The horizontal and vertical filament velocities were previously approximated to
O(1/β); inserting (4.27) into (4.11), and writing U(t)= Uxx̂+ Vyŷ, we find

Ux(t)= (c− 3) tan(θ0) exp(At/β)

1+ tan2(θ0) exp(2At/β)
, (4.29)

Vy(t)=−(c+ 1)− (c− 3)
(

1
1+ tan2(θ0) exp(2At/β)

)
. (4.30)

Integrating the velocities above leads to an approximation of the filament trajectory
accurate to O(1). Assuming that the filament is initially centred at the origin, the
material point s= 1/2 follows the path (X(t),Y(t)), where

tan
(

A

β(c− 3)
X(t)+ θ0

)
= tan(θ0) exp(At/β), (4.31)

Y(t)=−(c+ 1)t − β(c− 3)
2A

log
(
(1+ tan2(θ0)) exp(2At/β)

1+ tan2(θ0) exp(2At/β)

)
. (4.32)

The full trajectory is described implicitly by the equation

tanα(θ0) sin(θ0) exp
(
− A

β(c− 3)
Y(t)

)
= tanα

(
A

β(c− 3)
X(t)+ θ0

)
sin
(

A

β(c− 3)
X(t)+ θ0

)
, (4.33)

where α = (c + 1)/(c − 3) > 1. In contrast to the constant horizontal velocity of a
straight sedimenting rod, the filament drifts horizontally a finite distance (assuming
0< θ0 6 π/2),

X(∞)=
∫ ∞

0
Ux(t) dt = β(c− 3)

A

(π
2
− θ0

)
, (4.34)

and X(∞) = 0 for θ0 = 0. The horizontal drift is monotonic in the initial orientation
angle on this domain. The maximum drift is given for θ0 → 0+, where X(∞)→
πβ(c − 3)/2A. The drift is also monotonic in the elasto-gravitation number in this
regime, with larger distances traversed by stiffer filaments, and X(∞)→∞ for rigid
fibres, β→∞.
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FIGURE 5. (Colour online) Results from simulations at β = 2 and initial orientations
π/4 (©), π/16 (4) and π/64 (�). Overlaid in solid lines are theoretical predictions for: (a)
filament orientation θ(t), (b) horizontal filament velocity Ux(t) and (c) downward filament
velocity −Vy(t).

The horizontal and vertical velocities and the filament rotation rate following
(4.28), (4.29) and (4.30), respectively, are shown in figure 5 for β = 2 and three
different initial orientations. Also shown are numerical results for these parameters
that show excellent agreement with the predictions. One can clearly see from the
figures that the filament initially drifts increasingly faster in a direction perpendicular
to gravity, attaining a maximum horizontal velocity at approximately θ = π/4.
Then Ux(t) decreases to zero, which corresponds to the trajectory in figure 2(a)
tending asymptotically to a vertical line. The vertical velocity at this point settles
to a constant value of Vy(t→∞)=−(c+ 1), which gives Vy ≈−10.21 using ε = 0.01
as in the simulations. This value corresponds to the minimum speed of sedimentation
in the entire process, corresponding to the drag being maximized in this regime for
bodies sedimenting perpendicular to the long filament axis.

The monotonic increase of the span of spreading X(∞) with both the initial
orientation and the elasto-gravitation number suggests interesting trajectories for
filaments in this regime. Figure 6 shows the trajectories associated with these
dynamics. Numerical results for three different initial orientations, all for β = 2,
are shown in figure 6(a) to match excellently with the predicted trajectories. Note
again that the maximum width of spreading is attained for θ0 = 0±, and the vertical
asymptote of the trajectory approaches this value for small initial orientations. The
qualitative difference between weakly flexible filaments and rigid rods is illustrated
in figure 6(b). With increasing values of the elasto-gravitation number, the trajectories
of filaments placed at the same initial orientation (θ0 = ±π/4 in this case) approach
the β→∞ limit of rigid rods, which sediment without rotating and at an angle that
depends only on their initial orientation.

Finally, in figure 6(c), we show how in this regime the lateral spreading of
filament trajectories is confined to a cloud whose width is dictated by the elasto-
gravitation number. The different trajectories correspond to different initial orientations
with initially horizontal filaments sedimenting vertically downwards, and the widest
spreading attained, as mentioned above, for θ0 = 0± (see movie 2 in the supplementary
material, which shows the spread of weakly flexible filaments of varying initial
orientation). Neglecting hydrodynamic interactions between bodies, consider the
release of many filaments at the origin, with a probability density function of their
orientations given by ρ(θ0) on θ0 ∈ [0,π/2]. Once the bodies have settled into their
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FIGURE 6. (Colour online) (a) Results from simulations (symbols) and from analytical
predictions (solid lines) showing the trajectory of sedimentation of the midpoint of a filament
for β = 2 released with three different initial orientations. The dashed line represents the
maximum width of spreading as predicted by (4.34). (b) Predicted trajectories for different
values of β when the filament is released at an angle of ±π/4. (c) A visualization of the
predicted spreading of sedimenting flexible filaments. Here, β = 10 and the initial angle
of release varies in the range [−π/2,π/2]. Also shown is the maximum extent of cloud
spreading. (Supplementary movie 2 shows the spreading of a cloud of weakly flexible non-
interacting filaments with varying initial orientations.)

