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Abstract

The modeling of complex fluids, such as particulate suspensions, emulsions and polymer

solutions, remains a great challenge in spite of their omnipresence in many natural pro-

cesses and industrial applications. A major difficulty in the understanding of these systems

arises from the slow decay of hydrodynamic disturbances in low-Reynolds-number flows,

which leads to long-ranged interactions between suspended particles and often results in

strong velocity fluctuations and large-scale correlated motions. In this work, we use theory

and numerical simulations to address a few problems in which hydrodynamic interactions

result in collective dynamics, with emphasis on the effects of particle shape and deforma-

bility.

We first address the behavior of suspensions of anisotropic particles such as rigid

fibers or spheroids under sedimentation. Hydrodynamic interactions in these systems

are known to result in a concentration instability by which the particles aggregate into

dense clusters surrounded by clarified fluid. Using newly developed efficient algorithms,

we perform large-scale simulations of such suspensions with the aim of understanding the

mechanism of the instability and of elucidating the wavenumber selection process reported

in experiments. The salient features of the instability are adequately captured, and the

formation of inhomogeneities is shown to be closely linked to the velocity fluctuations in

the suspending fluid. In particular, simulations in finite containers exhibit a wavenumber

selection, and we use a linear stability analysis to show that the size of the concentration

fluctuations is controlled by vertical density gradients that are observed to form during

the sedimentation process. The case of deformable particles, such as viscous droplets,
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elastic microcapsules or flexible polymers, is also discussed, and a linear stability analysis

and numerical simulations both demonstrate that a similar instability also exists in these

systems.

We then investigate the dynamics in suspensions of uncharged polarizable rigid rods

placed in an electric field. The polarization of a rod results in the formation of a dipolar

charge cloud around its surface, leading to a non-linear fluid slip: this phenomenon, termed

induced-charge electrophoresis, causes particle alignment with the applied field and creates

a disturbance flow in the surrounding fluid. Under the thin double layer approximation, we

derive a simple slender-body formulation for this effect valid for high-aspect-ratio particles,

and use it to study hydrodynamic interactions between a pair of aligned rods. In particular,

the pair probability density function in a dilute dispersion is calculated, and indicates

that particle pairing can be expected. We also present results from large-scale numerical

simulations that include both far-field and near-field hydrodynamic interactions as well

as Brownian motion. Particle pairing is indeed observed to occur at high values of the

Péclet number (weak Brownian motion), and results are reported for pair probabilities,

orientation distributions and hydrodynamic diffusivities.

Finally, we apply Brownian dynamics to investigate the cross-streamline migration

of short-chain polymers in a pressure-driven flow between two infinite flat plates, with

emphasis on the effects of chain flexibility. We implement a simulation method that

models a polymer molecule at the Kuhn step level as a chain of freely jointed Brownian

rods, and includes multibody hydrodynamic interactions between the chain segments and

channel walls. The results demonstrate the existence of shear-induced migration away

from the solid boundaries toward the channel centerline as a result of wall hydrodynamic

interactions. At a fixed ratio of the channel width to the bulk radius of gyration, and

at a fixed value of the Weissenberg number or dimensionless flow strength, we find that

migration is not significantly influenced by flexibility for chains longer than two Kuhn

steps. Much weaker migration is observed for fully rigid chains, and a mechanism is

proposed to explain migration in that case.
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ribly and thank them for staying in touch while I was so far away. I also thank my friends

Hsiao-Li Ho-Cuvillier, from Taiwan, and Zhang Xiaoyan, from China, for their encourage-

ments. Since I moved to Stanford, I was lucky to meet many new friends here as well, who

made these last few years much more enjoyable. Many thanks to Joe, Allex, Ray, Alex,

Ling, Ning, John, Hao, Ted, Jack, Tom, Juan, Vatsal and many others, for dragging me

out of my office to hang out or go out to San Francisco: it was always a lot of fun.

I thank my parents Jane and Daniel, as well as my sister Elisabeth and brother Guil-

laume, for always encouraging me and believing in me. They have always given me their

love and support, and I owe them everything.

And finally, many thanks to Charles for his care, support and inspiration over the last

few years.

viii



Hast Thou shaped the marvel of the whirling spheres,
A scientist passing Nature though his tubes
And played with numbers, measures, theorems, cubes,
O mathematician Mind that never errs...

Sri Aurobindo, Creation.

ix



Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Transport phenomena in complex fluids . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Electrokinetic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Pressure-driven flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Simulation techniques for complex fluids . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Continuum descriptions and constitutive modeling . . . . . . . . . . 7

1.2.2 Navier-Stokes solvers for the fluid phase . . . . . . . . . . . . . . . . 8

1.2.3 Lattice-Boltzmann and dissipative particle dynamics . . . . . . . . . 9

1.2.4 Boundary integral methods and Stokesian dynamics . . . . . . . . . 10

1.3 Overview of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Elements of microhydrodynamics 13

2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The representation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The multipole expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Slender-body theory and fiber dynamics . . . . . . . . . . . . . . . . . . . . 19

2.4.1 The slender-body equation . . . . . . . . . . . . . . . . . . . . . . . 19

x



2.4.2 Particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Spectral expansion of the force distribution . . . . . . . . . . . . . . 22

2.5 Complex geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The smooth particle-mesh Ewald algorithm 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Motion of the fibers: slender-body theory . . . . . . . . . . . . . . . 29

3.2.2 Forces and torques on the fibers . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Hydrodynamic interactions . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Linearization of the force distribution . . . . . . . . . . . . . . . . . 33

3.2.5 Method of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The smooth particle-mesh Ewald algorithm . . . . . . . . . . . . . . . . . . 36

3.3.1 Periodic fundamental solution and Ewald summation formula . . . . 36

3.3.2 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The iterative solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Simulation results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Suspension microstructure and cluster formation . . . . . . . . . . . 51

3.5.3 Orientation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 Sedimentation rate and velocity statistics . . . . . . . . . . . . . . . 67

3.5.5 Validation of the slender-body approximation . . . . . . . . . . . . . 69

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 The sedimentation of orientable particles 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



4.2 Point-particle simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Method of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Particle distribution and concentration fluctuations . . . . . . . . . . 86

4.2.3 Pair distribution function and structure factor . . . . . . . . . . . . 91

4.2.4 Velocity disturbance field . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.5 Velocity statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.6 Orientation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.7 Oblate particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 The effect of stratification on wavenumber selection . . . . . . . . . . . . . . 106

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Scaling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 The sedimentation of deformable particles 134

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.1 Micromechanical model . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.2 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.3 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Examples of deformable particles . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 Viscous drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.2 Elastic microcapsules . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.3 Flexible polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.1 Simulation method for deformable particles . . . . . . . . . . . . . . 146

5.4.2 Concentration fluctuations and microstructure . . . . . . . . . . . . 147

5.4.3 Particle deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xii



5.4.4 Velocity statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4.5 Hydrodynamic dispersion . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Induced-charge electrophoresis of rods 159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Induced-charge electrophoresis of a polarizable rod . . . . . . . . . . . . . . 162

6.2.1 Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2.2 Slender-body formulation . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.3 Slip velocity linearization . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2.4 Electrorotational torque . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3 Pair interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.1 Relative velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.2 Pair distribution function . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.4.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4.2 Brownian forces: Fixman’s method . . . . . . . . . . . . . . . . . . . 185

6.4.3 Time integration: midpoint algorithm . . . . . . . . . . . . . . . . . 187

6.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.1 Infinite Péclet number . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.2 Finite Péclet number . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7 Shear-induced migration of short-chain polymers 201

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2 Model and numerical implementation . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8 Conclusions and directions for future work 216

xiii



A Periodic fundamental solution 220

A.1 Periodic fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.2 Ewald summation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B Cardinal B-spline interpolation 225

B.1 General properties of Cardinal B-splines . . . . . . . . . . . . . . . . . . . . 225

B.2 Interpolation of complex exponentials . . . . . . . . . . . . . . . . . . . . . 226

C Numerical accuracy of the slip solutions 228

C.1 Effect of the tangential flow boundary condition . . . . . . . . . . . . . . . . 228

C.2 Effect of the grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

D Pair interactions by the method of reflections 232

D.1 Zeroth-order velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

D.2 First reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

D.3 Relative motion to order |x|−6 . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.4 Asymptotic form of the pair distribution function . . . . . . . . . . . . . . . 236

Bibliography 237

xiv



List of Tables

3.1 Dependence of the condition number on the inhomogeneity of the suspen-

sion and on the presence of lubrication interactions. . . . . . . . . . . . . . 46

3.2 Efficiency of various preconditioning techniques for an inhomogeneous sys-

tem of 200 fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Influence of the initial distribution on the streamer formation. . . . . . . . . 61

4.1 Influence of the container dimensions on the wavenumber selection in sus-

pensions of spheroids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.1 Influence of the flow boundary condition on the container side walls: aver-

age sedimentation velocities and velocity fluctuations using the tangential

flow boundary condition described in Section 4.2.1 (‘slip’), and the Green’s

function of Mucha et al. [132]. . . . . . . . . . . . . . . . . . . . . . . . . . 229

C.2 Influence of the grid resolution on the accuracy of the Stokes flow solution:

average sedimentation velocity and velocity fluctuations for various grid

resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

xv



List of Figures

2.1 Problem geometry for the representation theorem. . . . . . . . . . . . . . . 15

2.2 Problem geometry for slender-body theory. . . . . . . . . . . . . . . . . . . 20

3.1 Velocity rms error as a function of the cutoff radius rc. . . . . . . . . . . . . 42

3.2 Velocity rms error as a function of the number of grid points K and of the

interpolation order p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 CPU times for the calculation of the Ewald sums using the Ewald summa-

tion technique and the SPME method. . . . . . . . . . . . . . . . . . . . . . 44

3.4 Convergence of the GMRES solver depending on the preconditioner. . . . . 47

3.5 Sedimentation rates of fixed random arrays of fibers as a function of the

effective volume fraction nl3. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Evolution of the fiber distribution in a suspension of 512 fibers. . . . . . . . 52

3.7 Vertically averaged local number density nl3 and fluid vertical velocity ⟨uz⟩. 53

3.8 Procedure for the systematic determination of cluster positions and sizes. . 54

3.9 Time evolution of the numbers of clusters of a given size in a streamer. . . . 56

3.10 Pair distribution function in the (x, y)-plane. . . . . . . . . . . . . . . . . . 57

3.11 Distribution of fibers for a highly elongated box in the horizontal direction. 58

3.12 Vertically averaged vertical velocity field for a highly elongated box in the

horizontal direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Final fiber distribution and initial disturbance velocity field for an initial

plane wave perturbation at wavenumber k = 6. . . . . . . . . . . . . . . . . 62

xvi



3.14 Magnitude of the coefficients of the Fourier transform in the x-direction of

the initial concentration field and of the vertical component of the initial

disturbance field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 Time evolution of the projected angle for a typical fiber. . . . . . . . . . . . 64

3.16 Time evolution of the average square orientation in the direction of gravity. 64

3.17 Comparison of the orientation distributions of two different simulations with

the experiments of Herzhaft & Guazzelli [84]. . . . . . . . . . . . . . . . . . 66

3.18 Time evolution of the average sedimentation rate for simulations of 128 and

512 fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.19 Comparison of the velocity distributions with the experimental data of

Herzhaft & Guazzelli [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.20 Comparison of the final fiber distributions obtained using the slender-body

formulation and the finite aspect ratio formulation. . . . . . . . . . . . . . . 71

3.21 Time evolution of the average square orientation in the direction of gravity

for the two simulations of Figure 3.20. . . . . . . . . . . . . . . . . . . . . . 72

4.1 Particle distribution and concentration field in a simulation of 29,702 spheroids

sedimenting under gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Time evolution of the Fourier coefficients of the concentration field in non-

periodic and periodic boundary conditions. . . . . . . . . . . . . . . . . . . 89

4.3 Cross-section averaged concentration profile in the vertical direction in a

suspension of 148,510 spheroids. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Pair distribution in the lateral direction at t = 0 and t = 100 for a simulation

of 29,952 spheroids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Time evolution of the structure factor for the simulation of Figure 4.4. . . . 93

4.6 Velocity disturbance field in a suspension of 59,904 spheroids. . . . . . . . . 95

4.7 Time evolution of the velocity autocorrelation functions. . . . . . . . . . . . 96

4.8 Mean sedimentation velocity and velocity fluctuations in the z-direction at

various volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xvii



4.9 Velocity distributions obtained from simulation and from the experiments

of Herzhaft & Guazzelli [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.10 Time evolution of the mean squared orientation in the direction of gravity

at various volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.11 Distributions of the projected angle obtained from simulations and from

the experiments of Herzhaft & Guazzelli [84]. . . . . . . . . . . . . . . . . . 103

4.12 Mean sedimentation velocity and velocity fluctuations in the z-direction in

suspensions of oblate spheroids. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.13 Time evolution of the mean squared orientation in the direction of gravity

in suspensions of oblate spheroids. . . . . . . . . . . . . . . . . . . . . . . . 105

4.14 Growth rate as a function of the wavenumber for a horizontal wave and

various levels of stratification. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.15 Range of unstable wavenumbers as a function of the stratification parame-

ters and of the dispersion coefficient. . . . . . . . . . . . . . . . . . . . . . . 115

4.16 Growth rate as a function of the wavenumber for a horizontal wave in

anisotropic suspensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.17 Range of unstable wavenumbers for a horizontal wave in an anisotropic

suspension as a function of the Onsager parameter. . . . . . . . . . . . . . . 119

4.18 Coefficients in the long-wave expansion of the dispersion relation for an

Onsager orientation distribution. . . . . . . . . . . . . . . . . . . . . . . . . 120

4.19 Autocorrelation length in the horizontal direction of the vertical fluid ve-

locity with and without stratification. . . . . . . . . . . . . . . . . . . . . . 124

4.20 Correlation length in the horizontal direction as a function of the stratifi-

cation parameter and of the volume fraction. . . . . . . . . . . . . . . . . . 125

4.21 Scaled correlation length as a function of the stratification parameter. . . . 126

4.22 Time evolution of the vertical concentration profile. . . . . . . . . . . . . . . 128

4.23 Time evolution of the stratification parameter and of the normalized volume

fraction in an initially homogeneous suspension. . . . . . . . . . . . . . . . . 129

4.24 Time evolution of the correlation length in the horizontal direction. . . . . . 130

xviii



5.1 Growth rate of the concentration fluctuations as a function of the wavenum-

ber in a suspension of sedimenting deformable particles. . . . . . . . . . . . 140

5.2 Time evolution of the Fourier coefficients of the concentration field in non-

periodic and periodic boundary conditions, in a suspension of deformable

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Pair distribution function and structure factor in a suspension of sediment-

ing deformable particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Cross-section averaged concentration profiles in the vertical direction in a

suspension of deformable particles. . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Effective particle aspect ratio in sedimenting suspensions of deformable par-

ticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Mean sedimentation speed in suspensions of deformable and rigid isotropic

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Vertical velocity fluctuations in suspensions of deformable and rigid anisotropic

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.8 Mean squared displacements in the z- and x-directions as a function of time

in suspensions of deformable particles. . . . . . . . . . . . . . . . . . . . . . 156

6.1 Problem geometry for the induced-charge electrophoresis around a polariz-

able spheroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Electric field lines around a non-conducting spheroid. . . . . . . . . . . . . . 167

6.3 Tangential and normal components of the dimensionless circumferentially

averaged slip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.4 Particle pair considered in the analytical model of Section 6.3. . . . . . . . . 176

6.5 Contours of the relative velocity and relative trajectories between two par-

allel rods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.6 Theoretical pair distribution function in a dilute suspension of rods under

induced-charge electrophoresis. . . . . . . . . . . . . . . . . . . . . . . . . . 181

xix



6.7 Pair distributions in a rod suspension at infinite Péclet number at two

different volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.8 Mean square displacements in the x- and z-directions as a function of time. 191

6.9 Hydrodynamic diffusivities at infinite Péclet number as a function of volume

fraction and aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.10 Velocity fluctuations at infinite Péclet number as a function of volume frac-

tion and aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.11 Typical particle distributions in rod suspensions under induced-charge elec-

trophoresis at various Péclet numbers. . . . . . . . . . . . . . . . . . . . . . 195

6.12 Orientation distributions in induced-charge electrophoresis at various Péclet

numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.13 Time evolution of ⟨pzpz⟩ after application of an electric field. . . . . . . . . 197

6.14 Pair distribution functions in Brownian rod suspensions under induced-

charge electrophoresis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.1 Problem geometry: pressure-driven flow of a dilute polymer solution be-

tween two flat plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.2 Determination of the polymer relaxation time. . . . . . . . . . . . . . . . . 207

7.3 Center-of-mass concentration profile and average normalized stretch at var-

ious flow strengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.4 Influence of hydrodynamic interactions on the center-of-mass concentration

profile and normalized stretch. . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.5 Concentration profiles for various chain lengths N . . . . . . . . . . . . . . . 210

7.6 Depletion layer thickness as a function of flow strength and chain length. . 211

7.7 Cross streamline drift velocity for a rigid rod. . . . . . . . . . . . . . . . . . 214

xx



Chapter 1

Introduction

1.1 Transport phenomena in complex fluids

Dispersions of particles or macromolecules in viscous liquids, otherwise known as complex

fluids, are ubiquitous in both natural phenomena and industrial applications. Suspen-

sions of rigid particles, which are the main focus of the present work, are very common

in environmental fluid mechanics, where sediments in rivers and estuaries or pollution

particles in the atmosphere are but a few examples. In biological systems, blood plays

a central role and can be viewed as a suspension of flexible particles (red blood cells) in

a viscous liquid (plasma). Finally, particulate suspensions and macromolecular solutions

are of paramount importance in industrial products and applications, including foodstuffs

and cosmetics, inks and paints, waste matter treatment, the processing of fiber composites

etc.

The macroscopic modeling of these materials often requires a precise understanding of

their microscopic behavior, which is dictated by the interactions between the particles, the

suspending fluid or solvent, solid boundaries, and various external fields (e.g. gravity, elec-

tric or magnetic fields). In such systems, a central role is played by hydrodynamic forces,

which are mediated by the fluid and result from the disturbance of the fluid motion by the

suspended particles. More precisely, a particle in a fluid modifies the velocity field around

1
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it by creating a disturbance, which in turn influences the motion of the surrounding parti-

cles. When fluid and particle inertia can be neglected with respect to the viscous forces in

the fluid (formally, when the Reynolds and Stokes numbers are vanishing, see Section 2.1),

these hydrodynamic interactions decay very slowly with the separation distance between

the particles (typically like the first or second power of the inverse separation, depending

on the flow type). The interactions between widely separated particles therefore cannot

be neglected, and in large suspensions this can result in significant effects, such as strong

velocity fluctuations, large-scale correlated motions and other collective dynamics.

A central problem in the modeling of hydrodynamic interactions in particulate suspen-

sions is the determination of the suspension microstructure, or configuration of the parti-

cles with respect to one another and to external flows or boundaries. The configuration of

the particles is indeed determined by the fluid flow, which can convect, orient or deform

the particles. In turn, the fluid flow is itself a function of the configuration of the particles,

since these also induce significant disturbance flows. This two-way coupling between sus-

pension microstructure and fluid flow renders the modeling and the understanding of these

systems quite complex. Numerous theoretical investigations have therefore typically been

limited to infinitely dilute suspensions, where interactions are altogether neglected, or very

dilute suspensions, where interactions between pairs of particles are assumed to dominate:

these models, which provide reasonable results in a few situations such as simple linear

flows [14], are however unable to capture the dynamics in situations where long-ranged

interactions play a stronger role as in sedimentation for instance [34, 103]. In these more

complex situations computer simulations offer a valuable tool as demonstrated below.

The vast majority of investigations on particulate flows have focused on monodisperse

suspensions of rigid spheres in a variety of situations. The sedimentation [46, 87, 150]

and the rheology [15, 181] of such suspensions have been extensively studied, and even

though questions remain a fair understanding is now available. Less can be said however of

anisotropic or deformable particles, which occur quite commonly in natural and industrial

processes, as is quite clear from the aforementioned examples. In this case, the particle

configuration itself (orientation or shape) is determined by the local flow field and the
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history of the particle motion, and must be solved for as part of the problem: anisotropic

particles may orient preferentially in certain directions depending on the local fluid flow,

while deformable particles may stretch or compress. In turn, this configuration has an

influence on the particle dynamics as well as on the surrounding fluid flow: for instance,

the sedimentation speed of an anisotropic particle depends strongly on its orientation,

while the stress exerted by a polymer molecule or viscous drop on the surrounding fluid

depends on its degree of stretching along the axes of flow extension.

In the present work we use theory and numerical simulations to investigate the effects

of particle shape and particle deformability or flexibility in a variety of flow situations,

including sedimentation, induced-charge electrophoresis and pressure-driven flows. First,

a general introduction to these various flows is in order. More detailed reviews will be

given in Chapters 4 through 7.

1.1.1 Sedimentation

Sedimentation occurs whenever a density mismatch exists between a suspended particle

and the surrounding fluid. As a result of this mismatch, the particle is subject to a

constant applied force F which causes the motion of the particle and drives a disturbance

flow in the surrounding fluid. To leading order, this disturbance flow is the flow induced

by a point force, also known as Stokeslet:

u(r) =
1

8πµ

(
I

r
+

rr

r3

)

· F + ..., (1.1)

where µ is the viscosity of the fluid, and r is a position vector emanating from the center

of mass of the particle. Because of the slow decay of this disturbance flow as 1/r, the

calculation of statistical quantities such as the mean velocity or the velocity variance

typically results in diverging integrals [13, 86, 150].

Batchelor [13], working on the premise of homogeneity and diluteness, was the first to

calculate the concentration correction of the mean sedimentation speed of non-Brownian

spheres in an infinite fluid. His result was confirmed by others [86, 71, 64], although it
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appears that the functional dependence of the hindered settling function depends on the

statistical structure of the suspension [156]. As reviewed in more detail in Chapter 4, the

problem of predicting the velocity variance in such a system remains however unresolved,

with theories for random suspensions predicting a divergence of the velocity variance

with the system size [34, 87] in contrast with experiments, which suggest that neither

velocity fluctuations nor hydrodynamic diffusivities depend on the container dimensions

[137]. This discrepancy suggests that other effects such as a non-random microstructure

or interactions with container boundaries may play a role in determining the size of the

fluctuations, and a variety of theories have been proposed to include these effects (e.g.

[103, 28, 132]). As we discuss in Chapters 4, 5 and 6, sedimentation is yet more complex

when the particles are non-spherical or are allowed to deform under flow: in that case we

will show that an instability takes place that causes the particles to cluster [102], thereby

reinforcing the velocity fluctuations.

1.1.2 Electrokinetic flows

When a charged surface is in contact with an electrolyte, counterions in solution migrate

and accumulate near the surface, forming an electrical double layer (EDL) [153]. When

an external field E∞ is applied, the action of the field on the excess counterions causes

them to migrate along the electric field lines, dragging the fluid with them. Near a fixed

surface such as a channel wall, this effective body force exerted by the moving ions on the

fluid inside the EDL drives an electro-osmotic flow in the fluid bulk. In the case of a freely

suspended particle such as a colloid or macromolecule, electrophoretic migration occurs.

Electrophoresis of particles with a fixed and uniform surface charge has received con-

siderable attention in the past (see Chapter 5 for a more thorough review), and is well

understood. In particular, in the case of a thin EDL and weak external field, the particle

migrates in the direction of the external field at the velocity:

U =
εζ

µ
E∞, (1.2)
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where ε and µ are the permittivity and viscosity of the electrolyte, and ζ is the zeta-

potential of the surface, or potential drop across the EDL. In addition, the motion of the

particle drives the following disturbance flow in the fluid [5]:

u(r) =
εζ

2µ

(a

r

)3 (

3
rr

r2
− I

)

· E∞, (1.3)

which is a potential dipole flow. In particular, the particle motion, which is interfacially

driven, is force-free as the electric force on the particle is entirely screened by the oppos-

ing force on the counterions inside the EDL. Interactions between particles are therefore

relatively weak (they decay as 1/r3). Furthermore, it can be shown that in a dispersion

of identical spheres with same zeta-potential, the velocity of each sphere is equal to the

velocity of an isolated particle, unchanged by hydrodynamic interactions [1].

As discussed in Chapter 5, many situations depart from the ideal case described above:

non-uniform zeta-potential, polarizable surfaces, thick double layers, strong applied fields,

surface conduction are all examples that commonly occur in applications and greatly

enhance the richness and complexity of electrokinetic phenomena. In Chapter 5, we will

discuss the case of polarizable particles, which can acquire a non-uniform surface charge

in an applied field. In that particular case, we shall see that hydrodynamic interactions

become significant, as they now decay more slowly as 1/r2 and result in relative motions.

1.1.3 Pressure-driven flows

Pressure-driven channel flows play a central role in industrial applications involving the

processing of suspensions or polymers solutions, and have recently regained attention with

the advent of micro- and nanofluidic devices. The main characteristics of these flows is

that they involve non-uniform shear and rigid boundaries, both of which may have an

effect on particle dynamics.

Numerous investigations have considered shear flows of sphere suspensions in both

confined and infinite geometries. The reversibility of Stokes flow predicts that a single

sphere in Poiseuille flow has zero cross-streamline velocity. As demonstrated experimen-

tally [115, 67], such is no longer the case in more concentrated suspensions, where particles
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are observed to migrate from regions of strong shear (near the walls) toward regions of

low shear (channel centerline). This effect is also observed in simulations [140] and can

be explained on the basis of hydrodynamic diffusion [172], which occurs as a result of

particle/particle interactions and is dependent on flow strength: the gradient in shear rate

results in a gradient in hydrodynamic diffusivity which leads to an effective drift toward

the regions of low diffusivity or low shear.

More subtle effects come into play when the particles are non-spherical or deformable,

and can result in an effective migration even in the limit of infinite dilution. A single

Brownian anisotropic particle such as a rigid rod in shear flow aligns preferentially in the

direction of the flow, with a degree of alignment that depends on the local flow strength.

Because of the anisotropic mobility of the particle, this alignment results in a decrease

of the effective diffusivity in the cross-streamline direction, which is stronger in regions

of strong shear. The resulting gradient in cross-streamline diffusivity therefore causes an

effective drift toward the regions of strong shear, i.e. an accumulation of particles near the

walls in pressure-driven channel flows [139, 164]. In addition to this effect, hydrodynamic

interactions with the walls also take place, and have been shown in the case of deformable

viscous droplets [173] and long-chain flexible polymers [95, 97, 37, 189, 190] to result in

a migration away from the walls toward the channel centerline. In Chapter 7, we will

address the case of dilute solutions of rigid and short-chain flexible polymers, which are

subject to both types of migration, and we will characterize the effect of chain flexibility.

1.2 Simulation techniques for complex fluids

Numerous simulation techniques have been proposed in the past to simulate the dynamics

of complex fluids in various situations. While continuum models that represent a suspen-

sion as an effective fluid are sometimes convenient, more detailed models also enable the

precise determination of the particle dynamics. In Sections 1.2.1 through 1.2.4 we review

a few of the more common approaches.
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1.2.1 Continuum descriptions and constitutive modeling

In situations where the length scales of interest are much larger than the size of the

suspended particles, or when the overall effect of the particles on the flow is of interest

rather than their precise dynamics, representing the suspension or polymer solution as an

effective continuum medium can be a convenient approach. The effects of the particles

on the fluid are then captured through a constitutive model for the effective stress tensor,

which differs from the Newtonian stress for the suspending fluid. In the simplest cases,

such as for dilute suspensions of neutrally buoyant spheres, the only modification to the

stress arises through an effective scalar viscosity [11], in which case the effective medium is

still Newtonian. More generally, the effective stress tensor is more complex and depends on

a few variables describing the microscopic configuration of the particles at a given position

in the fluid (e.g. moments of the particle orientation or polymer end-to-end vector). These

microscopic variables are themselves unknown and depend on the local flow field: new

equations must therefore be obtained for these variables, typically based on microscopic

models [18, 113]. Often the derivation of closed equations for these variables from basic

principles is not possible, and closure approximations are invoked, akin to those used in

turbulence modeling for Reynolds-averaged stresses [54]. The full solution of the flow

problem then consists of simultaneously integrating the Stokes or Navier-Stokes equations

for the flow variables, coupled to the moment equations for the microscopic variables.

While this approach is by far the most efficient for large-scale complex flows, it also

suffers from a few limitations. First, the closure approximations used for the moment

equations are typically derived phenomenologically and tested on simple flows: their va-

lidity in more complex flows or geometries is questionable, and may lead to inaccuracies.

Second, they are often based on local approximations, which are valid when the length

scales of interest are much larger than the microscopic length scales (particle size): the

models therefore break down at very short length scales, and for instance cannot be ap-

plied to strongly confined flows as occur in micro- and nanofluidic devices. Finally, detailed

information about the particle dynamics and configuration is lost: such information can
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become important when non-uniform particle distributions occur as a result of the flow (for

instance in shear-induced migration [115]), or when several distinct micro-configurations

can coexist in a given flow field (for example as a result of conformation hysteresis in

solutions of long-chain polymers [47, 166]).

1.2.2 Navier-Stokes solvers for the fluid phase

If a precise description of the particle motions is required, a solution can be obtained by

numerically integrating the flow equations (Stokes or Navier-Stokes) in the fluid domain,

with appropriate boundary conditions at the particle surfaces. The wealth of solution

techniques developed previously for the numerical calculation of various flow problems can

then be applied (finite differences, finite volumes or finite elements), resulting in a very

detailed description of the fluid flow. These numerical techniques require a discretization

of the fluid domain (meshing), which fits the particle surfaces.

Several methods of this type have been implemented in the case of suspensions (e.g.

[89, 108]). The clear limitation of this approach is the need for a fine enough mesh to

resolve the geometry of the particles: when the particles are very numerous and much

smaller than the macroscopic dimensions, the cost of remeshing the fluid domain at each

time step renders these methods impractical. This is certainly true for very anisotropic

particles such as the rods or fibers that we will consider in this work: in that case the

thinnest dimension, which may be orders of magnitude smaller than the characteristic

particle size, would have to be resolved.

A few remedies exist to resolve this issue. The immersed boundary method, pioneered

by Peskin [145, 128], no longer requires the mesh to perfectly fit the geometry of the

particles: grid cells are allowed to overlap with solid boundaries, in which case the effects

of boundaries on the fluid flow are captured through an effective force density inside the

boundary cells, determined to enforce the no-slip boundary condition at the interface.

This method, which has been widely used in a variety of situations and is very powerful

in particular when deformable or compliant boundaries are present, still remains quite

expensive in the case of suspension flows, as the size of the grid cells is still required to
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be smaller than the particle dimension. Another approach, termed force-coupling method

and developed by Maxey and coworkers [125, 119], consists of solving for the fluid velocity

throughout the suspension (including inside the solid particles), and by representing the

effect of the particles on the flow through distributed force moments in the momentum

equation. In this case the fluid flow is no longer accurately resolved on the length scale of

the particles; yet the global effect of the particles on the fluid is correctly captured, and

the cost of the simulation is greatly reduced as a fixed mesh can be used throughout the

simulation. Similar methods have been implemented by other authors [22, 23, 31], and we

will use an analogous approach in Chapters 4 and 5.

1.2.3 Lattice-Boltzmann and dissipative particle dynamics

The very high cost of the methods described in Section 1.2.2 results mainly from the direct

solution of the incompressible Navier-Stokes or Stokes equations, in which the determina-

tion of the fluid velocity at a given point is non-local, in the sense that it is coupled to the

rest of the flow field through the continuity equation. This difficulty can be circumvented

using the Lattice-Bolztmann method, which is based on a statistical description of the

fluid flow and only involves locally determined variables. The method was pioneered by

Ladd [110] who applied it mostly to sedimentation [112, 134, 135] and channel flows [38]

of suspensions, and is quite efficient as its cost scales linearly with the number of lattice

points in the fluid, and as its computer implementation is easily parallelized. Other ad-

vantages include an easy treatment of complex geometries and boundary conditions. Yet

the method is strictly applicable to positive Reynolds numbers (it becomes very stiff as

Re → 0), and necessitates a lattice which is finer than the smallest particle dimension: its

use for the simulation of very anisotropic particles such as slender rods is again impractical.

A somewhat similar method is called dissipative particle dynamics, and relies on a

discrete description of the fluid phase using mesoscopic particles, the motion of which is

described based on statistical mechanics. These particles exchange momentum between

themselves and with the boundaries of the fluid domain (walls or suspended particles),

and the rules for this momentum exchange ensure that the laws for the fluid motion are
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correctly reproduced. Once again, this method is attractive owing to its relatively low

cost and ease of parallelization, and was applied successfully to the simulation of particle

suspensions [90, 21] and polymer solutions [61, 62]. Similar limitations as for the Lattice-

Boltzmann method apply: in particular, a large number of mesoscopic particles must be

used on the scale of the solid particles in a suspension.

1.2.4 Boundary integral methods and Stokesian dynamics

In the Stokes flow regime (Re = 0), a wide range of additional methods have been devised

that make use of the linearity of the Stokes equations. Most of these methods are based on

or can be justified from the boundary integral equation for Stokes flow (or representation

theorem), which is briefly presented in Section 2.2 and describes the velocity field at

any point inside the fluid in terms of convolution integrals on the domain boundaries

involving an unknown surface traction field. The great advantage of this approach is

that it fully describes a three-dimensional field (the fluid velocity) in terms of a two-

dimensional variable (the surface tractions). A direct solution of the surface tractions

can be achieved using the boundary integral and boundary element methods [198, 147],

which provide a very accurate description of the particle motions. The method can also

be modified to include fast algorithms [199] and to simulate flows in bounded geometries

[43, 180]. It remains however typically limited to relatively small assemblies of particles,

as a fair amount of quadrature points are required on each particle surface for an accurate

evaluation of the convolution integrals.

When larger suspensions are to be simulated, efficient methods based on multipole

expansions of the boundary integral equation can be used. The multipole expansion,

presented in Section 2.3, describes the velocity field in terms of basic singular flows induced

by the moments of the traction field on the particle surfaces (total force, force dipole,

force quadrupole etc.) and is valid far away from any given particle. The most notable

simulation method based on this expansion, called Stokesian dynamics, is due to Brady

and coworkers [25, 26, 55], and consists of truncating and summing the multipole flows

induced by the suspended particles and supplementing them by near-field corrections based
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on lubrication theory [41]. The method was applied very successfully to shear flows [172]

and pressure driven flows [140] of sphere suspensions, and can also be used to simulate

colloidal systems [146, 8]. Stokesian dynamics simulations, which have an unfavorable

cost of O(N3) or O(N2) where N is the number of particles (depending on the level of

truncation in the multipole expansion), can also be accelerated using various algorithms,

resulting in a cost of O(N log N) [170] or O(N) [162, 92].

1.3 Overview of the present work

A brief overview of fundamentals of microhydrodynamics is provided in Chapter 2. General

properties of particulate flows are discussed in the case where particle and fluid inertia can

be neglected with respect to viscous forces. The representation theorem and the multipole

expansion for Stokes flow, which are the basis of a wide range of numerical methods

for suspension flows as explained previously, are briefly discussed. Finally, a discussion

of slender-body theory is provided with emphasis on the description of the dynamics of

rod-like particles.

In Chapter 3 a fast simulation method, called Smooth Particle-Mesh Ewald (SPME)

algorithm, is developed and implemented. The method, which allows the simulation of

particulate flows with an O(N log N) cost with respect to the number of particles, is

applied to simulate the sedimentation of a suspension of rod-like particles with periodic

boundary conditions. The sedimentation of orientable particles such as fibers or disks,

and deformable particles such as viscous droplets, is further investigated in Chapters 4

and 5, with the aim of understanding the concentration instability in these systems. A

very efficient method based on a point-particle approximation is developed and applied

to simulate suspensions of realistic sizes with both periodic and no penetration boundary

conditions. In the case of deformable particles a linear stability analysis is also proposed to

confirm the existence of an instability. For both types of systems, it is argued that the size

of the concentration fluctuations resulting from the instability is to a large extent governed

by the vertical density gradients (stratification) that appear inside the suspensions.
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Chapter 6 then discusses the collective dynamics that occur in suspensions of rod-

like colloidal particles under induced-charge electrophoresis, the non-linear electrokinetic

phenomenon that arises whenever a polarizable particle is placed in an electric field. The

basic theory for this phenomenon is derived in the case of rod-like particles, and is applied

to study the interactions of a pair of particles, where pairing is shown to occur. This is then

confirmed using large-scale simulations of both non-Brownian and Brownian suspensions,

and results for pair distributions, hydrodynamic diffusivities and orientation distributions

are presented.

In Chapter 7, the pressure-driven flow of a dilute polymer solution between two infinite

flat plates is analyzed in the case where the polymer chain is short and where the channel

width is comparable to the chain contour length. A Brownian dynamics algorithm is

described that accounts for both chain/chain and chain/wall hydrodynamic interactions,

and is applied to characterize the effect of chain flexibility on the shear-induced migration

that occurs as a result of hydrodynamic interaction of the polymer with the surrounding

walls.

Finally, a conclusion and directions for future work are given in Chapter 8.



Chapter 2

Elements of microhydrodynamics

2.1 Generalities

As described in Chapter 1, this work is concerned with the description of the dynamics of

suspended particles in a viscous fluid, where the particles may be solid, flexible (as in the

case of polymers or elastic particles), or fluid (as in the case of suspended droplets of an

immiscible fluid). In the most general case, the motion of a given particle is governed by

Newton’s equations of motion, which relate the external forces (including hydrodynamic

forces exerted by the fluid) to the acceleration of the particle, while the motion of the

suspending fluid is governed by the Navier-Stokes equations (in the case of a Newtonian

fluid), which is a continuum version of Newton’s second law applied to the material parti-

cles inside the fluid. In the present work, we only consider situations in which both particle

and fluid inertia can be neglected with respect to the effects of viscous forces. Formally,

this can be expressed in terms of the particle Reynolds and Stokes numbers as:

Re =
ρUa

µ
→ 0, St =

mU

6πµa2
→ 0, (2.1)

where ρ and µ are the density and viscosity of the suspending fluid, a and m are the

particle size and mass respectively, and U is a characteristic scale for the velocity of the

particle with respect to the fluid.

13
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When the Reynolds number is small (Re → 0), the inertial terms in the Navier-Stokes

equations can be neglected and the fluid motion is well described by the following Stokes

equations:

−µ∇2u + ∇p = 0, ∇ · u = 0, (2.2)

which describe the conservation of momentum and of mass in the fluid. These equations

are subject to boundary conditions on the surfaces of the fluid domain. On the surface

∂Sα of a given solid particle α, the no-slip boundary condition applies, stating that the

relative velocity between the solid and fluid phases is zero:

u(x) = Uα + Ωα × x as x ∈ ∂Sα, (2.3)

where Uα and Ωα are the rigid-body linear and angular velocities of the particle of interest,

and x is a position vector. In the case of a fluid particle such as a droplet of an immiscible

fluid, more complex boundary conditions relating hydrodynamic stresses on both sides of

the interface must be enforced [11]. Far away from particle surfaces or solid boundaries,

the fluid velocity must decay to the externally applied fluid velocity u∞, which is assumed

to be known:

u(x) → u∞(x) as |x| → ∞. (2.4)

If the particle motions are prescribed (i.e. if Uα and Ωα are known for all particles α),

Equations (2.2)–(2.4) can be solved for the velocity u and pressure p at every point in the

fluid. In most cases of interest the particle motions are unknown and must be determined

as part of the problem. In that case, equations of motion for the particles must also be

used. In the limit of zero Stokes number (St → 0), particle inertia can be neglected and

Newton’s equations for particle α read as follows:

F h
α + F e

α = 0, T h
α + T e

α = 0, (2.5)

where F h,e
α and T h,e

α denote the hydrodynamic and externally imposed forces and torques

on the particle. In particular, the hydrodynamic forces and torques are related to the
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Figure 2.1: Geometry considered in the representation theorem of Section 2.2.

traction distribution on the particle surface as

F h
α =

∫

∂Sα

σ(xα) · nαdSα, T h
α =

∫

∂Sα

xα × [σ(xα) · nα] dSα, (2.6)

where σ(x) = −pI+µ
[

∇u(x) + ∇u(x)T
]

is the hydrodynamic stress tensor in the fluid. If

the external forces and torques and the external fluid velocity are known, Equations (2.2)–

(2.6) can now be solved for the fluid velocity and pressure fields along with the particle

linear and angular velocities. As discussed in Section 1.2, numerous solution techniques

have been developed for this problem. Next, we review the integral equation or represen-

tation theorem for Stokes flow, which is the basis of a large class of solution methods.

2.2 The representation theorem

The integral equation for Stokes flow, also known as representation theorem or Green’s

third identity, represents the velocity field at any point inside a fluid domain in terms of the

traction fields on the boundaries of the domain. The theorem is a classic result of Stokes

flow and is a consequence of the linearity of the Stokes equations. Its derivation is typically

based on a generalized version of the Lorentz reciprocal theorem [101]. Here we only state

the theorem and discuss its implications; the reader is referred to References [101, 147] for

detailed derivations.
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Consider the configuration of Figure 2.1, in which a surface ∂S separates a finite

domain D from the rest of space, and let n denote the inward unit normal on ∂S. The

boundary ∂S may correspond to the surface of a particle, and may be either fluid or solid

or both. The representation theorem expresses the fluid velocity at a point x in the fluid

as a sum of two convolution integrals on the surface ∂S. In index notation:

ui(x) = u∞
i (x) −

1

8πµ

∫

∂S
Kij(x − ξ)fj(ξ)dS −

1

4π

∫

∂S
Tijk(x − ξ)uj(ξ)nk(ξ)dS, (2.7)

where f(ξ) = σ(ξ) · n is the traction on ∂S, K is the Green’s function for a point force or

Oseen-Burgers tensor, and T is its associated stress tensor:

Kij(x) =
δij

x
+

xixj

x3
, Tijk(x) =

1

2
[Kij,k(x) + Kik,j(x)] = −3

xixjxk

x5
. (2.8)

In particular, Equation (2.7) shows that the knowledge of the traction field f(ξ) and of

the velocity u(ξ) on the surface ∂S entirely determines the entire velocity field outside the

surface. This result is quite powerful as it replaces the determination of a three-dimensional

variable by that of two two-dimensional variables on the boundaries of the domain. The

first integral in Equation (2.7) is called single-layer potential, while the second is called

double-layer potential, by analogy with the expressions for the electric field induced by

surface distributions of charges and dipoles in electrostatics. The boundary integral and

boundary element methods discussed in Section 1.2.4 are based on Equation (2.7) and

consist of discretizing the surface ∂S and solving for the tractions and velocities on the

boundaries.

