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Electrohydrodynamic instabilities of fluid-fluid interfaces can be exploited in various
microfluidic applications to enhance mixing, replicate well-controlled patterns, or generate
drops of a particular size. In this work, we study the stability and dynamics of a system
of three superimposed layers of two immiscible fluids subject to a normal electric field.
Following the Taylor-Melcher leaky dielectric model, the bulk remains electroneutral while
a net charge accumulates on the interfaces. The interfacial charge dynamics is captured
by a conservation equation accounting for Ohmic conduction, advection by the flow,
and finite charge relaxation. Using this model, we perform a linear stability analysis and
identify different modes of instability, and we characterize the behavior of the system as a
function of the relevant dimensionless groups in each mode. Further, we perform numerical
simulations using the boundary element method to study the effect of nonlinearities on
long-time interfacial dynamics. We demonstrate how the coupling of flow and surface
charge transport in different modes of instability can give rise to nonlinear phenomena
such as tip streaming or pinching of the film into droplets.
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I. INTRODUCTION

The interface between two immiscible fluids can become unstable under the effect of an imposed
electric field. In weakly conducting dielectrics, ion dissociation in the presence of an electric field
is negligible, and therefore, diffuse Debye layers are absent in these systems where the fluid motion
occurs as a result of the coupling between the electric and the hydrodynamic stresses at the interface.
Following the Taylor-Melcher leaky dielectric model, the bulk of the fluid is assumed electroneutral
and all free charges are concentrated on the interfaces separating the fluid volumes with different
electrical properties [1,2]. The electric field acting on the interfacial charge creates electric stresses
along the normal and tangential directions, which cause deformation and drag the fluid into motion.
Surface tension acts mainly as a stabilizing effect, trying to restore the equilibrium interfacial shape.

In their pioneering works, Taylor and McEwan [3] and Melcher and coworkers [4,5] studied the
effect of an electric field on the stability of fluid-fluid interfaces and provided analytical solutions in
different limits. Their analyses were followed by an extensive body of research aiming to obtain
more accurate analytical solutions [6–8], to provide numerical solutions for large deformations
[9,10], and to study more complex configurations such as multilayer systems [11–15]. Of interest
to us here is to understand the stability and dynamics of a system of superimposed fluid layers
under the effect of an external electric field. Apart from its fundamental importance, there has
been a renewed interest in this topic in recent years due to engineering applications where these
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electrohydrodynamic (EHD) instabilities were exploited to develop techniques by which well-
controlled patterns can be replicated on free surfaces, such as polymeric films or fluid layers flowing
in microfluidic channels. In one of these techniques, EHD instabilities were employed to create fine
periodic patterns in polymeric layers confined between a substrate and a mask [16–20]. A summary
of these applications was reviewed in [21]. Theoretical analyses and numerical simulations were
employed to study the behavior of these systems under the following assumptions: (i) in the limit of
zero inertia [8,9,22]; (ii) in the limit of instantaneous charge relaxation where the charge is mainly
transported via Ohmic current [9,15]; and (iii) using the lubrication approximation for thin films
[7,9,12,13].

More recently, EHD instabilities were used in microfluidic devices to enhance mixing, or to
generate droplets of a certain size. Zahn and Reddy [14] developed a microfluidic mixer where two
streams of immiscible fluids are mixed in a microchannel by applying an external field. Zhang et al.
[15] used transfer relations to study double- and trilayer systems in a variety of configurations such
as unbounded geometries and channel flows, and provided analytical solutions in different limits of
the Reynolds number. They recovered the previous analytical results of [6,11] for trilayer systems,
and those of [8] for double-layer systems as special cases of their model. Considering the limit of
instantaneous charge relaxation, they observed two modes of instability which they referred to as
“kink” and “sausage.”

In this work, we study the stability and dynamics of a freely suspended viscous film that is
subject to a perpendicular external electric field. We use a charge transport model that incorporates
finite charge relaxation, interfacial charge convection, as well as Ohmic conduction from the bulk.
This enables us to characterize the effect of charge convection on the behavior of the system, which
is especially important under strong electric fields. We present the governing equations in Sec. II
and their nondimensionalization in Sec. III. Next, we conduct a linear stability analysis in Sec. IV
where we study the effect of the nondimensional parameters governing the system on the fastest
growing mode at the onset of instability. To supplement our theory, we employ boundary element
simulations in Sec. V to explore how the development of the flow and charge dynamics far from
equilibrium gives rise to nonlinear phenomena such as tip streaming or pinching into droplets.
Finally, we conclude and discuss the potential extensions to the present work in Sec. VI.

II. PROBLEM DEFINITION AND GOVERNING EQUATIONS

We study electrohydrodynamic instabilities that arise at the interfaces of a neutrally buoyant
liquid film that is suspended in another liquid and subject to a uniform electric field along the
perpendicular direction E∞ = E∞êz. The liquid film occupying volume Vm is surrounded by the
upper layer Vu from above, and by the lower layer Vl from below as depicted in Fig. 1. The subscripts
l , m, and u correspond to the lower, middle, and upper layers, respectively. The interfaces separating
the three liquid layers are denoted by Sl and Su. At equilibrium, the system is at rest, both interfaces
are flat, and coincide with the planes z = ±h. We consider two-dimensional dynamics in the (x, z)
plane. The shape of each interface is parametrized as z = ξl,u(x, t ), with unit normal n pointing from
the film into the suspending liquid.