vertical trajectories, the radial distances from the origin (in the plane perpendicular
to gravity) are distributed as ρ(θ0)X(∞). Assuming uniformly distributed filaments,
ρ(θ0) = sin(θ0), then the radial distribution of the filament cloud as seen in figure 6 is
given by [β(c− 3)/A](π/2− θ0) sin(θ0). Integrating, the mean filament drift is given by
(π− 2)β(c− 3)/(2A) and the variance by (π− 3)β2(c− 3)2/A2.

5. Buckling of flexible filaments
Our attention now turns to the opposite extreme, the case of extremely flexible

filaments for which the elasto-gravitation number is small, β≪ 1. Of particular
interest in this case is the possibility of a dramatic buckling event, which may
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FIGURE 7. (Colour online) Illustration of the source of tension and buckling in model
‘filaments’, as in figure 1. (a) The leading-order effect: larger bodies sediment faster than
smaller bodies in a viscous fluid. (b) The secondary effect: the central bodies in a line of
identical sedimenting spheres experience a stronger disturbance fluid flow, and will sediment
faster than those near the ends. (c) The effects in (a) or (b), along with inextensibility, can
lead to buckling of a sedimenting filament.

be exhibited by an elastic body when compressive forces overcome its structural
rigidity. Potential sources of a buckling instability in the context of sedimentation are
illustrated in figure 7, and are identical to the sources of bending shown in figure 1.
With spheres sedimenting according to their sizes, the array of spheres in figure 7(a)
will separate in the top half of the train, and collapse in the bottom half (in the
direction of gravity). If the spheres are constrained so that their relative positions are
fixed, there will be a positive tension in the top half of the train and a negative
(compressive) tension in the bottom half. This compression can cause a sufficiently
flexible filament to buckle, as we show below. It is similarly argued that this source of
instability will vanish if the filament density increases monotonically in the direction
of gravity.

If the filament is of uniform thickness, the secondary effect from non-local
hydrodynamic interactions can also lead to buckling. As illustrated in figure 7(b), the
spheres nearer to the centre of the train sediment faster than those at the leading and
trailing ends. This effect can also lead to buckling of a sufficiently flexible filament.
Once again, the leading-order effect is now considered by studying a spheroidal
filament shape, and comments on the case r(s)= 1 are included in appendix A.

Choosing the spheroidal filament profile r(s)= 2
√

s(1− s), so that c(s)= log(1/ε2),
and setting B(s) = 1 as before, considerable buckling is observed in the full
simulations for sufficiently small values of the elasto-gravitation number. Figures 8
and 9 show time sequences of filaments buckling with β = 10−4 and β = 6.25 × 10−5,
respectively (see also supplementary movie 3, which shows similar sequences with
three values of β). In both cases, an initial transverse perturbation of 10−4 cos(4πs)
is imposed along the entire filament length and is found to amplify and lead to the
observed dynamics. Two points are to be noted here, both of which we analyse in
further detail in the following sections. First, it can be seen that the buckling instability
only occurs in the leading half of the filament, whereas perturbations are observed to
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FIGURE 8. Moderate buckling is observed in simulations for β = 10−4 and
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(j) t = 0.150. (See also supplementary movie 3, which shows the buckling of sedimenting
filaments with three values of the elasto-gravitation number β.)
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decay in the trailing half. This is consistent with the aforementioned argument that
the negative (compressive) tension in the leading half drives this instability. Second,
perturbations are found to propagate upward in the form of travelling waves in the
body frame, eventually dying out once they reach the trailing half. Beyond the times
shown in the figures, the filament undergoes substantial bending where the curvature
becomes so large that the linearized Euler–Bernoulli formulation used in our model
may no longer accurately describe the filament elastodynamics. In addition, excluded
volume effects are expected to come into play as the filament nears itself in the later
stages of buckling, although we do not account for direct steric interactions in our
simulations.

5.1. Linear stability analysis and buckling criterion
For sufficiently small values of the elasto-gravitation number, there is no time scale
separation between elastic relaxation and sedimentation. We recall the fluid force per
unit length,

f (s)=−(T(s)xs)s + β(B(s)xss)ss − Fg(s). (5.1)

As in the simulations just described, we choose the filament profile r(s) = 2
√

s(1− s)
and the distributed gravitational forcing Fg(s) = Fg(s)ŷ = −6s(1 − s)ŷ. Once again we
will consider the corresponding bending stiffness profile, B(s) = r(s)4, but we also
study the case B(s)= 1 for the sake of comparison with the computations.