In the case where ∂S is the surface of a solid particle, Equation (2.7) simplifies further

as the double-layer potential can be shown to vanish. In that case, the no-slip boundary

condition states that the fluid velocity on the particle surface must be equal to the rigid

body motion of the particle: u(ξ) = U + Ω × ξ. Substituting this into Equation (2.7),

and noting that [147]

∫

∂S
Tijk(x − ξ)nj(ξ)dS = 0 and εilm

∫

∂S
xmTijk(x − ξ)nk(ξ)dS = 0 (2.9)
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for a point x outside of ∂S, we find that the representation theorem reduces to

ui(x) = u∞
i (x) −

1

8πµ

∫

∂S
Kij(x − ξ)fj(ξ)dSξ. (2.10)

Equation (2.10) would still hold for a collection of particles by taking the union of the

surfaces for the domain of integration, provided that all the particles are located inside a

bounded region (i.e. that a surface ∂S∞ can be found that encloses all the particles).

2.3 The multipole expansion

The previous boundary representation, which is exact but requires the knowledge of the

tractions everywhere on the surface of a solid particle, is the starting point for a simpler

but approximate evaluation method for the disturbance velocity far away from the particle,

in terms of moments of the surface tractions [55, 101].

Consider again a single rigid particle in an unbounded fluid, and assume for convenience

that the origin 0 is located inside the particle. Far away from the particle surface (i.e. when

|x| ≫ |ξ|), the Oseen-Burgers tensor in Equation (2.10) can be expanded in a Taylor series

about ξ = 0 as follows:

Kij(x − ξ) =
∞
∑

n=0

1

n!
(ξ · ∇ξ)

nKij(x − ξ)|ξ=0 =
∞
∑

n=0

(−1)n

n!
ξk1...ξknKij,k1...kn(x). (2.11)

Inserting this expansion into the boundary integral equation for a rigid particle gives:

ui(x) = u∞
i (x) −

1

8πµ

∞
∑

n=0

(−1)n

n!

∫

∂S
ξk1 ...ξknKij,k1...kn(x)fj(ξ)dSξ

= u∞
i (x) +

1

8πµ

∞
∑

n=0

(−1)n

n!
Kij,k1...kn(x)Qjk1...kn,

(2.12)

where we have defined the n-th multipole moment of the particle by:

Qjk1...kn = −
∫

∂S
ξk1...ξknfj(ξ)dSξ. (2.13)
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Equation (2.12) is exact if the infinite sum is actually performed. In practical calculations

and simulations, only the first few terms in the expansion are retained when the evaluation

point x is sufficiently far away from the particles. Hence the first few moments play a very

important role and deserve some attention. The monopole, or zeroth moment of the force

density, is the total force exerted by the particle on the fluid (compare to Equation (2.6)):

Fj = −
∫

∂S
fj(ξ)dSξ. (2.14)

The first moment, usually called force dipole, is:

Djk = −
∫

∂S
fj(ξ)ξkdSξ. (2.15)

The dipole is a second-order tensor and can be decomposed into symmetric and antisym-

metric parts. After removing the isotropic portion:

Djk −
1

3
Diiδjk = Sjk + Rjk. (2.16)

The symmetric part is known as the stresslet Sjk:

Sjk = −
1

2

∫

∂S

[

fj(ξ)ξk + fk(ξ)ξj −
2

3
fi(ξ)ξiδjk

]

dSξ. (2.17)

The antisymmetric part Rjk is sometimes called the rotlet :

Rjk = −
1

2

∫

∂S
[fj(ξ)ξk − fk(ξ)ξj ] dSξ, (2.18)

and can be interpreted as the total torque exerted by the particle on the fluid and measured

relative to the origin 0 (compare to Equation (2.6)):

Rjk =
1

2
ϵjklTl =

1

2
ϵjkl

[

−
∫

∂S
ϵlpqfp(ξ)ξqdSξ

]

︸ ︷︷ ︸

total torque Tl

. (2.19)
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We see that if the multipole expansion Equation (2.12) is truncated after the first two

terms (as is customary for instance in Stokesian dynamics simulations, cf. Section 1.2.4),

the knowledge of the total force F , total torque T , and stresslet S, completely determines

the far-field velocity disturbance u(x) − u∞(x). There are certain situations, for simple

geometries and simple flows (e.g. translating and rotating sphere in quiescent fluid),

where the multipole expansion only contains a finite number of terms. In these cases, the

obtained velocity disturbance is exact over the entire domain (not only in the far-field).

Certain methods of solution for Stokes flow around solid bodies, called singularity methods

(e.g. [147]), consist of looking for an exact solution written as a finite multipole expansion

which satisfies the no-slip boundary condition on the surface of the body (any such solution

verifying the boundary conditions is guaranteed to be the unique solution to the problem).

This type of method may be compared with the method used in two-dimensional potential

flow where simple flow fields (uniform flow, sources and sinks, doublets etc.) are added to

satisfy the tangential flow condition on the solid boundaries.

2.4 Slender-body theory and fiber dynamics

2.4.1 The slender-body equation

When the particle of interest is very elongated such as a slender fiber or filament, the ef-

fects of the strong shape anisotropy on the flow are not adequately captured by a truncated

multipole expansion, which is based on force moments about the center of the particle.

Such an expansion will indeed fail to capture the local variations of the flow, and another

approach may be desirable. In that case the representation theorem can be greatly sim-

plified by replacing the traction field on the particle surface by an effective linear force

density along the particle axis. This slender-body theory dates back to Batchelor [12] and

Cox [45], and was later refined by Keller & Rubinow [105] and Johnson [100]. The theory

can be justified based on matched asymptotic expansions, where the flow field near the

surface of the particle, which locally is similar to the flow near an infinite cylinder and
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Figure 2.2: Geometry considered in the slender-body theory of Section 2.4.

grows logarithmically with the distance from the axis, is matched with the flow field far

away from the cylinder surface, which decays algebraically.

Consider a slender axisymmetric particle of length 2l and thickness 2a, where a may

vary along the length of the particle, and denote by A = l/a0 its aspect ratio (Figure 2.2).

Denote by x the position of its center of mass and by p a unit vector aligned with its

major axis, and let s ∈ [−l, l] denote a linear coordinate along the axis with origin the

center of the particle. The result of Batchelor [12] relates the linear and angular velocities

of the rod to the external fluid velocity u∞ and to the force density f(s) along the axis:

8πµ [ẋ + sṗ − u∞(x + sp)] = 2

[

log 2A + log
(l2 − s2)1/2

a(s)

]

(I + pp) · f(s)

+ (I − 3pp) · f(s) + (I + pp) ·

∫ l

−l

f(s′) − f(s)

|s′ − s|
ds′.

(2.20)

Note that in Equation (2.20), f(s) represents the tractions exerted by the particle on the

fluid, unlike in Section 2.2 where the opposite convention was used. Equation (2.20) is an

integral equation for the force distribution f(s) along the axis of the particle. Unless the

motion of the particle is prescribed (i.e. unless ẋ and ṗ are known), it must be supple-

mented by a force balance such as that of Equation (2.5), where the hydrodynamic forces
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and torques are now given by the simpler expression:

F h = −
∫ l

−l
f(s)ds and T h = −p ×

∫ l

−l
sf(s)ds. (2.21)

Equation (2.20), together with Equation (2.5), can be solved for the force distribution f(s)

and particle velocities ẋ and ṗ: a solution may for instance be obtained by discretizing

the rod axis and using a quadrature to evaluate the integral in Equation (2.20) (note

however that the integrand is singular, so that special care must be taken). Once the force

distribution has been determined, the disturbance velocity induced by the slender-body

at a given position y in the surrounding fluid is obtained as a convolution:

u′(y) =
1

8πµ

∫ l

−l
K(y − x − sp) · f(s)ds. (2.22)

If more than one slender-body is present in solution, the disturbance velocities induced

by the particles other than that of interest should be added to the imposed velocity in

Equation (2.20): this effectively couples the force distributions on all the rods, which

must then be determined simultaneously. This situation where multiple slender bodies are

interacting hydrodynamically will be described in more detail in Chapter 3.

In the limit of very high aspect ratio (A ≫ 1), Equation (2.20) can be simplified as

follows by only retaining the O(log 2A) term on the right-hand side:

ẋ + sṗ − u∞(x + sp) =
log 2A

4πµ
(I + pp) · f(s). (2.23)

This approximation, sometimes called local slender-body theory, essentially neglects hy-

drodynamic interactions between different sections of the slender body, but preserves its

drag anisotropy. It also greatly simplifies the problem in the case of a single rod, as

Equation (2.23) can be inverted analytically for f(s); however, when multiple rods are

interacting, the force densities become coupled again through the disturbance velocities,

and numerical solutions are again required. In the following discussion we focus on Equa-

tion (2.23), as it will be used extensively in Chapters 3, 6 and 7.
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2.4.2 Particle dynamics

Simple expressions for the linear and angular velocities ẋ and ṗ of the particle can be

obtained from Equation (2.23). Indeed, taking the average of Equation (2.23) easily yields:

ẋ =
1

2l

∫ l

−l
u∞(x + sp)ds +

log 2A

8πµl
(I + pp) · F (0), (2.24)

where F (0) is the zeroth-order moment of the force distribution, and is equal to the total

force exerted by the particle on the fluid: F (0) = −F h = F e. In addition, calculating the

first moment of Equation (2.23) and projecting in the plane perpendicular to p gives:

ṗ =
3

2l3
(I − pp) ·

∫ l

−l
su∞(x + sp)ds +

3 log 2A

8πµl3
(I − pp) · F (1). (2.25)

Here F (1) denotes the first moment of the force distribution:

F (1) =

∫ l

−l
sf(s)ds, (2.26)

and is related to the total torque T = −T h exerted by the particle on the fluid by

T = p × F (1) and (I − pp) · F (1) = T × p.

Equations (2.24)–(2.25) allow the simple calculation of ẋ and ṗ if the imposed flow

field and applied force and torque on the particle are known. In particular, if these

quantities are known, the full determination of the force distribution along the rod axis

is not required for the sole purpose of determining the particle motion. If several slender-

bodies are interacting, however, the force distributions will appear in Equations (2.24)–

(2.25) through the disturbance velocities that must be added to the imposed flow field,

and will need to be solved for.

2.4.3 Spectral expansion of the force distribution

When several slender bodies are interacting, the full solution of the coupled integral equa-

tions for the force distributions and particle velocities can be quite costly: typically it
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requires the inversion of a linear system of (3M + 5)×N unknowns, where N is the num-

ber of particles and M is the number of discretization points along each particle. The

inversion of such a system can be prohibitive in large collections of particles, and more ef-

ficient alternate methods become desirable. As mentioned earlier, the multipole expansion

of Section 2.3 is not adequate in the case of slender particles, as it does not capture the

local geometric anisotropy. However, other types of expansions for the force distribution

f(s) along the rod axis can prove useful.

Here, we present a spectral approximation of f(s) based on Legendre polynomials,

which also represents the force distribution in terms of moments. This approximation

was first proposed by Harlen, Sundararajakumar & Koch [80] and later used by Butler &

Shaqfeh [32, 33]. It consists of decomposing the function f(s) over the interval [−l, l] on

the basis of Legendre polynomials Pn:

f(s) =
∞
∑

n=0

gnPn(ŝ), (2.27)

where ŝ = s/l ∈ [−1, 1]. The vectors gn are coefficients to be determined. Using the

orthogonality property of Legendre polynomials, these coefficients can be expressed as:

gn =
2n + 1

2l

∫ l

−l
f(s)Pn(ŝ)ds. (2.28)

Truncating the expansion Equation (2.27) therefore reduces the calculation of the force

distribution f(s) to the determination of the first few vector coefficients in the expansion,

in much the same way that truncating the multipole expansion of Equation (2.12) reduced

the calculation of the surface tractions on a particle surface to the determination of its

first few moments about the center of the particle. Yet Equation (2.27) still contains

information about the spatial distribution of the forces through the basis polynomials

which vary with s along the rod axis.

In the practical simulations of Chapters 3, 6 and 7, we will only retain the first two

terms (n = 0 and 1) in Equation (2.27), which is similar to the truncation of the multipole

expansion after the dipole term in Stokesian dynamics simulations. Recalling that P0(ŝ) =
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1 and P1(ŝ) = ŝ, the expansion becomes: f(s) ≈ g0 + g1s/l, where the coefficients are

expressed in terms of the zeroth and first force moments as

g0 =
1

2l

∫ l

−l
f(s)ds and g1 =

3

2l2

∫ l

−l
sf(s)ds. (2.29)

In particular, the zeroth moment is related to the total force as g0 = F (0)/2l. By analogy

with the force dipole of Equation (2.15), we decompose the first force moment in symmetric

part (along p) and antisymmetric part (perpendicular to p):

g1 =
3

2l2

[

pp ·

∫ l

−l
sf(s)ds + (I − pp) ·

∫ l

−l
sf(s)ds

]

=
3

2l2

[

S p + (I − pp) · F (1)
]

.

(2.30)

As in the case of the force dipole in the multipole expansion, the antisymmetric part is

related to the first force moment F (1) on the particle (or equivalently to the total torque

T ), while the symmetric part involves a scalar stresslet S :

S =

∫ l

−l
sp · f(s)ds. (2.31)

To summarize, the spectral expansion of the force distribution becomes:

f(s) ≈
1

2l
F (0) +

3s

2l3

[

S p + (I − pp) · F (1)
]

. (2.32)

If the zeroth and first force moments F (0) and F (1) are known, the calculation of the force

distribution is therefore reduced to the determination of a single scalar S . Inverting the

slender-body equation (2.23) for f(s), and substituting the result into the definition of

S (Equation (2.31)) allows the stresslet to be expressed in terms of the imposed fluid

velocity:

S = −
2πµ

log 2A

∫ l

−l
sp · u∞(x + sp)ds. (2.33)

If the external fluid velocity u∞ is known a priori, as in the case of a single rod in a

prescribed flow field, the stresslet can be calculated using Equation (2.33), from which

the linearized force distribution Equation (2.32) is inferred. However, if several rods are

interacting, u∞ contains a contribution from the disturbance velocity induced by the other
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rods, and Equation (2.33) can be used together with Equations (2.22) and (2.32) to write

a linear systems for the stresslets on all the rods. This procedure will be described in more

detail in Chapter 3.

2.5 Complex geometries

The discussion of this Chapter has focused on particles suspended in an unbounded fluid.

In many situations of interest, as described for example in Chapters 4 and 7, container

boundaries play a significant role on the particle dynamics and must be included. Here

we briefly review two major approaches to account for solid boundaries.

Boundary integral equation : A natural approach consists of treating the con-

tainer boundaries as part of the bounding surface ∂D in the representation theorem

of Section 2.2: the boundaries can then be discretized and the surface tractions

solved for in a similar fashion as on the particle surfaces. The advantage of this

approach is that complex surfaces (such as curved walls, corners etc.) are easily

handled. Yet the method is in most cases impractical as it creates a very large num-

ber of additional variables (tractions at all the discretization points on the surfaces),

and is not easily applied when the bounding surfaces are infinite (as in channel flows

for instance).

Green’s functions methods: An alternate approach consists of using the Green’s

function for the geometry of interest in place of the Oseen-Burgers tensor K in the

representation theorem, multipole expansion or slender-body equation. In that case,

the no-slip boundary condition is automatically enforced on the boundaries, with no

additional work. The limitation of this approach is that analytical Green’s functions

only exist in simple geometries, such as for the flow over an infinite plane [19], flow

between two infinite flat plates [117, 17, 99], or flow in a cylindrical tube [118].

In more complex geometries, the Green’s function has sometimes been obtained

numerically [97]. A method of this type will be applied in Chapter 7.



Chapter 3

A smooth particle-mesh Ewald

algorithm for Stokes suspensions

3.1 Introduction

In the Stokes flow regime, the disturbance of a point force or Stokeslet on the flow decays

as the inverse of the distance from the force location, so that even distant particle pairs can

have significant interactions. Evaluating the disturbance velocity at each particle location

due to the presence and motion of the other particles is typically an O(N2) operation,

where N is the number of particles, and can become very prohibitive when the size of the

system increases. Several alternate methods for the summation of these interactions have

been suggested in the last few years, most of which were inspired by existing algorithms

used in molecular dynamics simulations, where the electrostatic potentials have the same

slow decay as the disturbance velocity in creeping flow. Sangani & Mo [162] developed

an O(N) fast-multipole method for hydrodynamic interactions, based on the famous algo-

rithm by Greengard & Rokhlin [73]. In the fast-multipole method the simulation domain

is decomposed into a tree of cells, and in each cell a compressed representation of the flow

disturbances is constructed using a truncated multipole expansion. Far-field interactions

with the particles located in distant cells are then calculated by means of this compressed

26
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representation. The fast-multipole method was also applied more recently to suspensions

of many deformable drops [199], and to Stokesian dynamics simulations with finite num-

bers of particles [92]. As discussed in Section 1.2.3, other efficient methods include the

Lattice-Boltzmann method developed by Ladd [110]; this technique however only applies

to finite Reynolds numbers.

The most notable method for both electrostatic and hydrodynamic interactions is the

Particle-Particle Particle-Mesh (PPPM) algorithm [88]. This algorithm and its many vari-

ants have been used for over a decade in plasma simulations, astrophysics and molecular

dynamics, and are based on a decomposition of the interactions into two fast-converging

contributions, one of which is efficiently evaluated using an underlying grid and the fast

Fourier transform algorithm. A good choice of parameters allows one to reduce the cost of

evaluating the interactions to O(N log N), which is a significant improvement for large sys-

tems. A thorough review of different variants of the method for electrostatic interactions

can be found in Deserno & Holm [49].

A version of the PPPM algorithm, called Particle-Mesh Ewald (PME), was first ap-

plied to hydrodynamic interactions between suspended spheres by Guckel [75], and was

subsequently made systematic by Sierou & Brady [170] in their Accelerated Stokesian

Dynamics (ASD). ASD is a new version of the Stokesian dynamics method [25], in which

the direct calculation of the far-field grand mobility matrices is replaced by the use of the

PME algorithm along with an iterative solver for the matrix inversion. ASD was proven

to be very efficient in evaluating the rheological properties of suspensions of spheres [171],

allowing the simulation of systems of up to 1,000 spheres.

In this Chapter, we develop and implement a variant of the PME algorithm, called

Smooth Particle-Mesh Ewald (SPME), and based on the work by Essman et al. [57] for

electrostatic interactions. The main advantage of SPME over the original PME method is

the improved accuracy resulting from the new force assignment and interpolation schemes

used for the Fourier sum, which are based on an approximation of structure factors us-

ing high-order B-splines. The common points and differences with accelerated Stokesian

dynamics will become apparent in the subsequent discussion.
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As a way of illustration, we apply the method to the simulation of the periodic sedi-

mentation of suspensions of fibers, a phenomenon further investigated in Chapter 4. The

sedimentation of non-spherical particles such as rigid fibers is known to be quite complex,

as both experiments [83, 84, 126] and theoretical arguments [102] show that it is char-

acterized by a concentration instability: an initially well-mixed homogeneous suspension

is observed to become highly inhomogeneous, with the formation of high-concentration

streamers surrounded by clarified regions.

Several attempts have been made to numerically simulate this instability. First, Mack-

aplow & Shaqfeh [122] performed both Monte-Carlo simulations and point-particle dy-

namic simulations, and managed to capture most of the qualitative features of the insta-

bility in the dilute regime. More recently, Butler & Shaqfeh [32] performed simulations

in which they accounted for both far-field hydrodynamic interactions and short-range lu-

brication forces. The fibers were no longer approximated as point particles, but modeled

using slender-body theory as line distributions of point forces (cf. Section 2.4). A spec-

tral approximation of the line distributions was used, in which they retained the first two

moments, namely the total force and dipole term, whose anti-symmetric and symmetric

parts are the total torque and particle stresslet. Short-range pairwise interactions were

also included using the lubrication approximation. The results they obtained were de-

pendent on the aspect ratio of their periodic simulation box, but good orientation and

velocity statistics were obtained using boxes that were highly elongated in the direction

of gravity. The size of the systems they were able to simulate was however greatly limited

by the cost of evaluating the inter-particle long-range hydrodynamic interactions, so that

only very few clusters were typically observed in their simulations. Moreover the size of

the clusters was influenced by the boundary conditions. In particular, the limitations on

the box aspect ratio and number of fibers did not allow them to observe more than one

vertical streamer. To reduce the influence of the boundary conditions, and study in more

details the structure of the suspension (e.g. wavenumber selection, cluster size and dy-

namics), larger systems need to be simulated: this strongly motivates the use of efficient

algorithms such as the SPME method developed here for the calculation of the long-ranged
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hydrodynamic interactions.

In Section 3.2, we give an overview of the mathematical formulation of the sedimen-

tation problem, which follows closely the simulation method of Butler & Shaqfeh [32]

and is analogous to the discussion of Section 2.4: the equations for the motion of the

fibers, lubrication forces and hydrodynamic interactions are all presented in detail. We

then proceed to explain the smooth particle-mesh Ewald algorithm in Section 3.3, and

assess its performance by comparing it to the standard Ewald summation technique. In

Section 3.4 we discuss the iterative method and preconditioning techniques used to solve

for the stresslets and lubrication forces. Finally the results of the simulations are given in

Section 3.5, where the structure of the suspension, orientation and velocity statistics are

discussed.

3.2 Mathematical formulation

The simulation method follows the previous work by Butler and Shaqfeh [32]. Slender-

body theory is used to model the motion of the fibers, along with a spectral approximation

of the force distribution in which the total force, torque and particle stresslet are retained.

The fundamental periodic solution of the Stokes equation is used for hydrodynamic inter-

actions, and short-range interactions are calculated using the lubrication approximation.

3.2.1 Motion of the fibers: slender-body theory

The position and orientation of each fiber α is determined by the location xα of its center of

mass and by a unit vector pα parallel to its major axis (cf. Figure 2.2). The time evolution

of xα and pα can be tracked using Batchelor’s slender-body theory [12] introduced in

Section 2.4, which represents the disturbance due to the presence and motion of the fiber

in the fluid by a line distribution of point forces. To a leading order approximation in

log 2A, where A is the fiber aspect ratio, the translational and rotational velocities ẋα and

ṗα are related to the fluid disturbance velocity and force distribution along the fiber by

the slender-body equation (cf. Section 2.4):
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ẋα + sṗα − u′
α(xα + sαpα) =

log 2A

4π
(I + pαpα) · fα(sα) α = 1, ..., N. (3.1)

Here u′
α is the disturbance velocity of the fluid surrounding fiber α due to the motion of the

other fibers, sα is an abscissa along the fiber length, and fα is the line distribution of point

forces. Equation (3.1) has been non-dimensionalized using the following characteristic

velocity, length and time scales:

uc =
gV ∆ρ

4πµl
log(2A), lc = l, tc = lc/uc =

4πµl2

gV ∆ρ log(2A)
. (3.2)

V and ∆ρ are the volume and relative density of a fiber, µ is the viscosity of the solvent

and g the acceleration of gravity. The characteristic length scale l is the fiber half-length,

so that positions s along the fibers range from −1 to +1. The characteristic time scale,

or Stokes time, is the time required for an isolated vertical fiber to sediment over its

half-length.

As we saw in Section 2.4.2, Equation (3.1) can be used to determine the linear and

angular velocity of the fiber as:

ẋα =
1

2

∫ 1

−1
u′

α(xα + sαpα)dsα +
log(2A)

8π
(I + pαpα) · F (0)

α , (3.3)

ṗα =
3

2
(I − pαpα) ·

∫ 1

−1
sαu′

α(xα + sαpα)dsα +
3 log(2A)

8π
(I − pαpα) · F (1)

α , (3.4)

where F
(0)
α and F

(1)
α denote the zeroth and first force moments on fiber α:

F (0)
α =

∫ 1

−1
fα(sα)dsα, F (1)

α =

∫ 1

−1
sαfα(sα)dsα. (3.5)

Given F
(0)
α , F

(1)
α and the fluid velocity u′

α along the axis due to the motion of the other

fibers, Equations (3.3)–(3.4) can be used to integrate the motion of the fiber in time.

3.2.2 Forces and torques on the fibers

In addition to the long-range hydrodynamic interactions which will be discussed in Sec-

tion 3.2.3, the forces and torques on the fibers can come from three contributions: gravity
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which causes sedimentation, lubrication forces when two fibers get close to each other

(typically when the distance between their surfaces falls below one fiber diameter), and

strong repulsive contact forces when this distance becomes of the order of the roughness

length scale of the fiber surfaces. Gravity poses no special difficulty, and only creates a

force at the center of the particle. In dimensionless form: F (0),g = −ẑ and F (1),g = 0.

The slender-body formulation of Section 3.2.1, which represents the fibers as line dis-

tributions of point forces, is a far-field approximation and therefore does not capture the

near-field effects which are dependent on the exact geometry of the fiber surfaces. These

effects can be accounted for through additional lubrication forces, as is commonly done

in Stokesian dynamics simulations [25]. As sedimenting fiber suspensions are known to

form inhomogeneities, correctly capturing these short-range interactions can be critical,

and Butler & Shaqfeh [32] indeed observed that including lubrication forces in their sim-

ulations modified the sedimentation rates and pair probabilities. The modeling is quite

straightforward and is derived from the formulae of Claeys & Brady [41]. Four types

of lubrication interactions can occur: body-body interactions (parallel and non-parallel

cases), end-body interactions and end-end interactions. In each case the explicit form

of the lubrication force will differ, and the various formulae can be found in Butler &

Shaqfeh [32]. For the most general case where the fibers interact along their lengths and

are non-parallel, the force between two fibers α and β is given by:

F
(0),l
αβ = ±

6πḣ

A2|pα × pβ|h
n, (3.6)

where n is a unit vector normal to both fiber surfaces, h is the minimum separation

distance between the two surfaces and ḣ is the relative velocity projected along n. The

appropriate sign is chosen such that the force is repulsive for approaching fibers (ḣ > 0)

and attractive for separating fibers (ḣ < 0). In all cases these forces also create torques.

As argued by Harlen, Sundararajakumar & Koch [80] in their similar simulations of

neutrally buoyant fibers, lubrication interactions between high-aspect ratio particles are

quite weak and will usually not be sufficient to prevent mechanical contact. Harlen et

al. treated these contacts by solving a constraint problem and determining exactly the
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normal reaction forces that prevent fiber crossing. An alternate approach consists of

adding strong and short-range repulsive forces that act at the same points and in the

same directions as the lubrication forces [55]:

F
(0),c
αβ = ±a0

τe−τh

1 − e−τh
n. (3.7)

The values of the parameters a0 and τ used in the simulations are 1 × 10−4 and 1 × 103

respectively, and are chosen such that the repulsive force remains small over most of the

range of the lubrication force; the actual values are typically shown to have little impact

on the simulation results [140, 32].

3.2.3 Hydrodynamic interactions

Hydrodynamic interactions are accounted for through the disturbance velocity u′
α in Equa-

tions (3.3)–(3.4). As explained in Section 2.4, the disturbance velocity is obtained as a

convolution as:

u′(xα + sαpα) =
1

8π

N
∑

β=1

∫ 1

−1
J(xα + sαpα − xβ − sβpβ) · fβ(sβ)dsβ, (3.8)

where J is the Green’s function for the geometry of interest. For a finite number of point

forces, J is given by the Oseen-Burgers tensor K (Equation (2.8)). However when the

suspension is infinite, summing an infinite number of Stokeslets becomes intractable and

convergence is not guaranteed [26]. This issue can be circumvented by using a periodic

suspension obtained by replicating a unit cell in all three space dimensions. In the case of

a periodic distribution of point forces an exact solution Kp was derived by Hasimoto [81].

The details of the Hasimoto solution are given in Appendix A and Section 3.3 along with

a discussion on the method used to calculate it. Hence for a periodic suspension:

J(xα + sαpα − xβ − sβpβ) =

⎧

⎨

⎩

Kp(xα + sαpα − xβ − sβpβ) if α ≠ β,

Kp(sα − sβ) − K(sα − sβ) if α = β.
(3.9)

When α = β, the Oseen-Burgers tensor must be subtracted from the periodic solution so

that the disturbance velocity due to fiber α is not included. When α = β and sα = sβ the
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limit of Kp(sα − sβ) − K(sα − sβ) is used.

3.2.4 Linearization of the force distribution

The system of equations, as presented in the previous sections, is a coupled integral system

for the force distribution fα(sα) along each fiber α. As previously suggested by Harlen

et al. [80] and Butler & Shaqfeh [32], we make use of the spectral expansion described in

Section 2.4.3 and expand the force distribution along the rods using Legendre polynomials:

fα(sα) ≈
1

2

∫ 1

−1
fα(sα)dsα +

3sα

2

∫ 1

−1
sαfα(sα)dsα

≈
1

2
F (0)

α +
3sα

2

[

Sαpα + (I − pαpα) · F (1)
]

,

(3.10)

where the dimensionless stresslet Sα is now given by (cf. Equation (2.33)):

Sα = −
2π

log 2A

∫ 1

−1
spα · u′

α(xα + sαpα)ds. (3.11)

This method is analogous in essence to that used by Claeys & Brady in their Stokesian

dynamics simulations of prolate spheroids [42], although the path followed is different.

Instead of using a spectral expansion of the force distribution as in our case, Stokesian

dynamics is based on a multipole expansion of the Green’s function into centered moments,

which is typically truncated after the dipole term (Section 2.3). Claeys & Brady then

argue that in the case of spheroids the multipole moments are equivalent to distributed

singularities along the focal axis of the particles. The equations they obtain are slightly

more general as they also involve distributions of potential dipoles and their derivatives,

which arise from the finite thickness of the particles but become negligible for very high-

aspect-ratio particles.

3.2.5 Method of solution

Substituting the linearized force Equation (3.10) into the expression for the disturbance

velocity Equation (3.8), and then Equation (3.8) into the equations for the motion of the

fibers Equations (3.3)–(3.4) yields a general expression for the translational and rotational
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velocities as functions of the gravity force F (0),g (which is the same for all fibers), the

stresslets Sβ, and the lubrication forces F
(0),l
m where the index m = 1, ...,M refers to a

specific lubrication interaction between two fibers. It can be written in the general form:

ẋα =
N
∑

β=1

[

Lαβ · F (0),g + MαβSβ

]

+
M
∑

m=1

Nαm · F (0),l
m , (3.12)

ṗα =
N
∑

β=1

[

Pαβ · F (0),g + QαβSβ

]

+
M
∑

m=1

Rαm · F (0),l
m . (3.13)

For a given pair (α,β), Lαβ, Nαm, Pαβ and Rαm are second-order tensors, and Mαβ and

Qαβ are vectors (since the stresslets are scalar quantities).

The tensors Lαβ and Pαβ give contribution to the velocities due to gravity, and can be

shown to be:

Lαβ =
1

4

∫∫ 1

−1
K(sα, sβ)dsαdsβ + δαβ

log(2A)

8π
(I + pαpα), (3.14)

Pαβ =
3

4
(I − pαpα) ·

∫∫ 1

−1
K(sα, sβ)sαdsαdsβ, (3.15)

where in each case K(sα, sβ) stands for K(xα + sαpα − xβ − sβpβ) and takes the form

given in Equation (3.9). The vectors Mαβ and Qαβ used to relate the fiber stresslets Sβ

to the velocities are also easily obtained:

Mαβ =
3

4

∫∫ 1

−1
K(sα, sβ)pβsβdsαdsβ, (3.16)

Qαβ =
9

4
(I − pαpα) ·

∫∫ 1

−1
K(sα, sβ)pβsαsβdsαdsβ. (3.17)

The two remaining tensors Nαm and Rαm give the contribution of lubrication forces

to the velocity, which is of two types: a direct contribution, through the second term

on the right-hand sides of Equations (3.3)–(3.4), and an indirect contribution through

the disturbance velocity. This second contribution is a multibody interaction, in the

sense that each lubrication force affects all the fibers. Given a lubrication interaction m

(1 ≤ m ≤ M), let a and b be the two fibers between which the interaction takes place,
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and let λma and λmb be the corresponding abscissae where the force is applied. If F
(0),l
m is

the force on fiber a, the force on fiber b will be −F
(0),l
m . Introduce the two matrices:

Aαm = δαa − δαb, Bαm = δαaλma − δαbλmb.

The two tensors Nαl and Rαl then take on the following form:

Nαl =
1

4

∫∫ 1

−1
K(sα, sβ) · [I + 3λlasa(I − papa)] dsadsα (3.18)

−
1

4

∫∫ 1

−1
K(sα, sβ) · [I + 3λlbsb(I − pbpb)] dsbdsα +

log(2A)

8π
(I + pαpα)Aαl,

Rαl =
3

4
(I − pαpα) ·

{∫∫ 1

−1
K(sα, sβ) · [I + 3λlasa(I − papa)] dsasαdsα (3.19)

−
∫∫ 1

−1
K(sα, sβ) · [I + 3λlbsb(I − pbpb)] dsbsαdsα +

log(2A)

2π
Bαl

}

.

The repulsive contact forces, which are not included in the above equations, are treated

in exactly the same way as the lubrication forces.

The method of solution proceeds as follows. In Equations (3.12)–(3.13) the tensors

Lαβ, Nαl, Pαβ and Rαl and vectors Mαβ and Qαβ are only functions of the positions and

orientations of the fibers and are hence known. The gravitational force F (0),g and the

repulsive forces F
(0),c
m are also known, so that the unknowns are: the translational and

rotational velocities ẋα and ṗα of the fibers, as well as the stresslets Sα and lubrication

forces F
(0),l
m . The first step consists of solving for the latter two in the following manner.

Substituting the linearized force distribution Equation (3.10) (where the total force and

torque are functions of the lubrication interactions and stresslets which are unknown)

into the disturbance velocity Equation (3.8), and in turn substituting Equation (3.8) into

the definition of the stresslets Equation (3.11) yields a linear system for the stresslets and

magnitudes of the lubrication forces. Once this system is inverted, using an iterative solver

discussed in Section 3.4, Equations (3.12)–(3.13) can be used to obtain the velocities of the

fibers. The positions of the fibers can then be advanced using a fourth-order Runge-Kutta

time-marching method. The time step is chosen so as to avoid collisions or overlap, and so

that no fiber moves by more than half a fiber diameter at each step. For a more extensive
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discussion on the time integration method, the reader is referred to Butler & Shaqfeh [32].

3.3 The smooth particle-mesh Ewald algorithm

3.3.1 Periodic fundamental solution and Ewald summation formula

The disturbance velocity Equation (3.8) must be evaluated along each fiber. In practical

simulations the integrals over the lengths of the fibers are computed numerically using

Gauss-Legendre quadrature, so that we are left with calculating the disturbance field cre-

ated by a distribution of point forces at each point force location. Consider a distribution

of N point forces F 1,F 2, . . . F N at positions x1,x2, . . . xN in a unit cell of volume τ0; to

alleviate the notations, assume that the quadrature weights resulting from the discretiza-

tion of the integrals have been included in the force vectors F n. Denote by ai, i = 1, 2, 3,

the lattice vectors forming the edges of the unit cell. To simulate an infinite suspension we

use periodic boundary conditions, so that each point force F n at position xn has periodic

images at all the locations xn + p1a1 + p2a2 + p3a3 for all integers p1, p2, p3. With these

notations, the disturbance velocity at location xm created by the point forces other than

F m is written as:

u(xm) =
∑

p

N
∑

n=1

K(xn − xm + p) · F n, m = 1, . . . , N, (3.20)

where K is the Oseen-Burgers tensor (Equation (2.8)). The term corresponding to n = m

and p = 0 is omitted in the sum. Because of the decay of the Oseen-Burgers tensor as

1/r, the infinite sum in Equation (3.20) is generally divergent. This is typically remedied

by realizing that the average force ⟨F ⟩ ≠ 0 creates a backflow, and that only the velocity

relative to this backflow has a physical significance [26, 25]. Hasimoto [81] took advantage

of the spatial periodicity of the problem and used Fourier series to derive a convergent

expression for Equation (3.20). His solution, which is rederived in Appendix A, can be

written:

u(xm) =
1

4πµ

[

S1 − ∇(∇ · S2)
]

, (3.21)
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where S1 and S2 are the following sums:

S2 = −
1

4π3τ0

∑

k≠0

e2πik·xm

k4
F̂ (k) and S1 = ∇

2S2 =
1

πτ0

∑

k≠0

e2πik·xm

k2
F̂ (k). (3.22)

The vectors k are the reciprocal lattice unit vectors: k = k1b1 + k2b2 + k3b3, where the

vectors bi, i = 1, 2, 3, define the unit cell in the reciprocal or Fourier space:

b1 =
a2 × a3

τ0
, b2 =

a3 × a1

τ0
, b3 =

a1 × a2

τ0
. (3.23)

F̂ (k) is the Fourier transform of the distribution of point forces, or structure factor:

F̂ (k) =
N
∑

n=1

F ne2πik·xn . (3.24)

The presence of this structure factor in the periodic fundamental solution suggests that

the disturbance velocity could be evaluated using the fast Fourier transform algorithm;

this observation will be exploited below. It is important to notice the absence of the term

k = 0 in the Fourier representation of the velocity: this term corresponds to the mean

backflow alluded to above, and should be set to zero if the fluid is globally quiescent. The

absence of this term arises naturally in the derivation of Equation (3.21), where it is shown

that the mean pressure gradient cancels exactly the mean force term F̂ (0), so that the

latter does not contribute to the disturbance velocity [81] (cf. Appendix A).

Equations (3.21)–(3.22) constitute an exact and absolutely convergent expression for

the disturbance velocity, and can be used as such in computations. However the relatively

slow decay in 1/k2 makes this direct method quite inefficient as many terms are needed

to achieve a reasonable accuracy. The convergence can be accelerated by recasting Equa-

tions (3.21)–(3.22) into a slightly different form called Ewald summation formula. It was

first used by Ewald for electrostatic interactions [58], and the present form for hydrody-

namic interactions is due to Hasimoto [81]. The starting point is an integral representation

for 1/k2m for m = 1, 2, and the introduction in the integral of a cutoff parameter α, called
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Ewald coefficient. The derivation is classic [58, 57, 81, 170] and is presented in Appendix A.

The final result expresses the disturbance velocity as follows:

u(xm) =
∑

p

N
∑

n=1

A(α,xm − xn + p)F n +
∑

k≠0

e−2πik·xmB(α,k)F̂ (k) (3.25)

for m = 1, . . . , N . The two tensors A and B are given by:

A(α,x) = πα−3/2φ1/2(πα−1|x|2)
(

|x|2I + xx
)

− 2α−1/2 exp(−πα−1|x|2)I, (3.26)

B(α,k) = πα2τ−1
0 φ1(πα|k|2)(|k|2I − kk), (3.27)

where the functions φν are incomplete Γ-functions:

φ1/2(x) =
exp(−x)

x
+

1

2

erfc(
√

x)

2x
and φ1(x) =

exp(−x)

x2
(1 + x). (3.28)

The Ewald coefficient α is a user-defined parameter that determines the relative impor-

tance of the two sums: its choice is typically dictated by cost considerations. The two

tensors A and B decay exponentially in their second arguments, so that both sums in

Equation (3.25) converge rapidly.

3.3.2 Description of the algorithm

The Ewald summation formula Equation (3.25) is the basis for most simulations with

periodic boundary conditions. A standard and widely used method, sometimes called

the Ewald summation technique, consists of truncating both sums after a few terms and

choosing the coefficient α so as to minimize the overall cost [26, 122, 32]. In spite of the

rapid convergence of the sums, this direct method can still be quite expensive for very

large systems. Also, it does not typically exploit the presence of the Fourier transform in

the second sum. The smooth particle-mesh Ewald method proceeds quite differently: the

parameter α is chosen so as to reduce the cost of the first sum (or real sum), and a fast

algorithm based on the fast Fourier transform on a Cartesian grid is used for the second

sum (or Fourier sum). More details are provided below.
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Real sum

The calculation of the real sum at all the point force locations xm is a priori an O(N2)

operation, as it involves summing over all the other point forces and their images. However

the exponential decay of the tensor A can be exploited to restrict the evaluation of the sum

to close particle pairs. Given a tolerance ϵ and a cutoff radius rc, the Ewald coefficient

α can be chosen to make all the coefficients of A(α,x) less than ϵ whenever |x| ≥ rc.

Once α is obtained following this procedure, the real sum in Equation (3.25) only needs

to be performed over the point forces located within a sphere of radius rc, i.e. over a

small number independent of the system size. The evaluation of the sum at all the point

force locations xm then has an O(N) cost, with a constant of proportionality that can be

adjusted through the cutoff radius.

Fourier sum

The real gain is achieved in the evaluation of the Fourier sum. As mentioned previously,

the presence of the structure factors suggests use of the fast Fourier transform algorithm.

As the point forces can be located anywhere inside the unit cell, prior interpolation to a

Cartesian grid is necessary. This can be done formally using Cardinal B-splines, which

are introduced briefly in Appendix B. A mesh is defined inside the reciprocal unit cell

by choosing three integers K1, K2 and K3 corresponding to the numbers of points along

the reciprocal lattice vectors b1, b2 and b3. Given a point x in the unit cell, we define its

scaled fractional coordinates by ξi = Kibi · x for i = 1, 2, 3.