The two phases are immiscible leaky dielectric Newtonian fluids with constant material proper-
ties. The electric permittivities, electric conductivities, and viscosities are denoted by (ε̄, σ̄ , μ̄) in the
film and by (ε, σ, μ) in the suspending liquid. Following the Taylor-Melcher leaky dielectric model
[1], the bulk is assumed to be electroneutral while any net charge in the system is concentrated on
the interfaces between the two liquids. Consequently, the electric potential is harmonic in all layers:

∇2ϕ j (x) = 0, x ∈ Vj, j ∈ {l, m, u}. (1)

Far from the film, the electric field E = −∇ϕ approaches the applied uniform field

E → E∞ = E∞êz, as z → ±∞. (2)
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FIG. 1. Problem definition: A liquid film suspended between two semi-infinite immiscible liquid layers is
subject to a perpendicular electric field E∞.

Across the interface, the tangential component of the electric field remains continuous while its
normal component undergoes a jump due to the mismatch in electrical properties on both sides:

n × [[E]] = 0, x ∈ S j, j ∈ {l, u}. (3)

As a result, a surface charge density q(x) develops on each interface and is given by Gauss’s law:

qi(x) = n · [[εE]], x ∈ Si, i ∈ {l, u}. (4)

The jump operator introduced above is defined as the subtraction of any field variable on both
sides of each interface, [[F (x)]] = Fl,u(x) − Fm(x). The evolution of the surface charge density
is described by a charge conservation equation accounting for finite charge relaxation, Ohmic
conduction from the bulk and charge convection by the induced velocity

∂t qi + n · [[σE]] + ∇s · (qu)i = 0, x ∈ Si, i ∈ {l, u}, (5)

where ∇s = (I − nn) · ∇ is the surface gradient operator.
Neglecting the effects of inertia and gravity, the fluid motion is governed by the Stokes equations

in all layers:

μ̄∇2um − ∇pm = 0, ∇ · um = 0, x ∈ Vm, (6)

μ∇2u j − ∇p j = 0, ∇ · u j = 0, x ∈ Vj, j ∈ {l, u}. (7)

The velocity is continuous across the interfaces, and vanishes far away from the film:

[[u(x)]] = 0, x ∈ Sl,u, (8)

u(x) → 0, as z → ±∞. (9)

In the absence of Marangoni effects, the jump in electric and hydrodynamic tractions across each
interface is balanced by surface tension forces

[[ f H ]] + [[ f E ]] = γ (∇s · n)n, x ∈ Sl,u, (10)

where γ denotes the surface tension between the two liquids, assumed to be constant. Hydrodynamic
and electric tractions can be expressed in terms of the Newtonian and Maxwell stress tensors,
respectively,

f H = n · T H , T H = −pI + μ(∇u + ∇uT ), (11)
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f E = n · T E , T E = ε
(
EE − 1

2 E2I
)
. (12)

The electric traction can alternatively be expressed in terms of its tangential and normal components:

f E = [[εEn]]Et + 1
2

[[
ε
(
En2 − Et 2)]]n = qEt + [[pE ]]n. (13)

The effect of the tangential electric field on the interfacial charge distribution is captured by the first
term on the right-hand side. The second term captures normal electric stresses and can be interpreted
as the jump in an electric pressure [23].

Finally, the interfaces evolve and deform under the local velocity field as material surfaces.
Defining the functions gl,u(x, t ) = z − ξl,u(x, t ), the kinematic boundary conditions read:

Dgj

Dt
= 0, x ∈ S j, j ∈ {l, u}, (14)

leading to the conditions

∂tξ j = −u∂xξ j + w, x ∈ S j, j ∈ {l, u}, (15)

where u = (u,w) are the velocity components. Also, the outward unit normal vectors to each
interface can be written as nu = (∇g/|∇g|)u and nl = −(∇g/|∇g|)l .

III. NONDIMENSIONALIZATION

For the system of governing equations presented above, dimensional analysis yields five nondi-
mensional groups, three of which characterize the mismatch in physical properties between the film
and the suspending liquid:

R = σ

σ̄
, Q = ε̄

ε
, λ = μ̄

μ
. (16)

A system with λ > 1 corresponds to a film that is more viscous than the suspending liquid, and
vice versa. The limit λ → ∞ describes a rigid film, while λ → 0 is relevant to describe a gas film
suspended in a liquid.

The other two nondimensional groups can be obtained as the ratios of different times scales in
the problem. First, we note that the conduction response of each liquid layer is characterized by the
charge relaxation time scale, which is the time required for the free charge in the bulk to relax:

τc = ε

σ
, τ̄c = ε̄

σ̄
, (17)

as can be deduced from Eqs. (4) and (5). The product RQ = τ̄c/τc is the ratio of the charge relaxation
timescales in both liquids. For instance, in the case RQ < 1 conduction occurs at a faster rate in the
film. Under an applied electric field, free charges in the bulk start to move towards the interfaces,
resulting in the polarization of the film. This occurs on a timescale comparable to the Maxwell-
Wagner relaxation time

τMW = ε̄ + 2ε

σ̄ + 2σ
= τc

α
, where α = 1 + 2R

R(Q + 2)
. (18)

Following the accumulation of charge on the interfaces, the fluid is dragged into motion due to
the force exerted by the electric field. This electrohydrodynamic flow deforms the interfaces on a
timescale that is proportional to the inverse shear rate of the driving electric stress

τEHD = μ(1 + λ)

εE∞2 . (19)
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In response, the interfacial tension acts as a restoring effect trying to minimize the surface area. The
deformed interface recovers its equilibrium flat shape on the capillary timescale defined as

τγ = μ(1 + λ)h

γ
. (20)

By comparing τc, τEHD, and τγ , we can construct two additional nondimensional groups. First, we
define the electric capillary number as the ratio of the capillary timescale over the electrohydrody-
namic flow timescale

CaE = τγ

τEHD
= εE∞2h

γ
. (21)

According to Eq. (21), the stronger the applied electric field the larger the electric capillary number.
Moreover, the ratio of the charge relaxation timescale to the flow timescale defines the electric
Reynolds number as

ReE = τc

τEHD
= ε2E∞2

μ(1 + λ)σ
, (22)

which characterizes the importance of charge convection versus conduction, two mechanisms
responsible for the evolution of the interfacial charge distribution.