Consider a straightened filament sedimenting along the −ŷ direction, whose
centreline position is expressed as x(s, t) = −(s − 1/2 + Ut)ŷ, with U the constant
sedimentation speed. Then (2.9), along with the boundary conditions (2.5), may be
written as

U = 2(c− 1)(Ts − Fg)+ 2S[Ts − Fg], (5.2)
T(0)= T(1)= 0, (5.3)

where S[·] is the integral operator defined in (2.13) which is diagonalized under
the Legendre polynomial basis as discussed in § 4.1. Therefore, upon multiplication
of (5.2) by Legendre polynomials and integrating on s ∈ [0, 1] we see that
Ts(s) − Fg(s) = 1, and that the sedimentation speed is given by U = 2(c − 1). In
addition, noting (5.3), we find that the tension along the filament is given by

T(s)= T0(s)= s(1− s)(1− 2s). (5.4)

We will refer to the straightened filament conformation with sedimentation speed
U = 2(c − 1) and tension T0(s) as the base state for the analysis to come. Importantly,
due to the spatial variation in the gravitational potential, we observe that the tension
in the base state is positive for s ∈ (0, 1/2), but negative for s ∈ (1/2, 1). Hence, while
the trailing half of the filament experiences a tension, the leading half of the filament
(in the direction of sedimentation) experiences a compression. Buckling, therefore, is
to be expected in a certain range of β, but in a non-uniform fashion along the filament
backbone (see figures 8 and 9).

5.1.1. Dynamics of filament perturbations
We now perform a classical linear stability analysis on the filament by perturbing

the filament position in a plane perpendicular to gravity. Assume that the filament
position is given by

x(s, t)=−(s− 1/2+ Ut)ŷ+ εu(s, t)x̂+ O(ε2), (5.5)
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with ε � 1. By a symmetry argument (taking ε→ −ε), it is apparent that there
can be no variation in the vertical component of the filament velocity (either in the
sedimentation speed or varying spatially along the filament), so the speed U in (5.5) is
that from the leading-order calculation, U = 2(c − 1). Performing a regular expansion
of the tension about the base state for small ε, we also write

T(s)= T0(s)+ εT1(s)+ O(ε2), (5.6)

where T1(0) = T1(1) = 0. Note that ε at the outset has no relationship with the body
aspect ratio ε. Inserting these expansions into the ŷ component of the position equation
(2.9), we have

0= 2(c− 1)T ′1(s)+ 2S[T1](s), (5.7)

from which we see that the tension does not vary at first-order in ε: T1(s) = 0.
However, upon inspection of the x̂ component of the filament position equation, we
find an equation for the dynamics of the perturbation,

ut = (c+ 1)[(T0us)s − β(B(s)uss)ss] + (c− 3)us

+ S[(T0us)s − β(B(s)uss)ss + us] + P[u], (5.8)

with P[·] defined in (2.13).
The analysis of (5.8) is no longer as simple as an expansion in the Legendre

polynomial basis. Instead, we proceed to consider the action of the integral operators
on Fourier perturbations of a given high wavenumber k. Specifically, for k� 1, and
for points s sufficiently well removed from the filament endpoints, we have

S[eiks] ≈ − log(e2γ k2s(1− s))eiks, (5.9)
P[eiks] ≈ 2ikeiks, (5.10)

as shown in appendix B, where γ is Euler’s constant. Hence, for filament perturbations
of high wavenumber, the eigenfunctions of S[·] and P[·] are approximately the Fourier
basis functions eiks. Accordingly, for k� 1, we may replace P[u] in (5.8) by 2us.

As a first approximation justified in appendix B, we analyse the dynamics of the
perturbation in the two halves s ∈ (0, 1/2) (where T0(s) > 0) and s ∈ (1/2, 1) (where
T0(s) < 0) as separate and decoupled. We begin by considering the trailing half of the
filament, s ∈ (0, 1/2). While it would be more exhaustive to consider a continuously
varying basis for the perturbations, much will be learned by the simpler confinement
to a countable Fourier basis. The Fourier transform and inverse transform pair on this
interval are given by

u(s, t)=
∞∑

k=−∞
ûk(t)e4πiks, ûk(t)= 2

∫ 1/2

0
u(s, t)e−4πiks ds. (5.11)

We also express (T0us)s and (Buss)ss in the Fourier basis,

(T0us)s =
∞∑

k=−∞
ake4πiks, (B(s)uss)ss =

∞∑
k=−∞

bke4πiks. (5.12)

Using the base-state tension (5.4), we find

ak =−(πk)2ûk +
∑
m6=k

3km(−i+ (m− k)π)

π(m− k)3
ûm. (5.13)
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Also, with B(s)= 1 we find

bk = (4πk)4ûk, (5.14)

or with B(s)= r(s)4 = 16s2(1− s)2 we find

bk = 8
(

1
15
(4πk)4 − 2πik

)
ûk −

∑
m6=k

C(k,m)ûm, (5.15)

where

C(k,m)= 128
[

m4

(
3+ 3i(m− k)π+ i(m− k)3π3

(m− k)4

)
− 3m2(m+ k)

1+ i(m− k)π

(m− k)3

]
.

(5.16)

Inserting these expressions into (5.8) returns an equation for the perturbation dynamics
in Fourier space,

û′k(t)= (c+ 1)(ak − βbk)+ (c− 1)4πikûk − 2 log(2πke−(1−γ ))(ak − βbk + 4πikûk).