We wish to approximate the structure factor F̂ (k) using a discrete Fourier transform

on the grid defined above. This is achieved by interpolating the complex exponentials in

the definition of F̂ (k) using Cardinal B-splines. Appendix B shows that in one dimension

we can write:

exp

(

2πi
kξ

K

)

≈ b(k)
+∞
∑

m=−∞

Mp(ξ − m) exp

(

2πi
km

K

)

, (3.29)

where the coefficients b(k) and Mp are easily computed using a recursive definition. p is
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the order of interpolation, and the sum over m is in fact limited to p terms as the functions

Mp have compact support. Generalizing Equation (3.29) to three dimensions we obtain

the following approximation for the structure factor:

F̂ (k) ≈ b1(k1)b2(k2)b3(k3)F (Q)(k), (3.30)

where F (Q) is the three-dimensional discrete Fourier transform of the following array:

Q(m) =
N
∑

n=1

∑

p1,p2,p3

F nMp(ξ
n
1 −m1+p1K1)Mp(ξ

n
2 −m2+p2K2)Mp(ξ

n
3 −m3+p3K3). (3.31)

The algorithm for the computation of the Fourier sum can now be summarized. The

first step is the assignment of the point forces F n to the Cartesian grid using Cardinal

B-splines, i.e. the calculation of the array Q(m) using the interpolation formula Equa-

tion (3.31). The discrete Fourier transform F (Q) is then computed using the fast Fourier

transform algorithm (FFT), and is multiplied in turn by bi(ki) to yield the approximation

to the structure factor Equation (3.30), and by the Fourier convolution kernel B(α,k).

The result is multiplied by b∗i (ki) (where ∗ denotes the complex conjugate) and the inverse

FFT is applied, yielding the Fourier sum in Equation (3.25) but evaluated at the grid

points. The sum can then be interpolated from the grid points to the particle locations,

again using B-splines (transpose operation of the force assignment Equation (3.31)).

As we explained above, the real sum need only be performed on a small number of

neighbors for each point force, resulting in an O(N) cost for N point forces. The cost

of computing the Fourier sum using the previous algorithm is limited by the two fast

Fourier transforms, which have a cost of O(K log K) where K is the number of points

in each direction on the Cartesian mesh, and is chosen proportional to the system size

N . Therefore the total cost of the method scales as N log N , which can be a significant

improvement for large systems compared to the original cost of O(N2). Comparisons of the

CPU times for the traditional Ewald summation technique and the smooth particle-mesh

Ewald algorithm are presented in Section 3.3.4.
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The use of the Cardinal B-splines for the force assignment and interpolation schemes

is the major difference between SPME and the accelerated Stokesian dynamics method of

Sierou & Brady [170]. Accelerated Stokesian dynamics uses a Taylor series expansion to

assign the forces to the grid, after which it applies the fast Fourier transform algorithm;

Lagrange interpolation is then used to go back from the grid to the particle locations.

Exploiting instead the interpolation properties of Cardinal B-splines for complex expo-

nentials gives directly a smooth approximation to the structure factors [57, 165], which

are the relevant quantities appearing in the Fourier sum of the Ewald summation formula.

The final interpolation is done again using B-splines and is completely analogous to the

force assignment, as it should be considering the symmetric nature of the two operations.

Another advantage of using B-splines is their smooth behavior at high interpolation order,

while Lagrange interpolation is known to become unstable as the order increases. Ess-

mann et al. [57] compared both methods for electrostatic interactions, and obtained better

accuracies using B-splines for both the forces and interaction energies.

3.3.3 Accuracy

The accuracy and efficiency of the method depend on several parameters: the tolerance ϵ

and cutoff radius rc for the real sum (the two of which uniquely define the Ewald coefficient

α, as explained in Section 3.3.2), and the number of grid points K and the order p of the B-

spline interpolation for the evaluation of the Fourier sum. These parameters are typically

adjusted to maximize the accuracy while minimizing the cost.

To investigate the accuracy of the method and the influence of the parameters in more

detail, tests are performed in a square box with a distribution of 100 point forces at random

locations, with random orientations and unit strengths. In all the tests, the value of the

real-space tolerance is set to ϵ = 10−10. The disturbance velocity at the force locations is

computed using the smooth particle-mesh Ewald method, and is compared to the solution

obtained with converged Ewald sums. The measure of accuracy used here is the root-mean

square (rms) error between the two solutions:
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Figure 3.1: Velocity rms error as a function of the cutoff radius rc. The three curves
correspond to the three different grid sizes K = 32, 64 and 128 for the evaluation of the
Fourier sum.

∆u =

[

1

N

N
∑

n=1

(uSPME(xn) − uEWALD(xn))2
]1/2

. (3.32)

Since our method is based on evaluation of sums such as Equation (3.8) which only involve

point force distributions, we limit our attention to this measure of accuracy. It should be

noted however that such a measure does not guarantee that other quantities such as higher

force moments are as adequately captured.

The rms error as a function of the cutoff radius at constant values of K and p is plotted

in Figure 3.1. The three curves correspond to the three grid sizes K = 32, 64 and 128. In

all cases the rms error becomes large as rc → 0, but decays very rapidly when rc increases;

for large values of rc, it reaches a plateau at around ∆u = 10−9. These curves are easily

interpreted. Whatever the value of the cutoff radius, the error in the real sum is of order

ϵ and accounts for the plateau at around 10−9: indeed the Ewald coefficient is chosen

precisely so as to make the real sum converge within ϵ. The remainder of the error (i.e. all

the values above the plateau) stems from the evaluation of the structure factor using the

discrete Fourier transform, and from the assignment of the point forces to the grid and

back. The Fourier sum accounts for the smooth and long-range part of the solution, and
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Figure 3.2: Velocity rms error as a function of (a) the number of grid points K used for
the evaluation of the Fourier sum, and (b) the interpolation order p of the force assignment
scheme.

cannot capture the short-range singular part; this explains why for a given number of

grid points K the error increases rapidly when the cutoff and hence the Ewald coefficient

become small.

The influence of K and p on the accuracy is shown in Figure 3.2. As already suggested

in Figure 3.1, increasing the number of points for the fast Fourier transform improves the

accuracy of the Fourier sum: Figure 3.1(a) shows the decay of the error with increasing

K, at constant cutoff radius and interpolation order. On a log-log plot the curves are es-

sentially straight, suggesting an algebraic decay; the exponents obtained from the curves

in Figure 3.1(a) are respectively −6.7 and −8.5 and are close to the value of the interpo-

lation order p, confirming the scaling of the error with K−p for the B-spline interpolation

[57, 165]. Another way of making the Fourier sum more accurate is to choose a higher

order of interpolation for the force assignment scheme, and is illustrated in Figure 3.2(b).

Increasing K or p has the same effect on the accuracy, so that either one or both can be

done and the final choice of their values depends on the computational expense.
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Figure 3.3: CPU times for the calculation of the Ewald sums using (a) the traditional
Ewald summation technique, and (b) the SPME method, as a function of the system size.

3.3.4 Efficiency

The efficiency of the method is assessed by comparing the CPU times required by the

traditional Ewald summation technique and our smooth particle-mesh Ewald algorithm.

These are shown in Figure 3.3, where simulations were performed for the same systems

as in the previous section (unit-strength forces with random locations and orientations),

for different system sizes N and levels of accuracy. A quick observation of Figure 3.3

suffices to show the superiority of the SPME method in terms of efficiency. Except for

very small systems, the CPU times are all smaller for SPME than for the Ewald sums at

a given accuracy. In fact, even the high-accuracy SPME is more advantageous than the

low-accuracy Ewald sums. It becomes even more so for large systems: at the same level of

accuracy (root mean square error of the order of 10−9), SPME is about 40 times faster than

the Ewald sums for 1,000 point forces, and 300 times faster for 5,000 points forces. While

the cost scales quadratically with size for the Ewald sums, it increases almost linearly with

SPME when the grid size is fixed in Fourier space (the three curves for SPME correspond

to three different grid resolutions in Fourier space).

It must still be noted that the CPU times of Figure 3.3 are for the calculation of the
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disturbance velocity only. To assess the actual cost of our simulations, we should also take

into account the inversion of the linear system for the stresslets and lubrication forces,

which cannot be performed using standard elimination procedures when SPME is used.

The additional cost of this system inversion does somewhat impede the performance of

SPME, but for large systems it still remains far superior to the standard Ewald sums. A

detailed discussion on the system inversion follows.

3.4 The iterative solver

3.4.1 Generalities

Solving for the particle stresslets and amplitudes of the lubrication forces involves inverting

a linear system. This operation, which in general can be quite costly, becomes more

complicated when the SPME method is used. Indeed in SPME the coefficients in the

Ewald summation formula Equation (3.20) are not computed directly, and the reciprocal

sum is instead calculated as a whole using the fast Fourier transform. In other words, the

matrix that needs to be inverted is not explicitly accessible: the SPME algorithm provides

us with a ‘black box’ that performs matrix-vector multiplications in an efficient manner.

Classical methods for inverting linear systems such as the LU factorization used by Butler

& Shaqfeh [32] are therefore not applicable, and we must resort to a different approach.

An attractive method is the use of an iterative solver to compute an approximate solution,

such as the Generalized Minimum Residual (GMRES) method of Saad & Schultz [154],

which applies to large nonsymmetric linear systems. At each iteration of the solver, only

one matrix-vector multiplication is needed, so that this type of method can be used in

conjunction with SPME1.

In SPME, the real sum in Equation (3.20) is still computed directly, and is written

as the multiplication of a matrix A with a vector containing the point forces. The coeffi-

cients of the matrix depend on the spatial configuration of the suspension, and therefore

1The implementation that we used in this work was that by V. Frayssé, L. Giraud,
S. Gratton and J. Langou (CERFACS Technical Report TR/PA/03/3 (2003)) available from
http://www.cerfacs.fr/algor/Softs/GMRES.
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Time, t Number of lubrication interactions Condition number
0 19 8
50 134 55
100 218 381
150 251 729

Table 3.1: Dependence of the condition number on the inhomogeneity of the suspension
and on the presence of lubrication interactions. The results are for 200 fibers, A = 11,
nl3 = 0.1 and a box of aspect ratio Lx:Ly:Lz=1:1:2.

do not change from one solver iteration to the next within a given time step. This seem-

ingly benign observation allows one to pre-compute the real-space matrix before applying

GMRES, so that at each iteration of the solver the real sum is simply obtained by a

matrix-vector multiplication of a stored matrix with the current iterate. This spares the

expense of computing the real sum coefficients at each step and reduces the time of the

algorithm by an order of magnitude, the only downside being the additional storage of the

matrix.

3.4.2 Preconditioning

To benefit fully from the efficiency of the SPME method, the number of iterations required

by the solver to achieve a reasonable convergence must be kept to a minimum. This

number of iterations is a function of the condition number of the linear system, defined

as the ratio of the largest to the smallest eigenvalue. For our problem, the condition

number was shown not to increase significantly with the problem size at a given fiber

concentration, but rather to depend on the spatial configuration of the fibers and on the

presence of lubrication forces: for very dense or inhomogeneous suspensions with many

lubrication interactions (such as the ones that occur when the sedimenting fibers form

clusters), the linear system is typically quite stiff and a large number of iterations is

required. This is illustrated in Table 3.1, which shows how the condition number increases

over the course of a simulation as a result of the concentration instability. Sangani & Mo

[162] already encountered this issue with their fast-multipole method, where they observed
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Figure 3.4: Convergence of the GMRES solver depending on the preconditioner, for
an inhomogeneous system of 200 fibers, A = 11, nl3 = 0.1 and a box aspect ratio of
Lx:Ly:Lz=1:1:2.

that the inclusion of lubrication forces in their simulations of sedimenting spheres greatly

decreased their convergence rates. A similar problem was reported in accelerated Stokesian

dynamics simulations [170].

The classic approach to accelerate convergence is the preconditioning of the system,

which consists of multiplying it by an approximate inverse of the original matrix. Numer-

ous methods are available [155]: sparse approximate inverse, incomplete LU factorization

etc., which are typically very efficient for large sparse matrices. Our problem however is

quite atypical in a few ways. First the coefficients of the matrix are not known if SPME is

used: applying any kind of preconditioner will require calculating some of these coefficients

using direct summation of the Ewald sums, which is an expensive operation as was estab-

lished earlier. Second, the matrix is full, whereas most preconditioners are designed for

the sparse systems arising in finite difference and finite element codes. Finally the matrix

is relatively small, from a few hundred to a few thousand rows and columns: unlike most

situations where iterative solvers are used, the limiting factor is not the system size but

the difficulty of constructing the matrix efficiently.
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In accelerated Stokesian dynamics, Sierou & Brady [170] showed that using an incom-

plete Cholesky preconditioner greatly improved the efficiency of their solver. This method

however is only valid for symmetric matrices, which is not the case of the system in our

simulation method. Other preconditioning techniques were therefore investigated, and the

convergence rates are compared in Figure 3.4. A first method consists of calculating the

diagonal of the matrix, which is very dominant, and preconditioning the system by this

diagonal. This alone reduces the number of iterations by a factor of two or three, but is

not quite sufficient for very inhomogeneous systems. The next step consists of calculating

a sparse approximation of the matrix, trying to compute the terms of large magnitude.

The relative importance of the different terms in the matrix depends on the configuration

of the suspension and cannot be known exactly a priori, but a good rule of thumb is

to assume that the interactions between close particles dominate. A sparse approximate

matrix is therefore obtained by only computing the interactions between particles within a

cut-off distance dc, which is chosen by trial and error to minimize the number of iterations

while keeping the cost of computing the approximate matrix small. This sparse matrix

is then inverted, either exactly using LU factorization or approximately using incomplete

LU factorization, and the inverse is used to precondition GMRES. A good choice of dc can

reduce the number of iterations by an order of magnitude, and cut the total time for the

system inversion by a factor of four for a system of 200 fibers. Table 3.2 gives more details

on the efficiency of these preconditioners. In all cases the terms in the approximate matrix

must be calculated directly using Ewald summation; however since the sparse matrix is

only approximate the Ewald summation need not be fully converged and the first few

terms in the sums are typically sufficient to improve convergence.

3.5 Simulation results and discussion

3.5.1 General remarks

This section presents some simulations results, all obtained on a single-processor worksta-

tion. We first show some comparisons with the Monte-Carlo simulations of Mackaplow
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Type of Number of Number of CPU time Total CPU time
preconditioner GMRES terms in the to compute the to solve

iterations sparse matrix sparse matrix (s) the system (s)
No preconditioner 138 — — 558

Diagonal preconditioner 56 451 (0.2 %) 12 242
Sparse matrix, dc = 0.4 46 11237 (5.5 %) 12 232
Sparse matrix, dc = 0.8 26 18432 (9.1 %) 27 154
Sparse matrix, dc = 1.2 19 25260 (12.5 %) 48 144
Sparse matrix, dc = 1.6 14 32047 (15.7 %) 75 148
Sparse matrix, dc = 2.0 13 38580 (18.9 %) 101 171

Table 3.2: Efficiency of various preconditioning techniques for an inhomogeneous system of 200 fibers of aspect ratio A = 11
at nl3 = 0.1 in a box of aspect ratio Lx:Ly:Lz=1:1:2. Using fuller and fuller matrix approximations decreases the number
of GMRES iterations, but increases the overhead cost of computing the sparse matrix. For this example, the optimal value
for the cutoff distance is around dc = 1.2.
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& Shaqfeh [122] for random dispersions. Mackaplow & Shaqfeh used slender-body theory

combined with a boundary integral formulation to compute the sedimentation rate of fixed

random arrays of fibers: comparing our results to theirs is therefore a good way of eval-

uating the consequences of the force linearization described in Section 3.2.4. Figure 3.5

shows sedimentation rates for random arrays of high-aspect-ratio particles (A = 100) as a

function of the effective volume fraction nl3 (where n is the particle number density and l

is the fiber half-length); the velocities are normalized by the velocities at infinite dilution.

Our method slightly overestimates the sedimentation rates, but the agreement is within

error bars up to nl3 = 1, which is quite remarkable as the force linearization cannot be

expected to perform well at high concentrations. Other differences between the two meth-

ods may also contribute to the differences observed in the sedimentation rates: Mackaplow

& Shaqfeh retained an additional term in the slender-body theory asymptotic expansion

Equation (3.1), but did not include lubrication interactions which should become more

and more important at high concentrations. Given these differences, the agreement with

our data shown in Figure 3.5 is quite good, and we can expect our method to perform

well in the dilute regime.

The code was also benchmarked by comparison with the previous work of Butler &

Shaqfeh [32] for small systems of up to 128 fibers: the results obtained with our new

implementation were in all respects similar, so that only larger simulations of 512 fibers

are discussed below. For ease of comparison with the experimental results of Herzhaft &

Guazzelli [84], all the simulations presented in the next subsections are for a fiber aspect

ratio of A = 11 and an average effective volume fraction of nl3 = 0.05. A systematic inves-

tigation of the effects of slenderness and volume fraction will be deferred to a subsequent

study.

Unless otherwise mentioned, all the initial distributions were obtained by assigning the

fibers to random positions and with random orientations. In the event of two fibers inter-

secting, one of them was repositioned at another random location in the box. This ensured

that the initial suspensions were homogeneous, as would be the case with a well-mixed
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Mackaplow & Shaqfeh [122]

This work

nl3
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Figure 3.5: Sedimentation rates of fixed random arrays of fibers as a function of the
effective volume fraction nl3, obtained with our simulation method (open symbols) and
by Mackaplow & Shaqfeh [122] (full symbols). The sedimentation rates are scaled by
their value at infinite dilution. The results were obtained by averaging over 20 random
configurations of approximately 300 fibers in a square unit cell. The error bars are 95%
confidence intervals.

suspension in an experiment. As already observed on small systems, the local concentra-

tion fluctuations inherently present in such a random distribution cause the suspension to

evolve towards very inhomogeneous states where the fibers form concentrated streamers

surrounded by clarified fluid. By adjusting the dimensions of the periodic unit cell, we

were able to observe the formation of one to two or three streamers for the system sizes

considered here. We discuss in turn the structure of the suspension in the vertical direction

(inside a given streamer) and in the horizontal direction (formation of distinct streamers).

3.5.2 Suspension microstructure and cluster formation

Vertical structure

Figure 3.6 shows the evolution of the suspension for a simulation box of high aspect ratio

(Lx:Ly:Lz=1:1:8). Initially small clusters of only a few fibers form at random locations

in the simulation box. These clusters have an increased sedimentation rate and entrain

the fluid around them, creating a backflow in the other areas, and eventually converge to
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Figure 3.6: Fiber distribution in the simulation box at t = 0.0 (random homogeneous
distribution), t = 60.0 and t = 120.0 (left to right). The simulation is for 512 fibers of
aspect ratio A = 11 with an average concentration of nl3 = 0.05. The box aspect ratio is
Lx:Ly:Lz=1:1:8.
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Figure 3.7: Vertically averaged local number density nl3 (a) and fluid vertical velocity
⟨uz⟩ (b) for the simulation of Figure 3.6. Positive values of ⟨uz⟩ correspond to downwards
velocities. The position of the streamer is where the two maxima occur. Note the negative
velocities (backflow) outside the streamer.

form a streamer of high velocity. The correlation between the position of the streamers

and the fluid velocity is very obvious, as shown in Figure 3.7. Because the fluid is globally

quiescent, a relatively strong backflow exists outside the streamer, capable of carrying

isolated fibers upwards.

As can be observed in Figure 3.6, the streamers are not uniform in the vertical direction,

but composed of several distinct clusters of various sizes. Because they have different sizes,

they also have different sedimentation velocities, so that their relative positions inside the

streamers change: large clusters catch up with smaller ones, forming yet larger clusters and

so on. The clusters do not always contain the same fibers, as fibers constantly enter and

leave the clusters as they sediment. These interesting dynamics can be quantified using

the following procedure, summarized in Figure 3.8. A density function of the vertical

positions of the fibers at a given time can be computed by dividing the simulation box

along the vertical axis into equally sized bins and counting the number of fibers in each

bin: such a function presents peaks at the locations of the clusters and valleys between

them, and the heights and breadths of the peaks are good indicators of the cluster sizes.

More precisely we define a cluster as a region where the local particle volume fraction
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z

1.3 × nl3

0.8 × nl3

Local nl3

Figure 3.8: Procedure for the systematic determination of cluster positions and sizes. A
density function of the vertical distribution of fibers is obtained by dividing the box into
bins and counting the fibers in each bin. Clusters are defined as regions where the local
particle volume fraction peaks above 1.3 times its average value nl3 and always remains
above 0.8 times the average nl3. In the example shown, the procedure finds five clusters,
of sizes 52, 47, 30, 17 and 12 fibers.

peaks above a threshold of 1.3 times its average value nl3, and the limits of the cluster

are taken to be the locations on each side where it decreases below 0.8 times the average

nl3. Integrating the particle density function over the extent of the cluster then provides

an estimate of the number of fibers inside the cluster. Quite obviously the values of the

two thresholds could be chosen differently: the values suggested here are such that the

clusters defined by this procedure correspond to what one would define to be clusters by

simply looking at the suspension.

The procedure is easily programmed on a computer and can be repeated at different

times, allowing one to track the cluster positions and to perform statistics on their numbers

and sizes. Figure 3.9 shows the evolution in time of the numbers of large (> 30 fibers) and
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small (< 30 fibers) clusters in the simulation of Figure 3.6. To remove the high-frequency

noise present in the original data, the curves have been smoothed by convolution with a

top-hat function of width ∆t = 8 and unit area, which explains the non-integer values

for the numbers of clusters. The early values (up to t = 15 approximately) are not very

significant as the streamer is not properly formed yet, and are therefore omitted on the

graph. Both curves initially present slow oscillations at nearly the same frequency, where

the peaks in the number of small clusters correlate with the valleys in the number of

large clusters and vice-versa. This observation has an easy interpretation and confirms

the dynamics alluded to above: up to approximately t = 100, there is a periodic build-up

mechanism by which small clusters merge into larger clusters, which end-up breaking up

into small clusters again and so forth. Progressively the number of small clusters decreases

to the benefit of larger clusters, until a steady state is reached where a combination of

clusters of different sizes cohabit (two small and two large clusters on average). Note that

some oscillations can still be observed after the steady state is reached, but typically at a

higher frequency and weaker amplitude.

The periodic boundary conditions in the vertical direction can be expected to have a

significant influence on the observed oscillations. In fact it can be seen that the period

of the oscillations is of the same order as the time that it takes for a fiber to sediment

one box height at the mean sedimentation speed (cf. Section 3.5.4 for a discussion on

the sedimentation rate). The decrease of the period that can observed in Figure 3.9 is

therefore a direct consequence of the increase in the sedimentation velocity as a result of the

streamer formation. This periodicity can be understood in the following way: big clusters

attaining the bottom of the simulation box reappear at the top and therefore catch up

with the smaller clusters that they left behind during the previous period of oscillation. It

is unlikely that such oscillations would be observed in an experiment, where a segregation

would occur between the different cluster sizes (with the large clusters reaching the bottom

of the vessel first). However the fact that very big clusters break up and that the cluster

size reaches a steady state in Figure 3.9 bears some significance: it suggests that there

is a maximum size beyond which cluster growth becomes unfavorable and clusters either
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Figure 3.9: Time evolution of the numbers of clusters of a given size in a streamer. The
results are for the same simulation as in Figure 3.6: 512 fibers, A = 11, nl3 = 0.05
and Lx:Ly:Lz=1:1:8. The estimates of the numbers of clusters were obtained using the
procedure described in Figure 3.8. To remove the high-frequency noise, the curves have
been smoothed by convolution with a unit-area top-hat function of width ∆t = 8.

break up or abandon fibers in their wakes.

Since the spatial wavelength in the vertical direction and the cluster size distribution

(in terms of number of fibers) reach steady state values, it is interesting to investigate the

densification of clusters through the pair distribution function, which specifies the frac-

tion of pairs of fibers having a center-to-center separation at a given distance. The pair

distribution function in the horizontal plane, which is the most interesting, is shown in

Figure 3.10. Each curve corresponds to the time average of the function over a different

time interval. Note that the functions are only plotted over half a box width Lx/2, whereas

the maximum horizontal distance between two fibers is
√

2Lx/2 (owing to the periodicity

in x and y). Starting from a linear profile, corresponding to a uniform distribution of

fibers, the function evolves until a maximum appears at a finite distance, which represents

the most probable separation between two fibers in the horizontal plane. This peak in the

distribution function slowly increases and migrates towards lower values, while the ampli-

tude of the tail decreases. The interpretation is rather simple: the streamer progressively
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Figure 3.10: Pair distribution function in the (x, y)-plane for the simulation of Figure 3.6,
averaged over various time intervals. The pair distribution function specifies the fraction
of fibers with a center-to-center separation at a given distance.

becomes thinner and denser, capturing more and more fibers into its core. This process

appears to be extremely slow, and continues even after the cluster distribution reaches

its steady state in Figure 3.9. We can expect this densification to eventually slow down

and stop, as excluded volume effects become more and more important as the fibers get

more tightly packed. Limitations in computation time however did not allow us to run

our simulations until a true steady state was observed.

Horizontal structure and wavenumber selection

Obtaining more than one concentrated streamer in the lateral direction is a challenging

task, and to the knowledge of the authors no previous simulations have been successful

at doing so. In all the previous computational studies only one streamer was obtained,

and it was not clear whether this was an artifact of the periodic boundary conditions

or a consequence of the limited size of the simulated systems. Only very recently have

experiments systematically measured the evolution of the cluster size in suspensions of

sedimenting fibers [126, 127], and they suggest that the streamers typically contain very

large numbers of particles (of the order of thousands and higher). In this section we
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(a)

(b)

Figure 3.11: Distribution of fibers at t = 140 for a highly elongated box in the horizontal
direction (box aspect ratio: Lx:Ly:Lz=10:1:2); the top plot (a) shows a side view of the
suspension, while the bottom plot (b) provides a vertical view. The simulation is for 512
fibers of aspect ratio A = 11 with an average effective volume fraction of nl3 = 0.05. Two
distinct streamers separated by clarified regions can be observed.

investigate the horizontal structure and wavenumber selection in small periodic systems:

a more thorough investigation of the wavenumber will be performed in more realistic

systems in Chapter 4 using both numerical simulations and a stability analysis.

By increasing the horizontal dimensions of our simulation box we were able to obtain

more than one streamer in the lateral direction, as shown in Figure 3.11 for instance. For

the system sizes that we considered, the only way to achieve this was to drastically reduce

the height of the box as well as its width in one horizontal direction: the aspect ratio of the

box in Figure 3.11 is Lx:Ly:Lz=10:1:2. This choice of box dimensions is likely to have an

influence on the structure of the suspension, first because choosing very different values of

Lx and Ly introduces an artificial anisotropy in the horizontal plane, and second because

the small values of Ly and Lz make the suspension essentially homogeneous in both the y-

and z-directions. The precise consequences are difficult to assess until larger simulations

are performed, so one should be cautious when trying to extrapolate the results presented

here to full-scale suspensions.

The structure of the suspension in Figure 3.11 is quite interesting, as it exhibits a

broad region between the core of the streamers and the clarified fluid where most of the
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Figure 3.12: Vertically averaged vertical velocity field for the simulation of Figure 3.11.
The positive values correspond to downwards velocities. The two peaks are located at the
core of the concentrated streamers, and a backflow occurs in the clarified regions. Large
regions of almost linear shear exist between streamers and clarified fluid.

fibers are very well oriented with gravity, and simply sediment vertically with little hori-

zontal motion; a more detailed observation shows that fibers in this region slowly migrate

towards the streamers. The vertically averaged fluid velocity field for the simulation of

Figure 3.11 is shown in Figure 3.12 and provides an explanation. As expected the vertical

fluid velocity peaks in the core of the streamers, and presents a backflow in the clarified

regions; between those two, a large region of shear exists where the velocity varies almost

linearly. The alignment of the fibers in the direction of the velocity is then a simple con-

sequence of Equation (3.4) for the slender-body orientation dynamics, which predicts a

stable equilibrium with no rotational velocity in linear shear when the fiber is aligned in

the direction of shear. The reorientation of fiber suspensions in a simple shear flow is a

well-known phenomenon [182, 149, 196, 60]. Unless subjected to lubrication or contact

forces, the fibers located in this region can only undergo very weak horizontal motion as

their horizontal mobility is close to zero. It is worthwhile here to consider the limitations

of this simulation. First the orientation dynamics as described by slender-body theory

are inexact as they cannot predict the tumbling motion of an isolated particle in shear

flow: the consequences of this approximation are discussed in more detail in Section 3.5.5.

Second and perhaps most importantly, the quasi homogeneity of the suspension in the
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vertical direction as created by the small box dimension and periodic boundary condition

helps make the configuration of Figure 3.11 stable: vertical inhomogeneities would be

likely to perturb this configuration at least during the onset of the instability, and may

disrupt these large regions of shear.

The simulation of Figure 3.11 was repeated for different random initial distributions:

sometimes only one streamer formed, and in very rare cases three streamers were observed.

This strong dependence of the structure formation on the initial distribution calls for a

more systematic investigation. Simulations were run in which the initial distribution

was perturbed artificially by a superposition of two planar waves in the x-direction of

wavenumbers k = 1 and k = 2 (where k is non-dimensionalized by the box length Lx):

c(x, y, z) = ĉ0 + ĉ1 exp(2πix/Lx) + ĉ2 exp(4πix/Lx); the ratio ĉ1/ĉ2 of the amplitudes of

the two waves was varied. The initial velocity fields were computed and compared to the

final fiber distributions, and the results are summarized in Table III. Several observations

can be made. Depending on the ratio of the two initial wave amplitudes, either one or two

streamers form; only for very small values of ĉ1/ĉ2 do two concentrated streamers develop,

and in all other cases only one streamer is observed. It is enlightening to compare these

observations to the initial velocity fields, and more precisely to the ratio û1/û2 of the k = 1

and k = 2 coefficients of the Fourier transform in the x-direction of the vertical component

of the velocity, and to the number of distinct backflow regions in the velocity field. The

number of concentrated streamers in the final distribution seems to be correlated to the

number of backflow regions, which itself is determined by the ratio û1/û2. More precisely,

backflow regions seem to act as barriers that cause the fibers to rotate and migrate towards

the denser ‘velocity wells’. Since, from the periodic fundamental solution Equation (3.21),

the Fourier coefficients of the velocity scale as ûk ∼ ĉk/k2, the flow is typically dominated

by the k = 1 mode and only one streamer forms.

At the other end of the spectrum, it is observed that perturbations in concentration

usually decay at high wavenumbers. Simulations were run in which a high-frequency

perturbation (k = 4 to 7) was applied to the initial distribution; in most cases fewer

streamers were obtained than initial waves. This phenomenon, that we term streamer
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ĉ1/ĉ2 û1/û2 Backflow Streamers
regions

0.20 0.88 2 2
0.66 3.07 1 1
0.87 3.86 1 1
1.29 5.80 1 1
1.59 7.07 1 1

Table 3.3: Influence of the initial distribution on the streamer formation. Simulations
were performed in boxes of aspect ratio Lx:Ly:Lz=10:1:2, in which the initial random
distribution was perturbed by the superposition of two waves of wavenumbers k = 1
and k = 2: c(x, y, z) = ĉ0 + ĉ1 exp(2πix/Lx) + ĉ2 exp(4πix/Lx). The ratio ĉ1/ĉ2 of the
amplitudes of the two waves was varied. The table reports: the ratio û1/û2 of the k = 1
and k = 2 coefficients of the Fourier transform in the x-direction of the vertical component
of the initial disturbance velocity field; the number of distinct backflow regions in the initial
velocity field; the number of concentrated streamers in the final distribution.

coalescence, is illustrated in Figure 3.13 for the case k = 6. Starting from six initial waves,

only four concentrated streamers are observed in the final distribution (Figure 3.13(a)).

The initial vertical velocity field (Figure 3.13(b)) somewhat modifies our previous criterion

and shows that streamers form in the local minima or ‘wells’ of the velocity field, although

they need not be surrounded by independent backflows. Figure 3.14 shows the discrete

Fourier transforms in the x-direction of the initial concentration perturbation and of the

initial velocity field. Although the k = 6 mode dominates the initial concentration, it

only creates a very small disturbance in the velocity spectrum, which is swamped by the

low wavenumber modes (mostly k = 1) arising from random concentration fluctuations.

Therefore high-wavenumber perturbations cannot survive as even tiny low-wavenumber

fluctuations will typically dominate the velocity field.

The presence in most simulations of this strong k = 1 mode in the velocity field is

reminiscent of the large recirculation vortices observed in experiments on sphere suspen-

sions. Guazzelli [74] studied the sedimentation of suspensions of spheres using particle

image velocimetry, and observed that during the initial moments of her experiments the

velocity field is dominated by large vortices of the size of the container; after a while these

vortices decay and leave place to smaller vortices whose size is found to be independent
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(a)

(b)
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Figure 3.13: Final fiber distribution (a) and initial disturbance velocity field (b) for an
initial plane wave perturbation at wavenumber k = 6: c(x, y, z) = ĉ0 + ĉ6 exp(12πix/Lx).
Only four concentrated streamers can be observed, which are located in the ‘wells’ of the
initial velocity field.

of the container dimensions. As explained by Hinch [87], these large convection currents

in the initial times are due to the difference in weight between the two sides of the sus-

pension; these currents have the effect of homogenizing the two sides, after which they

decay. The strong k = 1 mode observed in our simulations has the same origin, but is

not allowed to decay because of the periodic boundary conditions in the vertical direction,

which effectively prevent the horizontal convection currents that would otherwise occur

in a bounded system. Fiber suspensions are more complex due to the strong coupling

between the concentration and velocity fields, and even though a similar recirculation as

in sphere suspensions may occur in a container with a bottom wall and may lead to some

type of homogenization, the instability on the contrary acts against the homogenization

of the suspension and tends to accentuate the fluctuations. The combination of these two

effects may lead to a qualitatively different behavior than is observed in sphere suspen-

sions, and deserves further attention: it will be described in more detail in Chapter 4,

where we perform simulations of larger systems in non-periodic boundary conditions. In

these systems, we will see that the presence of a bottom wall indeed causes a decay of
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Figure 3.14: Magnitude of the coefficients of the Fourier transform in the x-direction of
(a) the initial concentration field and (b) the vertical component of the initial disturbance
field for the simulation of Figure 3.13. A strong peak at k = 6 can be observed in the
initial concentration field; the velocity field however is dominated by the random low-
wavenumber fluctuations (k = 1).

the size of the density fluctuations over time, which as we argue in Section 4.3.2 may be

attributed to the stratification that appears in the suspension.

3.5.3 Orientation dynamics

Both experiments [84] and previous simulations [32] showed a reorientation of the fibers

in the direction of gravity, with occasional flips. This is confirmed in our results and is

illustrated in Figure 3.15, which shows the evolution of the projected angle of a typical

sedimenting fiber (the projected angle being defined as the angle formed by the projection

of p onto a vertical plane with respect to the horizontal). After a transient phase lasting

until t = 100 approximately, the fiber ends up spending most of its time aligned in the

vertical direction. The trajectory of Figure 3.15 is very similar to those observed in

experiments [84].

The evolution of the orientation statistics can be studied by looking at the average

square orientation of the fibers in the direction of gravity ⟨pzpz⟩. Its time evolution is

presented in Figure 3.16 for three simulations with the same numbers of fibers, aspect
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Figure 3.15: Time evolution of the projected angle for a typical fiber (angle of the pro-
jection of p onto a vertical plane with respect to the horizontal). After a transient phase,
the fiber spends most of its time almost aligned with gravity (projected angle of ±π/2),
with occasional flippings.
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Lx:Ly :Lz = 10:1:2

Lx:Ly:Lz = 1:1:1

Lx:Ly:Lz = 1:1:8

Figure 3.16: Time evolution of the average square orientation in the direction of gravity.
All three curves are for 512 fibers, A = 11 and nl3 = 0.05 and different box dimensions.
Note how the time to steady state and the value of the steady state depend on the periodic
cell aspect ratio.
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ratios and volume fractions but different periodic cell dimensions. In all three simula-

tions ⟨pzpz⟩ starts from a value close to 1/3 corresponding to an initial distribution with

random orientations, and increases progressively as the fibers begin to align. The three

curves eventually reach a steady state, the value of which differs in each case and gives

an indication of the average orientation. A lower steady state value is obtained with

high-aspect ratio boxes, corresponding to fewer fibers being aligned with gravity: this had

already been observed in smaller simulations [32], and is corroborated by the orientation

distributions presented below. The time to steady state also depends on the simulation

box dimensions: it is much quicker in general for low aspect ratio boxes.

Figure 3.17 compares the orientation distributions of the two simulations of Figures 3.6

and 3.11 to the experimental results of Herzhaft & Guazzelli [84]. In all three cases the

distribution presents a clear peak slightly below π/2, which was expected and indicates

that a large number of fibers are almost aligned in the vertical direction. A second local

maximum near zero can also be observed in the experimental data, showing that the hor-

izontal direction is also a preferred fiber orientation, but this maximum is not reproduced

by either of the two simulations.

The breadth and height of the main peak differs greatly between the two simulations.

In the first case (high-aspect-ratio periodic cell), the peak is rather broad and weak, and

the tail of the distribution is quite thick, indicating that quite a large number of fibers are

not aligned; in the case of the second simulation (wide and thin periodic cell), the peak is

quite higher and narrower and the tail is finer, and the overall profile of the distribution

compares somewhat more favorably with the experimental data. This is consistent with

the findings of Figure 3.16, where we observed two different values for the steady-state

average square orientations. A simple inspection of the suspensions of Figure 3.6 and

3.11 provides an explanation. In the case of the high simulation box, only the core of the

streamers is really captured, where most of the fibers are entangled inside clusters and

are not free to align. Figure 3.11 however demonstrates that in a wider box the streamers

are surrounded by large regions of shear where the fibers are isolated and can align freely

with gravity. In Figure 3.17(b) the height of the peak is slightly overestimated: this
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Figure 3.17: Comparison of the orientation distributions of two different simulations with
the experiments of Herzhaft & Guazzelli [84]. The two upper plots are for simulations of
512 fibers of aspect ratio A = 11, with an average effective volume fraction of nl3 = 0.05
and different simulation box aspect ratios: (a) Lx:Ly:Lz=1:1:8 (simulation of Figure 3.6),
(b) Lx:Ly:Lz=10:1:2 (simulation of Figure 3.11). The bottom plot (c) shows the experi-
mental distribution, obtained for the same particle volume fraction and fiber aspect ratio.
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⟨uz⟩

Time t

128 fibers, Lx:Ly :Lz = 1:1:8

512 fibers, Lx:Ly :Lz = 1:1:8

512 fibers, Lx:Ly :Lz = 1:1:1

Figure 3.18: Time evolution of the average sedimentation rate for simulations of 128 and
512 fibers. In each case A = 11 and nl3 = 0.05. While a steady state is reached rapidly
with 128 fibers, the sedimentation rate keeps increasing with 512 fibers, and its value
depends on the periodic cell aspect ratio.

may be a consequence of the very short height of the box and of the periodic boundary

conditions, as in a real system inhomogeneities in the vertical direction would perturb to

some extent the shear regions between the streamers. Still these results suggest that these

large regions should not be ignored if we want to obtain accurate orientation statistics,

hence the necessity to use wide enough boxes to capture the full extent of the horizontal

structures.

3.5.4 Sedimentation rate and velocity statistics

The formation of dense clusters has a strong influence on the average sedimentation speed

of the suspension, which is enhanced in the dilute and semi-dilute regimes. This phe-

nomenon is really a consequence of the concentration instability, as the velocity is gener-

ally hindered in dilute suspensions such as homogeneous suspensions of spheres [13]. Note

that in the concentrated regime suspensions of fibers also exhibit velocity hindrance [188],

presumably because strong entanglements present in concentrated suspensions prevent the

instability from developing.
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Figure 3.19: Comparison of the velocity distributions with the experimental data of
Herzhaft & Guazzelli [84]. The upper plot (a) corresponds to the simulation of Fig-
ure 3.6 (512 fibers, A = 11, nl3 = 0.05, Lx:Ly:Lz=1:1:8). The bottom plot (b) shows the
experimental distribution, obtained for the same particle volume fraction and fiber aspect
ratio.

In their small simulations, Butler & Shaqfeh [32] observed that the average sedimen-

tation rate of the fibers slowly increases as the instability develops and eventually reaches

a plateau, the value of which depends on the aspect ratio of the periodic cell. For the

larger systems considered in this study, the time to steady state was generally very long

(typically more than 200 time units), so that most of the simulations were stopped before

reaching a steady state velocity (Figure 3.18). This is easily understood in the light of

the earlier discussion on the pair probability functions: in the Stokes flow regime the sed-

imentation velocity is a function of the spatial configuration of the suspension only, and

as was observed in Section 3.5.2 the clusters keep getting denser even after the cluster

distribution and orientation statistics have reached their steady state. However, we also

argued in Section 3.5.2 that the densification should eventually slow down due to excluded

volume effects, and it is likely that a steady sedimentation rate would be reached if the

simulations were run long enough.

Figure 3.18 also shows a strong dependence of the sedimentation rate on the dimensions
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of the periodic cell: lower sedimentation rates are obtained in high aspect ratio boxes,

in better agreement with the experimental values. Figure 3.19 compares the velocity

distributions for such a simulation to the experimental results of Herzhaft & Guazzelli

[84]: while the horizontal velocities are captured reasonably well, the vertical velocity

distribution predicted by our simulation is slightly shifted to the right and somewhat

broader than in the experiments; both the mean and the variance of the vertical velocity

are overestimated, and this generally gets worse as the simulation box gets wider. Butler

& Shaqfeh [32] encountered the same difficulty and came up with the following heuristic

rule: for the system sizes they considered, they observed that setting the aspect ratio of the

periodic cell to Lz/Lx = N/16, where N is the number of fibers, enabled them to obtain

the right sedimentation rate and reasonable velocity distributions. Their rule however is

not easily applied in the case of very large systems, as it would require extremely high

and thin boxes, and preclude the capture of more that the core of a single streamer. If we

want to resolve the large shear regions between the streamers, which as we established are

important for obtaining correct orientation statistics, still larger systems may be needed,

in which both the lateral and vertical box dimensions are large compared to the length of

a fiber. As we shall see in Chapter 4, a bottom wall and non-periodic boundary conditions

are in fact required.