We scale the governing equations and boundary conditions using timescale τMW, lengthscale h,
pressure scale εE2

∞, velocity scale hτ−1
EHD, and characteristic electric potential hE∞. The dimension-

less momentum equations read

∇2um − (1 + λ−1)∇pm = 0, x ∈ Vm, (23)

∇2u j − (1 + λ)∇pj = 0, x ∈ Vj, j ∈ {l, u}. (24)

The charge conservation equations become

α∂t q j + n · [E j − R−1Em] + ReE∇s · (qu) j = 0, x ∈ S j, j ∈ {l, u}, (25)

where

qj = n · [E j − QEm], x ∈ S j, j ∈ {l, u}. (26)

The stress balance at the interfaces yields

n · [ − p jI + (1 + λ)−1
(∇u j + ∇uT

j

) + pmI − (1 + λ−1)−1
(∇um + ∇uT

m

)]
+ n · [(

E jE j − 1
2 E2

j I
) − Q

(
EmEm − 1

2 E2
mI

)] = Ca−1
E (∇s · n)n, x ∈ S j, j ∈ {l, u}. (27)

Finally, the kinematic boundary conditions become

α∂tξ j = ReE (w − u∂xξ j ), x ∈ S j, j ∈ {l, u}. (28)

The remaining governing equations and boundary conditions in Eqs. (1) to (3), (8) and (9) remain
unchanged in their nondimensional form, and hence are not repeated here for brevity. In the
remainder of the paper, all equations and variables are presented in nondimensional form.

IV. LINEAR STABILITY ANALYSIS

A. Theoretical formulation

In this section, we perform a linear stability analysis to study the dynamic behavior of the system
at short times as a function of the governing parameters. We note that the system is stable in the
absence of the electric field due to the effect of surface tension. In the base state (tilded variables), all
liquid layers are at rest, both interfaces have flat shapes, ξ̃u = −ξ̃l = 1, and the interfacial charges
are q̃u = −q̃l = 1 − RQ. The applied electric field induces pressure jumps p̃u − p̃m = p̃l − p̃m =

103703-5



FIROUZNIA AND SAINTILLAN

(1 − QR2)/2 across the interfaces due to the mismatch in electrical properties between the film
and the suspending liquid. We consider infinitesimal perturbations (primed variables) applied to the
base-state variables:

ξl = −1 + εξ ′
l , ξu = 1 + εξ ′

u, ql = q̃l + εq′
l , qu = q̃u + εq′

u, (29)

ϕ j = ϕ̃ j + εϕ′
j, u j = ũ j + εu′

j, p j = p̃ j + εp′
j, j ∈ {l, m, u}. (30)

Next, we substitute Eqs. (29) and (30) into the governing equations and boundary conditions and
linearize with respect to ε. The governing equations for the electric potential, velocity, and pressure
are

∇2ϕ′
j (x) = 0, x ∈ Vj, j ∈ {l, m, u}, (31)

∇2u′
m − (1 + λ−1)∇p′

m = 0, x ∈ Vm, (32)

∇2u′
j − (1 + λ)∇p′

j = 0, x ∈ Vj, j ∈ {l, u}, (33)

with jump conditions [[u′]] = [[w′]] = 0 and êz × [[E ′]] + n′ × [[Ẽ]] = 0. The stress balance at the
linearized location of the upper interface z = 1 yields

(1 − QR2)∂xξ
′
u = (1 + λ−1)−1(∂zu

′
m + ∂xw

′
m) − (1 + λ)−1(∂zu

′
u + ∂xw

′
u) + ∂xϕ

′
u − RQ∂xϕ

′
m, (34)

Ca−1
E ∂xxξ

′
u = 2(1 + λ−1)−1∂zw

′
m − 2(1 + λ)−1∂zw

′
u + p′

u − p′
m + ∂zϕ

′
u − RQ∂zϕ

′
m, (35)

along the x and z directions, respectively. The kinematic boundary condition, charge conservation
equation, and Gauss’s law read

α∂tξ
′
u = ReEw′

u, (36)

α∂t q′
u = [∂zϕ

′
u − R−1∂zϕ

′
m] + ReE (1 − RQ)∂zw

′
u, (37)

q′
u = Q∂zϕ

′
m − ∂zϕ

′
u. (38)

Similarly, the linearized boundary conditions on the lower interface z = −1 are

(1 − QR2)∂xξ
′
l = (1 + λ−1)−1(∂zu′

m + ∂xw
′
m) − (1 + λ)−1(∂zu′

l + ∂xw
′
l ) + ∂xϕ

′
l − RQ∂xϕ

′
m, (39)

Ca−1
E ∂xxξ

′
l = 2(1 + λ)−1∂zw

′
l − 2(1 + λ−1)−1∂zw

′
m + p′

m − p′
l + RQ∂zϕ

′
m − ∂zϕ

′
l , (40)

α∂tξ
′
l = ReEw′

l , (41)

α∂t q′
l = [R−1∂zϕ

′
m − ∂zϕ

′
l ] − ReE (1 − RQ)∂zw

′
l , (42)

q′
l = ∂zϕ

′
l − Q∂zϕ

′
m. (43)

Next, we seek normal-mode solutions of the form ϕ′(x, z, t ) = Re{ϕ̂(z) exp (st + ikx)}, with similar
expressions for all the variables. We perform a temporal stability analysis, in which the wave number
k of the perturbation is real-valued and the corresponding growth rate s can, in general, be complex.
Substituting the normal-mode solutions into the governing equations, we obtain a coupled system
of differential equations for the normal-mode amplitude functions such as ϕ̂(z) (see Appendix A for
details of the equations). Applying the boundary conditions along with the decay properties as z →
±∞ results in an algebraic system for the unknown coefficients. Finally, we obtain a biquadratic
dispersion relation by setting the determinant of the algebraic system to zero.