(5.17)

The spatially varying tension and bending stiffness lead to the transmission of
energy from each wavelength of u to nearby wavelengths through the coefficients ak

and bk. However, consider the case that the filament is seeded with a perturbation
with a single wavenumber k. For short times, during which the coupling between the
Fourier modes can be neglected, we have

ûk(t)≈ ûk(0)eσ(k)t. (5.18)

Inserting this ansatz into (5.17) and neglecting coupling terms, we find the growth rate
if B(s)= 1,

σ(k)= (c− log(4(πk)2e2γ−3))(−π2k2 − β(4πk)4)+ 4πik(c− log(4π2k2e2γ−1))

≈− log
(

1
ε2k2

)(
π2k2 + β(4πk)4 − 4πik

)
, (5.19)

or if B(s)= 16s2(1− s)2,

σ(k)= (c− log(4π2k2e2γ−3)
)(−π2k2 − 8(4πk)4

15
β + 16πikβ

)
+ 4πik

(
c− log

(
4π2k2e2γ−1

))
≈− log

(
1
ε2k2

)(
π2k2 + 8

15
β(4πk)4 − 4πik(1+ 4β)

)
, (5.20)

where we have inserted c= log(1/ε2) with ε the filament aspect ratio. The growth rate
σ(k) exhibits rapid damping due to bending rigidity (∝ −k4) as well as damping due
to filament tension (∝ −k2). The perturbation is thus expected to return rapidly to its
straightened state. The dispersion relation also shows that the perturbation travels as
a wave along the filament in the direction opposite gravity with approximate speed
log(1/ε2k2). The approximation clearly breaks down if the filament aspect ratio is on
the order of the perturbation wavelength, εk = 1, so we assume εk� 1.

Meanwhile, in the leading half of the filament, s ∈ (1/2, 1), there is a slight but
critical adjustment to the approximations above, as a consequence of the negative
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FIGURE 10. Real part of the growth rate σ(k), for two different values of β in the (a) trailing
and (b) leading halves of the filament. The lines are theoretical predictions and symbols
follow from simulations. The solid lines and filled circles correspond to β = 10−4 while the
dashed line and open symbols correspond to β = 10−3.

tension there. By a similar calculation, we find the short-time growth rates for
B(s)= 1,

σ(k)≈ log
(

1
ε2k2

)(
π2k2 − β(4πk)4 + 4πik

)
, (5.21)

and separately for B(s)= 16s2(1− s)2,

σ(k)≈ log
(

1
ε2k2

)(
π2k2 − 8

15
β(4πk)4 + 4πik(1− 4β)

)
. (5.22)

In the leading half, we observe competition between the effect of tension, which acts
to amplify the perturbation exponentially fast, and the effect of bending rigidity, which
acts to dampen the system. In the case B(s) = 16s2(1− s)2, the filament is predicted
to buckle for wavenumbers smaller than a critical value, k∗ =√15/(16π

√
8β), and the

most unstable wavenumber (corresponding to the largest positive growth rate) is given
by km = √15/β/(64π). While arbitrarily small wavenumbers can be supported by a
free filament, the critical value of β for which at least one wavelength of buckling
can be observed (k∗ = 1/2) is β∗ = 15/(8(8π)2) ≈ 0.0030 in this case. Once again,
the growing perturbation travels as a wave in the body frame in the direction opposite
gravity, as observed in the numerical simulations of figures 8 and 9.

To quantitatively compare the analytical predictions with the full numerical results,
we perform simulations in which an initially straight and vertically aligned filament
is weakly perturbed at a given wavenumber k across its entire length at t = 0:
u(s, 0) = 10−4 cos(4πks), and we set B(s) = 1. The effective growth rates of such
perturbations in the linear regime are extracted numerically and are compared with
the predictions of the linear analysis in figure 10 for two different values of β.
In agreement with the theoretical predictions, the trailing half of the filament is
always found to be stable to single wavenumber perturbations, while the leading
half is unstable over a finite range of wavenumbers where the competition between
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compressive tension and elasticity is favourable for buckling to occur. The numerical
results and theoretical growth rates follow similar trends, although damping is always
found to be smaller in the simulations. This systematic shift, which becomes more
apparent for larger values of k, may be due to the coupling between the two
halves, the coupling between modes, and the filament boundary conditions, which
have all been neglected for this first approximation. In particular, to achieve the above
estimation the assumption was made that the region of interest is well-separated from
the filament endpoints, whereas the instability observed in the simulations is dominant
near the leading tip of the filament. Perturbations in the trailing half do indeed decay
as predicted, in the form of upward travelling waves.

As discussed earlier and illustrated in figure 7(b), the tension in the leading half of
a filament with uniform thickness is also negative in the straightened (base) state, but
due instead to non-local hydrodynamic interactions. An approximation of the tension
accurate to O((log 1/ε)−2) for this case is derived in appendix A.