3.5.5 Validation of the slender-body approximation

Earlier mention was made of the limitations of the slender-body approximation. The

significant feature of the model is that slender-bodies in a linear shear flow simply align

in the direction of the flow, while exact Stokes flow solutions suggest that an ellipsoid [93]

and in fact any body of revolution [29] should undergo a periodic tumbling motion known

as Jeffery’s orbits. These poor orientation dynamics may influence our results in two ways:

by modifying the dynamics inside the large shear regions observed around the streamers

in Section 3.5.2, which in turn may have an impact on the orientation statistics presented

in Section 3.5.3. In particular, we may expect the migration towards the streamers to be

enhanced in the presence of tumbling.



70 CHAPTER 3. THE SMOOTH PARTICLE-MESH EWALD ALGORITHM

To assess more precisely the consequences of the slender-body dynamics, we imple-

mented a slightly different model in which Equation (3.4) for the orientation dynamics

was replaced by the following:

ṗα = (I − pαpα) ·

[
3

4

∫ 1

−1
(1 − s2

α)

[
A2 − 1

A2 + 1
E(sα) + Ω(sα)

]

· pαdsα +
3 log(2A)

8π
F (1)

α

]

,

(3.33)

where E =
[

∇u′ + (∇u′)T
]

/2 and Ω =
[

∇u′ − (∇u′)T
]

/2 are respectively the rate of

strain and rate of rotation tensors of the disturbance velocity field, evaluated at position

xα + sαpα along the axis of the fiber. Equation (3.33) is a simplified version of the exact

equation for the orientation dynamics of a single spheroid [101], in which we neglected an

additional term involving the Laplacian of the rate of strain on the basis that its coefficient

1/8(A2−1) is very small for high aspect ratio particles. Letting A → ∞ in Equation (3.33)

and performing an integration by parts allows one to recover Equation (3.4) for the slender-

body dynamics. Equation (3.33) can still be implemented using SPME: indeed taking the

gradient of the velocity in Equation (3.25) allows one to derive similar Ewald summation

formulae for the components of the rate of strain and rate of rotation tensors, which are

then computed following the same algorithm as for the disturbance velocity (Section 3.3.2).

While analytical expressions were used for the real sums, the Fourier sum of the gradient

was computed numerically on the Fourier space grid using a fourth-order central finite

difference scheme.

For the aspect ratios considered in this study, the modifications entailed by the use

of Equation (3.33) were minor in general. This is illustrated in Figure 3.20, which com-

pares the final distributions obtained with the two different formulations. In particular,

the streamer formation is not affected, and neither are the shear regions surrounding the

streamers where the alignment of the fibers is sensibly the same. Figure 3.21 compares

for both simulations the time evolution of the average square orientation in the direction

of gravity, which quantifies the degree of alignment of the suspension: the differences ob-

served are within the statistical fluctuations of the data. This can be interpreted as follows:

even though slender-bodies in a simple shear flow align with the flow, the disturbance field
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(a) Slender-body

(b) Finite aspect ratio, A = 11

Figure 3.20: Comparison of the final fiber distributions obtained using the original slender-
body formulation of Equation (3.4) (a), and the finite aspect ratio formulation of Equa-
tion (3.33) (b). The simulation is for 512 fibers, A = 11, nl3 = 0.05 and Lx:Ly:Lz=10:1:2.
The two simulations agree qualitatively, which justifies the use of the slender-body ap-
proximation.

between the streamers is not exactly linear and fluctuations in this disturbance field can

still cause tumbling (and indeed such tumbling or ‘flipping’ events can be observed on

Figure 3.15). Furthermore the correction entailed by Equation (3.33) is quite weak: the

coefficient (A2 − 1)/(A2 + 1) only changes from 1 to 0.98 when the aspect ratio is varied

from infinity to 11. This suggests that the flipping induced by the velocity fluctuations

dominates the tumbling due to the finite thickness of the particles, and under the assump-

tion that the Laplacian term that we neglected to obtain Equation (3.33) is indeed small,

these results confirm the validity of the slender-body approximation for simulations of

high-aspect ratio particles.

3.6 Concluding remarks

We have implemented a fast algorithm, called smooth particle-mesh Ewald, that allows one

to compute efficiently the hydrodynamic interactions between small particles suspended

in a fluid. SPME is comparable to the accelerated Stokesian dynamics method of Sierou
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Figure 3.21: Time evolution of the average square orientation in the direction of gravity for
the two simulations of Figure 3.20. Both models (slender-body formulation Equation (3.4),
and finite aspect ratio formulation Equation (3.33)) give very similar results, confirming
the validity of the slender-body approximation.

& Brady [170] for spherical particles, but is characterized by different force assignment

and interpolation schemes using Cardinal B-splines, which are particularly well-suited for

complex exponentials and provide stability at high orders of interpolation. The method,

which allows one to efficiently compute the disturbance field induced by periodic distri-

butions of point forces, has been applied to infinite suspensions of slender-bodies (line

distributions of point forces) in a gravity field, but could easily be applied to different

particle shapes (disks or platelike particles for instance, or arbitrary solid surfaces in a

boundary element simulation), as well as different flow conditions (particulate flows in

an imposed velocity field, pressure-driven flows, etc.). The algorithm can also be easily

parallelized, as it is based on a summation of close particle pair interactions for which a

domain decomposition is suitable, and on the fast Fourier transform algorithm for which

parallel implementations are already available.

When applied to the sedimentation of rigid fibers at zero Reynolds number, our fast

algorithm has allowed us to simulate large systems of up to 512 fibers on a single processor,

while maintaining a good level of approximation in our simulation method where the

force moments on each fiber are retained up to the stresslet term. In particular, the
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concentration instability observed in sedimenting suspensions of non-spherical particles

was captured very convincingly, and our simulations of larger systems have provided new

valuable information on the microstructure of this type of suspension.

Using very elongated boxes in the direction of gravity, we were able to study the

dynamics inside the core of the streamers that form as the fibers sediment. We observed

that the streamers are in fact composed of distinct clusters of various sizes and velocities,

which can either merge or break up. As the instability begins to develop, our simulations

exhibited a mechanism by which small clusters aggregate into larger clusters, which can

again break up. After a transient phase, a steady state is observed in which a combination

of clusters of different sizes cohabit on average. The break-up phenomenon, along with the

presence of a steady state, suggests that clusters beyond a certain size become unstable,

and either break up or abandon fibers in their wakes.

More interestingly, our simulations managed to capture several concentrated streamers

in the horizontal direction, which to our knowledge had never been achieved in previous

studies. This was made possible by drastically increasing one of the horizontal dimen-

sions of our simulation box. These simulations in wide boxes highlighted the presence

of broad shear regions between the core of the streamers and the clarified fluid, where

most of the fibers sediment almost vertically with little horizontal motion. These regions

of shear had not been captured in previous simulations owing to the insufficient size of

the periodic cells, and seem to account for some discrepancies that had been observed in

the orientation distributions. While the exact process leading to the wavenumber selec-

tion is still poorly understood, our simulations provided partial answers: the formation of

concentrated streamers seems to be linked to the presence of velocity wells in the initial

disturbance field, created by concentration fluctuations in the distribution of fibers. A

simple argument shows that for a random suspension the initial disturbance field is dom-

inated by perturbations of long wavelengths (k = 1 mode). While experiments on the

sedimentation of spheres suggest that this initial recirculation cell should decay, this is

not observed in our simulations owing to the periodic boundary conditions in the vertical

direction.
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Obtaining accurate sedimentation rates and velocity distributions remains a very dif-

ficult task, as these two quantities depend strongly on the aspect ratio of the periodic

cell. Using high aspect ratio boxes in general gives acceptable results, but the rule defined

previously by Butler & Shaqfeh [32] on the box aspect ratio does not allow to capture more

that the core of the streamers. In order to capture correct velocity statistics while resolv-

ing the structure of the suspension, larger systems or more realistic boundary conditions

at the container walls may be needed: these two issues are addressed in Chapter 4.



Chapter 4

The dilute sedimentation of

orientable particles

4.1 Introduction

Although conceptually quite simple, the steady sedimentation of a dilute dispersion of

particles in a liquid at low Reynolds number remains an unresolved problem of non-

equilibrium statistical mechanics [150]. Even in the simplest case of a random dilute

dispersion of spheres, Caflisch & Luke used a simple physical argument to suggest that

the velocity variance should diverge, growing unbounded with the linear dimension of the

sedimenting system: ⟨∆v2⟩ ∼ L [34, 87]. Since the work of Caflisch & Luke numerous

experiments have tried to test this scaling, but typically manifest a saturation of the

velocity fluctuations in stark contrast with the theoretical prediction [137, 167, 20]. Precise

particle image velocimetry measurements by Guazzelli [74] in fact showed the following:

during the early period after the cessation of mixing, large recirculation vortices of the

size of the container are observed, confirming the Caflisch & Luke argument, but these

quickly decay and give way to smaller less intense vortices and velocity fluctuations that

are independent of the container dimensions.

Several theoretical explanations have been proposed to resolve this contradiction, most

75
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of which relax one of the fundamental assumptions of the original argument, namely homo-

geneity. The close relationship between the microstructural arrangement of the particles in

the suspension and the velocity fluctuations was first highlighted by Koch & Shaqfeh [103],

who related the amplitude of the velocity fluctuations to the structure factor of the suspen-

sion, which is the Fourier transform of the pair probability function. Koch & Shaqfeh then

argued that a specific form of the pair probability function, in which there is a net deficit of

neighboring particles in the vicinity of each particle, would lead to a screening of the veloc-

ity disturbance as a result of three-particle hydrodynamic interactions, and is therefore a

potential mechanism for the saturation of the velocity fluctuations. This mechanism how-

ever has not been verified, and is not consistent with more recent results from numerical

simulations, which do show a decay of the velocity fluctuations (e.g. [112, 134, 135, 132]).

The key idea that microstructural changes occurring during sedimentation are respon-

sible for the decay of the velocity fluctuations is supported by recent experiments by Lei,

Ackerson & Tong [114], which showed the suppression of random number density fluctu-

ations during sedimentation. Two mechanisms have been suggested for this suppression.

Following an original idea by Luke [120], it has been argued that a small vertical strat-

ification in the suspension may be responsible for the decay [131, 132]. More precisely,

Mucha et al. [132] suggest that in thin cells in which stratification is weak the velocity

fluctuations scale with the thickness of the container, while in larger cells stratification

is more significant and causes the decay of the fluctuations. Experiments by the same

authors seemed to confirm this mechanism [186, 132], although such a strong stratifica-

tion was not observed in other studies [20], suggesting that polydispersity in the size of

the particles may have been a factor. Recent lattice-Boltzmann simulations by Nguyen &

Ladd [134, 135] also captured the suppression of the number density fluctuations but did

not show any significant broadening of the front.

A second explanation was proposed by Hinch [87]: in a finite cell with a bottom wall,

random density fluctuations create strong convection currents spanning the width of the

cell, which should lead to a homogenization and may remove the horizontal fluctuations

in the number density. If this process continues down to the interparticle separation
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length scale, the final velocity fluctuations may no longer depend on the system dimen-

sions. The mechanism speculated by Hinch is supported by the observations of Guazzelli

[74] described previously, in which large recirculation cells in the initial instants of the

experiments are observed to decay. The importance of the role of the bottom wall was

also emphasized by Ladd using lattice-Boltzmann simulations: in periodic systems Ladd

observes the divergence of the velocity fluctuations without any microstructural changes

[111], whereas in systems bounded by horizontal walls the velocity variance is found to

saturate and the horizontal density fluctuations are strongly suppressed [112, 134, 135].

The cases of non-spherical or non-rigid particles, which we address in this Chapter and

the following one, have received much less attention in the past, in spite of their common

occurrence in both natural phenomena and industrial applications. One illustrative exam-

ple in which both anisotropy and deformability play a significant role is the sedimentation

of red blood cells, which is a widely used tool for the screening of diseases [151]. Other

examples are as diverse as the separation of biological macromolecules by centrifugation,

the fabrication of fiber-reinforced materials, or the treatment of waste materials.

It is unclear a priori how anisotropy or deformability will influence the physical mech-

anism described above, by which the suppression of number density fluctuations leads

to a decay of the velocity variance in suspensions of spheres. The fundamental differ-

ence between anisotropic and isotropic particles is that the former orient in flow, and

depending on their orientation can migrate in the directions perpendicular to gravity.

Koch & Shaqfeh [102] first studied this coupling between the velocity fluctuations and the

anisotropic mobility of the particles for dispersions of spheroids. They modeled the sus-

pension with continuum variables, and using a linear stability analysis they showed that

small density fluctuations at low wavenumbers should amplify. They proposed a simple

physical mechanism: the disturbance flow induced by the density fluctuations causes the

particles to orient in such a way that they migrate towards the regions of higher parti-

cle density. Based on a linearized model for an unbounded fluid, the theory of Koch &

Shaqfeh [102] predicted that the longest wavelengths should grow the fastest.

The sedimentation of fiber suspensions, which behave like high-aspect-ratio spheroids,
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has been the subject of a few experimental studies, some of which confirmed the insta-

bility predicted by Koch & Shaqfeh [102]. In an early study, Kumar & Ramarao [106]

reported the formation of large floc-like structures in dilute suspensions, settling at larger

velocities; at higher concentrations interaction between the flocs was observed to cause

velocity hindrance. Later, Turney et al. [188] used magnetic resonance imaging to de-

termine the mean sedimentation velocity in concentrated suspensions of rodlike particles;

they reported velocity hindrance but did not provide any information on the homogeneity

of the bulk.

More recently, Herzhaft et al. [83] and Herzhaft & Guazzelli [84] studied the sedi-

mentation of fibers in the dilute and semi-dilute regimes, in which the instability can be

expected to be the strongest. They adapted a particle tracking technique previously used

for sphere suspensions [77, 138], in which the position, orientation and velocity of a few

silver-coated particles are measured, while the remainder of the particles are made invis-

ible by matching their index of refraction with the index of the solvent. They observed

that the particles strongly oriented in the direction of gravity, with occasional flipping

between the two vertical orientations. They also reported an increase in the mean velocity

in the dilute regime beyond the maximum velocity of an isolated vertical fiber, followed

by velocity hindrance in the semi-dilute regime. The velocity fluctuations measured were

typically very large, up to one order of magnitude larger than the mean velocity in the

semi-dilute regime. While no systematic investigation of the microstructure was under-

taken, snapshots of the suspension suggested that the particles gathered to form dense

clusters or streamers slightly elongated in the direction of gravity and surrounded by clar-

ified fluid; the size of the clusters, although not measured precisely, was estimated to be

on the order of a few particle lengths.

The sedimentation of axisymmetric particles was also tackled in a few computational

studies, with varying degrees of approximation. Mackaplow & Shaqfeh [122] performed

dynamic simulations of fiber sedimentation at zero Reynolds number with periodic bound-

ary conditions, in which they approximated the disturbance of a given particle on the fluid

by a point force. Although very simple, their model captured all the salient features of the
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instability: the fibers were observed to converge towards one dense streamer and to orient

vertically. While the orientation distributions were found to reach a steady state, the

mean velocity however kept increasing and did not show any signs of saturation. Butler

& Shaqfeh [32] devised a more sophisticated method in which the fibers were represented

by line distributions of point forces, which were linearized to correctly capture the total

force, total torque and stresslet on each particle; they also included close particle hydro-

dynamic interactions through lubrication forces, and excluded volume interactions using

short-range repulsive forces. Their simulations greatly improved on the results of Mack-

aplow & Shaqfeh [122], and reasonable agreement with the experimental data of Herzhaft

& Guazzelli [84] was found using very elongated boxes in the direction of gravity. In par-

ticular, such boxes allowed the mean velocity to reach a steady state. The effects of inertia

were also considered by Kuusela and coworkers, who performed simulations of the sedi-

mentation of spheroids at small but finite Reynolds number [107, 108]. The principal effect

of inertia was on the orientation distributions, which showed a preferential alignment in

the horizontal direction in very dilute dispersions, followed by a transition towards a verti-

cal alignment at higher concentrations. The mean velocities showed qualitative agreement

with the inertialess experiments of Herzhaft & Guazzelli [84]; clustering was reported,

although no further information was given on the structure of the suspension.

In an attempt to study more precisely the microstructure in suspensions of sedimenting

fibers, we improved the simulation method of Butler & Shaqfeh [32] in Chapter 3 by

implementing a smooth particle-mesh Ewald algorithm allowing the efficient computation

of the far-field hydrodynamic interactions [157]. This fast algorithm allowed us to simulate

up to 512 particles, providing new insight into the large-scale collective dynamics and their

coupling to the disturbance flow. In particular, in our periodic systems we found that the

formation of dense clusters was directly linked to the initial disturbance flow in the fluid,

which is typically dominated by low-wavenumber fluctuations, therefore resulting in the

formation of a unique streamer in most simulations. We speculated that the presence of a

bottom wall may play a role in selecting a wavelength for the instability, by breaking the

initial low-wavenumber fluctuations in the same way as is observed in sphere suspensions
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[74, 112]. This mechanism remained however an open question: while the presence of

a bottom wall may indeed lead to a homogenization and result in a decay of the large-

scale fluctuations, the instability on the contrary feeds the inhomogeneities; the balance

between these two effects is difficult to predict and is addressed in this Chapter. The

results of Chapter 3 also showed the difficulty in reaching a steady state simulation in

large periodic systems: even after the instability had picked a wavelength, streamers were

observed to become denser and denser, resulting in the steady increase of the mean velocity.

The assumption that a steady state indeed exists, which is the basis for simulations with

periodic boundary conditions, therefore deserves closer attention.

In this Chapter we study the microstructure and concentration fluctuations in sedi-

menting suspensions of spheroids, focusing on the coupling between the large-scale fluctu-

ations in the concentration and velocity fields and on the influence of solid boundaries. In

particular we wish to determine whether a steady-state structure can be achieved in such

suspensions and identify the mechanisms affecting this structure. We use rigid spheroids

as prototypes of orientable particles; the case of deformable particles will also be exam-

ined in Chapter 5. In Section 4.2.1, we describe an efficient method for the simulation

of realistic-size systems of rigid spheroids, both in periodic and non-periodic domains.

Results are then discussed in Sections 4.2.2 to 4.2.6, where we show that in non-periodic

systems a wavenumber selection occurs for the concentration fluctuations. In Section 4.3,

we revisit the linear stability analysis of Koch & Shaqfeh [102] to demonstrate that the

stratification that appears over the course of sedimentation may be responsible for this

wavenumber selection.

4.2 Point-particle simulations

4.2.1 Method of simulation

Motivated by the conclusions of the simulations of Chapter 3 [157], we have developed an

efficient method allowing the simulation of suspensions of realistic sizes in both periodic

and bounded geometries. The method is based on a point-force approximation which is
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analogous to the original model of Koch & Shaqfeh [102] and to the point-fiber simulations

of Mackaplow & Shaqfeh [122]. However the disturbance velocity is calculated numerically

from the Stokes equations using smooth localized force representations in a similar man-

ner to the force-coupling method of Lomholt & Maxey [119]; this approximate method

allows for a very efficient calculation of the velocities in flow cells with various boundary

conditions while removing the singularities from the disturbance field.

Dynamic equations

We consider a system of N spheroids of aspect ratio A in a box of dimensions Lx×Ly×Lz,

where gravity points in the vertical direction: g = −gẑ. The configuration of a given

particle α = 1, ..., N is entirely determined by the position xα of its center of mass and by

a unit vector pα aligned with its major axis. In the dilute limit the disturbance velocity

induced by the motion of the particles varies over length scales that are much larger than

the size of a particle, so that locally the flow field experienced by a given spheroid can be

approximated as:

u(x) ≈ u(xα) + ∇u(xα) · (x − xα) + ... for |x − xα| ≪ L, (4.1)

where L is the characteristic length for the variation of the velocity. Typically this charac-

teristic length is the mean interparticle distance L = n−1/3, where n is the number density

in the suspension. Under this approximation the translational velocity of a particle is

calculated as the sum of its settling velocity U s in orientation pα and of the disturbance

velocity u evaluated at its center of mass:

ẋα = U s(pα) + u(xα). (4.2)

The settling velocity in a pure fluid is the product of the particle mobility by the gravity

force acting upon the particle, and for a spheroid is written as

U s(pα) = (λ0I + λ1pαpα) · F . (4.3)
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The gravity force is F = ∆ρVpg where ∆ρ is the relative density and Vp is the volume of

a particle. The two constants λ0 and λ1 are mobility coefficients, and are functions of the

aspect ratio defined for arbitrary A; their expressions for spheroidal particles can be found

elsewhere (cf. References [79, 102]). The rotational motion of the particle is described

using Jeffery’s equation [93]:

ṗα = (I − pαpα) ·

(
A2 − 1

A2 + 1
E(xα) + Ω(xα)

)

· pα, (4.4)

in which E(x) =
[

∇u(x) + (∇u(x))T
]

/2 and Ω(x) =
[

∇u(x) − (∇u(x))T
]

/2 denote

the disturbance rate of strain and rate of rotation tensors, respectively. Provided that the

disturbance velocity u(x) and its gradient ∇u(x) can be calculated at the center of mass

of each particle, we can determine the motion of the particles by time integration of the

dynamic equations (4.2) and (4.4).

Hydrodynamic interactions

Far-field hydrodynamic interactions between the suspended particles are captured through

the disturbance velocity field. If the suspension is dilute, the effect of a particle on the

fluid is to first order a point force equal to the gravitational force F and applied at its

center of mass (cf. Section 2.3). The disturbance velocity can therefore be calculated as a

solution of the Stokes equations:

−µ∇2u + ∇p = f , ∇ · u = 0, (4.5)

with a body force equal to:

f(x) =
N
∑

α=1

F δ(x − xα), (4.6)

where δ(x) is the three-dimensional Dirac delta function.

The solution of Equation (4.5) in an infinite fluid is a sum of point-force singularities

or Stokeslets:

u(x) =
1

8πµ

N
∑

α=1

(
I

|x − xα|
+

(x − xα)(x − xα)

|x − xα|3

)

· F , (4.7)
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and the solution in a periodic domain is also known (cf. Appendix A). Equation (4.7) and

its periodic counterpart suffer from some limitations: the solution indeed grows unbounded

near the center of mass of the particles as a consequence of the point-force approximation

which is an asymptotic result valid far from the particle surface. Furthermore, the cal-

culation of this disturbance velocity at each particle location is an expensive operation,

scaling with the square of the number of particles. Fast algorithms have been devised

in the past to reduce the cost of this calculation [170, 157], but were based on periodic

boundary conditions and typically only allowed the simulation of a few hundred to a few

thousand particles.

Here we present a method for the evaluation of the disturbance velocity which com-

pletely neglects close particle interactions by smoothing the disturbance field at short

distances. The singularity in the point-force solution arises from the Dirac delta functions

in the forcing term Equation (4.6). Instead of calculating the exact flow field induced by

these point singularities, we use a Cartesian grid and assign the point forces exerted by

the particles on the fluid to the neighboring mesh points xi:

f(xi) =
N
∑

α=1

FM(xi − xα). (4.8)

M(x) is the assignment function and depends on the nature and the order of the interpo-

lation method used. The choice of M(x) is somewhat arbitrary, provided that it satisfies

a few basic conditions. We require that the sum of M(xi) over all the grid points be one

for the total force to be conserved, and that M have spherical symmetry. M should also

be small beyond a certain cutoff radius for the force to remain local; ideally (although not

necessarily) M should have a compact support. A good class of functions satisfying these

properties are Cardinal B-splines (cf. Appendix B and References [165, 88, 49]). Other

choices are possible: Maxey and coworkers for instance in their similar force-coupling

method use Gaussian interpolants, which do not have a compact support [125, 119].

The level of approximation of the simulation method described here, in which each

particle only exerts a point force on the fluid at its center (Equations (4.5) and (4.8))
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and feels the linearized disturbance flow induced by the other particles (Equations (4.2)

and (4.4)) can be discussed in the light of the considerations of Chapter 2: it corresponds

indeed to the leading-order term in the multipole expansion of Section 2.3. This level of

approximation is not capable of capturing velocity variation on length scales of the order

of the particle size, and is strictly valid for widely separated particles (dilute suspensions).

Solution of the Stokes equations

Equation (4.8) defines a body force field on the Cartesian grid and can be substituted

into the Stokes equations, which are then solved numerically with appropriate boundary

conditions. In this work two types of boundary conditions are considered. One of our

objectives is to investigate the effects of solid boundaries, and to this end we follow the

approach of Bergougnoux et al. [20] and seek a solution of the Stokes equations satisfying

a tangential flow boundary condition (i.e. ‘slip’, but no penetration) on the walls of the

container. While this differs from the exact no-slip boundary condition for viscous flow, it

allows for a very efficient solution while capturing some effects of the walls: in particular

the no-flux boundary condition at the bottom wall will lead to large-scale recirculation in

the lateral direction and homogenization, both of which have been suggested as potential

mechanisms for the decay of the fluctuations in sphere suspensions [112, 20]. The effects

of the tangential flow along the walls are investigated more precisely in Appendix C,

where the present solution is compared to a more accurate solution satisfying the no-slip

boundary condition on two of the side walls [132]; in particular, tangential flow along the

walls is shown to result in slightly overestimated velocity fluctuations.

We first observe that f(x) = f(x)ẑ, and transform the scalar-valued function f(x) as

follows using sine and cosine series:

f(x) =
∑

k

f̂(k) cos

(
πkxx

Lx

)

cos

(
πkyy

Ly

)

sin

(
πkzz

Lz

)

, (4.9)

in which the wavevector k in an orthogonal lattice is defined as

k =
kx

Lx
x̂ +

ky

Ly
ŷ +

kz

Lz
ẑ (4.10)
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with kx, ky and kz integers. We then seek a solution for the velocity written as:

u(x) =
∑

k

û(k) ×

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

kxkz

LxLz
sin

(
πkxx

Lx

)

cos

(
πkyy

Ly

)

cos

(
πkzz

Lz

)

,

kykz

LyLz
cos

(
πkxx

Lx

)

sin

(
πkyy

Ly

)

cos

(
πkzz

Lz

)

,

−

(

k2
x

L2
x

+
k2

y

L2
y

)

cos

(
πkxx

Lx

)

cos

(
πkyy

Ly

)

sin

(
πkzz

Lz

)

.

(4.11)

Equation (4.11) automatically satisfies continuity and the tangential flow boundary con-

dition. Substituting Equations (4.9) and (4.11) into the Stokes equations (4.5) allows one

to solve for the Fourier coefficients of the velocity:

û(k) =
f̂(k)

π2

[
(

kx

Lx

)2

+

(
ky

Ly

)2

+

(
kz

Lz

)2
]2 . (4.12)

The Fourier series expansions (4.9) and (4.11) can be truncated in each space dimension

beyond a maximum wavenumber Kx, Ky, Kz, which should be chosen to as to make

the shortest resolved wavelength shorter than the mean interparticle distance; the precise

effects of the level of truncation are discussed in Appendix C. The velocity field and its

gradient are then easily solved for using fast sine and cosine series algorithms.

For the sake of comparison we also consider periodic systems, and solve the Stokes

equations spectrally. The velocity field is expanded as a Fourier series

u(x) =
∑

k

û(k) exp(−2πik · x). (4.13)

As described in Appendix A, Hasimoto [81] solved for the Fourier coefficients of the ve-

locity:

û(k) = −
1

4π2µτ0k2

(

I −
kk

k2

)

· f̂(k), (4.14)

where τ0 is the volume of the periodic cell and f̂(k) are the Fourier coefficients of the force

distribution. As in the periodic case, the series are truncated at a finite number of terms,

and the fast Fourier transform algorithm is used for good efficiency.

It should be noted that in the method described above each particle feels its own dis-

turbance, since the force field (Equation (4.8)) used in the Stokes equations includes a
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contribution from the particle itself. Further adding this self-disturbance to the free-space

sedimentation velocity U s(pα) in Equation (4.2) would lead to a systematic overestima-

tion of the sedimentation rates. In the simulations the disturbance velocity u(x) felt by

each particle was therefore corrected by subtracting this self-contribution, which can be

calculated independently on the grid using a similar method.

In all of the following distances are made dimensionless with the length lc = 2l of the

major axis of a particle, velocities with the sedimentation speed uc = (λ0 + λ1)∆ρVpg of

an isolated vertical spheroid in an infinite fluid, and times with the time tc = lc/uc for an

isolated vertical spheroid to sediment over the length of its major axis. In all simulations

third-order B-spline interpolation was used for the calculation of the body force field, and

the number of Fourier modes was chosen so as to resolve the velocity field over distances

on the order of half a particle length. The time integration was performed using a fourth-

order Runge-Kutta scheme. For the most part we treat the case of prolate spheroids

(‘fibers’), for which comparison with experimental data is presently possible; the case of

oblate particles (‘disks’) is briefly addressed in Section 4.2.7. Unless otherwise stated the

results shown are for non-periodic systems with slip boundary conditions.

4.2.2 Particle distribution and concentration fluctuations

Figure 4.1(a) shows a typical particle distribution, obtained for a simulation of 29,702

spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180

(particle volume fraction φ = 0.1 %). The initial condition is a homogeneous dispersion

with random positions and orientations. As the sedimentation proceeds, a broad suspen-

sion front forms at the interface with the clear fluid and keeps growing in time. Careful

observation of the bulk shows that the suspension does not remain homogeneous: particles

instead tend to aggregate into clusters as predicted by Koch & Shaqfeh [102]. Particles are

also observed to rotate and to orient preferentially in the vertical direction, with a strong

correlation between center-of-mass position and orientation: while the orientation remains

random inside the dense clusters, the alignment in the vertical direction is much clearer

in their periphery, where we will see that a strong vertical shear exists (e.g. Section 4.2.4).
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(a) (b) t = 0 t = 40 t = 80 t = 120

Figure 4.1: (a) Particle distribution at t = 80 for a simulation of 29,702 spheroids of
aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction
φ = 0.1 %). (b) Time trace of the concentration field over a short interval ∆t = 4 in the
mid-plane y = Ly/2, at various stages of the sedimentation (cf. Equation 4.15)

We focus our analysis on the clustering phenomenon, and try to define measures for the

concentration fluctuations in the bulk.

A good way of visualizing the inhomogeneities consists of considering the time trace

over a short time interval of the smooth concentration field obtained by B-spline interpo-

lation as explained in Section 4.2.1:

c̄(x, t) =
1

∆t

∫ t+∆t

t

N
∑

α=1

M(x − xα(t′))dt′, (4.15)

where a small value on the order of a few Stokes units is chosen for ∆t (∆t = 4 in the results
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presented here). The advantage of this measure is that it allows one to visualize both the

concentration fluctuations and the correlation in the motion of the particles. Figure 4.1(b)

shows c̄(x, t) in the vertical mid-plane y = Ly/2 at different times t over the course of the

simulation of Figure 4.1(a). In the initial instants weak density fluctuations are present

due to the random nature of the initial distribution. A relatively strong flow is observed

away from the walls at the center of the cell, with recirculation vortices on the sides. This

strong initial streamer spans the entire box width, in agreement with the scaling of Hinch

[87], according to which velocity fluctuations in a random sedimenting suspension occur

over length scales comparable to the width of the container. Interestingly the streamer

also spans the entire height of the box, in contrast to the circular vortical structures that

are typically observed in sphere sedimentation [74]; this very long autocorrelation in the

vertical direction will be further explored in Section 4.2.4. At later times (t = 40 to 80),

this initial streamer is observed to break up into smaller structures; yet the concentration

fluctuations intensify as a result of the Koch & Shaqfeh instability, leading to the formation

of dense vertical streaks. Several streaks can be observed in the lateral direction (up to

three or four at t = 40), suggesting that a wavenumber selection may be occurring. The

inhomogeneities are found to persist up until the arrival of the sedimentation front, in

spite of the decay of the velocity fluctuations in the fluid (cf. Section 4.2.5). As the

concentration in the suspension finally decreases owing to stratification (Figure 4.3), the

concentration fluctuations gradually become less intense (t = 120).

The fluctuations in the bulk can be measured more quantitatively by calculating the

instantaneous Fourier transform of the concentration field over a section of the box:

ĉ(k, t) =

∫

V ′

c(x, t) exp(2πik · x)dx. (4.16)

Practically c(x, t) is obtained by binning the particle positions, and ĉ(k, t) is calculated

as a discrete Fourier transform. Figure 4.2 shows the time evolution of the magnitude

of a few Fourier coefficients, obtained for a simulation in a box of dimensions Lx = 32,

Ly = 32, Lz = 180 at a volume fraction of φ = 0.2 %, in both non-periodic and periodic
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Figure 4.2: Time evolution of the Fourier coefficients of the concentration field for a
simulation of 158,411 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32,
Ly = 32, Lz = 180 (volume fraction φ = 0.2 %), in both (a) non-periodic and (b) periodic
boundary conditions. The spectra were calculated over a subsection of the container:
20 < z < 52, and were averaged over four simulations. The bottom plots show the
evolution of the mean volume fraction in the section in which the spectra were obtained.

boundary conditions. In the periodic case (Figure 4.2(b)), the longest wavelength in the

horizontal direction k = (1, 0, 0) clearly dominates the spectrum, which corresponds to the

formation of one main streamer (here each component of k is made dimensionless with the

inverse size of the box in the corresponding direction). This is in agreement with the linear

stability analysis of Koch & Shaqfeh [102] which predicts that the shortest wavenumber

(longest wave) should grow the fastest, and was also reported in previous simulations of

periodic systems [122, 32, 157]. The behavior is quite different in the non-periodic case

(Figure 4.2(a)), where the two wavevectors k = (2, 0, 0) and k = (3, 0, 0) are observed to
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Figure 4.3: Cross-section averaged concentration profile in the vertical direction at various
times during the sedimentation of a suspension of 148,510 spheroids of aspect ratio A = 15
in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.5 %). The
concentration profile is normalized by its average value ⟨c⟩.

grow and dominate the spectrum, corresponding to two or three dense streamers in the

lateral direction. This is consistent with Figure 4.1(b) where in a finite box several vertical

streaks were shown to appear in the concentration field. After about 100 time units the

arrival of the front leads to a decay of the fluctuations at all wavenumbers, whereas in the

periodic case the fluctuations keep growing and do not show any sign of saturation.

The stratification and fluctuations in the vertical direction are illustrated in Figure 4.3,

showing the time evolution of the concentration profile in the z-direction (where concen-

tration has been averaged in the horizontal plane). Initially the transition from the bulk

concentration c = ⟨c⟩ to zero (clear fluid) is quite sharp. As time goes on the dispersion in

orientation and anisotropic mobility of the particles result in the broadening of the inter-

face: this is demonstrated by the change in the slope of the profile inside the front, which

indicates a much smoother transition. Such a smooth transition is not typically observed

in suspensions of spherical particles where the interface remains quite sharp throughout
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Figure 4.4: Pair distribution function in the lateral direction at t = 0 and t = 100 for a
simulation of 29,952 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32,
Ly = 12, Lz = 180 (volume fraction φ = 0.1 %). g(x) was calculated over the subdomain
20 < z < 30.

the sedimentation process (cf. Reference [20] for instance, as well as Figure 5.4(b)). Fig-

ure 4.3 also presents another interesting feature, as the concentration in the suspension

and in particular near the bottom of the container is observed to exceed the mean bulk

value ⟨c⟩. This constitutes another proof of clustering, and also suggests an additional

mechanism for the broadening of the front, which may not only be due to the dispersion

in orientation but also to the segregation of the clusters near the bottom of the box, as

particle aggregates have enhanced sedimentation speeds. The effects of stratification on

the instability, and more specifically on the wavenumber selection, will be discussed in

more detail in Section 4.3.

4.2.3 Pair distribution function and structure factor

The microstructural arrangement of the particles in the suspension is well captured by

the pair distribution function, which is the distribution of pairs of particles at a given

center-of-mass to center-of-mass distance [109]. As observed in the previous Section the

microstructure in the suspension is highly anisotropic; to confirm the arrangement of

the spheroids into several vertical streamers in the horizontal direction we define a pair
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distribution function in the lateral direction:

g(x) =
V

N2
⟨
∑

i

∑

j≠i

δ(x − xij)⟩, (4.17)

where xij = |xi −xj| is the separation distance along the x–axis between particles i and j,

and ⟨·⟩ denotes the ensemble average. To avoid artifacts due to the container side walls the

suspension is replicated periodically in the x-direction and the closest separation distance

is used when calculating g(x). Figure 4.4 shows the pair distribution function at t = 0

and t = 100 for a typical simulation. At t = 0, g(x) is essentially constant as the particle

distribution is uniform; this is a consequence of our simulation model in which excluded

volume interactions are completely neglected. g(x) does not remain uniform however, as

shown in the second plot in Figure 4.4. A peak near x = 0 is observed to form: this

maximum, which had been reported in previous studies [32, 108], is a sign of clustering

and means that there is an excess of particles in the vicinity of any given particle. Quite

interestingly oscillations also appear away from x = 0, i.e. the arrangement of the particles

does not remain uniform and random, but becomes structured at long wavelengths as a

result of the formation of the streamers in the lateral direction.

The data from the pair distribution function are best analyzed by taking the Fourier

transform of their fluctuating part, yielding the structure factor:

S(k) =

∫

exp(−2πikx/Lx) (g(x) − 1) dx. (4.18)

The evolution of the structure factor for the same simulation as in Figure 4.4 is shown in

Figure 4.5. At t = 0 no particular frequency dominates the spectrum. Progressively a peak

appears at k = 1 and k = 2 (t ≈ 40), and slowly migrates towards k = 3 while becoming

more intense. The data are very well reproducible from one simulation to another for a

given set of parameters, and this suggests that a wavenumber selection is indeed taking

place. As shown in Figure 4.5, the wavenumber selection is associated with the decay

or break-up of the initial mode k = 1, and is linked to the presence of container walls

as it is not observed in periodic boundary conditions where the longest mode dominates
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Figure 4.5: Time evolution of the structure factor for the simulation of Figure 4.4 (29,952
spheroids, A = 15, Lx = 32, Ly = 12, Lz = 180, φ = 0.1 %). The structure factor was
obtained by taking the Fourier transform of the fluctuating part of the pair distribution
g(x) shown in Figure 4.4 (Equation 4.18).

throughout the simulation.

The dependence of the final wavelength of the fluctuations on the dimensions of the

container is investigated in Table 4.1, where the final position of the second peak in the

pair distribution function g(x), which gives an estimate of the spacing between streamers,

is shown for various box dimensions. At given values of the volume fraction and of the

particle aspect ratio, the position of the peak is fairly insensitive to the lateral dimensions

Lx and Ly of the simulation box; at φ = 0.1 % and A = 15 the data of Table 4.1 give a

spacing of approximately 6 particle lengths in the lateral direction. This confirms that the

initial fluctuations over the width of the box give way to fluctuations at a wavelength that

does not depend on the container dimensions, and must therefore scale with the interpar-

ticle distance in the suspension. This transition from box-dependent to box-independent

concentration fluctuations is analogous to what was previously reported for the velocity



94 CHAPTER 4. THE SEDIMENTATION OF ORIENTABLE PARTICLES

Box dimensions Final spacing
(Lx, Ly, Lz) between streamers
(16, 12, 180) 6.61
(32, 12, 180) 5.83
(48, 12, 180) 6.80
(64, 12, 180) 6.56
(32, 32, 180) 5.94

Table 4.1: Influence of the container dimensions on the wavenumber selection in suspen-
sions of spheroids of aspect ratio A = 15 at a volume fraction of φ = 0.1 %. The spacing
between streamers is estimated using the position of the second peak that appears in
the pair distribution function g(x) (cf. Figure 4.4). At given values of A and φ the final
wavelength of the fluctuations is insensitive to the size of the container.

fluctuations in suspensions of rigid spheres [137, 74], suggesting that similar mechanisms

may be at play. A potential mechanism for the transition will be described in Section 4.3,

where we argue that the stratification that develops in the suspension may cause a decay

of the size of the concentration fluctuations.

4.2.4 Velocity disturbance field

The inhomogeneous microstructure described above is also visible from the velocity dis-

turbance field. Typical velocity fields are shown in Figure 4.6 at the beginning of the

sedimentation and at a later time (t = 60). At t = 0 a strong flow is observed near the

center of the box with recirculation near the walls, in agreement with the observations

made previously on the time trace of the concentration field (Figure 4.1(b)). Note that

the non-zero disturbance velocity at the walls is an artifact of the slip boundary condition

used in the simulations, and would not be observed in an experiment. However backflow

near the walls can still be expected even in no-slip boundary conditions because of the

depletion layer existing near the walls due to excluded volume, which has a characteristic

thickness of the order of half a particle length [129]. As already observed in Figure 4.1(b),

this initial flow spans most of the box height, unlike the stacking of circular cells that has

been reported for spheres [74]; this may be a consequence of the depletion layer, which is

almost nonexistent in sphere suspensions at the volume fractions considered here. Over
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Figure 4.6: Velocity disturbance field at (a) t = 0 and (b) t = 60 in the midplane y = Ly/2,
for a simulation of 59,904 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32,
Ly = 12, Lz = 180 (volume fraction φ = 0.2 %).

the course of the sedimentation smaller structures appear in the velocity field, as shown

in Figure 4.6(b) at t = 60. The disturbance field now looks more chaotic, and presents

distinct swirls over shorter lengths scales. The vortices are slightly stretched in the vertical

direction, suggesting that the correlation is stronger in the direction of gravity.