Employing a more comprehensive charge transport model compared to the previous studies
[7,15] results in a larger number of parameters. Therefore, the eigenvalue problem is solved numer-
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FIG. 2. Streamlines of the flow in the two dominant modes of linear instability: (a) in-phase (sinuous)
mode when R = 2 and (b) antiphase (varicose) mode when R = 0.5. Other parameters are (Q, λ,CaE , ReE ) =
(1, 1, 10, 1) in both systems. The blue region illustrates a typical shape of the film in the dominant mode.

ically for every k, and the effect of each parameter on the stability of the system is characterized.
Using our methodology for the case of two semi-infinite fluid layers as well as three-layer channel
flow, we recover the analytical results of [15] in the limit of instantaneous charge relaxation, where
the charge is transported only via Ohmic conduction.

B. Results and discussion

The linear stability analysis (LSA) yields two types of eigenmodes. Given that the dispersion
equation is biquadratic in s, there are two solution branches associated with each mode (for a total
of four eigenvalues), one of which is dominant. In the first mode, the instability is characterized by
the growth of in-phase (sinuous) perturbations for the two interfaces (ξu = ξl + 2). In the second
mode, however, antiphase (varicose) perturbations are the most unstable (ξu = −ξl ). Figure 2 shows
the flow induced in each mode of instability along with the typical shapes of the film.

The effect of the external electric field is characterized by both the electric capillary number and
the electric Reynolds number. Figure 3 shows the growth rate as a function of wave number k in
each mode of instability for different values of CaE and ReE . For a given pair of leaky dielectric

FIG. 3. Growth rate versus wave number in the dominant modes of linear instability for (R, Q, λ) =
(0.5, 1, 1): (a) effect of electric capillary number when ReE = 1. Inset shows the unstable wave numbers.
(b) Effect of electric Reynolds number when CaE = 10.
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FIG. 4. Wave number kmarg corresponding to marginally stable perturbations (σmarg = 0) in different modes
of instability as a function of (a) electric capillary number and (b) electric Reynolds number for two different
systems with R = 0.5 and R = 2 while (Q, λ) = (1, 1). ReE = 1 in (a) and CaE = 10 in (b).

liquids, the electric capillary number CaE characterizes the strength of the electric stresses versus
surface tension effects. According to Fig. 3(a), the system is unstable at low wave numbers over a
finite range of k, and increasing CaE destabilizes the system by increasing the maximum growth
rate as well as the width of the unstable range. The effect of surface tension becomes stronger for
large values of k until it stabilizes the system for k > kmarg > 0 where kmarg is the wave number
associated with the marginal stability (smarg = 0). The electric Reynolds number plays a critical
role in determining the charge transport regime and consequently the dynamics of the system. As
ReE increases, the dominant mode of charge transport switches from Ohmic conduction to charge
convection on the interface. According to Fig. 3(b), increasing ReE not only destabilizes the system,
but can also alter the dominant mode of instability. Figure 4 shows kmarg as a function of CaE and
ReE for two model systems with different dominant unstable modes. According to Fig. 4, kmarg is
identical between the two modes for large values of CaE and Re. Moreover, kmarg increases as a
function of CaE and grows linearly when CaE � 1.

The fate of the system following the onset of instability is determined by the dynamical behavior
in the fastest growing mode. The maximum growth rate and the corresponding wavenumber in
each mode are denoted respectively as smax and kmax. We studied the effect of each nondimensional
group on the maximum growth rate in Figs. 5 and 6 (for more information on kmax see Appendix B).

FIG. 5. Maximum growth rate in each mode of instability as a function of (a) electric capillary number
and (b) electric Reynolds number for two different systems with R = 0.5 and R = 2 while (Q, λ) = (1, 1).
ReE = 1 in (a) and CaE = 10 in (b) (identical systems studied in Fig. 4).
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FIG. 6. Maximum growth rate in each mode of instability as a function of (a) viscosity ratio λ for two
different systems with R = 0.5 and R = 2, (b) conductivity ratio R, and (c) permittivity ratio Q. The permittivity
ratio is set to Q = 1 in (a,b), the conductivity ratio is R = 1 in (c), and λ = 1 in (b,c). In all systems
(CaE , ReE ) = (10, 1).

Information about the fastest growing mode is of practical importance for engineering applications
where electrohydrodynamic instabilities may be utilized to generate interfacial patterns with a
prescribed lengthscale [14,16,20]. When RQ < 1 (τ̄c < τc), the charge is provided to the interface
at a faster rate in the film than in the bulk. Therefore, the interfacial charge is predominantly provided
from the film, and the dipole moment is aligned with the external electric field. Conversely, when
RQ > 1, the suspending liquid is more conducting and the dipole moment is antiparallel to the
applied electric field. Since displacing the dipole moment by deforming the interface results in a
destabilizing torque, the system is inherently more unstable in this configuration. This is confirmed
in Figs. 5 and 6(a) when comparing the maximum growth rates between two model systems with
RQ = 2 and 0.5. We note the two systems are comprised of identical leaky dielectric liquids that
are arranged in an opposite order in the film and the suspending phase (R1 = R−1

2 ). According to
Fig. 5(a), the maximum growth rate in each mode increases with CaE until it plateaus at CaE � 1.
Figure 5(b) shows the maximum growth rate as a function of ReE for two different configurations.
Increasing the electric Reynolds number has a destabilizing effect in both cases. Additionally,
the mode of instability (in-phase versus antiphase) can switch as a function of electric Reynolds
number. The maximum growth rate is found to scale linearly with ReE in both limits of ReE � 1
and ReE � 1.