5.2. Linear eigenmodes of the local theory
The growth rate derived above was based on the short-time behaviour of a
Fourier perturbation of wavenumber k, where we neglected the couplings between
wavenumbers and assumed that the stability of the leading and trailing halves of
the filament could be analysed independently. Fourier modes, however, are not
exact eigenfunctions of the linearized equation (5.8), in particular near the filament
endpoints, which may explain the quantitative discrepancies we observed between the
theoretical and numerical growth rates in figure 10. A different approach which is
semi-analytical consists in solving for the exact eigenfunctions of the problem that
are valid along the entire length of the filament, as was previously done by Young
& Shelley (2007) and Guglielmini et al. (2012) for the buckling of elastic fibres in
extensional flows near hyperbolic stagnation points.

We determine numerically the linear eigenmodes of the problem in the case where
the non-local contribution is neglected. Keeping only the local contribution in (5.8)
and setting B(s) = 1 for simplicity, the linearized equation for the amplitude of the
shape fluctuations becomes

ut(s, t)= (c+ 1)[(T0us)s − βussss] + (c− 3)us, (5.23)

with T0(s) the base-state tension from equation (5.4). In the linear regime, we
seek exponentially growing solutions of the form u(s, t) = ϕn(s)eσnt, where the
eigenfunctions ϕn(s) satisfy

σnϕn = 2[c− 1− 3(c+ 1)s(1− s)](ϕn)s + (c+ 1)[s(1− s)(1− 2s)(ϕn)ss − β(ϕn)ssss].
(5.24)

Given that B(s) = 1 and that the tension profile vanishes at the ends in the linear
regime, the boundary conditions (2.4)–(2.5) simply become

ϕ′′n (0)= ϕ′′n (1)= ϕ′′′n (0)= ϕ′′′n (1)= 0. (5.25)

Equation (5.24) is an eigenvalue problem for the mode shapes ϕn(s), with
corresponding eigenvalues σn, whose real parts define the growth rates. We solve
the equation numerically using a second-order accurate finite-difference discretization,
which yields a countable set of eigenfunctions and eigenvalues. The eigenvalues are
ordered by decreasing values of the growth rate, Re(σ1) > Re(σ2) > · · · The largest
growth rates, which correspond to the most unstable modes, are plotted as functions
of 1/β in figure 11(a), where we observe that an increasing number of modes become
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FIGURE 11. (Colour online) (a) Real parts of the largest few eigenvalues σn as a function
of 1/β. Also shown with a dashed line is the maximum growth rate as predicted by
the local dispersion relation of (5.21). (b) The wavenumber corresponding to the largest
discrete Fourier component of the most unstable eigenfunction (circles) compared against the
wavenumber with the largest growth rate in the local dispersion relation (solid line).
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FIGURE 12. Eigenfunctions ϕ1 (a) and ϕ2 (b) for β in the range 1 × 10−4–5 × 10−3. In the
limit of β→∞, the eigenfunctions are biharmonic functions, and the shapes progressively
become less symmetric for more flexible filaments. Note that ϕ1 and ϕ2 become identical
below β ≈ 2.5× 10−4.

unstable with increasing filament flexibility (decreasing β). Nevertheless, we find that
the first mode with eigenvalue σ1 always remains the most unstable (although it
merges with the second mode when β . 2.5 × 10−4 as we discuss below), and the
maximum growth rate is found to compare favourably with the results of the Fourier
analysis of § 5.1.1.

The shapes of the eigenmodes are illustrated in figure 12, which shows the two most
unstable eigenfunctions ϕ1(s) and ϕ2(s) for values of the elasto-gravitation number β
in the range 1 × 10−4–5 × 10−3. Note that in the limit of β →∞ (stiff filaments),
the eigenfunctions are simply eigenfunctions of the biharmonic operator, but these
lose symmetry with decreasing β as the filament becomes more flexible and hence
susceptible to buckling in a non-uniform fashion as we have described. The modal
stability in figure 11(a) shows real parts of eigenvalues merging as β decreases: this is
seen here as the shapes of eigenfunctions ϕ1,2 become identical below β ≈ 2.5 × 10−4
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when the two eigenvalues σ1,2 become complex conjugates. In addition, ϕ1,2 remains
the most unstable buckling mode as β decreases further and more complicated shapes
involving higher wavenumbers arise. We see that the eigenvalues for the problem on
the whole interval roughly agree with the predicted growth rates from the previous
section as a consequence of the most unstable eigenfunction only taking significant
values on the leading half of the filament, s ∈ (1/2, 1). We note a striking similarity
between the linearly unstable eigenmodes calculated here for n = 1, 2 and the finite-
amplitude buckled shapes observed in the nonlinear numerical simulations of figures 8
and 9.

The increasing wavenumber content of the unstable eigenfunctions with increasing
flexibility is consistent with the widening range of unstable wavenumbers predicted by
the Fourier analysis of § 5.1.1. To compare both results more quantitatively, we project
the leading half s ∈ (1/2, 1) of ϕ1(s) onto a discrete Fourier cosine basis cos(4πks)
and compare the wavenumber km with the dominant projection to the most unstable
wavenumber predicted by the dispersion relation of § 5.1.1. As shown in figure 11(b),
both values match closely, which further corroborates the use of a countable Fourier
basis for the stability analysis.