These qualitative observations are confirmed in Figure 4.7, which shows the evolution of

the autocorrelation functions of the velocity field. Figure 4.7(a) shows the autocorrelation

Czz(x) in the lateral direction x of the vertical velocity component uz. At t = 0 the function

decorrelates very slowly and reaches a minimum beyond x = 15 which is approximately

half a box width: this very slow decay in the lateral direction was expected as a result of the

aforementioned streamer spanning the entire box width at the beginning of sedimentation.

Progressively a clearer minimum appears and shifts towards lower values of x. At t = 40

the minimum near x = 4 corresponds to an anticorrelation in the vertical velocity field,

i.e. to the presence of fluid streams flowing in opposite directions. A second peak is

then observed again near x = 7. This negative correlation followed by an increase in

the correlation is indicative of a succession of similar vortex structures in the lateral
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Figure 4.7: Time evolution of the autocorrelation function of: (a) the vertical velocity
component in the lateral direction, and (b) the horizontal velocity component in the ver-
tical direction. The results are for a simulation of 59,904 spheroids of aspect ratio A = 15
in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.2 %).

direction, corresponding to the clusters or streamers observed in the particle distribution.

In particular the position of the peak x = 7 can be used as a rough estimate of the spacing

between the clusters; in a box of width Lx = 32 this corresponds to approximately four

structures, which is in relatively good agreement with the wavenumber obtained from

the structure factor. Note that after a while (t = 80 and beyond), the position of the

minimum in the correlation function starts increasing again as a result of the arrival of the

sedimentation front, and of the very strong damping of all the fluctuations in the fluid.

Figure 4.7(b) shows the autocorrelation Cxx(z) in the vertical direction z of the hori-

zontal velocity component ux. The behavior is somewhat similar: starting from a very long

correlation length (of the order of 15 to 20 particle lengths), the position of the minimum

shifts to a lower value z ≈ 10. This value however remains substantially greater than the

shortest length of 4 observed in the lateral direction. This confirms that the structures

in the velocity field and the particle distribution are stretched in the vertical direction,

typically by a factor greater than two.
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The evolution of the disturbance field is reminiscent of observations made previously

on sphere suspensions (e.g. [167, 74, 186]). In the case of spheres the initial disturbance

field is characterized by large recirculation cells induced by the random Poisson statistics

due to the initial mixing; these cells are then observed to break up into smaller swirls,

whose characteristic size in most experiments is found to be of the order of 15 mean

interparticle distances, and therefore does not depend on the container dimensions. Sev-

eral mechanisms have been proposed for the decay of the correlation length and of the

fluctuations as reviewed in Section 4.1. The clear analogy with the results reported here

suggests that the same mechanisms leading to the decay of velocity fluctuations in sphere

suspensions may play a role in the wavenumber selection process observed in our simula-

tions. In particular, the initial strong convection current may be decaying as a result of

homogenization at long wavelengths before the strongest mode (k = 1) of the instability

has any time to grow significantly. As we discuss in Section 4.3, the strong stratifica-

tion illustrated in Figure 4.3 also plays an important part (in fact much more important

than for spheres because of the dispersion in orientation which acts like a polydispersity),

and is in part responsible for the continuous decay of the velocity fluctuations with no

steady state as discussed in Section 4.2.5, and for the evolution of the wavelength of the

instability. Despite the qualitative similarities, the previous discussion also casts light on

several important differences. While the decay of the velocity correlation length in sphere

sedimentation is accompanied with and possibly a result of the homogenization of the par-

ticle distribution in the horizontal direction [114, 134, 135], homogenization only occurs

down to the wavelength of the instability in the case of spheroids; quite strong density

fluctuations persist between the core of the streamers and the clarified fluid, as discussed

in Section 4.2.2. A detailed comparison of the length scales of the fluctuations in both

situations would be worthwhile in order to fully appreciate the effects of the instability.

As a result of the clustering, the velocity field in the case of spheroids also maintains a

much stronger correlation in the vertical direction: long streamers of dense fluid alternate

with clarified regions of backflow, unlike the circular swirls induced by the much weaker

density fluctuations in sphere suspensions.
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Figure 4.8: (a) Mean sedimentation velocity ⟨uz⟩, and (b) velocity fluctuations ∆uz in
the z-direction at various volume fractions. The results are for spheroids of aspect ratio
A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180. The results were obtained in
a subsection of the box: 45 < z < 67.5, and are averaged over ten simulations to remove
statistical fluctuations.

4.2.5 Velocity statistics

The effects of the instability on the sedimentation velocity are twofold. As will be discussed

in Section 4.2.6 the strong vertical shear between the dense and clarified regions causes

the spheroids to orient vertically, resulting in an increase of their individual sedimentation

speed. More interestingly the arrangement of the particles into dense clusters allows for

the clusters to sediment faster, which can be viewed as a shielding effect. The combina-

tion of these two effects can result in sedimentation velocities that exceed the maximum

velocity for an isolated particle, as illustrated in Figure 4.8 where the velocities are made

dimensionless by the velocity of a single vertically oriented spheroid. Figure 4.8(a) shows

the evolution of the mean sedimentation velocity at various volume fractions. Starting

from an initial value close to the sedimentation rate of 0.83 for spheroids of aspect ratio of

A = 15 at infinite dilution, the mean sedimentation velocity rapidly increases to reach a

maximum value ranging from 1.5 in the more dilute case (φ = 0.1 %) to approximately 1.6
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at φ = 0.5 %. After this strong peak the mean velocity decays slowly back towards smaller

values, until the arrival of the front in which the velocities are found to be much weaker.

Quite interestingly the curves do not present any steady state, i.e. the particle velocity at

a given vertical station varies continually; the mean velocity is also observed to depend

slightly on the height at which it is measured. This differs from the experimental observa-

tions of Herzhaft & Guazzelli [84], who reported a mean velocity steady state; this may be

a consequence of the limited height of the box in our simulations, or of the approximate

boundary conditions on the side walls. Herzhaft & Guazzelli [84] observed an increase

of the mean sedimentation speed with concentration in the dilute regime, in agreement

with our results. The values they report for the mean velocity are (for cylindrical fibers of

aspect ratio A = 11± 2): 1.1± 0.2 at φ = 0.1 % and 0.26 %, and 1.5± 0.3 at φ = 0.48 %,

which fall slightly below the peak values shown in Figure 4.8(a), but are of the same order

as the simulated velocities after the initial peak.

A more precise comparison to the experiments of Herzhaft & Guazzelli [84] is shown

in Figure 4.9, which compares the distributions of the vertical and horizontal velocity

components from our simulations with the experimental measurements at φ ≈ 0.26 %.

Because no steady state is observed as noted previously, the velocity distribution evolves

with time. The choice of a specific time to calculate the distributions is therefore ad hoc;

Figure 4.9(a) shows the distribution measured after the initial velocity peak, when the

initial box-dependent streamer has started to decay and when the concentration fluctu-

ations have had time to develop. The two distributions show very good qualitative and

quantitative agreement. As already mentioned the mean sedimentation speed and variance

are very slightly overestimated in the simulations. However it should be emphasized that

the agreement with the experimental results is significantly better than that obtained in

Chapter 3 using periodic boundary conditions [32, 157] (cf. Figure 3.19), where a strong

dependence on the system size and box aspect ratio was found, and where both the mean

and variance of the vertical velocity were strongly overpredicted.

Figure 4.8(b) shows the evolution of the velocity fluctuations in the suspension. The

fluctuations are found to be very strong shortly after the start of sedimentation (sensibly at
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Figure 4.9: Velocity distributions obtained from: (a) simulations, and (b) the experiments
of Herzhaft & Guazzelli [84]. The simulation results are for a suspension of 41,530 spheroids
of aspect ratio A = 11 in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume
fraction φ = 0.26 %); the distribution shown was obtained shortly after the peak of the
mean velocity (cf. Figure 4.8). The experimental distribution of Herzhaft & Guazzelli
was obtained in a suspension of cylindrical fibers of aspect ratio A = 11 ± 2, at a volume
fraction of φ = 0.26 ± 0.01 %.

the same time as the velocity peak), reaching values of up to four times the mean velocity

for φ = 0.5 %; very high values for the fluctuations had also been reported by Herzhaft &

Guazzelli [84]. These fluctuations are partly caused by the strong initial flow at the center

of the box, which is accompanied by an equally strong backflow near the walls. Shortly

after reaching their maximum value the fluctuations are then observed to decay rapidly

towards zero; again no steady state is observed. The steady decay of the fluctuations after

the initial peak is similar to what is observed for spheres [138, 112, 186, 20, 132]. While in

the case of spheres steady velocity fluctuations are reached in some cases, they have also

been predicted to decay ad infinitum in suspensions in which stratification is significant

[120, 131]. Stratification is very strong in anisotropic suspensions such as the ones of this

study and therefore most likely plays a role in the damping of the velocity variance shown

in Figure 4.8(b): this effect will studied further in Section 4.3.
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Note that inaccuracies in the particle velocities and velocity fluctuations can be ex-

pected given our simulation method. Most importantly, the zero tangential stress bound-

ary condition on the side walls differs significantly from the exact no-slip boundary con-

dition for viscous flow, with possible consequences on the rate of decay of hydrodynamic

interactions. This was pointed out by Brenner [28], who investigated the effects of side

walls on fluctuations in sedimenting sphere suspensions and showed that the no-slip bound-

ary condition results in a screening of interactions beyond a few wall separation distances.

While enforcing the correct boundary condition on all container walls is difficult, we also

implemented the Green’s function of Mucha et al. [132] which satisfies no-slip on two of

the side walls. The results, which are described in more detail in Appendix C, indeed

show that tangential flow on the side walls leads to a systematic overestimation of the

velocity fluctuations (as well as the mean velocity, albeit to a lesser extent). The velocity

fluctuations in a real system are therefore likely to be quite weaker than those shown in

Figure 4.8(b), which is indeed the case for the values reported by Herzhaft & Guazzelli

[84]. Yet the qualitative behavior of the fluctuations (sharp increase followed by a steady

decrease) is likely to be captured correctly. Other sources of inaccuracies may come from

the substitution of a finite B-spline for the original point force at the center of the particles,

which introduces an error by smoothing the velocity disturbance field at high wavenum-

bers, and from the point-force model that completely neglects higher force moments on

the particles such as stresslets, which are responsible for the velocity hindrance observed

in suspensions of spheres [13].

4.2.6 Orientation statistics

Figure 4.10(a) shows the time evolution of the mean-squared orientation ⟨pzpz⟩ in the

direction of gravity, which is a measure of the degree of alignment of the suspension in

the vertical direction. The initial value of 1/3 corresponds to the isotropic orientation

distribution in the initial configuration. Immediately after the start of sedimentation

⟨pzpz⟩ sharply increases to reach a peak value of approximately 0.7, i.e. a very large

number of spheroids quickly orient in the direction of gravity (Figure 4.10(b)). As already
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Figure 4.10: (a) Time evolution of the mean squared orientation in the direction of gravity
⟨pzpz⟩, at various volume fractions. The results are for spheroids of aspect ratio A = 15
in a box of dimensions Lx = 32, Ly = 12, Lz = 180. The results were obtained in a
subsection of the box: 67.5 < z < 90, and are averaged over ten simulations. (b) Diagram
showing the mechanism for the orientation of a prolate spheroid along the vertical axis
(after Koch & Shaqfeh [102]).

mentioned earlier, this is a consequence of the strong vertical shear between the streamer

at the center of the box and the backflow near the walls. The fastest increase and the

highest peak value are obtained in the more dense suspensions (φ = 0.5 %), as a result of

the stronger velocity fluctuations (Figure 4.8(b)). After the peak is reached, ⟨pzpz⟩ very

slowly and steadily decreases as fluctuations decay; its value remains however above 0.6

for the remainder of the simulation, suggesting that the alignment remains strong. It is

interesting to note that after the initial peak the value of ⟨pzpz⟩ is nearly the same for all

volume fractions considered, even though the velocity fluctuations are typically stronger

in more concentrated suspensions. This observation, however unexpected, was also made

previously by Herzhaft & Guazzelli [84], who found that the orientation distributions from

their experiments were nearly identical at all concentrations.

A typical distribution of the projected angle (i.e. the angle made by the projection of

the orientation vector p onto the (x, z)-plane with respect to the x-direction) is shown in
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Figure 4.11: Distributions of the projected angle (angle of the projection of the orientation
vector of the particles onto a vertical plane with respect to the horizontal) obtained from:
(a) simulations, and (b) the experiments of Herzhaft & Guazzelli [84]. The simulation
results are for a suspension of 41,530 spheroids of aspect ratio A = 11 in a box of dimensions
Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.26 %); the distribution shown was
obtained shortly after the peak of the mean squared orientation ⟨pzpz⟩ (cf. Figure 4.10).
The experimental distribution of Herzhaft & Guazzelli was obtained in a suspension of
cylindrical fibers of aspect ratio A = 11 ± 2, at a volume fraction of φ = 0.26 ± 0.01 %.

Figure 4.11 and compared to the experimental distribution of Herzhaft & Guazzelli [84].

The strong peak near 90◦ confirms the vertical alignment of many of the particles in the

suspension. While the agreement between the two distributions is qualitatively fair, the

peak is slightly underestimated in the simulations. Also the experimental distribution

presents a second peak near zero (corresponding to a horizontal alignment), whose origin

is not clear and which is not captured in the simulations. Close particle interactions,

which are completely neglected in our simulations, may slightly influence the shape of the

distribution: the strong entanglements inside the clusters due to excluded volume may

indeed have an effect on the orientation of the particles. Yet the second minimum in the

experimental distribution must have another origin, as it was not reproduced either in

the previous simulations by Butler & Shaqfeh [32] and in the simulations of Chapter 3

(Figure 3.17 and Reference [157]). These also underpredicted the height of the main peak
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Figure 4.12: (a) Mean sedimentation velocity ⟨uz⟩, and (b) velocity fluctuations ∆uz in
the z-direction at various volume fractions. The results are for oblate spheroids of aspect
ratio A = 0.3 in a box of dimensions Lx = 130, Ly = 40, Lz = 750. The results were
obtained in a subsection of the box: 187 < z < 281, and are averaged over ten runs.

in most cases. The present simulations offer the improvement that the distribution does

not significantly depend on the size or the aspect ratio of the sedimenting system. Future

work should focus on including close interactions such as excluded volume with the hope of

obtaining a more quantitative agreement with the experimental orientation distributions.

4.2.7 Oblate particles

The previous discussion has focused entirely on prolate spheroids (A > 1), for which

experimental data are available. The case of oblate spheroids (A < 1), or disk-shaped

particles, has received less attention in the past in spite of its common occurrence in

environmental fluid mechanics for instance, where the sedimentation of clay is a relevant

example. To our knowledge, the concentration instability has never been studied either

experimentally or numerically for oblate particles since its theoretical prediction by Koch

& Shaqfeh [102].
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Figure 4.13: (a) Time evolution of the mean squared orientation in the direction of gravity
⟨pzpz⟩, at various volume fractions. The results are for oblate spheroids of aspect ratio
A = 0.3 in a box of dimensions Lx = 130, Ly = 40, Lz = 750. The results were obtained
in a subsection of the box: 94 < z < 187, and are averaged over ten runs. (b) Diagram
showing the mechanism for the orientation dynamics: in the case of oblate spheroids the
orientation vector p aligns in a horizontal direction (after Koch & Shaqfeh [102]).

Simulations were run for oblate spheroids of aspect ratio A = 0.3 at various volume

fractions. The results were found to be qualitatively similar to those discussed above for

prolate particles, and only the main differences are summarized here. As in the case of pro-

late particles inhomogeneities are observed to develop in the suspension. This clustering

is again accompanied by an enhancement of the mean sedimentation rate. Figure 4.12(a)

shows the evolution of the mean velocity in the suspension at two different volume frac-

tions. The velocities are scaled by the sedimentation velocity of a particle whose major

axis points in the vertical direction (the slowest configuration for an oblate spheroid),

hence a lower bound of 1 for the velocity. Starting from a value between 1.2 and 1.3

(compared to the expected value of 1.12 for spheroids of aspect ratio A = 0.3 at infinite

dilution), the sedimentation velocity quickly increases and reaches a peak value around 1.6

at both φ = 0.1 % and 0.2 %, which corresponds to an enhancement over the maximum
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possible sedimentation velocity for an isolated spheroid, and is therefore mainly a conse-

quence of clustering. Figure 4.12(b) shows the corresponding velocity fluctuations, which

are found to be about twice as strong as in the prolate case at the same concentrations

(Figure 4.8(b)). This can be explained as follows: oblate particles have a weaker mobility

(because of their larger surface to volume ratio). At equivalent volume fraction they create

the same fluctuations as prolate particles but sediment more slowly; when scaled by the

mean sedimentation speed the fluctuations therefore appear much stronger. Note again

that these fluctuations are also likely to be overestimated as a result of the zero tangential

stress boundary condition at the side walls.

Interestingly the enhancement of the velocity (Figure 4.8(a)), as well as the concentra-

tion fluctuations (not shown), are found to be somewhat weaker than in the prolate case.

A possible explanation is that the very strong velocity fluctuations observed above cause

a more rapid alignment of the particles in the disturbance flow, which then hinders their

lateral migration. Another likely reason is that the fluctuations result in more mixing,

which limits the growth of the inhomogeneities. The strong alignment of the particles

is illustrated in Figure 4.13(a), which shows the mean-squared orientation ⟨pzpz⟩ in the

direction of gravity. Note that in the case of oblate particles the alignment occurs in

such a way that the orientation vector p of the major axis points in a horizontal direction

(Figure 4.13(b)). As shown in Figure 4.13(a) the mean orientation very quickly reaches a

steady state, and remains constant until the arrival of the suspension front.

4.3 The effect of stratification on wavenumber selection

4.3.1 Introduction

The simulations described in Section 4.2 have demonstrated the existence of a wavenumber

selection in finite containers for the concentration instability. More precisely, we found that

unlike in periodic boundary conditions, simulations of bounded systems capture a transi-

tion from a single box-dependent streamer to multiple structures at shorter wavelengths
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(Figures 4.1, 4.2 and 4.5). Such an evolution was also recently reported in experiments by

Metzger, Guazzelli & Butler [126, 127], who observed that the sedimentation in suspen-

sions of rigid fibers is initially characterized by the formation of one large-scale streamer

spanning half of the container width, followed by a transition to multiple streamers and

backflow regions alternating in the horizontal direction. The precise origin of such a tran-

sition, which is not predicted by the original stability analysis of Koch & Shaqfeh [102],

however still remains unclear: while our simulations clearly showed that the transition

only occurs in the presence of walls, the mechanism for the breakup of the initial large-

scale streamer has not been elucidated. Based on the previous work on sphere suspensions

reviewed in Section 4.1, several hypotheses can be formulated: the recirculation currents

taking place as a result of the horizontal container boundaries may homogenize the sus-

pension over large length scales, leading to the suppression of the fluctuations below a

finite wavenumber; in addition, the strong stratification that is shown to develop in the

suspensions (Figure 4.3) may have an effect on the instability by damping the velocity

fluctuations.

The effects of stratification on the velocity fluctuations in suspensions of sedimenting

spheres have been considered in a few studies [120, 186, 20, 132]. Luke [120] first suggested

that a stable vertical density gradient should lead to a decay of the velocity fluctuations

over time: the physical argument that he proposed is that density fluctuations settle

rapidly toward their equilibrium position, after which they no longer contribute to the

variance of the velocity. According to Luke [120], this mechanism should result in a decay

of the velocity variance as t−1/2, precluding the existence of a steady state. This original

idea was then reexamined by Brenner and coworkers [186, 132], who argued that density

fluctuations in a suspension are simultaneously damped by stratification and generated

by random fluctuations in the particle motions; by balancing the effects of stratification

and hydrodynamic dispersion, they were therefore able to derive a scaling for the velocity

fluctuations, in good accord with results from their experiments and numerical simula-

tions. Although there appears to be a consensus on the damping effect of a stable vertical

density gradient on the fluctuations, the presence and the origin of stratification in sphere
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suspensions are still debated [20, 135].

In the following sections, we examine the relationship between stratification and the

concentration instability, with the aim of elucidating the wavenumber selection process

observed experimentally [126, 127] and in the simulations of Section 4.2. First we revisit

the linear stability analysis of Koch & Shaqfeh [102] in Section 4.3.2 in the case of a

stably stratified suspension, where we also account for center-of-mass hydrodynamic dis-

persion. We show that stratification can provide a mechanism for wavenumber selection,

and a scaling for the most unstable mode is derived in Section 4.3.3. This scaling is then

tested in Section 4.3.4 against simulation results for both stratified and initially well-mixed

suspensions.

4.3.2 Linear stability analysis

Governing equations

Following Koch & Shaqfeh [102], we describe a dilute suspension of spheroids using a

continuous variable c(x,p) denoting the concentration of particles at location x with

orientation p. Particle conservation requires the following convective-diffusion equation to

apply:
∂c

∂t
+ ∇p · (ṗc) + ∇x · (ẋc) − ∇x · (D · ∇xc) = 0. (4.19)

In addition to the convective terms previously considered by Koch & Shaqfeh, we also

account for center-of-mass hydrodynamic dispersion through the diffusion tensor D. We

shall assume that the diffusion tensor does not depend on the particle orientations, but

takes on the following anisotropic form: D = D∥ẑẑ+D⊥ (I − ẑẑ), where ẑ is a unit vector

in the vertical direction. Note that in a real system, rotational dispersion is also expected

to occur: for simplicity this effect will be neglected here.

The convective fluxes in Equation (4.19) involve the linear and angular velocities of a

particle. As in the simulations of Section 4.2, we make the dilute assumption and write

the linear velocity ẋ as the sum of the sedimentation velocity for a given orientation p

and of the bulk disturbance velocity at position x:
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ẋ = U s(p) + u(x). (4.20)

For a spheroidal particle the sedimentation velocity is again obtained as:

U s(p) = (λ0I + λ1pp) · F . (4.21)

where F is the net gravity force acting on a given particle F = −F ẑ = −∆ρVpgẑ.

The disturbance fluid velocity u appearing in Equation (4.20) is driven by the density

fluctuations in the suspension, and to leading order satisfies the Stokes equations including

a body force proportional to the local concentration:

−µ∇2u + ∇p = F

∫

c(x,p)dp, ∇ · u = 0. (4.22)

Finally, the angular velocity ṗ of a spheroid is induced by the local disturbance flow in

the fluid, and in the dilute limit is captured using Jeffery’s equation [93]:

ṗ = (I − pp) · [γE(x) + Ω(x)] · p, (4.23)

where E(x) =
[

∇u(x) + ∇u(x)T
]

/2 and Ω(x) =
[

∇u(x) − ∇u(x)T
]

/2 are the local

disturbance rate of strain and rate of rotation tensors, respectively, and where we use the

notation γ for Jeffery’s parameter: γ ≡ (A2 − 1)/(A2 + 1).

Base state and linearized equations

To extend the results of Koch & Shaqfeh [102], who only considered density fluctuations

with respect to a uniform distribution of isotropically oriented particles, we now allow for

a vertical density gradient in the background concentration. More precisely, we assume

that the density field in the base state is linearly stratified. At t = 0:

c(x,p, 0) = nΨ(p)(1 − βz), (4.24)

where n denotes the mean number density. In particular, we also allow for an anisotropic

orientation distribution Ψ(p) in the base state; the isotropic case is easily recovered by
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setting Ψ(p) = (4π)−1. In the following discussion we shall only consider stably stratified

suspensions, for which β ≥ 0. Substitution of Equation (4.24) into the Stokes equations

(4.22) shows that the density gradient is balanced by a pressure gradient ∇p = −Fn(1−

βz)ẑ, and does not induce a mean flow. Therefore in the base state the velocity and

pressure fields in the suspension are given by: u(x) = 0, and p(x) = p0 − F (z − βz2/2).

The stratified density field is advected downwards as follows:

c(x,p, t) = nΨ(p) [1 − β (z − ẑ · U s(p)t)] , (4.25)

which is an exact solution of the conservation equation (4.19). Note in particular that

because particles with different orientations sediment at different speeds, the orientation

distribution at a given vertical station will evolve in time.

To investigate the stability of the suspension, we consider a weak perturbation with

respect to the base state:

c(x,p, t) = nΨ(p) [1 − β (z − ẑ · U s(p)t)] + ϵc′(x,p, t), (4.26)

where |ϵ| ≪ 1 and |c′(x,p, t)| ∼ O(n/4π). This perturbation induces a weak disturbance

flow: u(x) = ϵu′(x) (with an associated pressure perturbation p = ϵp′), which in turn

causes the rotation of the particles at the angular velocity ṗ = ϵṗ′. Substituting the per-

turbed density field Equation (4.26) into the conservation equation (4.19), and identifying

terms of order ϵ yields the following linearized equation for the density fluctuations:

∂c′

∂t
+ nΨ(p) [1 − β (z − ẑ · U s(p)t)]∇p · ṗ′ + nṗ′

· ∇p {Ψ(p) [1 − β (z − ẑ · U s(p)t)]}

+ U s · ∇xc′ − βnΨ(p)ẑ · u′ − ∇x ·
(

D · ∇xc′
)

= 0, (4.27)

where we made use of the incompressibility condition ∇ · u′ = 0. In Equation (4.27)

the disturbance velocity field u′ and angular velocity ṗ′ still satisfy Equations (4.22) and

(4.23), respectively, with primed variables. Note in particular that the coefficients in Equa-

tion (4.27) are time-dependent, which is a consequence of having a time-dependent base
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state (Equation (4.25)). In general such a stability problem could be solved using Floquet

theory [51]. Here we limit ourselves to the case of short times and weak density gradients,

i.e. we restrict our analysis to length and time scales that satisfy the following condition:

|z − ẑ · U s(p)t| ≪ β−1. In particular, the characteristic wavelength of the instability

should remain smaller than the stratification length scale β−1, and our results will only

be valid over time scales shorter than the characteristic time (βλ0F )−1 for a particle to

sediment over the stratification length β−1. As we shall see in the numerical simulations

of Section 4.3.4, the stratification length β−1 in the bulk of the suspensions typically re-

mains of the order of the height of the simulation box or larger (except near the very

end of the simulations), in which case both conditions are indeed satisfied. Under these

assumptions, the linearized conservation equation simplifies to the following equation, in

which the coefficients no longer depend on time:

∂c′

∂t
+nΨ(p)∇p·ṗ′+nṗ′

·∇pΨ(p)+Us ·∇xc′−βnΨ(p)ẑ ·u′−∇x·
(

D · ∇xc′
)

= 0. (4.28)

Dispersion relation

To achieve analytical progress, we consider the evolution of a density perturbation written

as a plane wave of wavevector k and complex frequency ω ≡ ωR + iωI:

c′(x,p) = c̃(k,p,ω) exp i (k · x − ωt) . (4.29)

We wish to determine the dispersion relation ω(k) allowing for such modes to satisfy the

linearized conservation equation (4.28), and more specifically to identify the wavevectors

k leading to positive growth rates, i.e. positive values of the imaginary part ωI of the

frequency.

By linearity of the Stokes equations (4.22), the disturbance velocity induced by the

density perturbation Equation (4.29) can also be written as a plane wave of the same

wavevector and frequency: u′(x) = ũ(k,ω) exp i (k · x − ωt), where the Fourier coefficient
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ũ(k,ω) is obtained analytically as [81]:

ũ(k,ω) =
1

µk2

(

I − k̂k̂
)

· F

∫

c̃(k,p,ω)dp, (4.30)

where we use the notation k̂ ≡ k/|k|. Substituting this expression into Jeffery’s equation

(4.23) allows us to calculate the Fourier coefficient ˙̃p(k,p,ω) of the angular velocity, as

well as its orientational divergence:

˙̃p(k,p,ω) =
i

2µk2
(I − pp) · [(γ + 1)(p · k)I + (γ − 1)kp] ·

(

I − k̂k̂
)

· F

∫

c̃dp, (4.31)

∇p · ˙̃p(k,p,ω) = −
3iγ

µk2
(p · k)p ·

(

I − k̂k̂
)

· F

∫

c̃dp. (4.32)

Using Equations (4.29)–(4.32) for the Fourier coefficients of the concentration fluctuations,

disturbance velocity, and angular velocity, we find that the linearized conservation equation

(4.28) becomes:

(ik · U s − iω + k · D · k) c̃ −
nΨ(p)

µk2
[βẑ + 3iγ (p · k)p] ·

(

I − k̂k̂
)

· F

∫

c̃dp

+
in

2µk2
∇pΨ(p) · (I − pp) · [(γ + 1)(p · k)I + (γ − 1)kp] ·

(

I − k̂k̂
)

· F

∫

c̃dp = 0.

(4.33)

Following Koch & Shaqfeh [102], we divide Equation (4.33) by (ik · U s − iω + k · D · k)

and integrate over orientation space. We also introduce the following dimensionless vari-

ables:

k∗ = k

(
µλ1

n

)1/2

, ω∗ = ω

(
µ

nλ1F 2

)1/2

, λ =
λ0

λ1
,

β∗ = β

(
µλ1

n

)1/2

, D∗ = D

(
n

µλ3
1F

2

)1/2

.

(4.34)

After simplifications, we arrive at the following dimensionless dispersion relation, which is
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an equation for ω∗(k∗):

1 +
1

k∗2

∫

Ψ(p)

[
β∗ẑ + 3iγ (p · k∗) p

ik∗
· U∗

s − iω∗ + k∗
· D∗

· k∗

]

·

(

I − k̂k̂
)

· ẑdp (4.35)

−
i

2k∗2

∫

∇pΨ(p) · (I − pp) ·

[
(γ + 1)(p · k∗)I + (γ − 1)k∗p

ik∗
· U∗

s − iω∗ + k∗
· D∗

· k

∗]

·

(

I − k̂k̂
)

· ẑdp = 0,

where the dimensionless sedimentation velocity is given by: U∗
s(p) = − (λI + pp) · ẑ.

The original dispersion relation of Koch & Shaqfeh [102] can be recovered by neglecting

stratification and center-of-mass dispersion (β∗ = 0 and D∗ = 0), and by considering the

case of an isotropic orientation distribution: Ψ(p) = (4π)−1.

A general solution of Equation (4.35) is not easily obtained. In the present work

we limit our discussion to the case of horizontal waves, for which k · ẑ = 0. These

waves were indeed shown by Koch & Shaqfeh to be the most unstable in the isotropic

homogeneous case [102]. We first investigate the case of isotropic suspensions, for which

the dispersion relation greatly simplifies, and then discuss the effect of an anisotropic

orientation distribution.

Isotropic case

In the case of a horizontal wave with an isotropic orientation distribution, the dispersion

relation Equation (4.35) simplifies as follows:

1 +
1

4πk∗2

∫ [
iβ∗ − 3γ (p · k∗) (p · ẑ)

(p · k∗) (p · ẑ) + ω∗ + ik∗2D∗
⊥

]

dp = 0. (4.36)

We expect the complex frequency ω∗ to be pure imaginary: solutions with ω∗
R > 0 would

indeed correspond to traveling or standing waves in the direction of k∗, which are not

physical when k∗ points in the horizontal direction. We therefore look for solutions written

as ω∗ = iω∗
I , and solve Equation (4.36) numerically using quadrature and a bisection

algorithm. Figure 4.14 shows the calculated normalized growth rate (or imaginary part

ω∗
I of the complex frequency) for the most unstable modes at the given value of D∗

⊥ = 0.02

and for various values of β∗. In the absence of stratification (β∗ = 0), the growth rate
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Figure 4.14: Growth rate (imaginary part ω∗
I of the complex frequency) as a function

of wavenumber for a horizontal wave (k · ẑ = 0), and for a dimensionless center-of-mass
diffusivity of D∗

⊥ = 0.02. The various curves corresponds to different levels of stratifica-
tion. The growth rates were computed by numerical solution of the dispersion relation
Equation (4.36) using a bisection algorithm.

is found to be greatest at zero wavenumber. This is analogous to the result of Koch &

Shaqfeh [102], with the difference that center-of-mass dispersion now causes a more rapid

decay of the growth rate at high wavenumbers. A similar stabilizing effect from center-

of-mass dispersion will be observed in Chapter 5 in the case of sedimenting deformable

particles [159]. Adding stratification (β∗ > 0) however results in a qualitatively different

picture: the shortest wavenumbers (k∗ ! 0) are stabilized, and a maximum growth rate

is observed at a finite positive wavenumber. As stratification becomes stronger, i.e. as

β∗ increases, the most unstable wavenumber increases while the maximum growth rate

decreases. Beyond a certain level of stratification the instability is suppressed. As seen in

Figure 4.14, some values of k∗ yield two pure imaginary roots for ω∗, in which case the

largest growth rate is expected to dominate.

The effects of stratification and center-of-mass dispersion on the stability are illustrated

in more detail in Figure 4.15, showing the range of unstable wavenumbers as a function of
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Figure 4.15: Range of unstable wavenumbers as a function of (a) the stratification pa-
rameter β∗ (for a constant dispersion coefficient of D∗

⊥ = 0.02), and of (b) the dispersion
coefficient D∗

⊥ (for a stratification parameter of β∗ = 0.03).

β∗ and D∗
⊥. Figure 4.15(a) confirms the stabilizing effect of stratification: as β∗ increases

the range of unstable wavenumbers shrinks. Beyond β∗ ≈ 0.32 all wavenumbers become

stable, where this value of β∗ depends on the value chosen for the dispersion coefficient

D∗
⊥. In addition, a stronger center-of-mass dispersion is also shown to reduce the range of

unstable wavenumbers (Figure 4.15(b)). Dispersion however predominantly affects high

wavenumbers, and is less efficient than stratification at suppressing the instability.

Additional insight can be gained into the respective leading-order effects of stratifica-

tion and dispersion by seeking perturbation solutions in the limit of long waves (k∗ ≪ 1).

When stratification is present (β∗ > 0), the leading terms in an expansion of the dispersion

relation Equation (4.36) for small |k∗| are found to be:

ω∗ + i
β∗

k∗2
+ O(1/k∗) = 0, (4.37)

hence the growth rate: ω∗
I = −β∗/k∗2 + O(1/k∗). The main effect of stratification is

therefore to damp the fluctuations at low wavenumbers (or long wavelengths), in agreement
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with the numerical solution shown in Figure 4.14.

On the other hand, in the absence of stratification (β∗ = 0), we find that expanding

Equation (4.36) in the limit of small |k∗| yields the following algebraic equation:

ω∗4 +
γ

5
ω∗2 − i

2γD∗
⊥

5
k∗2ω∗ +

γ

35
k∗2 + O(k∗3) = 0. (4.38)

A solution of Equation (4.38) is obtained as a perturbation expansion: ω∗ = ω0 + ω1k∗ +

ω2k∗2 + O(k∗3). After manipulation, the growth rate or imaginary part of the complex

frequency is found as:

ω∗
I = ±

(γ

5

)1/2
− k∗2

[

D∗
⊥ ±

1

70

(
5

γ

)3/2
]

+ O(k∗3). (4.39)

The leading-order effect of center-of-mass dispersion on the concentration fluctuations is

to damp the growth rate at high wavenumbers as −k∗2D∗
⊥. A similar effect will be found

in Section 5.2 in the case of sedimenting deformable particles. However, center-of-mass

dispersion is not the only mechanism resulting in damping at high wavenumbers: even

in the absence of dispersion, ω∗
I decays with k∗ in agreement with the original stability

analysis of Koch & Shaqfeh [102]. One should also note that the two scalings for the

leading-order effects of stratification (ω∗
I ∼ −β∗/k∗2) and of diffusion (ω∗

I ∼ −D∗
⊥k∗2),

which were obtained here in the limit of k∗ ≪ 1, are in fact valid for arbitrary k∗ as can

easily be shown from the linearized conservation equation (4.33): this will justify the use

of these expressions in Section 4.3.3 when deriving a scaling for the most unstable mode

in a stratified suspension.

Anisotropic case

Experiments [84] and numerical simulations [122, 32, 108, 157, 159, 187] (including those of

Chapter 3 and Section 4.2.6) both show that sedimenting rods tend to align in the direction

of gravity as a result of the vertical shear between the dense clusters and clarified regions.

It is therefore useful to investigate how the instability is modified when the orientation

distribution is anisotropic. Here, we limit ourselves to distributions that are axisymmetric
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with respect to the direction of gravity, i.e. Ψ(p) = Ψ(α) where α = p·ẑ. In that particular

case, the gradient of Ψ appearing in the dispersion relation becomes:

∇pΨ(p) =
dΨ

dα
(I − pp) · ẑ, (4.40)

which greatly simplifies the evaluation of the second integral in Equation (4.35). The

dispersion relation Equation (4.35) was solved numerically for an Onsager orientation

distribution [144], in which the degree of anisotropy is parameterized by a scalar m:

Ψ(α) =
m cosh(mα)

4π sinh(m)
, (4.41)

The isotropic distribution is recovered when m = 0, while m → ∞ corresponds to a fully

aligned suspension. The solutions for the growth rates of horizontal waves for various

values of m are shown in Figure 4.16. In Figure 4.16(a), both stratification and diffusion

are neglected (β∗ = 0, D∗
⊥ = 0), which allows us to isolate the effects of anisotropy. In

particular, we observe that anisotropy tends to reduce the growth rates at all wavelengths.

This stabilizing effect is easily understood: vertically aligned rods have very weak hori-

zontal velocities, which hinders their lateral migration and thereby reduces their ability to

form clusters. Note that in very anisotropic suspensions (m ≥ 4.75 approximately), the

longest modes are no longer the most unstable, and a maximum growth rate appears at a

finite wavenumber. This suggests that anisotropy could in principle result in a wavenum-

ber selection: no such effect was however observed in simulations, where the orientation

distribution quickly adjusts to the flow conditions. When both stratification and diffusion

are present (Figure 4.16(b)), a wavenumber selection is expected for all values of m for

the reasons discussed in Section 4.3.2, and the effect of particle alignment is to reduce the

growth rates at all wavenumbers.

The largest unstable wavenumber in the absence of stratification and of diffusion can

be obtained analytically by setting ω∗ ≡ 0 in Equation (4.35) and solving for k∗. The

result is found to be:

k∗
max =

[

3γ +

∫ (

γα +
γ + 1

2α

)
dΨ

dα
dp

]1/2

, (4.42)
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Figure 4.16: Growth rate (imaginary part ω∗
I of the complex frequency) as a function

of wavenumber for a horizontal wave (k · ẑ = 0) in anisotropic suspensions. The various
curves corresponds to different degrees of anisotropy, parameterized by the coefficient m in
the Onsager distribution Equation (4.41). The growth rates were computed by numerical
solution of the dispersion relation Equation (4.35) using a bisection algorithm. In plot (a)
stratification and diffusion are neglected (β∗ = 0, D∗

⊥ = 0); in plot (b) they are set to
β∗ = 0.05, D∗

⊥ = 0.02.

and the range [0, k∗
max] of unstable wavenumbers is shown in Figure 4.17 for Onsager

distributions as a function of the parameter m. As expected from Figure 4.17, the effect

of anisotropy is to shrink the range of unstable wavenumbers. Note however that the

range is not reduced monotonically: the initial decay is followed by a small increase and

a saturation, also visible in Figure 4.16(a). In very anisotropic suspensions there always

remains a finite range of unstable modes; the corresponding growth rates however keep

decreasing with m, and in the limit of perfect alignment (m = ∞) the suspension is

neutrally stable.

As we have accomplished for the isotropic case, we can also obtain the behavior at

low-wavenumbers by seeking a perturbation solution to the dispersion relation. When

stratification is included (β∗ > 0), the result of Equation (4.37) remains unchanged to the
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Figure 4.17: Range of unstable wavenumbers for a horizontal wave in an anisotropic
suspension as a function of the Onsager parameter m (Equation (4.41)). Both stratification
and diffusion are neglected (β∗ = 0, D∗

⊥ = 0).

order retained in the expansion:

ω∗
I = −

β∗

k∗2

∫

Ψ(α)dp + O(1/k∗) = −
β∗

k∗2
+ O(1/k∗). (4.43)

The effects of anisotropy become clearer in the absence of stratification (β∗ = 0). An

expansion of Equation (4.35) for a horizontal wave in the limit of |k∗| ≪ 1 indeed yields

the following algebraic equation:

ω∗4 + a(Ψ)ω∗2 − 2 iD∗
⊥a(Ψ)k∗2ω∗ + b(Ψ)k∗2 + O(k∗3) = 0, (4.44)

which is very similar to Equation (4.38) for the isotropic case, but where the coefficients

a(Ψ) and b(Ψ) now depend on the orientation distribution. More precisely, a and b can

be expressed in terms of moments of the orientation vector p. Introduce the following

notations:

Mi =

∫

Ψ(α)p . . . p
︸ ︷︷ ︸

i times

dp, Ni =

∫
dΨ

dα
p . . . p
︸ ︷︷ ︸

i times

dp, (4.45)
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Figure 4.18: Coefficients a(Ψ)1/2 and b(Ψ)/2a(Ψ)3/2 in the long-wave expansion Equa-
tion (4.49) for an Onsager orientation distribution (Equation (4.41)) as a function of the
parameter m. Both coefficients are normalized by their value at m = 0 (isotropic limit).

and:

k̂
(i)

ẑ(j) = k̂ . . . k̂
︸ ︷︷ ︸

i times

ẑ . . . ẑ
︸ ︷︷ ︸

j times

. (4.46)

The scalar coefficients a and b are found as:

a(Ψ) = 3γM4 :
(

k̂
(2)

ẑ(2)
)

−
γ + 1

2
N3 :

(

k̂
(2)

ẑ
)

+ γN5 :
(

k̂
(2)

ẑ(3)
)

, (4.47)

b(Ψ) = 3γM8 :
(

k̂
(4)

ẑ(4)
)

−
γ + 1

2
N7 :

(

k̂
(4)

ẑ(3)
)

+ γN9 :
(

k̂
(4)

ẑ(5)
)

, (4.48)

where the symbol : denotes the scalar product between the tensors on each side.