The effect of the ratios of material properties is considered in more detail in Fig. 6. We observe in
Fig. 6(a) that a large viscosity ratio (more viscous film) is unfavorable for stability regardless of the
configuration. Moreover, the dominant mode of stability switches from antiphase to in-phase when
going from small to large values of λ. Figures 6(b) and 6(c) characterize the effect of conductivity
ratio R and permittivity ratio Q on the stability of the system, while all other material properties are
kept the same between the fluid layers. The larger growth rates observed at large values of R and
Q confirm our expectation that RQ > 1 (τ̄c > τc) corresponds to a system that is more electrically
unstable. According to Fig. 6(c), the maximum growth rate is independent of the permittivity ratio
when Q � 1 and the mode of instability changes from antiphase to in-phase going from Q < 1 to
Q > 1. We also note that the system becomes stable as RQ approaches 1 in both Figs. 6(b) and 6(c)
since RQ = 1 corresponds to a nonpolarizing system in the electric field.

V. NUMERICAL SIMULATIONS

In this section, we complement the linear stability analysis of Sec. IV with numerical simulations.
We present a numerical method in Sec. V A for the nonlinear solution of the system of governing
equations (23) to (28) based on the boundary integral equation for Laplace and Stokes equations in
a periodic domain of period Lp along the x-direction. The size of the domain is chosen based on
the wave number associated with the fastest growing mode obtained via linear stability analysis:
Lp = 2πk−1

max. These simulations provide us with insight into the dynamical behavior of the system
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beyond the linear regime of instability. Our methodology shares similarities with that of [24–26]
for interfaces separating two liquid layers. We implement adaptive grid refinement to handle large
local deformations, curvature, and charge gradients in the nonlinear regime of growth. Results are
presented in Sec. V B where we compare the predictions from the linear theory (LSA) of Sec. IV and
from numerical simulations (NS). Nonlinear dynamics are also explored in transient simulations far
past the onset of instabilities, where the interplay between charge dynamics and fluid flow gives rise
to nonlinear phenomena such as tip streaming and pinching into drops.

A. Boundary element method

Laplace’s equation (1) for the electric potential can be reformulated as a single-layer integral
equation [23,27,28]

ϕl,m,u(x0) = −x0 · E∞ −
∫

S
n · [[∇ϕ(x)]]GP(x0; x)d(x), for x0 ∈ V, S, (44)

where V = Vl ∪ Vm ∪ Vu, S = Sl ∪ Su, and (x) denotes arclength along the interfaces. The evalua-
tion point x0 can be anywhere in space while the integration point x lies on one of the two interfaces.
The periodic Green’s function for Laplace’s equation GP represents the potential due to a periodic
array of point sources separated by distance Lp along the x axis [29,30]

GP(x; x0) = − 1

4π
ln [2{cosh [kp(y − y0)] − cos [kp(x − x0)]}], (45)

where kp = 2π/Lp is the wave number associated with the geometrical periodicity. Taking the
gradient of Eq. (44) with respect to x0, we obtain an integral equation for the electric field

E l,m,u(x0) = E∞ −
∫

S
[[En(x)]]∇0GPd(x), for x0 ∈ V. (46)

The derivative of the Green’s function undergoes a discontinuity across each interface [29]. There-
fore, we express the electric field on either side of each interface as

E l,u(x0) = E∞ − −
∫

S
[[En(x)]]∇0GPd(x) + 1

2
[[En(x0)]]n(x0), for x0 ∈ S, (47)

Em(x0) = E∞ − −
∫

S
[[En(x)]]∇0GPd(x) − 1

2
[[En(x0)]]n(x0), for x0 ∈ S. (48)

The second terms on the right-hand side of Eqs. (47) and (48) denote the principal-value integral
where the evaluation point is located precisely on the interfaces. The singularity in Eqs. (47) and
(48) can be removed by taking a dot product with the normal vector n(x0). Finally, we obtain the
following equation after combining the results with Gauss’s law Eq. (26):

−
∫

S
[[En(x)]][n(x0) · ∇0GP]d(x) − 1 + Q

2(1 − Q)
[[En(x0)]] = En

∞(x0) − q(x0)

1 − Q
, for x0 ∈ S, (49)

which is an integral equation for [[En]] as a function of the charge distribution. Subsequently, we
determine the normal component of the electric field at each interface based on Gauss’s law

En
l,u = q − Q[[En]]

1 − Q
, En

m = q − [[En]]

1 − Q
. (50)

The electric potential is obtained via Eq. (44) in the next step. This allows us to obtain the tangential
component of the electric field by numerically differentiating the electric potential along S. This
way, we avoid using Eqs. (47) and (48), which are singular and require further treatment [31].
Having both components of the electric field at the interface, we can find the jump in electric
tractions [[ f E ]] from (13). The jump in the hydrodynamic tractions can then be obtained using
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the interfacial stress balance (10). Finally, the interfacial velocity is determined using the Stokes
boundary integral equation, in its dimensionless form [32,33]

u(x0) = − 1

2π

∫
S
[[ f H (x)]] · GP(x; x0) d(x)

+ 1 − λ

2π (1 + λ)
−
∫

S
u(x) · T P(x; x0) · n(x)d(x), for x0 ∈ S, (51)

where GP is the singly periodic Green’s function describing the flow due to a periodic array of
point forces separated by the distance Lp along the x direction and T P is the corresponding stress
tensor [33]. Equation (51), which is a Fredholm integral equation of the second kind for u, yields
a dense linear system after discretization. The linear algebraic system is solved iteratively using
a generalized minimal residual method (GMRES) [34,35], and the interfacial velocity is used to
update the charge distribution and the shape of each interface via the kinematic boundary conditions.
The numerical algorithm during one time step of the simulations can be summarized as follows:

(1) Calculate [[En]], En
l,u, and En

m for the given charge distribution q(x), by solving the integral
equation (49) along with Eq. (50).