6. Conclusion
In this paper we have investigated some of the fundamental dynamics of a single

flexible filament as it sediments in a viscous fluid. The competition between elastic
forces and viscous forces induced by gravity was characterized by a dimensionless
quantity that we termed the elasto-gravitation number, β. We first considered the
weakly flexible regime, where the filament is nearly rigid, and using a multiple-scale
analysis found a self-similar scaling of the filament shape with an amplitude dependent
upon the body orientation. Equilibrium shapes and trajectories were then analysed in
this regime, and we gave predictions for the dynamics of clouds of multiple (non-
interacting) filaments. By comparing against full numerical simulations, the analytical
predictions were found to be accurate for elasto-gravitation numbers down to β ≈ 0.01
in the case of spheroidal filaments with thickness profile r(s) = 2

√
s(1− s). A similar

analysis was provided in appendix A for the shapes, velocities and rotation rates of
filaments with uniform thickness.

We then turned our attention to the buckling of a very flexible filament sedimenting
along its long axis, which can occur for sufficiently small elasto-gravitation numbers.
While arbitrarily small wavenumbers can be supported by a free filament, the
critical value of β for which one wavelength of buckling can be observed was
found to be β∗ = 15/(8(8π)2) ≈ 0.0030 in the case of the spheroidal filament
with B(s) = 16s2(1 − s2). Two approaches were taken to study the most unstable
wavelength perturbations and their growth rates. In the first approach, we assumed
highly oscillatory perturbations so that the non-local integral operator could be handled
analytically and the filament endpoints did not play a role. In the second, we solved
numerically an eigenvalue problem for the most unstable eigenmodes on the full
interval. Both approaches yielded predictions that lay in agreement, which in turn
matched very closely with the results of full numerical simulations.

Future work might consider the sedimentation of many flexible bodies from
experimental, numerical and analytical perspectives. Issues such as filament
entanglement may dominate the dynamics in systems with sufficiently close-packed
flexible filaments. As a final observation, we note that the filament shapes, trajectories,
and instabilities studied in this paper can be interpreted equivalently as those of a
positively buoyant flexible filament rising against gravity.
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Appendix A. A filament of uniform thickness: bending and buckling by non-
local hydrodynamic interactions

In both §§ 4 and 5 we considered the filament profile r(s) = 2
√

s(1− s) for
mathematical convenience. The equilibrium shapes found in figure 2(c), for instance,
were a consequence of variations in gravitational potential and viscous drag along
the filament length. However, filaments of uniform thickness, r(s) = 1, are expected
to result in qualitatively similar shapes but instead as a consequence of a secondary
effect, namely by non-local hydrodynamic interactions. As illustrated in figure 1,
the central segments of the filament experience a stronger disturbance flow and
will sediment faster than segments nearer to the filament ends. An accompanying
reorientation is also to be expected. This case was considered by Xu & Nadim (1994).
Similarly, as illustrated in figure 7, a sufficiently flexible filament of uniform thickness
is also expected to buckle when sedimenting along its long axis. While the effects
due to variations in the filament thickness are O(1), the effects due to non-local
hydrodynamic interactions will be shown to be considerably smaller, O(ln (1/ε)−1).

In both regimes (weakly and highly flexible filaments), the leading-order
hydrodynamic interaction appears in the equations of motion through the spatially
varying function c(s) in (2.10), while a higher-order correction is given by the non-
local integration of (2.11), which itself is now made considerably more challenging
analytically. We will now proceed to derive the shapes and velocities of filaments with
uniform thickness in the weakly flexible regime, as well as the base-state tension for
sedimentation along the filament’s long axis.

A.1. Reorientation of a weakly flexible filament
Choosing r(s) = 1, we have a uniform distribution of gravitational potential and
bending stiffness, Fg(s)=−1 and B(s)= 1. Equations (4.9) and (4.10) then become

U(0) = 2(c(s)− 1)
[
T (0)s + cos θ (0)

]+ 2S
[
T (0)s

]
, (A 1)

V (0) + (s− 1/2)θ (0)t =−(c(s)+ 1)
[
ussss + sin θ (0)

]− S [ussss] , (A 2)

where now c(s)= c0+ log(4s(1− s)), with c0 = log(1/ε2)� 1. We pursue approximate
expressions at leading order in the small number 1/c0. It is straightforward to show
that U(0) = O(c0), V (0) = O(c0), T (0) = O(c−1

0 ) and u = O(c−1
0 ). Therefore, we assume

the following series expansions,

V (0) =
+∞∑
n=0

Vnc1−n
0 , θ (0) =

+∞∑
n=0

θnc−n
0 , sin θ (0) =

+∞∑
n=0

anc−n
0 , u(s)=

+∞∑
n=0

un(s)c
−n−1
0 .