The solution of Equation (4.44) for k∗ ≪ 1 can be shown to be pure imaginary with

imaginary part:

ω∗
I = ±a(Ψ)1/2 − k∗2

[

D∗
⊥ ±

b(Ψ)

2a(Ψ)3/2

]

+ O(k∗3). (4.49)

This solution is similar to Equation (4.39) for the isotropic case. In particular, an interest-

ing observation is that the leading order effect of diffusion is unaffected by the orientation
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distribution. The two coefficients a(Ψ)1/2 and b(Ψ)/2a(Ψ)3/2 now depend on the orien-

tation distribution as expected from Figure 4.16, and are plotted in Figure 4.18 for the

Onsager distribution of Equation (4.41) as a function of m. As expected from Figure 4.16,

a(Ψ)1/2 decreases as m increases and becomes zero for m ≥ 5.5 approximately, confirming

that a strongly aligned suspension is stable at zero-wavenumber. The second derivative of

ω∗(k∗) at k∗ = 0, which is related to b(Ψ)/2a(Ψ)3/2, is also observed to change sign at a

finite value of m, in agreement with the observations made earlier on Figure 4.16.

4.3.3 Scaling analysis

The analysis of the previous section has shown that the growth of concentration fluctua-

tions can be damped at low wavenumbers by stratification and at high wavenumbers by

center-of-mass dispersion. The wavenumber for the most unstable mode in a stratified

suspension can therefore be determined by balancing these two effects (Equations (4.37)–

(4.39)):

−
β∗

k∗2
∼ −k∗2

[

D∗
⊥ +

1

70

(
5

γ

)3/2
]

. (4.50)

The hydrodynamic diffusivity D∗
⊥ models the randomizing effect of velocity fluctuations

arising in the suspension over long times, and is expected to be a function of the suspension

structure and concentration. Its scaling with the wavenumber k∗ and with the volume

fraction φ must therefore be determined. Since the velocity fluctuations which result in

hydrodynamic dispersion are driven by concentration fluctuations occurring over length

scales of the order of k−1, we expect the dimensional diffusivity to scale as D⊥ ∼ ∆Uk−1,

where ∆U is the magnitude of the velocity fluctuations. In turn, ∆U is determined

by balancing the gravity force and the Stokes drag acting on a typical concentration

fluctuation of size k−1: ∆NVp∆ρg ∼ µk−1∆U , where ∆N is the excess number of particles

in the concentration fluctuation [34, 87]. Since concentration fluctuations in the suspension

grow as a result of the instability, their magnitude ∆N evolves in time and is unknown

a priori. Let us consider the onset of the instability in a random suspension, which is

described by Poisson statistics: ∆N ∼
√

φk−3/Vp. This assumption, whose validity will
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have to be assessed, results in the following scaling for the magnitude of the velocity

fluctuations and for the diffusivity: ∆U ∼ U0(kl)−1/2φ1/2, and D⊥ ∼ U0l(kl)−3/2φ1/2,

where U0 = ∆ρVpg/µl is the scale for the sedimentation velocity of an isolated particle of

characteristic size l.

This scaling for the hydrodynamic diffusivity can be substituted into Equation (4.50).

When center-of-mass diffusion is the dominant mechanism for damping at high wavenum-

bers (D∗
⊥ ≫ (5/γ)3/2/70), we obtain the following scaling for the most unstable wavenum-

ber:

kl ∼ (βl)2/5φ1/5. (4.51)

On the other hand, if center-of-mass diffusion is negligible (D∗
⊥ ≪ (5/γ)3/2/70), a different

scaling is expected:

kl ∼ (βl)1/4φ3/8. (4.52)

Equivalently, the characteristic size of the density fluctuations in the suspension will be

given by: ξ = k−1. Note that in both Equation (4.51) and Equation (4.52) the propor-

tionality constant may depend on the particle aspect ratio. These predictions will be

tested against simulation data in Section 4.3.4, where we will see that good agreement

with Equation (4.51) is observed, suggesting that hydrodynamic dispersion is in practice

the main mechanism for the damping of high-wavenumber fluctuations.

Interestingly, the first scaling for ξ (Equation (4.51)) is the same as that found by

Mucha et al. [132, 186] for the correlation length in a stratified suspension of sedimenting

spheres. In that particular case, the physical mechanism that they proposed to obtain

the scaling goes as follows. As in the previous discussion, a concentration fluctuation of

characteristic size ξ, which has a magnitude of ∆φ ∼ (φl3/ξ3)1/2 for Poissonian statistics,

creates a velocity fluctuation of scale ∆U ∼ U0(ξ/l)1/2φ1/2 as it sediments. This velocity

fluctuation, however, only occurs if there is a true density mismatch with the surrounding

fluid, i.e. if the size of the concentration fluctuation remains below the length scale over

which stratification changes the background volume fraction φ by ∆φ. This length scale

is given by ∆φ/(βφ). The maximum value for the correlation length therefore satisfies
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ξ ∼ (φl3/ξ3)1/2/(βφ), from which the scaling of Equation (4.51) is easily obtained.

In the case of sedimenting spheroids, a qualitatively similar mechanism can be ex-

pected. A cluster of particles, which has a certain density mismatch with the surrounding

fluid, can only travel a certain distance in a stably stratified suspension until the mismatch

becomes negligible. The fact that the scaling we obtained in Equation (4.51) is the same

as for sedimenting spheres is a direct consequence of the assumption made above of Pois-

sonian statistics over the length scale of the fluctuations. This assumption is justified at

the onset of the instability when the arrangement of the particles is random, and suggests

that initially at least the growth of the concentration fluctuations is directly governed by

the velocity fluctuations. At later times however, the statistics clearly will depart from

Poissonian owing to the clustering of the particles: the validity of Equation (4.51) may

then become questionable, and will need to be tested against simulations.

4.3.4 Numerical simulations

Fluctuations in stably stratified suspensions

Using the simulation method of Section 4.2.1, we first test the conclusions of the stability

analysis of Section 4.3.2 by performing simulations of suspensions in which a vertical

density gradient is imposed in the initial configuration. As a measure of the characteristic

size of the structures that develop in the suspension, we use the correlation length ξ defined

as the position of the first minimum in the autocorrelation function Czz(x) of the vertical

fluid velocity component in the horizontal direction:

Czz(x) =

∫

uz(x
′)uz(x

′ + x)dx′. (4.53)

In Section 4.2.4, we showed indeed that the velocity field decorrelates in the horizontal

direction over a distance of the order of the size of the clusters in the suspension, since

these entrain the fluid with them and are surrounded by backflow regions. This measure

has also been used successfully in experiments to estimate the size of the clusters in fiber

suspensions [126, 127]. To isolate the effects of the initial stratification, ξ is measured at
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Figure 4.19: (a) Autocorrelation length Czz(x) in the horizontal direction of the vertical
disturbance fluid velocity, in a suspension of 257,831 spheroids of aspect ratio A = 15
in a box of dimensions Lx = 50, Ly = 20, Lz = 300 (volume fraction φ = 0.2%),
measured at t = 15 near the peak of the fluctuations, with and without stratification. The
correlation length ξ is measured as the position of the first minimum. (b) Visualization of
the suspension of (a) at t = 15 in the stratified case (β = 6.67×10−3), where a wavenumber
selection is observed. The arrow represents the correlation length measured in (a).

time t = 15 shortly after the start of the simulations, which corresponds approximately

to the occurrence of the peak in the velocity fluctuations (cf. Figure 4.8(b)): this time is

short enough for the stratification to remain roughly constant, but sufficiently long for the

inhomogeneities to start forming in the suspension.

Typical velocity autocorrelation functions in non-stratified and stratified suspensions

are shown in Figure 4.19(a). In the absence of stratification (β = 0), the velocity field

decorrelates over half a box width (ξ = Lx/2), indicating the formation of a single streamer

spanning the full width of the box. This agrees qualitatively with experimental observa-

tions [126] and the simulations of Section 4.2 in homogeneous suspensions shortly after

the start of sedimentation, and is also predicted by the original stability analysis of Koch

& Shaqfeh [102] for a homogeneous base state, in which the longest wavelength domi-

nates. The behavior is quite different, however, when stratification is imposed: when
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Figure 4.20: Correlation length ξ in the horizontal direction, measured as the first min-
imum in the autocorrelation function of the vertical fluid velocity component (cf. Fig-
ure 4.7), as a function of: (a) the stratification parameter β in the suspension, and (b)
the local volume fraction φ. The stratification was imposed in the initial particle distri-
butions, and the correlation length was measured at t = 15 near the center of the box.
The simulations were run in a box of dimensions Lx = 50, Ly = 20, Lz = 300, and are
for spheroids of aspect ratio A = 15. Each point on the graphs is an average over 20 to
30 simulations. The dependence of ξ on the volume fraction φ is well approximated by a
power law with exponent ≈ −0.23.

β = 6.67 × 10−3 in Figure 4.19(a), the correlation length is found to be much shorter,

of the order of a few particle lengths. Figure 4.19(b) shows the corresponding particle

distribution, on which the correlation length ξ is denoted by an arrow: the particle distri-

bution indeed presents several distinct clusters in the lateral direction, the characteristic

size of which is of the order of ξ. These observations confirm the stabilizing influence of

stratification and its role in selecting the size or wavelength of the inhomogeneities in the

suspension.

The effects of the density gradient β on the wavelength of the instability are shown more

quantitatively in Figure 4.20(a), where the correlation length ξ is plotted vs. β for various

volume fractions φ. In very weakly stratified suspensions (β ∼ 10−4), the correlation length

saturates at approximately half a box width, showing that the wavelength is selected by
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Figure 4.21: Correlation length ξ in the horizontal direction, scaled by φ−0.23, as a function
of the stratification parameter β at various volume fractions. The data are the same as in
Figure 4.20(a). At high values of β the curves asymptote to a power law with exponent
≈ −0.40.

the size of the container. When β increases, ξ is found to decrease, yielding cluster sizes

that are controlled by stratification and do not depend on the container dimensions. At a

given value of β, the correlation length is observed to be larger in more dilute suspensions.

The dependence on concentration is shown more precisely in Figure 4.20(b), where ξ

is shown as a function of φ for a few given values of β. The correlation length indeed

decreases with increasing volume fraction, and the decay is well described by the following

power law: ξ ∼ φ−0.23. The data of Figure 4.20(a) rescaled with φ−0.23 are shown in

Figure 4.21, where the curves corresponding to various volume fractions are observed to

collapse onto a single straight line on a log-log plot, with departures at small values of β

owing to box-size effects. We therefore find the following scaling for the correlation length

when box-size effects are negligible (i.e. when ξ < Lx/2):

ξ ≈ Cβ−0.40φ−0.23, (4.54)
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where the dimensionless constant C is of the order of 0.3.

The exponents found in Equation (4.54) are in good agreement with the theoretical

prediction of Equation (4.51), but do not agree with the other proposed scaling (Equa-

tion 4.52): this suggests as explained in Section 4.3.3 that center-of-mass dispersion is the

main mechanism for damping at high wavenumbers. Small departures are expected to

occur for a variety of reasons. Most importantly, the theoretical scaling was derived based

on the assumption that the particle distribution on the length scale of the fluctuations is

Poissonian. While this is strictly true at t = 0, the distribution then evolves as a result

of the instability, leading to stronger density fluctuations and a possibly different scaling

for the hydrodynamic diffusivity. The good agreement between simulations and theory

suggests that these effects are weak, at least initially. Finite-box effects are also likely to

influence the results from the simulations, in particular in the more dilute cases or when

the stratification is very weak: this is for instance clear at the low volume fraction of

φ = 0.02% in Figures 4.20(a) and 4.21, where the exponent of −0.40 for the dependence

on β is never fully reached.

Wavenumber selection process

In initially well-mixed suspensions, the stratification at t = 0 is negligible: the onset of the

instability is therefore governed by the analysis of Koch & Shaqfeh [102], and characterized

by the formation of a large-scale streamer spanning the width of the container [126, 159].

Stratification however is known to develop (cf. Figure 4.3), and may subsequently have

an effect on the wavelength of the instability. The evolution of the vertical concentration

profile in a typical simulation is shown in Figure 4.22. At t = 0, the concentration is

uniform, but a significant gradient in the vertical direction is observed to appear as the

sedimentation progresses. First, the interface between the bulk of the suspension and

the clear fluid spreads in time, resulting in the formation of a broad suspension front:

this phenomenon can be attributed in part to the difference in the sedimentation rates of

spheroids with different orientations. In addition, the bulk of the suspension also becomes

stratified, with particles accumulating near the bottom of the container: while the precise
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z
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Figure 4.22: Evolution of the vertical concentration profile with time in a suspension of
257,831 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 50, Ly = 20,
Lz = 300 (volume fraction φ0 = 0.2%). The different curves correspond to the times:
t = 2, 40, 80, 120, 160, 200, and are averaged over 20 simulations. The local volume fraction
φ is normalized by the bulk value φ0 at t = 0.

mechanism for this effect deserves further consideration, it is likely to be due to the

formation of clusters in the suspension, which settle at a higher speed than particles in

the clarified regions. At later times, the concentration gradients in the suspension front

and in the bulk become comparable, resulting in an almost linear concentration profile in

the vertical direction.

The concentration fluctuations are described more quantitatively in Figure 4.23, which

shows the evolution of the stratification parameter β and of the local volume fraction φ

at a given vertical station during the sedimentation. Figure 4.23(a) confirms that the

stratification, which is initially negligible (β ≈ 0), becomes significant with values of β

reaching 0.03 at t = 200. Note that such gradients are much stronger than those investi-

gated in Section 4.3.4, where the largest value for β did not exceed 0.01: significant effects

on the wavelength of the instability can therefore be anticipated. The local concentration

at a given height in the container also decreases in time, as shown in Figure 4.23(b). In
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Figure 4.23: Time evolution of (a) the stratification parameter β, and (b) the normalized
volume fraction φ/φ0, over the course of a simulation. The simulations are for spheroids
of aspect ratio A = 15 and were performed in a box of dimensions Lx = 50, Ly = 20,
Lz = 300. Both β and φ/φ0 were measured at a height of z = 100 in the container. The
curves are averaged over 20 simulations.

particular, the simulations show that the decay begins quite early (before the approach

of the sedimentation front), and is therefore at first a consequence of the stratification in

the bulk. Note however that very near the bottom of the container the concentration first

increases, as can be seen in Figure 4.22.

Figure 4.24(a) illustrates the wavenumber selection process of the concentration insta-

bility. The correlation length ξ in the horizontal direction during sedimentation, measured

at the same height in the container as β and φ in Figure 4.23, is plotted vs. time. The

trends observed agree with previous observations [126, 159]: initially the correlation length

is of the order of the box width (ξ ≈ Lx/2), after which it undergoes a transition to a

much shorter value of the order of a few particle lengths (ξ ≈ 8 to 12 in Figure 4.24).

While Figure 4.24(a) suggests a saturation at long times, no true steady state is observed

and ξ continues to decay until the end of settling. The very slow decay of ξ, however, may

explain why the microstructure in our previous simulations on smaller systems appeared

to reach a steady state (cf. Section 4.2.3). The influence of concentration is also shown in
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Figure 4.24: (a) Time evolution of the correlation length ξ in the horizontal direction.
The simulations are for spheroids of aspect ratio A = 15 and were performed in a box of
dimensions Lx = 50, Ly = 20, Lz = 300. The correlation length was measured at a height
of z = 100 in the container. The curves are averaged over 20 simulations. (b) Comparison
between the correlation length measured in the simulations (in the case φ0 = 0.1%), and
the prediction of Equation (4.54), in which the data of Figure 10 were used for the local
evolution of β and φ.

Figure 4.24, where we see that the transition from a single streamer to multiple clusters

occurs more rapidly in the concentrated suspensions, where the final correlation length is

also typically shorter. The effects of concentration are nonetheless quite weak, except in

the most dilute case (φ = 0.02%), where the transition to small-scale structures occurs at

a significantly later time.

To quantitatively assess the role played by stratification in the evolution of the correla-

tion length shown in Figure 4.24(a), we compare in Figure 4.24(b) the measured correlation

length to that predicted by the scaling of Equation (4.54), in which we use the data of

Figure 4.23 for the evolution of the stratification parameter β and of the local volume

fraction φ. While the model does not reproduce the saturation at half a box width at

short times, which is a finite-box effect, it does capture the subsequent time decay of the

correlation length. The predicted decay is slightly faster than observed in the simulations,
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yet the measured and predicted correlation lengths never differ by more than approxi-

mately 20%. This agreement is suprisingly good in the light of the approximations made

in Section 4.3.3 when deriving the scaling, and strongly suggests that the wavenumber

selection is controlled by stratification at least in these simulations. An important remark

is that the initial decay of ξ occurs quite early in Figure 4.24(a) (between t = 50 and 75

for both the measured and predicted curves), at a time when the stratification in the sus-

pension is still very weak as seen in Figure 4.23(a) (β ≈ 2×10−3): this demonstrates that

relatively weak density gradients can have sizeable effects on the wavenumber selection of

the instability. Note that a similar remark had been made by Mucha et al. regarding the

effect of stratification on the correlation length in sphere suspensions [132].

The theoretical scaling for the correlation length also allows us to understand several

of the features observed in Figure 4.24(a). In particular, since the stratification parameter

β is sensibly the same at all volume fractions (Figure 4.24(a)), the main effect of volume

fraction on the wavenumber selection occurs through the scaling with φ in Equation (4.54):

we can therefore expect the correlation length to be larger in more dilute suspensions,

and hence the transition from a box-dependent streamer to multiple clusters to occur

at a later time, as indeed observed in the simulation data. The saturation of ξ near

the end the sedimentation process can also be explained: whereas the vertical density

gradient (or stratification parameter β) keeps increasing in time (Figure 4.23(a)), the local

volume fraction, which is initially constant, drops considerably as the front approaches

(Figure 4.23(b)): the competing effects of increasing stratification and decreasing volume

fraction may therefore be responsible for the saturation of ξ, according to Equation (4.54).

4.4 Concluding remarks

We have used a combination of large-scale numerical simulations and theory to study

the sedimentation of orientable particles such as rigid spheroids. Our analysis focused

on the concentration fluctuations and the microstructure in very dilute suspensions of

realistic sizes. The concentration instability in suspensions of spheroids was captured in our
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simulations, and we observed that the no-flux boundary condition imposed at the bottom

of the container has a strong impact on the structure of the suspension and can lead to a

wavenumber selection for the concentration fluctuations. This result differs qualitatively

from previous computational studies of periodic systems, including that of Chapter 3, in

which the longest wavelength set by the width of the container always dominates. Our

simulations suggest that horizontal container boundaries provide a mechanism for the

decay or break-up of these long-wavelength fluctuations, down to the selected wavelength

of the instability. Results for the velocity and orientation statistics were also presented

and showed good agreement with the published experiments of Herzhaft & Guazzelli [84];

in particular these statistics were found not to depend upon the size and aspect ratio of

the sedimenting system, unlike in previous simulations with periodic boundary conditions

(Sections 3.5.3 and 3.5.4).

To elucidate the mechanism leading to the wavenumber selection, we revisited the

linear stability analysis of Koch & Shaqfeh [102] by including the effects of stratification

and dispersion. Our analysis demonstrated that stratification provides a mechanism for

damping of the fluctuations at low wavenumbers, while high-wavenumber fluctuations are

suppressed by hydrodynamic dispersion. The balance of these two effects therefore results

in a selection of a most unstable mode at a finite wavenumber. Based on the results of

the stability analysis, we were able to derive the following scaling for the characteristic

size of the fluctuations: ξ/l ∼ (βl)−2/5φ−1/5. This scaling, which is the same as that

previously obtained for the size of the fluctuations in sphere suspensions [132, 186], is

based on an assumption of Poissonian statistics over the length scale of the fluctuations,

and is therefore only rigorous at the onset of the instability. Simulations were performed

in which a density gradient was imposed at t = 0, and showed good agreement with the

predicted scaling. In initially well-mixed suspensions, we observed that the continuous

decay of the wavelength of the fluctuations is also described reasonably well by the same

model.

While the present work demonstrates that an accurate description of the concentra-

tion instability should take stratification into account, it is by no means a proof that



4.4. CONCLUDING REMARKS 133

the wavenumber selection in a real system is only governed by the mechanisms described

herein. In particular, other effects which have not been accounted for in our analysis are

likely to play a role as well. One such effect is hydrodynamic screening by the container

side walls, which is a consequence of the no-slip boundary condition on solid boundaries

and is not captured by the tangential flow boundary condition used in our simulations.

As described previously by Brenner in the case of spheres [28], no-slip walls provide an

additional cutoff for the hydrodynamic interaction between the suspended particles, which

become negligible beyond distances of the order of the shortest wall separation distance.

Other effects may also arise owing to close particle interactions, which were neglected in

our theory and simulations. In suspensions of spheroids, lubrication forces and excluded

volume can lead to entanglements whose effects are not described by far-field hydrody-

namics. These interactions, which may play a role inside the dense clusters and certainly

become important in more concentrated suspensions, may affect the typical size of the

clusters, as well as statistical properties such as the orientation distributions and the

mean velocity. The resulting entanglements are likely to reinforce the fluctuations over

short-distances, which will lead to stronger departures from Poisson statistics.

One remaining question which we have not resolved is the exact process leading to

the formation of the vertical density gradients in the suspension. While the broadening

of the front at the top of the suspension can be understood from the differential settling

of particles with different orientations, the reason for the formation of gradients in the

bulk of the suspension is not clear. Models have been proposed previously to describe

stratification in sphere suspensions [131, 132], and were based on solutions of a convective-

diffusion equation for the particle phase, in which closure approximations were used for

hydrodynamic diffusivities. One could envisage developing a similar framework in the

case of anisotropic particles; yet the presence of clusters in the suspension, which settle

at higher rates than the remainder of the particles, would have to be considered. Since

the size of these clusters may itself be controlled by stratification, a coupled model for the

vertical density profile and for the microstructure will almost certainly be required.



Chapter 5

The dilute sedimentation of

deformable particles

5.1 Introduction

The sedimentation of orientable particles was shown in Chapters 3 and 4 to be character-

ized by a concentration instability, which arises as a result of the coupling between the

orientation of the particles and the disturbance flow in the fluid. Deformable particles,

such as drops, bubbles, elastic particles or flexible polymers, can have similar dynamic be-

havior as orientable particles, as deformable particles may also become anisotropic under

flow and therefore also be subject to an instability. This was first suggested by Manga

& Stone [124], who pointed out that the deformation of rising bubbles as a result of hy-

drodynamic interactions should result in a migration towards the regions of high density.

They illustrated this mechanism using a similar picture as in Koch & Shaqfeh [102], but

made no further attempt to study the instability. In spite of the clear analogy between

the two situations, the instability for drops, if it exists, is slightly more complex than

that characterizing orientable particles as the deformations leading to the lateral migra-

tion are themselves induced by the density fluctuations through the disturbance field. To

our knowledge the instability for drops has never been reported in an experiment, but a

134
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few computational studies seem to confirm its existence. Zinchenko & Davis [199, 200]

performed boundary integral simulations of concentrated suspensions of deformable drops

under sedimentation. Starting from random configurations of spherical drops, they ob-

served that the drops acquired prolate shapes and oriented in the direction of gravity,

resulting in an increase of the sedimentation rate. Again clustering was reported, but no

detailed study of the suspension structure was undertaken.

In this Chapter, we wish to further investigate the sedimentation of deformable par-

ticles in the case where the suspension is very dilute. First, we develop a model for such

suspensions based on small deformation theory in Section 5.2, and show using a linear

stability analysis that an instability similar to that observed for spheroids indeed exists

for deformable particles. We then adapt the method of Section 4.2.1 to the case of slightly

deformable particles, and present simulation results in Section 5.4.

5.2 Theoretical analysis

In this section we develop a model for suspensions of deformable particles under sedimen-

tation and investigate the stability of the suspension to fluctuations in concentration. As

will become apparent, the formalism is quite similar to that presented in Section 4.3.2

for suspensions of spheroids, although significant differences exist. We first explain the

micromechanical model used to describe the particle deformations and hydrodynamic in-

teractions in Section 5.2.1, then define a convective-diffusive equation for the concentration

field in a suspension of such particles in Section 5.2.2, and perform a linear stability anal-

ysis based on this continuum model in Section 5.2.3.

5.2.1 Micromechanical model

The particles we consider here are isotropic in the absence of flow, and by deformation

we mean departure from isotropy. In particular, the particles need not be technically

spherical, and we will explain in Section 5.3 that the arguments developed here can apply

for instance to flexible polymers with strong internal Brownian motion. We make the
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fundamental assumption that particle deformations remain small, and are entirely deter-

mined by the local rate of strain E =
[

∇u + (∇u)T
]

/2 with no regard for the history of

the flow and of particle position. This implicitly assumes that the particle shape adjusts

instantaneously on the flow time scale, or in other words that the characteristic time for

the shape relaxation (which is determined by properties such as surface tension for a drop,

membrane elasticity for a capsule, or internal Brownian motion for a flexible polymer)

is much less than the characteristic time scale of the flow (which is set by the balance

between the gravity force on the density fluctuations and viscous dissipation); this condi-

tion will be justified and made more quantitative in Section 5.3. Under this assumption

the mobility M(E) of a particle can be expanded in a Taylor series with respect to the

undeformed configuration, leading to the following approximation:

M(E) ≈ M0(I + τsE + ...), (5.1)

where M0I is the (isotropic) mobility of the undeformed particle, and τs is a characteristic

time defining the response of the mobility to a weak flow field and is a property of the

particle. The condition on the flow strength can be written as:

ϵ = τsγ̇ ≪ 1 (5.2)

where γ̇ is the effective characteristic shear rate of the disturbance flow imposed by the

density fluctuations.

The center-of-mass velocity Uα of a particle α located at position xα in a suspension is

then given by the sum of the sedimentation velocity of the particle and of the disturbance

velocity in the fluid induced by the motion of the other particles:

Uα = U s + u(xα). (5.3)

The sedimentation velocity can be written as U s = M(E) · F , where M(E) is given by

Equation (5.1) evaluated at position xα, and F = ∆ρVpg is the gravity force on the
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particle. To leading order the disturbance velocity u induced by the other particles in the

suspension satisfies the Stokes equations:

−∇2u + ∇p = F
∑

β≠α

δ(xβ − x), ∇ · u = 0, (5.4)

where δ(x) is the three-dimensional Dirac delta function, and the sum is over all particles

in the suspension other than α. The only disturbance of a given particle on the fluid is

therefore taken to be a point force, which is a valid approximation if the suspension is di-

lute. This corresponds to the leading order term in the multipole expansion of Section 2.3,

and in a more accurate model higher force moments may be taken into account.

5.2.2 Continuum limit

Based on the above model for particle deformations, a conservation equation can be written

for the evolution of the concentration of particles in a suspension. Under the assumption

discussed previously concerning the instantaneous relaxation of particle configurations,

only one particle shape can exist at a given position and at a given time, which allows one

to define the variable c(x, t) as the concentration of particles at position x at time t. More

precisely, the number of particles in an infinitesimal volume dx surrounding the point x is

given by c(x, t)dx. c(x, t) is normalized by setting its mean value over the entire domain

equal to the average number density n:

1

V

∫

V
c(x, t)dx = n. (5.5)

Using a different normalization, c(x, t) can also be interpreted as the probability density

of finding a particle at position x and time t. c(x, t) satisfies the following conservation

equation:
∂c

∂t
+ ∇ · (Uc) − ∇ · (D∇c) = 0, (5.6)

in which the rate of change of concentration at a given point is balanced by convective and

diffusive fluxes. U is the center-of-mass velocity of a particle at position x, and is again
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given by Equation (5.3). The disturbance velocity u now satisfies a continuum equivalent

of Equation (5.4), in which we include a body force proportional to the local number

density:

−∇2u + ∇p = F c(x, t), ∇ · u = 0. (5.7)

The diffusion term in the conservation equation may have several origins. If the par-

ticles are small enough, Brownian diffusion will arise from the thermal fluctuations in the

solvent, leading to a diffusivity tensor given by the Stokes-Einstein relation: D = kTM,

which may be anisotropic as the particles are allowed to deform. For the time being we will

assume that the center-of-mass diffusion due to Brownian motion is negligible. Even in the

absence of Brownian diffusion, hydrodynamic dispersion due to the random fluctuations

in the disturbance velocity field will result in an effective diffusivity (e.g. [77, 104, 138]),

which is unknown a priori and is difficult to predict as it may evolve during the settling

of the suspension. The details of this process are discussed more precisely in Section 5.4.5,

where our simulation results indeed show proof of a diffusive motion at long times. As in

Section 4.3.2, we will assume that the hydrodynamic diffusivity is anisotropic and can be

written in the general form:

D = D∥ẑẑ + D⊥(I − ẑẑ), (5.8)

where D∥ and D⊥ denote the diffusivities in the directions parallel and perpendicular to

gravity respectively, and ẑ is a unit vector in the vertical direction.

5.2.3 Linear stability analysis

We now have all the ingredients to perform a linear stability analysis. The base state of

the system corresponds to the absence of density fluctuations: c(x, t) = n, where n is the

number density. In that case the disturbance velocity is zero everywhere (u(x) = 0), the

particles are all isotropic, and a mean pressure gradient in the vertical direction balances

the gravity force on the suspension: ∇p = Fn. Consider now a small perturbation in
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particle density:

c(x, t) = n + c′(x, t), (5.9)

resulting in a small velocity disturbance u(x) = u′(x), and a small deformation of the

particles through the disturbance rate of strain and the linearized mobility Equation (5.1).

Substituting these perturbations into the conservation equation for the particle concentra-

tion and neglecting nonlinear products of perturbations leads to the following linearized

equation for the concentration fluctuations:

∂c′

∂t
+ M0F · ∇c′ + n∇ ·

(

u′ + τsM0E
′F
)

− ∇ · (D∇c′) = 0. (5.10)

Assume a normal mode perturbation of a given wavevector k:

c′(x, t) = c̃(k) exp i(k · x − ωt). (5.11)

The resulting disturbance velocity can be written: u′(x, t) = ũ(k) exp i(k · x − ωt) where

the Fourier coefficient ũ(k) was calculated analytically by Hasimoto [81] (cf. Appendix A):

ũ(k) =
1

µk2

(

I −
kk

k2

)

· F c̃(k). (5.12)

Noting that Ẽ
′
(k) = i(ũ′k + kũ′)/2, and that k · ũ′ = 0 from continuity, Equation (5.10)

simplifies to:

−iωc̃ + iM0F · kc̃ −
τsnM0

2µ
F ·

(

I −
kk

k2

)

· F c̃ + k · D · kc̃ = 0. (5.13)

Denote by θ the angle between the wavevector k and the direction of gravity: k·ẑ = k cos θ,

and let F = F ẑ. After manipulation we can solve for the wave frequency ω as a function

of the magnitude k and orientation θ of the wavevector:

ω = M0Fk cos θ + i

[
τsnM0F 2

2µ
sin2 θ − k2

(

D∥ cos2 θ + D⊥ sin2 θ
)
]

. (5.14)
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Figure 5.1: Growth rate as a function of the magnitude of the wavenumber: in dimen-
sionless variables, ω∗

I = sin2 θ − ξ(k∗)2(D∥/D⊥ cos2 θ + sin2 θ), where ξ is a dimensionless
diffusion constant (Equation (5.17)). For both plots the ratio D∥/D⊥ of the diffusivities
was chosen equal to 2. Plot (a) shows the influence of the orientation angle θ of the
wavevector with respect to the direction of gravity, at ξ = 1. Plot (b) shows the influence
of the diffusion coefficient ξ for a horizontal wave (θ = π/2).

The frequency ω has a real part ωR = M0Fk cos θ = U0k cos θ, which is non-zero for

wavevectors with a vertical component i.e. for density fluctuations in the vertical direction,

and corresponds to traveling waves with a wave speed equal to the sedimentation velocity;

such waves do not either grow or decay. More interestingly the imaginary part of the

frequency

ωI =
τsnM0F 2

2µ
sin2 θ − k2

(

D∥ cos2 θ + D⊥ sin2 θ
)

(5.15)

is non-zero and positive at low wavenumbers for wavevectors with a horizontal component,

provided that the constant τs is positive (which, as we argue in Section 5.3, is the case in

many situations). Low-wavenumber fluctuations in the horizontal direction will therefore

amplify, and the growth rate is plotted vs. k for different values of the wave orientation

θ and of the diffusivities D⊥ and D∥ in Figure 5.1, in which the following dimensionless

variables are used:
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ω∗
I = ωI ×

[
τsnM0F 2

2µ

]−1

and k∗ = k × n−1/3, (5.16)

and where we introduce a dimensionless diffusion coefficient

ξ =
2µD⊥

τsn1/3M0F 2
(5.17)

comparing the effects of diffusion and of the lateral convection due to deformations.

In the absence of hydrodynamic dispersion Equation (5.15) and Figure 5.1(b) show that

the growth rate is independent of the wavenumber, i.e. in the linear regime all fluctuations

grow at the same pace. This peculiar behavior is a consequence of the linear dependence

of the mobility correction on the disturbance rate of strain and of the slow decay of the

disturbance velocity in sedimenting suspensions, both of which result in a migration flux

scaling as 1/k, and in a growth rate independent of k. The damping of the fluctuations

shown in Figure 5.1 is therefore purely a consequence of hydrodynamic dispersion: at a

value of ξ = 1 diffusion dominates deformation-induced lateral migration over length scales

on the order of the mean interparticle distance, hence the negative growth rates observed

beyond k∗ = 1. This mechanism is to be contrasted with the damping observed by Koch &

Shaqfeh [102] in the case of orientable rigid spheroids, where diffusion had been neglected.

For the sedimentation of rigid spheroids the decay at high wavenumbers is a consequence

of the non-instantaneous relaxation of the particle orientation, whose characteristic time

can be on the same order as the time for the spheroid to migrate over one wavelength

at high enough wavenumbers. An equivalent way of looking at it is to recognize that

the dispersion in orientation due to the initial random configuration leads to an effective

dispersion of the center-of-mass motion, qualitatively similar to the Taylor dispersion for

Brownian systems [27]. Introducing shape history effects (i.e. non-instantaneous shape

relaxation) into our model would provide an additional mechanism for damping similar to

the dispersion in orientation for rigid spheroids; however as we will observe for droplets

in Section 5.3.1, including shape history would typically lead to O(ϵ2) corrections in weak

flows. It should also be noted that the continuum model developed here is not valid for

fluctuations over length scales that are shorter than the interparticle distance, and the
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results described above are expected to break down at sufficiently high wavenumbers.

Note that the present analysis has assumed that the background concentration is uni-

form (as in the analysis of Koch & Shaqfeh [102]), although we showed in the case of

spheroids in Section 4.3.2 that including stratification can lead to qualitatively different

results, and in particular to a wavenumber selection. As we shall see in Section 5.4.2,

stratification is also quite significant in sedimenting suspensions of deformable particles

(cf. Figure 5.4), and its effects should therefore be considered. As in Section 4.3.2 for

spheroids, the analysis described above is easily repeated for fluctuations with respect to

a linearly stratified concentration field:

c(x, t) = n(1 − βz) + c′(x, t). (5.18)

The dispersion relation in this case is easily obtained, and only the final result is quoted

here. The complex frequency for the normal mode of Equation (5.11) is found to have the

following real and imaginary parts:

ωR = M0Fk cos θ −
βnτsM0F 2

2µk
cos θ sin2 θ, (5.19)

ωI =
τsnM0F 2

2µ
sin2 θ −

βnF

µk2
sin2 θ − k2

(

D∥ cos2 θ + D⊥ sin2 θ
)

. (5.20)

The real part ωR still corresponds to traveling waves. The imaginary part ωI, or growth

rate, is now found to be damped by stratification at low wavenumbers, as shown by

the second term on the right-hand side of Equation (5.20), which is to be compared to

Equation (4.37) in the case of rigid spheroids. In particular, the balance of diffusion

and stratification will once more result in a maximum growth rate at a finite wavenumber.

This most unstable wavenumber can again be estimated by balancing the second and third

terms in Equation (5.20). Using the scaling obtained in Section 4.3.3 for hydrodynamic

diffusivities: D∥,⊥ ∼ U0a(ka)−3/2φ1/2 where a is the characteristic particle radius and φ

is the local volume fraction, we obtain the same scaling as in the case of spheroids for the

most unstable wavenumber:

ka ∼ (βa)2/5φ1/5. (5.21)
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5.3 Examples of deformable particles

The previous model, for all its simplicity, is based on two strong assumptions whose

applicability may not seem obvious: first, that the particle shape relaxes instantaneously

on the flow time scale; and second, that in weak flows the mobility of a slightly deformed

particle can be written as a linear function of the local rate of strain with a positive

constant of proportionality. In this section we discuss in turn the small deformation of

viscous drops, elastic microcapsules and flexible polymers, and show that all three of these

satisfy both assumptions in the limit of weak flows.

5.3.1 Viscous drops

The small deformation of a viscous drop in a linear flow field was first studied by Taylor

[184, 185] and later generalized by Cox [44] and Frankel & Acrivos [68]. At zero Reynolds

number the deformation is a function of two dimensionless groups, namely the viscosity

ratio λ = µ/µ0 and the capillary number Ca = µγ̇a/σ, where γ̇ is the characteristic shear

rate of the imposed flow field, a is the radius of the undeformed drop and σ is the surface

tension. The capillary number compares the effect of the flow, which tends to stretch the

drop along its extensional axis, to the restoring effect of surface tension, which tries to

minimize the interfacial energy by maintaining a spherical shape. In the limit of weak

flows (Ca ≪ 1), the drop is found to deform into an ellipsoid whose surface is defined by:

r = a (1 + 3Can · A · n) + O(Ca2), (5.22)

where n is a radial unit vector and A is a symmetric and traceless second-order tensor

satisfying the following evolution equation:

Ca

(
∂A

∂t
− Ω · A + A · Ω

)

= a0E + a1A + O(Ca), (5.23)

with a0 = 5/(6λ+9) and a1 = −40(λ+1)/ [(2λ + 3)(19λ + 16)]. Ω and E are respectively

the rate of rotation and rate of strain of the imposed flow; in Equation (5.23) lengths have
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been non-dimensionalized by the drop radius a, and time by the inverse of the effective

characteristic shear rate γ̇−1. At zeroth order in the capillary number, Equation (5.23)

leads to:

A = −
a0

a1
E =

8(19λ + 16)

3(λ + 1)
E + O(Ca), (5.24)

showing that the drop shape is only dependent upon the local rate of strain and not on

the shape history (i.e. it relaxes instantaneously). Equation (5.22) then becomes:

r = a

(

1 +
8(19λ + 16)

λ + 1
Can · E · n

)

+ O(Ca2). (5.25)

The drop shape is therefore ellipsoidal, its principal axes are aligned with the principal

axes of the local rate of strain, and it is stretched in the direction of flow extension. The

sedimentation velocity of such a deformed drop placed in a gravity field was calculated

by Haber & Hetsroni [76] using expansions in spherical harmonics, and more recently by

Manga & Stone [123] by application of the reciprocal theorem for Stokes flow. Both indeed

find a correction to the sedimentation velocity which is linear in the rate of strain E for

small deformations. The result from Haber & Hetsroni [76] can be written as:

M(E) = M0

(

I +
(19λ + 16)(3λ2 + 3λ + 4)

40(2 + 3λ)(1 + λ)2
CaE + O(Ca2)

)

, (5.26)

where M0 = (1 + λ)/2(2 + 3λ)πµa is the mobility of a spherical drop. Equation (5.26) is

indeed identical to Equation (5.1) with a positive constant τs.

5.3.2 Elastic microcapsules

Barthès-Biesel [9] and Barthès-Biesel & Rallison [10] developed a similar small deformation

theory for elastic microcapsules, which are particles consisting of an elastic membrane

enclosing a drop of fluid. In this case the dimensionless parameters are the viscosity ratio

λ, and the ratio ϵ = µγ̇a/Eh of the viscous stresses in the fluid to elastic tensions in

the membrane, where E denotes the elastic modulus of the membrane material and h its

thickness. In weak flows (ϵ ≪ 1) the shape is again found to be ellipsoidal, and to leading
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order in ϵ the equation of the surface is obtained to be [10]:

r = a (1 + fϵn · E · n) + O(ϵ2), (5.27)

where f is a function of the material properties of the membrane; for an incompressible

isotropic material in the small deformation regime f = 25/2.

The mobility of an ellipsoidal capsule is simply the mobility of a solid ellipsoid, which

is known exactly [79]. In the case of small deformations the mobility can be expanded in

a Taylor series with respect to the spherical shape, and is found to be:

M(E) = M0

(

I +
fϵ

5
E + O(ϵ2)

)

, (5.28)

where M0 = 1/6πµa is the mobility of a solid sphere.

5.3.3 Flexible polymers

The applicability of the model to flexible polymers is less evident. In the absence of flow

a polymer molecule relaxes to a statistically isotropic coiled state as a result of internal

Brownian motion. The application of a weak flow will lead to a small departure from this

isotropic state, provided that the molecule can sample its configuration space sufficiently

fast on the flow time scale, i.e. that its relaxation time is much faster than the inverse γ̇−1

of the effective flow shear rate. The configuration of the molecule is then well represented

by the average second moment of its end-to-end vector: Q = ⟨RR⟩, and its mobility can

be written in the general form:

M = mI + m′Q. (5.29)

In the simplest case of a linear spring law, the configuration tensor Q satisfies the following

evolution equation [18]:

Wi

(
d

dt
Q − ∇u · Q − Q · ∇uT

)

+ Q −
kT

H
I = 0. (5.30)



146 CHAPTER 5. THE SEDIMENTATION OF DEFORMABLE PARTICLES

In Equation (5.30) Wi is the effective Weissenberg number defined as the ratio of the

relaxation time of the molecule to the characteristic flow time scale γ̇−1, kT is the thermal

energy of the solvent, and H is the spring constant. For weak flows (Wi ≪ 1) the config-

uration tensor can be solved for as a perturbation expansion in powers of the Weissenberg

number: Q = Q(0) + WiQ(1) + O(Wi2), yielding:

Q =
kT

H

(

I + Wi
(

∇u + ∇uT
))

+ O(Wi2). (5.31)

The mobility of the molecule Equation (5.29) then becomes:

M(E) =

(

m + m′kT

H

)

I + 2m′ kT

H
WiE + O(Wi2) (5.32)

and is again in the form of Equation (5.1).