(2) Compute the electric potential on each interface using Eq. (44).
(3) Differentiate the surface potential numerically along each interface to obtain the tangential

electric field Et = −∇sϕ.
(4) Knowing both components of the electric field on each interface, evaluate the jump in electric

tractions [[ f E ]] via Eq. (13) and use it to determine the jump in hydrodynamic tractions [[ f H ]] via
Eq. (10).

(5) Solve for the interfacial velocity by inverting the discretized Stokes boundary integral
equation (51).

(6) Update the charge distribution by integrating Eq. (25) explicitly in time using a second-order
Runge-Kutta scheme.

(7) Advance the position of both interfaces by advecting the grid using the normal component
of the interfacial velocity ẋi(t ) = (u · n)n.

(8) Refine the grid locally if either the local curvature, element length, or magnitude of the
charge gradient exceed certain thresholds.

We use piecewise cubic spline interpolation to represent the shape of the interface with contin-
uous slope and curvature from one element to another. This provides an easy and accurate way to
compute the geometrical properties such as curvature, normal, and tangent vectors. In case either
the mean curvature, the length, or the magnitude of the charge gradient in an element exceeds
the predefined thresholds, that element is divided into two new elements. The position of the new
node along with other variables such as velocity and charge density are evaluated using spline
interpolation. The use of adaptive grid refinement significantly improved the performance of our
numerical scheme in handling large local deformations and charge gradients in the nonlinear regime.
Nonetheless, the number of new elements is only a fraction of the total elements in each iteration.
Excessive grid refinement can result in spurious oscillations in the spline representation and excite
numerical instabilities [36].

B. Results and discussion

The list of systems considered in our simulations is provided in Table I along with the corre-
sponding parameter values. We first consider in Fig. 7 two representative cases, S1 and S2, that
exhibit antiphase and in-phase instabilities, respectively. Initially, both interfaces are uncharged
and their flat shapes are perturbed by the dominant mode of instability given by LSA with a
small amplitude. The film polarizes mainly via Ohmic conduction at short times, and the charge
distribution first increases uniformly on both interfaces as shown in Figs. 7(b) and 7(d). Meanwhile,
perturbations of shape and charge start to grow as predicted by LSA. The growth rates obtained
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TABLE I. Different systems studied using numerical simulations and their dimensionless parameters.

System R Q λ CaE ReE

S1 0.5 1 1 10 1
S2 2 1 1 10 1
S3 − 0.1 1 10 1
S4 1 − 1 10 1
S5 0.5 1 − 10 1
S6 − 1 1 10 1
S7 2 1 − 10 1

in our simulations are in a close agreement with the theoretical values from LSA as shown in
Fig. 8. Following the onset of instability, as the induced flow becomes stronger, the effect of
charge convection becomes more significant. The accumulation of charge on certain points on each
interface results in large local electric stresses exerted by the applied electric field, which further
deforms the interface as shown in Figs. 7(a) and 7(c). While the charge and shape perturbations are
sinusoidal at short times in agreement with the linear theory, they depart from perfect sine waves as
nonlinear effects start becoming important. Nevertheless, the underlying symmetry between the two
interfaces is maintained in the nonlinear regime, with ξu(x) = −ξl (x + �/2) for in-phase modes and
ξu(x) = −ξl (x) for antiphase modes, where � = 2π/k is the wavelength of the initial perturbation.

FIG. 7. Evolution of the shape of both interfaces (left column) and their charge distributions (right column)
in different modes of instability: (a,b) antiphase mode for system S1, (c,d) in-phase mode for system S2. Each
snapshot is color-coded based on the time it was taken (from red at t = 0 to blue). Insets in (b,d) show the
average charge densities q̄ on each interface as a function of time. In the insets, blue and red curves show the
transient average charge on the upper and lower interface, respectively, while the dashed lines show the steady
interfacial charges in the base state.
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FIG. 8. Growth rate s as a function of wave number k in the dominant mode of instability obtained via
numerical simulations (NS) and linear stability analysis (LSA) for S1 in (a), and S2 in (b). In these simulations,
the size of the domain is set to Lp = 4πk−1

max, which is two times the wavelength associated with the fastest
growing mode.

Further development of the flow and charge dynamics in the antiphase mode gives rise to
the formation of pointed conical structures on each interface, which may eventually turn into
tip streaming jets intruding the suspending phase. Initially, as new charges are brought to the
tip via Ohmic conduction, the electrostatic pressure pE increases thus accelerating the fluid
along the normal direction. The tip curvature increases as a result, leading to larger capillary
pressures. The timescale of the induced EHD flow continues to decrease until it eventually becomes
comparable and finally smaller than the charge relaxation time τc. Consequently, the dominant mode
of charge transport switches from Ohmic conduction to charge convection. Finally, the intruding jet
becomes smoother on the tip and the structure begins to diverge from its conical geometry. It is
evident from Figs. 9(e) and 9(f) that the tip curvature and velocity increase simultaneously until
they peak and start to decrease following the emergence of tip formation.

Tip streaming was also observed in other configurations when leaky dielectric films or drops are
subject to sufficiently strong electric fields [10,38]. Previous studies suggested that tip streaming
was a local phenomenon and was nearly independent of the boundary conditions and global scales
in the problem such as the thickness of the film and the strength of the electric field [10,38–40].
Accordingly, dimensional analysis for our system suggests that

z∗μ
γ τc

= F (t∗/τc, R, Q, λ), (52)

where z∗ is any spatial feature of the tip streaming jet such as thickness of the neck and F
is a dimensionless function of t∗/τc, R, Q, and λ. Note that z∗ and t∗ are in dimensional form.
Consequently, the jet structure and its dynamics depend on R, Q, and λ. Figures 9(a) to 9(c) provide
a shape diagram of the tip streaming jets and illustrate how the mismatch in material properties
affects the resulting morphologies. Snapshots of the jet profiles are shown at a fixed value of the
deformation parameter D, which we define as the maximum vertical deflection along the film
normalized by the initial half thickness