(A 3)

Upon insertion into (A 2), we obtain

V1 + (s− 1/2)∂tθ0 =−[1+ ln(4s(1− s))]a0 − u′′′′0 , (A 4)
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Vn+1 + (s− 1/2)∂tθn =−[1+ ln(4s(1− s))](an + u′′′′n−1)− u′′′′n − S[u′′′′n−1]. (A 5)

Multiplying by (s − 1/2) and integrating, and using the boundary conditions
u′′′n (0) = u′′′n (1) = 0, u′′n(0) = u′′n(1) = 0, we find that un(s) is symmetric ∼1/2 for
all n and ∂tθn = 0 by induction. Therefore, there is no rotation at leading order in 1/β,
θ (0)t = 0.

For the sake of convenience we again let ζ = s − 1/2. Then, defining the series
expansions

U(0) = c0U0 + U1 + O(c−1
0 ), V (0) = c0V0 + V1 + O(c−1

0 ), (A 6)

T (0) = c−1
0 T0 + O(c−2

0 ), u= c−1
0 u0 + O(c−2

0 ), (A 7)

θ (0) = θ0 + c−1
0 θ1 + O(c−2

0 ), (A 8)

we find

U0 = 2 cos θ0, V0 =− sin θ0, (A 9)
U1 + 2θ1 sin θ0 = 2[ln(1− 4ζ 2)− 1] cos θ0 + 2T ′0, (A 10)

V1 + θ1 cos θ0 =−u′′′′0 − [ln(1− 4ζ 2)+ 1] sin θ0. (A 11)

Using the boundary conditions on T0(s) and u0(s), we find

T ′0 + [ln(1− 4ζ 2)+ 2(1− log 2)] cos θ0 = 0, (A 12)

u′′′′0 + [ln(1− 4ζ 2)+ 2(1− log 2)] sin θ0 = 0, (A 13)

leading to the leading-order tension profile,

T0(ζ )= [2 log(2)ζ − (ζ − 1
2) log(1− 2ζ )− (ζ + 1

2) log(1+ 2ζ )] cos θ0, (A 14)

and the leading-order filament deflection profile,

u0(ζ )= 1
24 [−(ζ − 1/2)4 log(1− 2ζ )− (ζ + 1/2)4 log(1+ 2ζ )

+ ( 13
6 + 2 log 2)ζ 4 + 1

4(12 log 2+ 1)ζ 2] sin θ0. (A 15)

This shape is the same as that derived by Xu & Nadim (1994) when θ0 = π/2,
although with the correction of a small typo. Reinserting ζ = s− 1/2, we have that

T (0)(s)= c−1
0 ν(s) cos θ (0) + O(c−2

0 ), (A 16)

u(s)= c−1
0 h(s) sin θ (0) + O(c−2

0 ), (A 17)

with

ν(s)= (1− s) log(1− s)− s log s, (A 18)

and

h(s)=− 1
24 [(s− 1)4 log(2− 2s)− s4 log(2s)

+ ( 13
6 + 2 log 2)(s− 1/2)4 + (3 log 2+ 1

4)(s− 1/2)2]. (A 19)

The tension is therefore zero at leading order when the filament is sedimenting
perpendicular to its long axis, but otherwise varies along the filament. A plot of
ν(s) is shown in figure 13. Consequently, (4.19) may now be written as

V (1) + (s− 1/2)(θ (0)τ + θ (1)t )= (c(s)+ 1)[(T (0)us)s − u′′′′1 − θ (1) cos θ (0)]
+ (c(s)− 3)(T (0)s + cos θ (0))us + S[(T (0)us)s − u′′′′1 − θ (1) cos θ (0)]

+
∫ 1

0

1u(T (0)s (s′)+ cos θ (0))− us(s)(T (0)s (s)+ cos θ (0))
|s− s′| ds′. (A 20)
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Compression
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FIGURE 13. (Colour online) The tension profile along a straight filament of uniform
thickness due to non-local hydrodynamic interactions, from (A 28), whose amplitude is
proportional to cos θ (0). Once again, buckling is possible in the leading half of the filament,
where s ∈ (1/2, 1) (see figure 7).

Multiplying by (s − 1/2) and integrating, and imposing θ (1)t = 0 to remove the
secular term, we have

θ (0)τ = 6[J0 + c−1
0 (J1 + J2 + J3)] sin(2θ (0))+ O(c−2

0 ), (A 21)

where

J0 =
∫ 1

0
(s− 1/2)hs ds, (A 22)

J1 =
∫ 1

0
(s− 1/2)(νhs)s ds, (A 23)

J2 =
∫ 1

0
(s− 1/2)νshs ds, (A 24)

J3 =
∫ 1

0
(s− 1/2)[log(4s(1− s))− 3]hs ds. (A 25)

Inserting ν(s) and h(s) from above, the resulting rotation rate in terms of the single
time t is given by

θt = 1
β

(
7

400
+ log (1/ε2)

−1 749− 150π2 + 315 log(2)
9000

)
sin(2θ)+ O(log (1/ε2)

−2
, β−2)

= 1
β

(
0.003− 0.057 log (1/ε2)