5.4 Numerical simulations

5.4.1 Simulation method for deformable particles

The simulation method described in Section 4.2.1 for spheroids is easily adapted to the

case of deformable particles, using the model of Section 5.2.1. The motion of a particle α

is described by the following dynamic equation:

ẋα = M(xα) · F + u(xα), (5.33)

in which the linearized mobility of Equation (5.1) is used:

M(xα) = M0 (I + τsE(xα)) . (5.34)

Hydrodynamic interactions are again captured through the disturbance velocity field u

which is obtained as a solution of the Stokes equations (4.5) with the same body force field

Equation (4.8) as in the case of spheroids. u is used to infer the disturbance rate of strain

E at the particle positions, which appears in the particle mobility Equation (5.34). The
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Stokes equations are again solved spectrally on a grid as explained in Section 4.2.1. The

particle positions are advanced using a fourth-order Runge-Kutta time-marching scheme.

Unless noted otherwise the results shown are for non-periodic systems with slip boundary

conditions.

In the following discussion the results are made dimensionless using the characteristic

radius a of an undeformed particle, the sedimentation velocity U0 = M0F of an isolated

particle, and the characteristic time a/U0 for an isolated particle to sediment over its ra-

dius. A precise non-dimensionalization of the equations yields two dimensionless groups

(in addition to the volume fraction φ): a deformation parameter ϵ = τsU0/a, which charac-

terizes the effect of the flow on the shape deformation (in the case of droplets ϵ is essentially

the Bond number or capillary number based on the shear rate induced by the sedimenta-

tion of a drop, modified to include the function of the viscosity ratio in Equation 5.26),

and a resistance parameter r = ∆ρVpg/µU0a, which takes on the value of 6π for a solid

particle and of 2π(2 + 3λ)/(1 + λ) for a viscous droplet. Most of the results presented

below are for a deformation parameter of ϵ = 0.5 (which as we verify in Section 5.4.3 does

indeed lead to small deformations at the volume fractions considered in this work), and

a resistance parameter of r = 15, corresponding approximately to a drop with a viscosity

ratio of 1. For the sake of comparison a few results are also shown for spherical particles,

obtained by setting the deformation parameter ϵ to zero.

5.4.2 Concentration fluctuations and microstructure

The same type of analysis as in the sedimentation of spheroids can be carried out for

deformable particles. Figure 5.2 shows the evolution of a few Fourier coefficients of the

concentration field in non-periodic and periodic systems. Initially all Fourier modes are

equally important. In the periodic case (Figure 5.2(b)) no significant growth is observed

up until 1000 time units, after which all four modes start growing. As in the case of

spheroids and as predicted by the linear stability analysis (Equation (5.15) and Figure 5.1)

the longest mode k = (1, 0, 0) set by the width of the box dominates; the growth is

exponential and does not seem to saturate. As expected the non-periodic case is quite
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Figure 5.2: Time evolution of the Fourier coefficients of the concentration for a simulation
of 158,239 deformable particles in a box of dimensions Lx = 390, Ly = 390 and Lz =
2200 (volume fraction φ = 0.2 %), in both (a) non-periodic and (b) periodic boundary
conditions. The results shown are for ϵ = 0.5 and r = 15. The spectra were calculated
over a subsection of the container: 250 < z < 650, and were averaged over four runs. The
bottom plots show the evolution of the mean volume fraction in the section in which the
spectra were obtained.

different. The fluctuations are typically much weaker and the longest mode is not the

strongest. Figure 5.2(a) shows that all modes initially grow at the same pace. The longest

modes k = (1, 0, 0) and k = (2, 0, 0) however stop growing, giving way progressively to

the growth of the shorter modes k = (3, 0, 0) and k = (4, 0, 0) which dominate up until

the arrival of the suspension front (bottom plot) and the decay of the fluctuations.

As in the case of spheroids, Figure 5.2 suggests that the presence of walls and the

possibility of stratification provide a mechanism for the break-up of the longest modes into

fluctuations at shorter wavelengths, which are then observed to dominate the spectrum.
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In spite of the strong similarity between the sedimentation of orientable and deformable

particles, the two situations also present some differences. In the case of deformable

particles the growth is much more progressive and slow: the peak of the fluctuations

occurs quite late during the sedimentation process. For spheroids however the growth of

the fluctuations was rapid initially, after which it was found to saturate in non-periodic

systems and to slow down in periodic systems (Figure 4.2). This qualitative difference

can be explained in the following way. In the case of spheroids we saw in Figure 4.10

that the fluctuations in the fluid result in a very quick alignment of the particles in the

direction of gravity. Once most particles are aligned migration becomes rather difficult, as

the lateral velocity of an almost vertical spheroid is weak: further clustering is therefore

limited. In the case of deformable particles however, the stretching of the particles occurs

along the axis of flow extension which is at 45◦ in shear flow, and migration is therefore

quite easy even though the deformations may be small. Moreover as we will show in

Section 5.4.3 deformations become larger with time, allowing for a steady increase of

the concentration fluctuations, whereas for spheroids the orientation distribution quickly

reaches a steady state. This explains why the instability takes a longer time to develop,

and similar observations will be made on the mean velocity and velocity fluctuations in

Section 5.4.4.

Figure 5.3 shows the pair distribution function and the structure factor in the lateral

direction at t = 0 and t = 1200, for both deformable particles (ϵ = 0.5) and isotropic

particles such as rigid spheres (ϵ = 0). At t = 0 the pair distribution is uniform in both

cases, and no clear peak is present in the structure factor. In the case of deformable

particles g(x) progressively develops oscillations and a peak near x = 0; while these are

not as pronounced as in Figure 4.4 for spheroids, the data of Figure 5.3 are less noisy and

the oscillations clearer. These oscillations result in a sharp peak in the structure factor

at t = 1200, which is located near k = 3. A similar structure as for spheroids is therefore

present in the suspension, with denser regions or clusters alternating in the lateral direction

with clear fluid. The evolution of the structure factor with time (not shown), also suggests

that the formation of this structure is the consequence of the break-up of long wavelength
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Figure 5.3: (a) Pair distribution function and (b) structure factor at t = 0 and t = 1200 for
a simulation of 148,349 particles in a box of dimensions Lx = 390, Ly = 145 and Lz = 2200
(volume fraction φ = 0.5 %). The plots show results for both deformable particles (ϵ = 0.5)
and isotropic particles such as rigid spheres (ϵ = 0), at the same resistance parameter of
r = 15.

fluctuations. In the case of undeformed isotropic particles (ϵ = 0) no clear evolution of the

pair distribution function or structure factor can be seen, and the fluctuations at t = 1200

remain negligible. This confirms the central role of shape anisotropy in the concentration

instability observed in suspensions of either spheroids or deformable particles.

Results on the stratification are also shown in Figure 5.4 for both deformable and

isotropic particles. The deformable case (Figure 5.4(a)) is qualitatively similar to the

case of spheroids shown in Figures 4.3 and 4.22. In particular, a broad suspension front

is observed to form between the bulk of the suspension and the clear fluid at the top;

concentrations exceeding the bulk average are also observed near the bottom of the box as
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Figure 5.4: Cross-section averaged concentration profile in the vertical direction at various
times during the sedimentation of suspensions of (a) deformable particles (ϵ = 0.5), and
(b) isotropic particles (ϵ = 0). The results are for a resistance parameter of r = 15 and were
obtained in suspensions of 148,349 particles in a box of dimensions Lx = 390, Ly = 145,
Lz = 2200 (volume fraction φ = 0.5 %). The concentration profile is normalized by its
average value ⟨c⟩.

a result of clustering. As in the case of spheroids, this strong stratification is a consequence

of the anisotropic mobility of the particles, which acts like a polydispersity, and of the

segregation of the clusters near the bottom of the container. Note that neither of these

effects is present in the case of isotropic particles (Figure 5.4(b)), where the interface

between the suspension and the clear fluid is sharp and does not shown any significant

broadening, and where the concentration in the suspension remains uniform in the vertical

direction and equal to the mean bulk value.

5.4.3 Particle deformation

It is important to verify a posteriori that the deformation of the particles in the simulations

remains small. As the particle shape or configuration is not explicitly calculated in the
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Figure 5.5: (a) Time evolution of the mean effective aspect ratio A at different volume
fractions, and (b) distribution of the effective aspect ratio at a volume fraction of φ = 0.2 %.
The simulations are for ϵ = 0.5 and r = 15 and were performed in a box of dimensions
Lx = 390, Ly = 145, Lz = 2200. The results were obtained in a subsection of the box:
550 < z < 850, and are averaged over ten runs.

simulation method, but only its mobility, we define an effective aspect ratio A as the

ratio of the largest to the smallest of the eigenvalues of the mobility tensor. This ratio,

which is 1 for a spherical particle but would approach 2 for a very slender particle, is

indeed a measure of the anisotropy. Figure 5.5(a) shows the evolution of A at various

volume fractions, for a deformation parameter ϵ of 0.5. All three curves present an initial

increase of the effective aspect ratio as a result of the instability, followed by a decrease

as the front approaches and as the fluctuations decay in the suspension. At low volume

fractions (φ = 0.1 %) the particles remain very close to isotropic, with a mean aspect

ratio of less than 1.01. Deformations become more significant at higher concentrations

as a result of the stronger velocity fluctuations; nevertheless the mean aspect ratio does

not exceed 1.06 even at the highest volume fraction of 0.5 %, therefore validating our

small deformation assumption. A typical distribution for the aspect ratio is shown in

Figure 5.5(b) at φ = 0.2 %: while the mean value falls slightly below 1.02, aspect ratios
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in the suspension range from 1 up to nearly 1.05. This shape polydispersity is a natural

consequence of the inhomogeneous flow field: the particles located in regions of strong

shear typically undergo stronger deformations than those located near the local extrema

of the disturbance velocity.

Note that larger deformations may have been expected given the value chosen for the

deformation parameter (ϵ = 0.5). This is a consequence of the length scale used in the

definition of ϵ (the particle radius a), which can differ significantly from the characteristic

length scale lc over which the velocity fluctuations occur in the suspension. Typically the

disturbance velocity varies over distances that are much larger than a (up to the width

L of the container during the initial instants), leading to velocity gradients scaling with

U0/lc. A more appropriate deformation parameter would be ϵ = τsU0/lc; however the

fact that lc is unknown a priori and evolves during the sedimentation process makes this

definition awkward.

5.4.4 Velocity statistics

As in the case of spheroids, the particle deformations and the clustering have a strong

impact on the sedimentation rate and the velocity fluctuations. This is illustrated in

Figures 5.6 and 5.7, where results for deformable (ϵ = 0.5) and isotropic (ϵ = 0) particles

are compared at various volume fractions. The mean sedimentation speed in both cases

is shown in Figure 5.6. In the case of deformable particles Figure 5.6(a) shows a slow and

steady increase of the mean sedimentation speed beyond the velocity of 1 of an isolated

isotropic particle; this enhancement of the velocity is to be contrasted with the results of

Figure 5.6(b) in the absence of deformations, where the mean velocity is approximately

constant and equal to 1 at all three volume fractions. Note that in reality a dependence

on volume fraction will be observed in suspensions of spherical particles, as fluid backflow

results in velocity hindrance [13]; this effect however, which is a consequence of the finite

volume of the particles, cannot be captured at the point force level used in our simulations.

While the velocity increase in Figure 5.6(a) is quite weak at low volume fractions (due
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Figure 5.6: Mean sedimentation velocity ⟨uz⟩ in suspensions of (a) deformable particles
(ϵ = 0.5), and (b) isotropic particles (ϵ = 0) for a resistance parameter of r = 15 and
at various volume fractions. The simulations were performed in a box of dimensions
Lx = 390, Ly = 145, Lz = 2200. The results were obtained in a subsection of the box:
550 < z < 850, and are averaged over ten runs.

to the small deformations resulting in a weak instability), it becomes quite significant at

φ = 0.5 % where the mean velocity reaches a peak value beyond 1.9. This very drastic

increase is mainly a consequence of the clustering, as the particle mobility at φ = 0.5 %

was shown in Figure 5.5 to differ by less than 10 % from the isotropic mobility. Again

the velocities are observed to decay as the front gets nearer and as the concentration

fluctuations become weaker.

The very high value for the sedimentation speed at φ = 0.5 % may seem surprising

when compared to the case of prolate spheroids where the peak velocity was also slightly

slightly less than 2 at the same volume fraction (Figure 4.8). This can be understood in

the light of the comments made in Section 5.4.2: in the case of spheroids the strong and

rapid alignment in the vertical direction somewhat hinders the lateral migration of the

particles after a short initial time. For deformable particles however, the steady increase
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Figure 5.7: Velocity fluctuations ∆uz in the z-direction in suspensions of (a) deformable
particles (ϵ = 0.5), and (b) isotropic particles (ϵ = 0) for a resistance parameter of r = 15
and at various volume fractions. The simulations were performed in a box of dimensions
Lx = 390, Ly = 145, Lz = 2200. The results were obtained in a subsection of the box:
550 < z < 850, and are averaged over ten runs.

in the effective aspect ratio and the orientation of the particles along the direction of flow

extension result in a prolonged clustering and in the steady increase of the mean velocity.

The velocity fluctuations in the vertical direction are shown in Figure 5.7. While

Figure 5.7(b) shows a decay of the fluctuations in the case of isotropic particles, confirming

observations made in previous studies (e.g. [20, 132]), the instability in the deformable case

causes an initial increase in the fluctuations, followed by a steady decrease towards zero; no

steady state is reached. The initial increase, which is a result of the deformations and of the

clustering, leads to very strong fluctuations at the highest volume fraction of φ = 0.5 %,

where they reach up to 4 times the sedimentation speed of an isotropic particle. The

subsequent decay of the fluctuations also appears to be somewhat faster with deformable

particles, a possible consequence of the strong stratification that is observed to develop in

the suspension [120].
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Figure 5.8: Mean squared displacement (a) in the z-direction and (b) in the x-direction at
various volume fractions. The simulations are for ϵ = 0.5 and r = 15 and were performed
in a box of dimensions Lx = 390, Ly = 145, Lz = 2200; the results are averaged over three
runs. For plot (a) the displacements were measured with respect to the mean motion of
the entire suspension.

5.4.5 Hydrodynamic dispersion

The decay of high-wavenumber fluctuations in the stability analysis of Section 5.2.3 was

attributed to hydrodynamic dispersion. As we previously mentioned, it is an established

result that particles in sedimenting suspensions undergo a diffusive motion at long times

relative to the mean settling motion and as a result of random fluctuations in the velocity

field. In an attempt to understand the qualitative influence of the concentration fluctua-

tions on hydrodynamic dispersion, mean-squared displacement curves were calculated and

are shown in Figure 5.8. All curves have a zero derivative at t = 0 and show a convective

behavior at short times: (∆x)2 ∼ t2, (∆z)2 ∼ t2. The slopes progressively stop increasing

and a transition to a different regime occurs. The motion in the vertical direction becomes

clearly diffusive, as suggested by the nearly constant slope in Figure 5.8(a): (∆z)2 ∼ D∥t.

While confirming the diffusive nature of the particle motions, Figure 5.8(a) should not be

expected to produce quantitative results for the diffusivity, since close particle interactions
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and short-scale variations of the velocity field, both of which play an important part in

the diffusion process, have been completely neglected in the simulations.

Interestingly, diffusion is much less clear in the lateral direction (Figure 5.8(b)), in

which the mean-squared displacement slowly saturates to a constant value. This saturation

could have several origins: in particular lateral displacements are limited owing to the finite

extent of the simulation box. It is also possible that the arrangement of the particles into

dense clusters confines the lateral diffusion to the extent of one streamer; this seems to

be supported by the steady state value of ∆x ≈ 100 in Figure 5.8(b), which is on the

order of one fourth of a box width. A more precise investigation is needed to confirm this

hypothesis.

5.5 Concluding remarks

A simple model was developed for sedimenting suspensions of deformable particles, which

is equally applicable to viscous droplets, elastic microcapsules or flexible polymers. Under

the assumptions that the flow-induced deformations are small and that the relaxation

of the particle shape or configuration occurs instantaneously on the flow time scale, we

were able to perform a linear stability analysis and to prove that such suspensions are

unconditionally unstable to horizontal density fluctuations. The analysis, based on a

dilute assumption in an unbounded domain, shows that in the absence of center-of-mass

dispersion all wavenumbers are equally unstable. Hydrodynamic dispersion is predicted to

damp fluctuations at high wavenumbers, while low-wavenumber fluctuations are damped

by stratification: the combination of these two effects results in a wavenumber selection.

Point-particle simulations were also performed for deformable particles, confirming

the mechanism for the instability. Density fluctuations in the particle distribution are

observed to grow in time as a result of the deformation of the particles, which leads to a

lateral migration; the growth of the fluctuations is typically slower but more steady than

in suspensions of spheroids. The simulation results manifest a qualitatively similar mecha-

nism for the wavenumber selection: while the longest wavelength grows without bound in
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periodic systems, this mode is observed to break-up in non-periodic geometries, resulting

in the formation of distinct clusters separated by clarified regions in the lateral direction.

The instability for deformable particles also causes an increase in the mean sedimentation

velocity, and our simulations suggest that quite small departures from isotropy can have

very strong effects. To our knowledge no experimental data are available for comparison,

but we hope that the present observations will spur additional interest into this problem.

As in the case of rigid spheroids studied in Chapter 4, a number of effects have been

neglected. Most importantly, the small deformation approximation is likely to apply only

in very dilute suspensions. In more concentrated systems the effects of short-range inter-

actions, which will depend on the precise nature of the particles, may become significant.

The previous work by Zinchenko & Davis [199, 200] addressed the case of very concentrated

emulsions (φ ≈ 0.5): the non-local nature of the flow and the lubrication interactions be-

tween neighboring drops result in complex drop deformations that cannot be adequately

captured by the small deformation model used in our work. In emulsions the concentration

instability may also enhance drop coalescence and therefore increase polydispersity; coa-

lescence during sedimentation, which was previously studied using population dynamics

(e.g. [124, 193]), could be incorporated into our simulations using similar phenomenolog-

ical collision models.



Chapter 6

Hydrodynamic interactions in the

induced-charge electrophoresis of

colloidal rod dispersions

6.1 Introduction

The manipulation of small particles suspended in a liquid is a challenging task, with

applications in fields as diverse as separation science, analytical chemistry, microfluidics, or

microrheology. A simple and widely used strategy for controlling particle motions consists

of utilizing externally applied electric fields, which under certain conditions can cause

particle migration and reorientation. The basic mechanism for this electrophoretic motion

has been described extensively, and falls into the broad category of linear electrokinetic

phenomena [163, 153, 85, 91]. A uniformly charged surface in an electrolyte attracts a

cloud of counterions, which accumulate near the surface, resulting in the formation of an

electrical double layer (EDL). The application of a steady electric field exerts a net force

on the excess counterions, which migrate along the local electric field lines and drag the

fluid with them. Near a fixed surface such as a channel wall, this effective body force inside

the EDL drives an electroosmotic flow in the fluid bulk. In the case of a freely suspended

159
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particle such as a colloid or macromolecule, electrophoretic migration occurs.

When the characteristic thickness λD of the EDL is much less than the characteristic

radius of curvature of the particle, and if the applied field is sufficiently weak for surface

conduction to be negligible, a boundary layer analysis of the electrokinetic and flow equa-

tions shows that to a good approximation the effects of the body force on the charge cloud

can be captured by an effective slip velocity us at the outer edge of the EDL, given by

the Helmholtz-Smoluchowski equation:

us = −
εζ

µ
Es, (6.1)

where ε and µ are the permittivity and viscosity of the fluid, respectively, and Es is

the value of the electric field at the edge of the EDL, where it is tangential to the local

surface. The parameter ζ, called zeta-potential, is the electric potential drop across the

double layer, and is considered a material property. The Helmholtz-Smoluchowski equa-

tion (6.1) can be used as a boundary condition for the flow equations outside of the charge

cloud. For a freely suspended spherical particle this slip boundary condition was shown

by Smoluchowski [174] and Henry [82] to yield the following translational velocity in an

applied field E∞:

U =
εζ

µ
E∞. (6.2)

This classical result, which assumes a spherical shape, uniform charge density, absence

of polarization, thin electrical double layer and weak applied field, was later generalized

to more complex situations. First Morrison [130] proved that the same result holds for

any particle shape under the same assumptions, and that the torque on a non-spherical

particle is zero. O’Brien [142] and O’Brien & Ward [143] considered the effects of surface

conduction, which results from charge build-up in some regions of the EDL and can be

significant when the applied field is not weak or as the zeta-potential increases. Ion

transport within the EDL was also addressed by Solomentsev, Pawar & Anderson [177],

who also accounted for a non-uniform surface charge density. Solomentsev & Anderson

[176] studied the effects of nonhomogeneous electric fields, and showed that electric field

gradients cause rotation, while second gradients contribute to translation without rotation.
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A variety of nonspherical particle shapes have also been considered, including spheroids

[143, 59, 176], disks [169], rod-like particles [78, 36], and slender-bodies [175, 168].

While many investigations have addressed the case of particles with a fixed possibly

nonuniform charge density, we focus in this Chapter on particles that can acquire a sur-

face charge by polarization. Typical examples include polarizable dielectric particles and

metallic colloids, which recently have found applications in analytical chemistry and bio-

logical assays (e.g. [136, 192]). The behavior of polarizable colloids in an electric field was

previously studied in a series of papers by Dukhin and coworkers [70, 53, 52], the results

of which were later summarized by Murtsovkin [133]. As explained in these papers, the

polarization of a suspended sphere due to an applied electric field results in the formation

of a dipolar charge cloud similar to the electrical double layer of classical electrophoresis,

the effects of which can be modeled by an effective nonuniform zeta-potential. The action

of the electric field on this charge cloud in turn drives a non-linear electrophoretic flow

around the particle: this flow, which has a quadrupolar structure, does not lead to a net

particle motion in the case of a sphere, but can create relative motions between nearby

particles as a result of hydrodynamic interactions. Experimental observations of this in-

duced flow were reported by Gamayunov, Mantrov & Murtsovkin [69] and recently by

Levitan et al. [116].

The general framework for the modeling of these flows was laid out in detail in the con-

text of fixed electrodes in microfluidic devices by Bazant & Squires [16, 178], who named

the phenomenon induced-charge electroosmosis. The terminology of induced-charge elec-

trophoresis was also proposed in the case of freely-suspended particles. More recently,

Squires & Bazant [179] considered a variety of situations where broken symmetries in

induced-charge electrophoresis (such as shape anisotropy, non-uniform surface properties,

or non-uniform applied fields) can result in particle motions. An important conclusion of

their work is that shape anisotropy can yield quite different behaviors than in the case of

perfectly spherical particles: departures from sphericity indeed result in the rotation and

alignment of the particle in the direction of the electric field, while shape asymmetry can

lead to the migration of a particle carrying no net charge. Some of these effects were also
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described recently by Yariv [197], who derived general formulae for the linear and angular

velocities of a particle of arbitrary shape. The effects of induced-charge electrophoresis on

the motion of rodlike particles was also recently considered by Rose et al. [152], who devel-

oped analytical single particle models for both thin and thick double layers, and obtained

good agreement with experiments on metallic cylindrical colloids.

In this Chapter we focus on the effects of hydrodynamic interactions on the particle

dynamics in suspensions of infinitely polarizable slender rods undergoing induced-charge

electrophoresis. In particular, we wish to determine how the induced electrophoretic flows

on the particle surfaces influence statistical properties such as orientation probabilities,

pair probabilities, and hydrodynamic diffusivities in suspensions of hydrodynamically in-

teracting particles. We start by considering the case of a single particle in Section 6.2,

where we modify the slender-body formulation of Section 2.4 to capture the effects of the

induced-charge electrophoresis on both the particle dynamics and the surrounding fluid

flow. This new slender-body model combined with the method of reflections is used to

investigate pair interactions in suspensions of aligned rods in Section 6.3. To obtain more

quantitative information on the behavior of systems of many particles, we describe in Sec-

tion 6.4 a method for the simulation of periodic systems of interacting rods that accounts

for induced-charge electrophoresis, far-field and near-field hydrodynamic interactions, and

Brownian motion. Simulation results are presented for both non-Brownian and Brownian

suspensions in Section 6.5, where orientation probabilities, pair probabilities, and hydro-

dynamic dispersion are all discussed in detail. A summary and concluding remarks are

given in Section 6.6.

6.2 Induced-charge electrophoresis of a polarizable rod

The basic theory and formalism for induced-charge electrokinetic phenomena were dis-

cussed in detail in the case of an infinite cylinder by Squires & Bazant [178], who also

justifield them using an asymptotic analysis. In Section 6.2.1 we present an extension of

their theory to the case of a polarizable rodlike particle, which for simplicity we take to



6.2. INDUCED-CHARGE ELECTROPHORESIS OF A POLARIZABLE ROD 163

l
θ

ẑ
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Figure 6.1: Problem geometry: the major axis of the spheroid, denoted by a unit vector
p, is assumed to be aligned in the z-direction, and forms an angle φ with respect to the
direction of the applied electric field E∞: E∞ · p = E∞ cos φ. The azimuthal angle in the
(x, y)-plane is denoted by θ.

be a spheroid. The limit of high aspect ratio, which is examined in Section 6.2.2 and

Section 6.2.3, will yield results that are independent of the exact shape of the particle.

Focus is placed on the derivation of a simple model that encompasses the electrophoretic

motion of the particle while capturing the induced hydrodynamic interactions.

6.2.1 Basic theory

Consider a conducting polarizable spheroid in an electrolyte, to which an electric field E∞

is applied as shown in Figure 6.1. We define a coordinate system such that the major axis

of the spheroid, whose direction is given by a unit vector p, lies along the z-direction, and

without loss of generality we can assume that both vectors E∞ and p lie in the (x, z)-plane

and form an angle φ: E∞ · p = E∞ cos φ. Let 2l and 2a be the lengths of the major and

minor axes of the spheroid, respectively. We denote by A the particle aspect ratio, and

by α its inverse, which will prove to be a useful quantity in the following discussion:
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A = α−1 = l/a. (6.3)

We also introduce an abscissa s ∈ [−l, l] along the axis of the particle and a cylindrical

coordinate system (r, θ, z) where r2 = x2 + y2 and θ is the azimuthal angle in the (x, y)-

plane, and let x = rr̂ + zẑ denote a general position vector. With these definitions the

equation for the surface ∂S of the spheroid can be written as:

x2 + y2

a2
+

z2

l2
=

r2

a2
+

z2

l2
= 1. (6.4)

Electric problem

When placed in a uniform electric field, a conducting particle modifies the field in such as

way that the field lines intersect its surface at right angles. In a net neutral medium, the

electric potential Φ therefore satisfies Laplace’s equation:

∇2Φ = 0, (6.5)

subject to the conducting boundary conditions:

⎧

⎨

⎩

Φ(x) = Φs as x ∈ ∂S,

∇Φ(x) → −E∞ as |x| → ∞,
(6.6)

where Φs is the uniform potential of the particle. As argued however by Squires & Bazant

[178], this configuration is not stable as the electric field in the electrolyte results in the

migration of ions along the field lines with a current J = σE (where σ is the conductivity

of the solution). These ions accumulate on the surface of the particle which itself polarizes,

resulting in the formation of a dipolar charge cloud similar in nature to the electrical double

layer of classical electroosmosis. The double layer, which is net neutral, has the effect of

repelling the electric field lines so that at steady state the particle and its EDL behave

like an insulator.

In the following discussion we make the assumptions of thin EDL and weak applied

fields. The first assumption states that the characteristic thickness λD of the double layer

is much less than the characteristic radius of curvature of the particle:
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λD

a
≪ 1. (6.7)

For a symmetric electrolyte the thickness λD, or Debye screening length, is defined as:

λD ≡

√

εkT

2n0(ze)2
, (6.8)

where ε is the electric permittivity of the electrolyte, k is Boltzman’s constant, T is

the absolute temperature, n0 is the ionic concentration in the bulk of the electrolyte,

and ze is the charge of a single ion. Under the thin EDL assumption a boundary layer

approximation can be used to derive new boundary conditions for the electric field that

apply at the edge of the EDL. Note that the thin EDL assumption is rather severe in the

case of slender particles addressed here, since the particle thickness a can be quite small: it

is likely therefore to apply only at relatively high salt concentrations, for which the Debye

screening length is very small, or for mesoscopic or macroscopic particles, whose thickness

a remains relatively large. In other cases the effects of finite EDL thickness are likely to

come into play, and would require a different treatment. Finally, the weak applied field

condition, or Debye-Hückel approximation, can be stated as E∞a ≪ kT/ze and ensures

that surface conduction can be neglected.

Under these assumptions the boundary conditions Equation (6.6) can be replaced by

the following insulating boundary conditions:

⎧

⎨

⎩

n · ∇Φ(x) = 0 as x ∈ ∂S,

∇Φ(x) → −E∞ as |x| → ∞,
(6.9)

where n is a unit outward normal on the particle surface. Equation (6.9) technically

applies at the outer edge of the boundary layer, but can be safely enforced on the particle

surface as we assumed that the Debye length is much less than the radius of the particle.

This boundary condition, which can be justifield by matched asymptotics [178], results in

electric field lines that are everywhere tangential to the particle surface.

Equations (6.5) and (6.9) for a spheroid admit an analytical solution, which can be

obtained by the method of singularities [39, 40, 78]. The electric field outside of the
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spheroid is sought as that due to a line distribution of potential dipoles along the focal

axis:

E(x) =

{

I +

∫ c

−c

(

c2 − s2
) [

β∥D (x − sẑ; ẑ) ẑ + β⊥D (x − sẑ; x̂) x̂
]

ds

}

· E∞. (6.10)

c = (l2 − a2)1/2 is the half-focal length of the spheroid, and D(x;a) is the field induced

by a three-dimensional potential dipole of strength a:

D(x;a) = ∇

(

∇ ·
a

x

)

= −
a

x3
+ 3

(a · x)x

x5
. (6.11)

Equation (6.10) satisfies Laplace’s equation by construction. The integral can be computed

analytically [40], and enforcing the boundary condition at the surface (n·E(x) = 0) allows

one to solve for the constants β∥ and β⊥:

β∥ = α2

[

−4(1 − α2)1/2 + 2α2 log

(

1 + (1 − α2)1/2

1 − (1 − α2)1/2

)]−1

, (6.12)

β⊥ = α2

[

2(1 − α2)1/2 − 4(1 − α2)3/2 − 2α2 log

(

1 + (1 − α2)1/2

1 − (1 − α2)1/2

)]−1

. (6.13)

After manipulation, the electric field and potential on the surface of the spheroid are found

to be:

Es = (I − nn) · G · E∞, (6.14)

Φs = −x · G · E∞. (6.15)

G is the following geometric tensor:

G = G∥ẑẑ + G⊥(I − ẑẑ), (6.16)

with

G∥ = −4
(1 − α2)3/2

α2
β∥, G⊥ = −4

(1 − α2)3/2

α2
β⊥. (6.17)

Equations (6.12)–(6.17) are equivalent to those given by Stratton [183] and Fair & Ander-

son [59], which were obtained using ellipsoidal harmonics. Figure 6.2 shows typical field

lines in the (x, z)-plane calculated for various orientations of the electric field. Note that
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φ = 0 φ = π/4 φ = π/2

Figure 6.2: Electric field lines around a non-conducting spheroid of aspect ratio A = 6.5
for various orientations φ of the electric field, calculated from Equation (6.10). In three
dimensions the deflection of the streamlines occurs over lengths scales of the order of the
particle radius a, and the disturbance to the imposed field is very weak.

these field lines differ substantially from those obtained in two dimensions, by conformal

mapping for instance, especially when the field is not aligned with the direction of the

major axis: the deflection of the field lines in Figure 6.2 is quite weak and the electric field

only differs from its value at infinity in a thin layer near the surface of the spheroid. This

comes from the fact that the geometry is three-dimensional and a significant azimuthal

field exists when φ ≠ 0, so that the deflection of the field lines occurs on length scales of

the order of the spheroid thickness 2a. Equations (6.10)–(6.11) also show that the electric

field disturbance decays quite rapidly as 1/|x|3 (vs. 1/|x|2 in two dimensions), and Taylor

expansions of β∥ and β⊥ as α → 0 show that both of these coefficients scale as α2:

E(x) − E∞ ∼ E∞α2 l3

|x|3
. (6.18)

The perturbation to the imposed uniform electric field in the case of slender particles is

therefore very weak, and we can safely expect electric interactions between particles in a
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dilute suspension to be negligible. This is to be contrasted to the flow disturbance due to

the induced-charge electrophoresis, which as we show in Section 6.2.2 decays more slowly

as 1/|x|2, and scales with the large dimension 2l of the particle.

Slip velocity and flow problem

The electric potential at the outer edge of the electrical double layer is equivalent to an

induced zeta-potential, which varies along the surface of the particle and scales linearly

with the imposed field. Following Squires & Bazant [178, 179], we can write the total

zeta-potential on the surface as:

ζ(x) = Φ0 − Φs(x) = Φ0 + x · G · E∞ for x ∈ ∂S, (6.19)

where the constant potential Φ0 is determined to ensure that the area average of ζ(x)

yields the native potential ζ0 of the particle surface, which is assumed to be uniform:

1

S

∫

∂S
ζ(x)dS = ζ0 i.e. Φ0 = ζ0 +

1

S

∫

∂S
Φs(x)dS, (6.20)

where S denotes the surface area of the spheroid. Note that for the surface potential of

Equation (6.15) the constant potential Φ0 is simply the native zeta-potential: Φ0 = ζ0. The

non-uniform zeta-potential Equation (6.19), along with the expression for the tangential

component of the electric field (Equation 6.14), can be substituted into the Helmholtz-

Smoluchowski equation (6.1) for the electrophoretic slip velocity on the surface of the

particle, yielding:

us(x) = −
εζ

µ
Es = −

ε

µ
(ζ0 + x · G · E∞) × [(I − nn) · G · E∞] . (6.21)

This slip velocity contains a linear contribution −εζ0Es/µ, which is due to the native zeta-

potential and corresponds to classical electrophoresis [59], and a quadratic contribution

−ε(x · G · E∞)Es/µ, which is induced by the polarization and is responsible for induced-

charge electrophoresis.
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Fair & Anderson [59] made use of the Lorentz reciprocal theorem to derive the linear

and angular velocities of a spheroid undergoing phoretic motion in Stokes flow with an

arbitrary slip velocity:

U = − (3Vp)
−1
∫∫

∂S
(n · x)vs(x)dS, (6.22)

Ω = −(2Vp)
−1
[

l−2pp + (a2 + l2)−1 (I − pp)
]

·

∫∫

∂S
(n · x)x × vs(x)dS, (6.23)

where Vp = 4πla2/3 is the volume of the spheroid. Equations (6.22)–(6.23) are a special

case of the more general expressions found by Yariv [197]. In particular, it should be noted

that the motion of the particle is interfacially driven and does not directly result from the

electric forces on the particle, which are screened by opposing forces on the counterions

inside the EDL. Rather, the translation and rotation are consequences of the slip velocity

at the particle surface, which is a kinematic boundary condition resulting from the balance

between electric forces and viscous forces resulting from the motion of the counterions [5].

It can be shown that the linear part of the slip velocity leads to translation of the

particle without rotation as in classical electrophoresis, while the quadratic part does

not cause translation but results in a rotation that tends to align the particle in the

direction of the electric field, in agreement with previous studies [16, 197, 179, 152]. As

noted by Bazant & Squires [16], Yariv [197], and Squires & Bazant [179], the absence

of a translational induced-charge electrophoretic velocity is a consequence of the fore-aft

symmetry of the particle: an asymmetric particle would feel a quadratic translational

velocity that quite interestingly would not change sign upon reversal of the electric field.

In the remainder of the paper we will focus on the induced-charge effects and therefore

discard the linear term in the slip velocity (ζ0 ≡ 0), as it has been studied extensively in

the past (e.g. [59, 175]).

In addition to causing rotation, the slip velocity also drives a disturbance flow in

the surrounding fluid. The induced velocity can be obtained as a solution of the Stokes

equations:

−µ∇2u + ∇p = 0, ∇ · u = 0, (6.24)
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subject to the boundary conditions:

⎧

⎨

⎩

u(x) = U + Ω× x + us(x) as x ∈ ∂S,

u(x) → 0 as |x| → ∞.
(6.25)

Once again, the slip boundary condition in Equation (6.25) applies at the outer edge of

the electrical double layer, but can be enforced on the particle surface in the thin EDL

limit. Except in a few special cases such as a perfect sphere or an infinite cylinder [178] as

well as slightly deformed spheres [179], the complexity of the slip velocity Equation (6.21),

which depends on both coordinates z and θ on the surface of the particle, precludes one

from solving Equations (6.24)–(6.25) analytically. Numerical solutions could be obtained

using boundary integral methods, such as that described by Youngren & Acrivos [198],

which are easily modifield to allow a slip boundary condition. Such methods however are

costly and would only allow the calculation of the flow around a few particles. As we show

in the next section, the case of high-aspect ratio particles (A = α−1 ≫ 1) is amenable to

an approximate solution based on slender-body theory.

6.2.2 Slender-body formulation

The slender-body theory for Stokes flow introduced in Section 2.4, which approximates the

velocity disturbance induced by a particle whose length is much greater than its radius by

a line distribution of point force singularities along the particle axis, can be modifield in the

case where a slip velocity exists at the particle surface. Its application to electrophoresis

was described by Solomentsev & Anderson [175]; recently Sellier [168] considered the more

general case of a body of non-uniform zeta-potential and non-circular cross-section in an

axisymmetric electric field. Batchelor’s result (Equation (2.23)), modifield to include a

slip boundary condition on the particle surface by Solomentsev & Anderson [175], relates

the linear and angular velocities of the particle to the imposed fluid velocity u′ (which

may include the velocity disturbance in the fluid due to other particles), slip velocity us,

and line distribution of point forces f(s) in the following way:
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ẋ + sṗ + ũs(s) − u′(x + sp) =
log 2A

4πµ
(I + pp) · f(s) + O(|f |/µ), (6.26)

where x denotes the position of the particle center of mass, and where we introduced the

circumferential average ũs(s) of the slip velocity [175]:

ũs(s) =
1

2π

∫ 2π

0
us(s, θ)dθ. (6.27)

Note that this model, which describes the disturbance flow around the particle as that

induced by a line distribution of point forces only, neglects the effects of particle thickness

on the flow, and is therefore only valid for very slender particles. To account for the thick-

ness of the particle, distributions of higher-order singularities (typically potential dipoles),

would have to be included in the formulation, as previously done for instance by Claeys

& Brady [42] in their Stokesian dynamics simulations of rigid spheroids. These additional

singularities however would all contribute to higher-order terms in Equation (6.26).

Equations (2.24)–(2.25) for the linear and angular velocity, obtained by integration of

Equation (6.26), now become:

ẋ =
1

2l

∫ l

−l

[

u′(x + sp) − ũs(s)
]

ds +
log 2A

8πµl
(I + pp) · F (0), (6.28)

ṗ =
3

2l3
(I − pp) ·

∫ l

−l
s
[

u′(x + sp) − ũs(s)
]

ds +
3 log 2A

8πµl3
(I − pp) · F (1), (6.29)

where F (0) and F (1) again denote the zeroth and first moments of the force distribution

along the rod axis:

F (0) =

∫ l

−l
f(s)ds, F (1) =

∫ l

−l
sf(s)ds. (6.30)

In addition to yielding simple expressions for the motion of the particle, this formula-

tion also allows an easy calculation of the disturbance flow induced by the particle, using

the convolution of Equation (2.22) where the line distribution of point forces f(s) is known

from inverting Equation (6.26):

f(s) =
4πµ

log 2A

(

I −
1

2
pp

)

·
[

U + sΩ× p + ũs(s) − u′(x + sp)
]

. (6.31)
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Figure 6.3: Tangential and normal components (with respect to the orientation vector p)
of the dimensionless circumferentially averaged slip velocity ũs(s)/(εE2

∞/µ), for various
orientations φ of the electric field.

6.2.3 Slip velocity linearization

The previous discussion showed that the induced-charge electrophoretic motion of a slender-

body, along with the associated disturbance velocity field in the fluid, are entirely deter-

mined by the circumferentially averaged slip velocity ũs, which can be obtained by aver-

aging Equation (6.21) over the azimuthal direction. Its tangential and normal components

with respect to the orientation vector p are:

pp · ũs(s) = −
εE2

∞

µ
sG2

∥ cos2 φ

[

1 −
2α2s2 + α2(1 − s2)(G⊥/G∥)

2 tan2 φ

2(1 − s2 + α2s2)

]

ẑ, (6.32)

(I − pp) · ũs(s) =
εE2

∞

µ
sG⊥G∥ cos φ sin φ

[

1 −
(1 + α2)(1 − s2)

2(1 − s2 + α2s2)

]

x̂. (6.33)

These components are plotted in dimensionless form in Figure 6.3 for an aspect ratio

of α−1 = 20 and for various orientations φ of the electric field. Figure 6.3 shows that

both components vary almost linearly along the axis of the particle, the only significant
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departure occurring near the ends. This is also confirmed by an expansion of Equa-

tions (6.32)–(6.33) as α → 0, and justifies the following linearization of the slip velocity

for high aspect ratio particles:

pp · ũs(s) ≈ −
εE2

∞

µ
sG2

∥ cos2 φ ẑ, (6.34)

(I − pp) · ũs(s) ≈
εE2

∞

2µ
sG⊥G∥ cos φ sin φ x̂, (6.35)

where in each case the error in the linearization is of order O(α2). Equations (6.34)–(6.35)

are conveniently recast in a frame-independent manner:

ũs(s) ≈ −
ε

µ
s
(

p · Ẽ∞

)

Ẽ∞ + O(α2), (6.36)

where we have introduced the following notation:

Ẽ∞ =

[

G∥pp +
1

2
G⊥ (I − pp)

]

· E∞. (6.37)

Note that in the limit of high aspect ratio (α−1 ≫ 1) we have Ẽ∞ ≈ E∞.