D = max
∣∣∣ z

h

∣∣∣, for all x ∈ S. (53)

Note that our boundary element simulations are unable to capture topological changes occurring
during breakup into droplets. Instead, if the thickness of the film or jet decreases below the local
grid size, we denote this as a disintegration event. We predict two disintegration scenarios based on
our results: pinching into droplets from the tip such as in system S5 when λ = 0.01, and breakup
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FIG. 9. Snapshots of the tip-streaming jets (left column) formed on the upper interface during antiphase
instability with different (a) permittivity ratios in system S4, (b) conductivity ratios in system S3, and
(c) viscosity ratios in system S5. Deformation parameter is D = 5 for all cases except for R = 5 in (b), where
the minimum thickness of the film reached the local grid size at D = 2.18 (disintegration from the base). The
evolution of (d) the jet profile, (e) tip curvature, and (f) the vertical tip velocity is shown in the right column for
system S5 when λ = 0.1. Shaded regions in (e,f) correspond to the time interval shown in (d). Also see videos
in the Supplemental Material [37].

from the base of the jets such as in figure S4 when R = 2.5. A strong thinning at the base of the
jet inhibits larger vertical deformations in some cases such as in S4 when R = 5. The simulations
in Fig. 9 are initiated from the base state with a small imposed perturbation given by the dominant
unstable eigenmode obtained via LSA. More information on the time evolution of the tip streaming
jets shown in Fig. 9 is included in Appendix C. See Supplemental Material [37] for videos showing
the evolution of the film and the emergence of tip streaming jets in different systems with antiphase
instability.

A fundamental challenge for the numerical simulations of tip streaming is the large discrepancy
in the lengthscales present in the problem. The computational domain needs to be large enough
so that the dynamics associated with small wave numbers are accurately captured. This increases
the computational cost for a given global grid resolution. In addition, to capture the large local
deformations during tip streaming, a high local resolution must also be maintained throughout
the simulations. Employing adaptive grid refinement allows us to address this challenge. Finally,
we note that despite some similar features, the tip streaming observed here differs from the conic
cusping singularity observed in inviscid perfect conducting or perfect dielectric liquids where the
tip curvature diverges in a finite time [41,42]. The presence of tangential electric stresses in leaky
dielectric liquids is the main difference between the two types of EHD instabilities.
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FIG. 10. Snapshots of the films during in-phase mode instability with different (a) permittivity ratios in
system S4, (b) conductivity ratios in system S6, (c) viscosity ratios in system S7. For the cases with inward
jets, the minimum thickness of the film is d = 0.2, or one tenth of the equilibrium thickness. D = 5 for outward
jets. Also see videos in the Supplemental Material [37].

During the in-phase mode instability, the system undergoes a different dynamics as a result of
the coupling between the flow and charge evolution. We observe two main dynamical behaviors in
these systems as we show in Fig. 10, where the initial conditions were chosen in a similar way as
in Fig. 9. In systems where the equilibrium electric stresses are compressive on the film (RQ > 1),
further development of the flow and charge dynamics results in the formation of conic structures
that intrude the film. These inward jets exhibit a similar evolution pattern to the ones observed in
Figs. 9(e) and 9(f) during tip streaming. The curvature and velocity at the tip of these inward jets
increase until they peak and start to decrease as they approach the other interface (Fig. 14). The film
may breakup into droplets when these inward jets reach the other interface. On the other hand, in
cases where the equilibrium electric stresses are extensional (RQ < 1), the system develops jets that
are flowing outward from the film. Generally, the dynamics in this mode is dominated by strong local
effects in the nonlinear regime, which is analogous to the antiphase mode. Therefore, we can infer
that the same dimensional analysis holds for the evolution of the resulting structures in this mode.
Figure 10 shows how the mismatch in material properties affects the behavior of the system and the
resulting structures during in-phase instabilities. More information on the time evolution of these
systems is included in Appendix C. Videos of simulations for different systems undergoing in-phase
instability with emerging inward and outward jets are included in the Supplemental Material [37].

VI. CONCLUDING REMARKS

We presented a theoretical and numerical model in two dimensions to study the dynamics of
a suspended viscous film that was subject to a perpendicular electric field. We performed a linear
stability analysis using a charge transport model that accounts for Ohmic conduction, charge con-
vection, and finite charge relaxation, which was shown to recover the previous results of Zhang et al.
[15] in the limit of instantaneous charge relaxation. Two main modes of instability were identified,
which were referred to as in-phase and antiphase modes. The system exhibited different dynamical
behaviors in each mode. We characterized the effect of the relevant nondimensional groups on the
stability of the system in each mode. Our results suggested that interfacial charge convection by
the flow, which had been neglected in previous related studies in the literature [11,14,15], plays an
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important role in determining the dynamics of the system. Besides its destabilizing effect, it was
shown that charge convection can also alter the dominant mode of instability.

Our theoretical analysis was complemented by numerical simulations using the boundary ele-
ment method so as to explore the dynamics of the system far from equilibrium. We demonstrated
how the coupling of flow and interfacial charge dynamics in the antiphase mode gives rise to strongly
nonlinear effects such as the formation of tip streaming jets that are intruding the suspending phase.
During the in-phase mode, however, the system can undergo various nonlinear routes depending
on the type of electric stresses in the base state. In cases where the equilibrium electric stresses
are compressive on film, we observed the emergence of inwards jets that are drawn towards the
film on each interface. Conversely, if the equilibrium electric stresses were extensional, the system
was shown to develop conical jets that flowed outward from the film. Strong local effects were a
key common feature between the two modes during their nonlinear regime of growth. Finally, we
characterized the effect of different controlling parameters on the dynamical behavior of the system
and the resulting structures in the nonlinear regime. In an experiment, we expect a range of wave
numbers to be excited simultaneously due to the randomness in the initial perturbation, which may
result in nonlinear behaviors that differ from those observed in Figs. 9 and 10. Nevertheless, the
fastest growing mode predicted by LSA is expected to be dominant and our results are locally valid
for the most critical mode.