−1
)

sin(2θ)+ O(log (1/ε2)
−2
, β−2). (A 26)

The result is physical for ε < 2 exp(107/45 − 10π2/21) ≈ 0.196. This expression may
be compared with that for the spheroidal filament shown in (4.27). The time scale for
reorientation is now significantly longer than that found for the spheroidal filament.
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A.2. Compression of a uniform flexible filament

As illustrated in figure 7(b), the tension in the leading half of a filament with uniform
thickness, sedimenting along its long axis, is still expected to be negative in the
straightened state due to non-local hydrodynamic interactions. The base-state tension
and sedimentation speed were already derived for this case in the previous section as
the special case θ (0) = 0, from which we find

U = 2c0 + 2(2 log(2)− 3)+ O(c−1
0 ), (A 27)

T(s)= c−1
0 ν(s)+ O(c−2

0 ), (A 28)

with c0 = log(1/ε2), and ν(s) defined in (A 18) and plotted in figure 13. We observe
that T(s) > 0 in the trailing half of the filament, s < 1/2, and that T(s) < 0 in the
leading half of the filament, s> 1/2. Buckling is therefore still possible in the leading
half of the filament as a consequence of non-local hydrodynamic interactions even if
the filament has uniform thickness.

Appendix B. Reduction of integral operators for high wavenumber
perturbations

When analysing the instability of the two halves of the filament in § 5 we use
that the Fourier basis functions approximately diagonalize the integral operators in
(2.13) for large wavenumbers, k � 1, and we also decouple the integral operators
into operations on the two halves of the filament separately. We now justify both
approximations.

Consider a point s ∈ [1, 1 − 1], with 1> 0. Then for λ > 1, with k� 1 such that
k1 is sufficiently large, the action of the integral operators in (2.11) on the Fourier
basis functions yield

S[eiλks] ≈ (−2γ − 2 log(λk)− log(s(1− s)))eiλks, (B 1)
P[eiλks] ≈ 2i(λk)eiλks, (B 2)

where γ ≈ 0.577 is Euler’s constant. To show this, we simply consider a change of
variables, ξ = λks′ so that

S[eiλks](s)=Λ(k, s)eiλks, (B 3)

with

Λ(k, s)=
∫ λk(1−s)

−λks

eiξ − 1
|ξ | dξ

≈ 2
∫ 1

0

cos ξ − 1
ξ

dξ + 2
∫ +∞

1

cos(ξ)
ξ

dξ − 2 log(λk)− log(s(1− s)), (B 4)

which gives the desired result. The same change of variables gives

P[eiλks] = λkeiλks

∫ λk(1−s)

−λks

eiξ − 1− iξeiξ

ξ |ξ | dξ

≈ 2iλkeiλks

∫ +∞
0

sin ξ − ξ cos ξ
ξ 2

dξ = 2iλkeiλks. (B 5)
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Moreover, the main contribution of S[eiλks](s) and P[eiλks](s) comes from the
neighbourhood of s. Specifically, for an interval I ⊂ [0, 1] we define

SI[eiλks] =
∫

I

eiλks′ − eiλks

|s′ − s| ds′, (B 6)

PI[eiλks] =
∫

I

(eiλks′ − eiλks)/(s′ − s)− iλkeiλks′

|s′ − s| ds′, (B 7)

and we will show that

S[0,1/2][eiλks] ≈ (−2γ − 2 log(λk)− log(s(1/2− s)))eiλks, (B 8)

P[0,1/2][eiλks] ≈ 2iλkeiλks, (B 9)

when s ∈ (1, 1/2−1), and

S[1/2,1][eiλks] ≈ (−2γ − 2 log(λk)− log((s− 1/2)(1− s)))eiλks, (B 10)

P[1/2,1][eiλks] ≈ 2iλkeiλks, (B 11)

when s ∈ (1/2+1, 1−1). To see this, let

S[0,1/2][eiλks] = I1eiks, (B 12)

S[1/2,1][eiλks] = I2eiks. (B 13)

and

P[eiλks] = P[0,1/2][eiλks] + P[1/2,1][eiλks]. (B 14)

We have when s ∈ [1, 1/2−1], with k� 1,

I1 ≈−2γ − 2 log(λk)− log(s(1/2− s)), (B 15)
I2 ≈ log((1− s)/(1/2− s)). (B 16)

and

P[0,1/2]/(λk)≈ 2ieiλks, (B 17)

P[1/2,1]/(λk)≈ 0. (B 18)

We observe on this interval that I1 dominates I2 and the first integral for P dominates
the second. Similar computation yields for s ∈ [1, 1/2 −1]. A further approximation,
leading to (5.17), is obtained using

2
∫ 1/2

0
log(s(1/2− s)) ds= 2

∫ 1

1/2
log((s− 1/2)(1− s)) ds=−2− 2 log 2. (B 19)

We now simply replace the term log(s(1/2 − s)) in (B 8) and the term log((s −
1/2)(1 − s)) in (B 10) by −2 − 2 log 2. In addition, we see that P[u] ≈ 2us ≈ PI[u] for
high wavenumber perturbations.
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