The present study casts new light on the dynamics of suspended viscous films under applied
electric fields, where the interplay between electric, hydrodynamic, and capillary forces can result
in a plethora of dynamical behaviors. Our knowledge on the fastest growing modes along with the
additional insight into the nonlinear behavior of the system should be of great use for engineering
applications where EHD instabilities are exploited to create patterns or structures with prescribed
morphologies and lengthscales. Since the mentioned nonlinear phenomena such as tip streaming are
inherently three dimensional, extending this work to describe three-dimensional pattern formation
would be of interest, as would including the effects of fluid inertia, which may play a role during
regimes of rapid nonlinear growth.
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APPENDIX A: LINEAR STABILITY ANALYSIS

In the base state, all liquid layers are at rest, both interfaces have flat shapes, ξ̃u = −ξ̃l = 1, and
the electric potential field in each layer reads

ϕ̃u(z) = −z + (1 − R), z � 1, (A1)

ϕ̃m(z) = −Rz, −1 � z � 1, (A2)

ϕ̃l (z) = −z − (1 − R), z � −1, (A3)

for which

Ẽ l = Ẽu = R−1Ẽm = (0, 1), (A4)

q̃u = −q̃l = (1 − RQ), (A5)

p̃u − p̃m = p̃l − p̃m = (1 − QR2)/2. (A6)

After perturbing the base state, we linearize the governing equations and boundary conditions.
Next, we seek normal-mode solutions of the form ϕ′(x, z, t ) = Re{ϕ̂(z) exp (st + ikx)}, with similar
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FIG. 11. Fastest-growing wave number in each mode of instability as a function of (a) electric capillary
number and (b) electric Reynolds number for two different systems with R = 0.5 and R = 2 with (Q, λ) =
(1, 1). ReE = 1 in (a) and CaE = 10 in (b).

expressions for all the variables. Substituting the normal-modes into the governing equations and
using the decay properties as z → ±∞ provides the amplitude of the normal modes as

ϕ̂u(z) = Aue−kz, z � 1, (A7)

ϕ̂m(z) = Am1e−kz + Am2ekz, −1 � z � 1, (A8)

ϕ̂l (z) = Ale
kz, z � −1, (A9)

p̂u(z) = Bue−kz, z � 1, (A10)

p̂m(z) = Bm1e−kz + Bm2ekz, −1 � z � 1, (A11)

p̂l (z) = Ble
kz, z � −1, (A12)

ûu(z) = Cue−kz − iBu

(
1 + λ

2

)
ze−kz, z � 1, (A13)

FIG. 12. Fastest-growing wave number in each mode of instability as a function of (a) viscosity ratio λ

for two different systems with R = 0.5 and R = 2, (b) conductivity ratio R, and (c) permittivity ratio Q. The
permittivity ratio is set to Q = 1 in (a,b), the conductivity ratio is R = 1 in (c) and λ = 1 in (b,c). In all systems
(CaE , ReE ) = (10, 1).
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FIG. 13. Evolution of the tip streaming jets during antiphase instability as a function of (a,b) permittivity
ratio in system S4, (c,d) conductivity ratio in system S3, and (e,f) viscosity ratio in system S5. Left and right
columns show the evolution of the tip curvature and vertical tip velocity, respectively.

ûm(z) = Cm1e−kz + Cm2ekz − iBm1

(
1 + λ−1

2

)
ze−kz + iBm2

(
1 + λ−1

2

)
zekz, −1 � z � 1,

(A14)

ûl (z) = Cle
kz + iBl

(
1 + λ

2

)
zekz, z � −1, (A15)

ŵu(z) = Due−kz + Bu

(
1 + λ

2

)
ze−kz, z � 1, (A16)
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FIG. 14. Evolution of the inward and outward jets during in-phase instability as a function of (a,b)
permittivity ratio in system S4, (c,d) conductivity ratio in system S6, and (e,f) viscosity ratio in system S7.
Left and right columns show the evolution of the tip curvature and vertical tip velocity, respectively.

ŵm(z) = Dm1e−kz + Dm2ekz + Bm1

(
1 + λ−1

2

)
ze−kz + Bm2

(
1 + λ−1

2

)
zekz, −1 � z � 1,

(A17)

ŵl (z) = Dle
kz + Bl

(
1 + λ

2

)
zekz, z � −1, (A18)

where

Du = iCu + Bu(1 + λ)(2k)−1, Dl = −iCl − Bl (1 + λ)(2k)−1, (A19)

Dm1 = iCm1 + Bm1(1 + λ−1)(2k)−1, Dm2 = −iCm2 − Bm2(1 + λ−1)(2k)−1. (A20)
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Applying the boundary conditions for the perturbation variables results in a linear algebraic system
for the unknown coefficients Aj , Bj , Cj , and Dj where j ∈ {l, m1, m2, u}. Finally, we obtain the
dispersion relation by setting the determinant of the algebraic system to zero.

APPENDIX B: FASTEST GROWING MODE

The maximum growth rate and the corresponding wave number in each mode are defined, re-
spectively, as smax and kmax. Figures 11 and 12 show how the nondimensional parameters governing
the system affect kmax in each mode.

APPENDIX C: NONLINEAR REGIME

The development of the flow and charge dynamics in antiphase instabilities gives rise to the
formation of tip streaming jets during the nonlinear regime. However, during in-phase instability,
we observe inward and outward jets that intrude the film and the suspending phase, respectively.
Figures 13 and 14 show the effect of the mismatch in the different material properties on the
evolution of the emerging jets in each mode.
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