From the discussion of Section 6.2.2 on slender-body theory, we infer that the induced

translational velocity is zero: ẋs = 0. The normal component of the slip contributes to

an angular velocity:

ṗs =
ε

µ
(I − pp) · Ẽ∞

(

p · Ẽ∞

)

. (6.38)

The force distribution along the particle axis is linear and is given by:

f(s) = −
2πεs

log 2A
p
(

p · Ẽ∞

)2
. (6.39)

Equation (2.22) can then be used to evaluate the velocity disturbance in the fluid.

It is enlightening for the purpose of understanding hydrodynamic interactions between

suspended particles to investigate the far-field behavior of the velocity disturbance. The

asymptotic behavior as |x|/l → ∞ can be obtained by performing a multipole expansion

about the center of the particle, in which it is straightforward to see that the linear force

distribution only contributes to the first force moment, or force dipole (cf. Section 2.3).

This was pointed out by Batchelor [12], who observed that a linear force distribution on
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a slender-body results in stresslet and rotlet flows in the far field. In the case of interest

here, the rotlet flow is zero since induced-charge electrophoresis creates no torque and the

force distribution Equation (6.39) is tangential to the rod axis. The stresslet disturbance

flow u′
S can be shown to be:

u′
S(x) = −3

(x · S · x)x

8πµ|x|5
, (6.40)

where the second-order traceless tensor S is given by:

S =
4πεl3

3 log 2A

(

p · Ẽ∞

)2
(

pp −
I

3

)

. (6.41)

An important conclusion of this analysis is the far-field decay as 1/|x|2 and scaling with

(log 2A)−1 of the velocity disturbance, as shown by Equations (6.40)–(6.41). In particular,

this can be compared to the decay of the electric field perturbation as 1/|x|3, which

furthermore scales with A−2 (Section 6.2.1): this remark will justify neglecting electric

interactions between particles compared to hydrodynamic interactions in the subsequent

discussion. Note that electric interactions may still become significant when two particles

get very close to one another. In that case electric field gradients may indeed result in

dielectrophoretic effects, which are not included in the present discussion: additional work

will be required to determine the precise importance of these effects.

6.2.4 Electrorotational torque

In addition to the angular velocity ṗs induced by the slip velocity on the particle surface,

rotation also occurs as a result of the interaction between the applied electric field and

the dipole moment of the disturbance potential Φ(x)−Φ∞, which creates an electrorota-

tional torque (e.g. [98, 78, 179]). More precisely, a multipole expansion of the disturbance

potential around the center of the rod can be written as:

Φ(x) + E∞ · x ≈
1

4πε

d · x

|x|3
+ ... (6.42)
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where the dipole strength d is easily obtained from Equation (6.10) as:

d = −4πε

∫ c

−c
(c2 − s2)

(

β∥ẑẑ + β⊥x̂x̂
)

· E∞ds =
8

3
πεl3α2Ẽ∞. (6.43)

A similar expression was previously obtained by Han & Yang [78]. The dipole moment d

results in an electrorotational torque on the rod given by T e = d × E∞ (or equivalently

a first force moment F
(1)
e satisfying: (I − pp) · F

(1)
e = p × T e), and yields the following

angular velocity:

ṗe =
3 log 2A

8πµl3
(I − pp) · F (1)

e =
ε log 2A

µA2
p ×

(

Ẽ∞ × E∞

)

, (6.44)

which also contributes to the alignment of the rod in the direction of the field. Note

however that this angular velocity is weaker than that induced by the slip velocity (Equa-

tion 6.38) by a factor of log 2A/A2 ≈ 0.01 for A = 20. The electrorotational torque, which

could easily be carried along, will therefore be neglected in the remainder of the paper.

6.3 Pair interactions

Substantial information about the macroscopic behavior of a suspension can be gained by a

detailed understanding of pair interactions. In the following we use the results of the single

particle model of Section 6.2 to derive expressions for the relative motion between two

rods undergoing induced-charge electrophoresis. A detailed model based on interactions

between slender-bodies is used to calculate the relative velocity in Section 6.3.1; asymptotic

expressions for this velocity are also obtained in Appendix D by the method of reflections

[101]. We then apply the results of Section 6.3.1 to evaluate the pair distribution function

in a dilute suspension of aligned rods in Section 6.3.2.

6.3.1 Relative velocity

As depicted in Figure 6.4, we consider two rodlike particles, which for simplicity we take

to be aligned in the direction of the electric field: p1 = p2 = p. This assumption is
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x̂
ŷ

ẑ

Rod 1

Rod 2

x = x2 − x1

Figure 6.4: Particle pair considered in the analytical model of Section 6.3. For simplicity,
the two rods are assumed to remain parallel and aligned in the direction of the electric
field.

reasonable as we showed that the electric field causes the particles to reorient; even in

Brownian suspensions good alignment can be observed at sufficiently high Péclet number

(cf. Section 6.5.2). Let x = x2 −x1 be the separation vector between the particle centers:

we wish to determine the relative velocity U = ẋ as a function of x. In this problem the

particles, which are assumed to be aligned with the field, are force-free and torque-free

(although this fact will further discussed below): their only motion is therefore due to the

velocity disturbance in the fluid, which is determined by the force distributions along the

particle axes (Equation 2.22). Following the discussion of Section 2.4.3, we linearize these

distributions. For a force- and torque-free rod, the linear distribution is simply given by

(Section 2.4.3):

fα(sα) =
3

2l3
sαSαp, (6.45)

where α = 1, 2. The scalar stresslet (Equation (2.33)) is now given by:

Sα = −
2πµ

log 2A

∫ l

−l
sαp · [u′

α(xα + sαp) − ũs
α(sα)]dsα, (6.46)
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where u′
α is the velocity disturbance created by the force distribution of rod β ≠ α.

Recognizing that ũs
α and u′

α are given by Equations (6.36) and (2.22) respectively, an

equation can be derived that relates the two stresslets Sα and Sβ:

Sα = −
4πεl3

3 log 2A
G2

∥E
2
∞ −

3Sβ

8l3 log 2A

∫∫ l

−l
p · K(x + (sα − sβ)p) · psαsβdsαdsα, (6.47)

where K is again the Oseen-Burgers tensor (Equation (2.8)). The first term on the right-

hand side of Equation (6.47) is created by the slip velocity on rod α, and is to be compared

to Equation (6.41). The second term however, which is linear in Sβ, is an induced stresslet

which captures the effects of infinite reflections between the two rods. By symmetry it

is possible to see that the two stresslets are equal: Sα = Sβ = S ; they can be easily

obtained from Equation (6.47) as:

S = −
32πεG2

∥E
2
∞l3

24 log 2A + 9H
, with H =

1

l3

∫∫ l

−l
p · K(x + (s2 − s1)p) · ps1s2ds1ds2. (6.48)

Equations (6.28) and (2.22) then yield the relative velocity:

U = ẋ2 − ẋ1 =
3S

16πµl4

∫∫ l

−l
K(x + (s2 − s1)p) · ps1ds1ds2. (6.49)

This expression is to be compared to the asymptotic result derived by the method of

reflections and by multipole expansions in Appendix D. Using Equations (6.48)–(6.49), in

which the double integrals can be evaluated numerically, we calculated the relative velocity

U for various separation vectors x. The results are summarized in Figure 6.5(a), which

shows contours of ẋ = (U · x)/|x| in the plane containing the two rods. In particular, we

observe that depending on the separation vector the rods are either attracted or repelled.

For separation vectors x that form an angle of less than approximately 55◦ with the

electric field, attraction is observed, while repulsion occurs for other orientations. The

strongest attraction, as indicated by the white region, occurs when the two rods are side

by side and offset by about half a particle length. The presence of distinct regions of

attraction and repulsion suggest that pairing may occur: this will be confirmed in the
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Figure 6.5: (a) Contours of the relative velocity magnitude ẋ = (U · x)/|x| between two
parallel rods of aspect ratio A = 20. The interaction between the particles transitions
from being repulsive (dark gray) to attractive (light gray to white) when the direction of
the separation vector x changes from perpendicular to parallel to the electric field; the
neutral line where ẋ = 0 is drawn in black. The strongest attraction (white) occurs when
the two rods are side by side with an offset of about half a particle length. (b) Relative
trajectories in the reference frame of one of the two rods, calculated using the slender-body
formulation of Equation (6.49) (full lines), and using the method of reflections as shown in
Appendix D (Equation D.17, dashed lines). Both methods yield indistinguishable results
outside of a radius of approximately three rod lengths, but the asymptotic result fails at
shorter distances.

next section where we calculate the pair distribution function in a dilute suspension, as

well as in the more detailed simulations that we describe in Section 6.4 and Section 6.5.

Figure 6.5(b) also shows relative trajectories in the reference frame of one of the two

rods, calculated using both Equation (6.49) and the far-field approximation obtained in

Appendix D by the method of reflections (Equation D.17). In particular, a comparison of

the two methods shows that the method of reflections provides accurate results outside of

a radius of approximately three rod lengths, but fails at closer distances.

A few comments on the limitations of our model are in order. The two assumptions

that the rods are both torque-free and aligned in the direction of the field are rigorously
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incompatible: hydrodynamic interactions indeed would cause slight rotations even in the

presence of the electric field (cf. Appendix D), that could only be prevented by application

of an external torque. However, departures from the exact alignment are typically very

weak even when the rods are nearby (cf. Figure 6.11(d) for instance), so that the error

incurred by either neglecting rotations or neglecting the torque required to keep the rods

aligned can be expected to be small. Other effects that have been left out and may play

a role are close particle interactions such as excluded volume and lubrication: these are

likely to influence velocities and trajectories in the near-field, and will be accounted for in

Section 6.4 and Section 6.5.

6.3.2 Pair distribution function

Our knowledge of the relative velocity between two rods (Equation 6.49) can be used to

evaluate the pair distribution function in a dilute suspension. In the dilute regime pair

interactions are most frequent, so that following Batchelor & Green [14] we can define

P (x0 + x|x0; t) as the probability density function at time t for finding a rod at position

x0 + x knowing that a rod is located in x0, where once again all rods are assumed to

remain aligned in the direction of the field. Outside of the region of excluded volume, P

can be normalized as:

P (x0 + x|x0; t) = np (x/2l; t) , (6.50)

where n is the number density in the suspension, and p tends to 1 as |x|/2l → ∞. In the

absence of Brownian motion, p satisfies the following conservation equation:

∂p

∂t
+ ∇ · (Up) = 0, (6.51)

which at steady state reduces to:

U · ∇(log p) = −∇ · U . (6.52)

In Equations (6.51) and (6.52), U is the relative velocity between two rods separated by x,

and is given by Equation (6.49). In particular, the expression found for U has a non-zero
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divergence:

∇ · U =
3

16πµl4
∇S ·

∫∫ l

−l
K(x + (s2 − s1)p) · ps1ds1ds2 ≠ 0, (6.53)

which is a consequence of accounting for multiple reflections between the two rods in Equa-

tion (6.47). Integrating Equation (6.52) analytically is not tractable in general, although

we show in Appendix D that an asymptotic solution can be obtained in the far-field.

However the method of characteristics can be employed to obtain a numerical solution, by

simultaneously integrating the two following equations:

dx

dt
= U(x), (6.54)

d

dt
(log p) = −∇ · U (x), (6.55)

subject to the boundary condition p(x) → 1 as |x| → ∞. These equations were inte-

grated numerically using a fourth-order Runge-Kutta time-marching scheme, along with

a 50-point Gauss-Legendre quadrature for the double integrals in the expressions for the

velocity. The results for rods of aspect ratio A = 20 are shown in Figure 6.6, in which the

value of p was set to zero along the segment [0, 1] of the z-axis to reproduce the effects of

excluded volume. The pair distribution of Figure 6.6 presents several interesting features.

In particular the presence of a sharp peak (white region) shows that there is a high prob-

ability of finding two particles next to one another, with an offset of slightly more than

half a rod length, i.e. that particle pairings can be expected in a suspension. Conversely,

the black region near the origin corresponds to a depletion, and suggests that it is highly

unlikely for two particles to remain aligned side by side, as could have been expected from

the relative velocity field of Figure 6.5. Once again, the pair distribution of Figure 6.6 can

only be taken as qualitative owing to the limitations mentioned above; in particular close

particle interactions will affect the shapes of the pairing and depletion regions as shown

in Section 6.5.
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z/
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r/2l

Figure 6.6: Pair distribution function p(r/2l, z/2l) in a dilute suspension of rods of aspect
ratio A = 20, obtained by numerically solving the conservation equation (6.52) using the
method of characteristics (Equations (6.54)–(6.55)). The distribution function is normal-
ized so that it tends to 1 far from the origin. The value of p was set to zero along the
segment [0, 1] of the z-axis to reproduce the effects of excluded volume.

6.4 Simulation method

In this section we describe a method for the simulation of high-aspect ratio rodlike particles

undergoing induced-charge electrophoresis, which includes both far-field hydrodynamic

interactions and near-field lubrication forces, as well as Brownian motion. The method,

which is based on the algorithm described in Chapter 3 for the sedimentation of fibers,

can be viewed as an extension of the two-particle model of Section 6.3 to larger assemblies

of particles. Brownian motion is included in a self-consistent manner using a spectral

approximation of the mobility square-root first suggested by Fixman [66], in a similar way

as has been done in Stokesian dynamics simulations by Banchio & Brady [8].
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6.4.1 Mathematical formulation

Equations of motion

We consider a periodic system of N rods of aspect ratio A in a box of dimensions Lx ×

Ly × Lz. We denote by xα and pα the position and orientation vectors of a given rod

α = 1, ..., N . Equations of motion for xα and pα are obtained from the slender-body

formulation of Section 6.2.2:

ẋα =

∫ 1/2

−1/2
u′

αdsα + (I + pαpα) · F (0)
α , (6.56)

ṗα = 12 (I − pαpα) ·

∫ 1/2

−1/2
s
[

u′
α − Pe ũs

α

]

dsα + 12 (I − pαpα) · F (1)
α . (6.57)

where F
(0)
α and F

(1)
α denote the zeroth and first moments of the force distribution along

the rod of interest, respectively. In this section and for all Brownian simulations, equations

are made dimensionless by the following length, time and velocity scales:

lc = 2l, tc =
32πµl3

kT log 2A
, uc =

lc
tc

=
kT log 2A

16πµl2
. (6.58)

The thermal time scale tc can be viewed as the characteristic time for a rod to diffuse

over a distance equal to its length under the action of Brownian motion. In the case of

non-Brownian systems discussed in Section 6.5.1, we shall use the electroviscous time, or

characteristic time for fluid advection along the length of a rod under the action of the

slip:

tc =
µ

εE2
∞

, uc =
lc
tc

=
2εE2

∞l

µ
. (6.59)

The equations for the non-Brownian case can easily be obtained by setting the Brownian

forces and torques to zero and changing the non-dimensionalization.

In Equations (6.56)–(6.57), u′
α is the velocity disturbance induced by rods β ≠ α

and evaluated at position xα + sαpα along the rod axis; its calculation proceeds as in

Section 3.2.3 using the periodic Green’s function for Stokes flow (Appendix A). The

dimensionless slip velocity ũs
α is obtained from Equation (6.36) as:
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ũs
α(sα,pα) = −sα (pα · eα) eα, (6.60)

where eα corresponds to Ẽ∞ after non-dimensionalization:

eα =

[

G∥pαpα +
1

2
G⊥ (I − pαpα)

]

· ẑ, (6.61)

and where we have chosen the z-direction as the direction of the electric field. The strength

of the electric field is captured by the Péclet number Pe in Equation (6.57), which compares

the magnitude of the slip velocity to the thermal velocity scale uc:

Pe =
2εlE2

∞/µ

uc
=

32πεl3E2
∞

kT log 2A
. (6.62)

A rotational Péclet number based on the rotary diffusivity of the rods and on the angular

velocity induced by induced-charge electrophoresis can also be defined, and will prove

more useful in Section 6.5.2 when discussing orientation distributions:

Per =
εE2

∞µ

Dr
=

8πεl3E2
∞

3kT log 2A
=

Pe

12
. (6.63)

Neglecting the electrorotational torque as justifield in Section 6.2.4, the external forces

and torques on the rods will include contributions from lubrication and contacts, as well

as Brownian motion:

F (0)
α = F (0),l

α + F (0),c
α + F (0),b

α , F (1)
α = F (1),l

α + F (1),c
α + F (1),b

α . (6.64)

The lubrication and contact forces and torques are implemented in the same way as in

Section 3.2.2. The Brownian forces and torques, which model thermal fluctuations of the

solvent molecules, will be discussed in detail in Section 6.4.2.

Hydrodynamic interactions

Hydrodynamic interactions between rods are captured through the disturbance velocity

in Equations (6.56)–(6.57), which is obtained as:
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u′
α(xα + sαpα) =

1

2 log 2A

N
∑

β=1

∫ 1/2

−1/2
J(xα + sαpα − xβ − sβpβ) · fβ(sβ)dsβ. (6.65)

The convolution kernel J is again the appropriate Green’s function for Stokes flow. Here we

use the periodic Green’s function Kp derived in Appendix A, modifield as in Equation (3.9)

by removing the Oseen-Burgers tensor when β = α. The calculation of the sums in

Equation (6.65) is performed using the smooth particle-mesh algorithm of Chapter 3, to

which the reader is referred for more details.

As described in Sections 2.4.3 and 3.2.4, we linearize the force distribution using Leg-

endre polynomials as follows:

fα(sα) = F (0)
α + 12 sα

[

(I − pαpα) · F (1)
α + Sαpα

]

, (6.66)

in which the scalar stresslet Sα is now defined in dimensionless form as:

Sα = −
1

2

∫ 1/2

−1/2
sαpα ·

[

u′
α(xα + sαpα) − Pe ũs

α(sα)
]

dsα. (6.67)

The method of solution then proceeds as follows. Equations (6.60) and (6.65), when

substituted into the definition of the stresslet equation (6.67), allow one to write a linear

system for the stresslets Sα (α = 1, ..., N), and for the magnitudes of the lubrication

forces. This linear system is inverted using a preconditioned generalized minimum residual

iterative method (cf. Section 3.4). Once stresslets and lubrication forces are known, the

dynamic equations (6.56)–(6.57) are used to integrate the position and orientation of the

rod forward in time, using the midpoint algorithm of Section 6.4.3.

The calculation of the linear and angular velocities from the knowledge of the forces

and torques on the particles corresponds to the so-called mobility problem (e.g. [25]).

Let U = [ẋα, ṗα]T denote the generalized velocity vector that contains the linear and

angular velocities of all the rods, and F = [F (0)
α , F

(1)
α ]T the generalized force vector that

contains all the forces and first force moments of non-hydrodynamic nature (i.e. excluding

lubrication). The method described above allows the calculation of U knowing F , which

we can write symbolically as [33]:
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U = U
s + M · F , (6.68)

where U s is induced by the electrophoretic slip velocity, and M is the grand mobility

operator. This operator, which is a function of the particle configurations and solvent

viscosity only, accounts for far-field hydrodynamics up to the stresslet term and for near-

field lubrication. In particular, the method described here does not explicitly compute the

coefficients of matrix M , but rather allows the efficient evaluation of the action of M on

a given force vector F using the SPME algorithm (Chapter 3).

6.4.2 Brownian forces: Fixman’s method

The Brownian forces and torques appearing in Equation (6.64) are random variables that

model the thermal collisions between the solvent molecules and the particles, and must be

calculated to satisfy certain statistical properties (e.g. [33]). Denoting by ⟨·⟩ the ensemble

average, we require in particular that the generalized Brownian force vector F b have zero

mean at any given time:

⟨F b(t)⟩ = 0, (6.69)

and that its variance satisfy the fluctuation-dissipation theorem from statistical mechanics

(e.g. [50]):

⟨F b(t) ⊗ F b(t′)⟩ = 2 δ(t − t′)M−1, (6.70)

where δ(t) is the Dirac delta function, and M is the grand mobility operator introduced

in Section 6.4.1. The conditions (6.69)–(6.70) can be satisfield in a number of ways. In a

computer simulation where time is discretized, the generalized Brownian force vector over

a step of length ∆t is typically calculated as [24]:

F b =

√

2

∆t
B · W , (6.71)

where the matrix B can be obtained as either the square root or the Cholesky decompo-

sition of the inverse mobility: B · B = M−1 or B · BT = M−1, and where W is a vector

of length 6N containing random numbers from a Gaussian distribution with zero mean

and unit variance.
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Calculating the square root or the Cholesky decomposition of M−1, in addition to

being computationally prohibitive with a cost of O(N3), also requires knowledge of the

coefficients of the grand mobility. As discussed in Chapter 3 and in Section 6.4.1, such

knowledge cannot be obtained when using the SPME algorithm owing to the fast Fourier

transforms which circumvent the direct calculation of M . A solution to this problem

consists of using a spectral approximation of the matrix square root, based on Cheby-

shev polynomials. This method, termed Fixman’s method after its first application to

hydrodynamic interactions inside polymer chains by Fixman [66], was more recently used

in bead-spring simulations of polymers by Jendrejack et al. [94], and in Stokesian dy-

namics simulations of colloidal sphere dispersions by Banchio & Brady [8]. If we denote

by [λmin, λmax] the range of the eigenvalues of the grand mobility, we can find an ap-

proximation to the inverse square root valid over that range on the basis of Chebyshev

polynomials:

x−1/2 ≈
np
∑

i=1

aiPi(x). (6.72)

The Chebyshev polynomials Pi are calculated by recursion:

P0(x̃) = 1, P1(x̃) = x̃, Pi+1(x̃) = 2x̃Pi(x̃) − Pi−1(x̃), (6.73)

where x̃ ∈ [−1, 1] is a shifted coordinate:

x̃ =
2x

λmax − λmin
−

λmax + λmin

λmax − λmin
. (6.74)

The Chebyshev coefficients ai, which decay exponentially, can be calculated using a fast

cosine transform algorithm [35]. If Equation (6.72) is uniformly valid over the range of

the eigenvalues, by transformation to the basis of the eigenvectors of M it is easy to see

that the following approximation is also valid for the mobility:

B · W = M−1/2
· W ≈

np
∑

i=1

aiPi(M ) · W , (6.75)

for any vector W . The evaluation of the right-hand side in Equation (6.75) using the

recursion formulae for the Chebyshev polynomials now only requires the action of the grand
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mobility operator on given vectors, and can therefore be performed with our algorithm.

As noted by Butler & Shaqfeh [33], the grand mobility matrix defined in Section 6.4.1

is not positive definite: some of its eigenvalues can be shown to be zero owing to the

restriction that the orientation vectors pα must remain normalized. This prevents the

calculation of the inverse square root using the method described above, as no valid poly-

nomial approximation to x−1/2 can be found over an interval of the type [0,λmax]. Butler

& Shaqfeh [33] however remarked that M can be decomposed as:

M = K · M
′
· K with K =

⎡

⎣
I 0

0 I − pαpα

⎤

⎦ , (6.76)

where each block in K has size 3N × 3N . In Equation (6.76) the matrix M ′ is now

positive definite, so that Fixman’s method can be applied. A generalized Brownian force

vector that satisfies the fluctuation-dissipation theorem is then constructed as follows:

F
b =

√

2

∆t
K · B

′
· W , where B

′ = (M ′)−1/2. (6.77)

In our computer implementation we truncate the polynomial expansions so as to main-

tain an accuracy of approximately three significant figures. The range of the eigenvalues

of the grand mobility, which determines the convergence of the expansions, is calculated

using an iterative method. As its determination can be quite costly, the range is only up-

dated when the particle configurations have changed significantly. Larger errors (accuracy

of two significant figures) are sometimes tolerated when two particles become very close

to one another, as lubrication interactions result in a very stiff grand mobility, for which

the convergence of the expansion is slow.

6.4.3 Time integration: midpoint algorithm

As recommended by Grassia, Hinch & Nitsche [72] for the integration of Langevin equa-

tions with configuration-dependent mobilities, we use the second-order midpoint algorithm

of Fixman [65] to advance particle configurations in time. If we let Rn = [xn
α,pn

α]T denote

the generalized configuration vector that contains all the rod positions and orientations
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at time tn, the configuration Rn+1 at time tn+1 = tn + ∆t is obtained by a two-step

procedure:

R∗ = Rn +
1

2

[

U s
n + Mn ·

(

F c
n + F b

n

)]

∆t, (6.78)

Rn+1 = R∗ +
[

U
s
∗ + M∗ ·

(

F
c
∗ + F

b
n

)]

∆t, (6.79)

where U s is the generalized velocity vector containing the angular velocities from induced-

charge electrophoresis (e.g. Equation (6.57)), and where all hydrodynamic interactions

(including lubrication) are contained in the grand mobility. Most importantly, the Brow-

nian forces F b, which are obtained using the method discussed in Section 6.4.2, are not

updated during the second step (Equation (6.79)): this allows to reproduce the drift term

(∇ ·M )∆t that arises in Langevin equations with configuration-dependent mobilities, and

which one would need to include explicitly in a first-order integration scheme [56, 65, 72].

6.5 Results and discussion

We start by describing results for non-Brownian suspensions (infinite Péclet number limit)

in Section 6.5.1, in which the effects of induced-charge electrophoresis on the dynamics

can be isolated; Brownian motion is then discussed in Section 6.5.2. The non-Brownian

results were typically obtained in suspensions of 400 rods, whereas smaller systems of 60

to 100 rods were used in the Brownian case. In all simulations 8 quadrature points were

used along the rod lengths.

6.5.1 Infinite Péclet number

Particle distributions and pair probabilities

A typical particle distribution at infinite Péclet number is shown in Figure 6.11(d) at

steady state, where we see that all particles are very well aligned in the direction of the

electric field (z-direction). This alignment occurs rapidly with a characteristic time of

the order of the electroviscous time as soon as the field is turned on, and remains very
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Figure 6.7: Pair distributions in a suspension of 400 rods of aspect ratio A = 10 at infinite
Péclet number, at an effective volume fraction of (a) nl3 = 0.1, and (b) nl3 = 0.01. The
black region along the vertical axis is due to excluded volume, while the white patches
around it show proof of particle pairing.

strong, with some fluctuations occurring as a result of particle-particle interactions. These

fluctuations are more frequent in more concentrated suspensions, but for all concentrations

investigated the second moment ⟨pzpz⟩ of the z-component of orientation vector typically

remained above 0.99.

Once the particles are aligned, hydrodynamic interactions result in relative motions

with no average suspension velocity, which lead to a subtle rearrangement of the particle

distributions. In particular, snapshots of the suspensions show the presence of particle

pairs, which would be unlikely in a random suspension. More precisely, these pairing

events consist of the following steps: two particles are attracted from their ends, slide

along one another until they become side by side, then separate in the lateral direction.
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These dynamics confirm the analysis of pair interactions carried out in Section 6.3, where

we identifield regions of attraction and repulsion.

While these pairing events are typically transient, they are frequent enough to modify

the pair distribution function in the suspension. This is illustrated in Figure 6.7, which

shows the pair distribution function p(r, z) (in cylindrical coordinates) at two effective

volume fractions nl3 (where n is the number density and l the rod half-length), where

p is normalized so that it tends towards 1 at infinity. Figure 6.7 can be compared to

Figure 6.6, which had been obtained by numerically solving the conservation equation

for the pair probabilities. While both figures differ in details, the qualitative features

are similar. The region of excluded volume is located along the z-axis since the rods are

aligned in the direction of the electric field, and is colored in black in Figure 6.7. As

expected its length is approximately one rod length, and its width is of the order of a rod

diameter (in fact slightly less as orientation fluctuations often occur when rods are close

to one another). A very steep gradient is then observed near the tip and on the side of

the excluded volume region, where two sharp peaks are observed and are the consequence

of the pairings described above: the peak at the tip corresponds to rods being attracted

head-on, while the peak on the side corresponds to interactions with a slight offset. A

depletion region is also observed along the horizontal axis (z = 0), where the black region

of excluded volume is seen to extend radially: this depletion is the consequence of the

repulsion that occurs when two rods are aligned side by side. Further away from the

excluded volume region p(r, z) quickly becomes uniform in all directions and reaches its

asymptotic value of 1. Interestingly p(r, z) is qualitatively the same at both concentrations

(nl3 = 0.1 and 0.01), and in particular pairing is still observed to occur even in quite dilute

systems.

Hydrodynamic dispersion

The superposition of all the relative motions between the rods can be expected to lead to

a diffusive behavior at long times. This is indeed confirmed by considering mean square

displacement curves, as shown in Figure 6.8. Initially the mean square displacements
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Figure 6.8: Mean square displacements ⟨(x − x0)2⟩ and ⟨(z − z0)2⟩ in the x- and z-
directions as a function of time, in a suspension of 400 rods of aspect ratio A = 20 at
an effective volume fraction of nl3 = 1. The initial quadratic (convective) growth gives
way to a diffusive regime, from which hydrodynamic dispersion coefficients can be inferred:
⟨(x − x0)2⟩ ∼ 2Dxxt, ⟨(z − z0)2⟩ ∼ 2Dzzt.

are observed to grow quadratically, corresponding to a convective regime. However after

several particle-particle interactions the motions decorrelate in time, resulting in a lin-

ear growth characteristic of diffusive processes. Hydrodynamic dispersion is a common

phenomenon in non-Brownian particulate suspensions, and in particular has been well

characterized in sedimentation (e.g. [77, 138]) as well as simple linear flows (e.g. [172]).

While in these instances dispersion occurs relative to a mean convective motion such as

settling under gravity or shear flow, the dispersion observed in Figure 6.8 is atypical as

the mean motion of the suspension is zero.

Curves such as those of Figure 6.8 can be used to calculate effective dispersion coeffi-

cients. More precisely we define a hydrodynamic diffusion tensor D as:

D = lim
t→∞

1

2

d

dt
⟨(x(t) − x0)(x(t) − x0)⟩. (6.80)

As is obvious from Figure 6.8 the tensor D is anisotropic, and for symmetry reasons Dxx =
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Figure 6.9: Hydrodynamic diffusivities at infinite Péclet number in the directions parallel
(z-direction) and perpendicular (x-direction) to the electric field, as a function of (a) the
effective volume fraction nl3 for rods of aspect ratio A = 20, and (b) the rod aspect ratio
A at nl3 = 0.1. The results were obtained in suspensions of 400 rods.

Dyy. Simulations also show that off-diagonal components are zero: Dij = 0 for i ≠ j.

Numerical results for Dxx and Dzz at various concentrations and aspect ratios are shown

in Figure 6.9, where D is made dimensionless by εE2
∞l2/µ. The dependence on the effective

volume fraction nl3 is shown in Figure 6.9(a), where we see that the diffusivities increase

with the concentration, as a result of stronger hydrodynamic interactions. The ratio

Dzz/Dxx of the diffusivities parallel and perpendicular to the direction of the electric field

is roughly equal to 3.5 and approximately constant over three decades of concentration.

The dependence on the rod aspect ratio is shown in Figure 6.9(b). It is observed to

be rather weak except at very low values of A, at which the validity of the slender-

body approximation used in the simulations becomes questionable. As A increases the

diffusivities decrease slightly at a fixed nl3: hydrodynamic interactions indeed become

weaker at very high aspect ratio, as can seen for instance from Equation (6.48).
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Figure 6.10: Velocity fluctuations (standard deviation of the rod velocities) at infinite
Péclet number in the directions parallel (z-direction) and perpendicular (x-direction) to
the electric field, as a function of (a) the effective volume fraction nl3 for rods of aspect
ratio A = 20, and (b) the rod aspect ratio A at nl3 = 0.1. The results were obtained in
suspensions of 400 rods.

Velocity statistics

We also characterize the velocity fluctuations in the suspension, which are another conse-

quence of the relative motions between the rods. Figure 6.10 shows the standard deviations

∆ux and ∆uz of the rod velocities in the x- and z-directions at various concentrations and

rod aspect ratios. Note that these are typically very weak in the dilute regime, because of

the relatively rapid decay as 1/r2 of the interactions (compared to 1/r in sedimentation

for instance, where very strong fluctuations arise). As shown in Figure 6.10(a) the velocity

fluctuations increase with concentration according to a power law:

∆ux,∆uz ∼
2lεE2

∞

µ

(

nl3
)0.45

, (6.81)

and the ratio of the fluctuations parallel and perpendicular to the direction of the electric

field is again approximately constant and equal to: ∆uz/∆ux ≈ 1.8, which is of the order
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of the square root of the ratio of the diffusivities. As in the case of the diffusivities,

Figure 6.10(b) shows that the dependence of velocity fluctuations on the rod aspect ratio

is weak, except at very low values of A.

6.5.2 Finite Péclet number

Orientation statistics

We now consider the effects of Brownian motion, which introduces both rotational and

translational diffusion. Typical particle distributions at various values of the rotational

Péclet number (i.e. for various electric field strengths) are shown in Figure 6.11. When no

field is applied (Per = 0), the rods assume random positions and orientations, and as the

Péclet number increases the alignment of the rods in the direction of the field becomes

stronger. As already discussed in Section 6.5.1, the alignment is almost perfect in the

infinite Péclet number limit where Brownian motion is negligible.

The dependence of the orientation of the rods on the electric field strength is made

more quantitative in Figure 6.12, which shows simulated orientation distributions Ψ(φ) at

various values of Pe, where φ denotes the angle between the directions of the electric field

and of the rods, and where the following normalization was used:

∫ π

0
Ψ(φ) sin φdφ = 1. (6.82)

Figure 6.12 also compares the simulation results to an analytical solution for the orien-

tation distribution in the limit of infinite dilution. Indeed, if the effects of hydrodynamic

interactions on orientations can be neglected, the probability density function Ψ(p) for

the orientation vector p of a given rod satisfies the following Fokker-Planck equation [50]:

∂Ψ

∂t
+ ∇p · (ṗΨ) − ∇p · (Dr∇pΨ) = 0, (6.83)

where ∇p is the differential operator in orientational space [3]. ṗ denotes the rotational

velocity of the rod induced by the electric field and is given by Equations (6.29) and (6.57),
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(a) Per = 0 (b) Per = 8.3

(c) Per = 83.3 (d) Per = ∞

Figure 6.11: Typical particle distributions at steady state in suspensions of 60 rods of
aspect ratio A = 20, at an effective volume fraction of nl3 = 0.05, and at various electric
field strengths, defined by the rotational Péclet number: (a) Per = 0 (no electric field),
(b) Per = 8.3, (c) Per = 83.3, and (d) Per = ∞ (no Brownian motion).
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Figure 6.12: Orientation distributions Ψ(φ) at various Péclet numbers in suspensions of
rods of aspect ratio A = 20 at an effective volume fraction of nl3 = 0.05, obtained from
simulations (symbols) and from the dilute theory of Equation (6.85) (lines).

and Dr = 3kT log 2A/8πµl3 is the Brownian rotational diffusivity of the rod. At steady

state the distribution only depends on the angle φ, and Equation (6.83) reduces to:

∂

∂φ

(
ε

4µ
G⊥G∥E

2
∞ sin 2φΨ(φ)

)

+
3kT log 2A

8πµl3
∂2

∂φ2
Ψ(φ) = 0, (6.84)

the solution of which is a Boltzmann distribution:

Ψ(φ) = C exp

(
Per

8
G∥G⊥ cos 2φ

)

. (6.85)

The constant C is easily determined to satisfy the normalization condition of Equa-

tion (6.82). As shown in Figure 6.12, the orientation distributions present a peak near

φ = 0, which becomes sharper and sharper as the electric field increases. Excellent agree-

ment between the simulated results and the exact solution for infinite dilution is observed

at the concentration shown, although larger departures can be expected at higher concen-

trations.
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Figure 6.13: Evolution of the second moment ⟨pzpz⟩ of the z-component of the rod ori-
entation vectors after application of an electric field in Brownian suspensions of rods of
aspect ratio A = 20 at an effective volume fraction of nl3 = 0.05. The plot shows both
simulations data (dashed lines) and exponential fits (full lines) at various electric field
strengths.

The evolution to steady state for the orientation distributions is illustrated in Fig-

ure 6.13, which shows the time evolution of the second moment ⟨pzpz⟩ of the z-component

of the rod orientation vectors, where the electric field is suddenly applied at t = 0. Initially

the rod orientations are random owing to Brownian motion, hence the value of 1/3; as time

goes on the rods align with the field, resulting in the steady increase of ⟨pzpz⟩. A plateau

is finally reached, the value of which indicates the degree of alignment in the suspension.

As already observed in Figure 6.12, the alignment is stronger at high Péclet numbers.

The characteristic time for the alignment also depends on the electric field strength, and

is observed to be shorter at high Péclet numbers.

Pair probabilities

We also discuss the effects of Brownian motion on the particle pairing previously described

in Section 6.5.1. Figure 6.14 shows simulated pair distribution functions in Brownian
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Figure 6.14: Pair distributions in Brownian suspensions of 60 rods of aspect ratio A = 10
at an effective volume fraction of nl3 = 0.1, and at various electric field strengths, defined
by the rotational Péclet number: (a) Per = 0 (no electric field), (b) Per = 8.3, (c)
Per = 83.3, and (d) Per = 416.7.
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suspensions at the same aspect ratio and concentration as in Figure 6.7(a), for various

values of the Péclet number. When no field is applied (Per = 0), the rods assume random

orientations and positions resulting in the isotropic pair distribution of Figure 6.14(a): a

depleted region of spherical shape and characteristic size l exists near the origin due to

excluded volume, beyond which the pair distribution rapidly reaches its asymptotic value

of 1. When a moderate field is applied (e.g. Per = 8.3, Figure 6.14(b)), the depletion

region is distorted and stretches in the direction of the field, as a result of the alignment

of the rods; yet the pair distribution remains qualitatively very similar to the case Pe = 0,

and in particular no pairing is observed. Pairing only appears at much higher values of the

Péclet number, as shown in Figures 6.14(c) and (d): beyond Per = 83.3, peaks in the pair

distributions surround the tip of the depletion region, which is now much narrower. At

Per = 416.7 the effects of Brownian diffusion become negligible and the pair distribution

is qualitatively similar to the non-Brownian case of Figure 6.7.

6.6 Concluding remarks

We presented a study of the behavior of dispersions of infinitely polarizable slender rods in

an electric field, with and without Brownian motion. We first derived a simple model for

particle motions and interactions, based on the thin double layer approximation and on

slender-body theory, and valid for high aspect ratio particles. In particular, we showed that

the effects of the nonlinear induced-charge electrophoretic flows on the particle surfaces

can be modeled by a linear slip velocity along the rod axes, which causes the alignment

of the rods in the direction of the electric field and induces linear distributions of point

force singularities. These distributions of point forces drive stresslet disturbance flows

in the surrounding fluid, resulting in hydrodynamic interactions. We then applied this

slender-body model to study the relative motions of two suspended rods: approximate

expressions were calculated for the relative velocity between two aligned rods, and a semi-

analytical solution was obtained for the pair distribution function in a dilute dispersion.

The presence of a peak in the pair distribution function suggests that particle pairing can
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be expected as result of the relative motions.

More detailed information on the particle dynamics was then obtained using numerical

simulations. We described a simulation method based on interactions between slender-

bodies, which includes both far-field and near-field hydrodynamic interactions as well as

Brownian motion. Simulations at infinite Péclet number (negligible Brownian motion)

confirmed the existence of pairing, and qualitative agreement was obtained between the

semi-analytical and simulated pair distribution functions. The superposition of the dis-

turbance flows induced by the rods was also shown to result in a diffusive motion at

long times, and hydrodynamic dispersion coefficients were calculated. Finally the effects

of Brownian diffusion were discussed, and we showed that both particle alignment and

pairing are made weaker by Brownian motion.

The results discussed in this Chapter have implications for colloid science and microflu-

idics, where electric fields are commonly used to control the orientation of anisotropic

particles (e.g. [78, 191]). While previous studies have focused on the determination of

the rotational motion of the particles overlooking hydrodynamic interactions, this work

demonstrates that the latter can be relevant even in the case of uncharged particles, as

relative motions created by the induced-charge electrophoresis can lead to a non-random,

possibly non-uniform microstructure.

Our discussion has focused on neutrally buoyant particles in the bulk of a suspension,

an ideal situation which allowed us to isolate the effects of induced-charge electrophoresis,

but which may seldom occur in practical situations. In particular, metallic colloids are

typically non-neutrally buoyant, and settling under gravity may lead to interesting phe-

nomena. We observed in Chapters 3 and 4 that sedimenting suspensions of anisotropic

particles such as rods and disks undergo a concentration instability, by which a well-mixed

suspension develops inhomogeneities as a result of the coupling between the translational

and rotational motions of the particles: both induced-charge electrophoresis and Brownian

diffusion will disrupt this coupling and may prevent the instability from developing. The

effects of confinement may also be significant in some applications, notably in microfluidic

devices: interactions with solid boundaries are therefore worthy of interest as well.



Chapter 7

The shear-induced migration of

short-chain polymers in parabolic

channel flow

7.1 Introduction

The recent advent of microfluidics as a tool for the miniaturization of chemical and biolog-

ical assays has spurred a renewed interest in the behavior of macromolecules and colloids

in confinement. Interactions with boundaries and the short-scale variations of fluid flows

in such environments indeed result in unusual dynamics (e.g. [95, 37]), many aspects of

which remain poorly understood. One phenomenon of interest, addressed in this paper, is

the cross-streamline migration of polymeric molecules in inhomogeneous flows, which has

implications for the effective rheology and transport of flowing polymer solutions. Numer-

ous studies have addressed this problem in the past (cf. the review by Agarwal et al. [4]),

yet often disagree on issues as fundamental as the direction of migration. A wide vari-

ety of physical mechanisms, such as wall exclusion, configuration-dependent diffusivities

or hydrodynamic interactions (HI), may contribute to the phenomenon, thereby making

general predictions difficult to formulate.

201
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The case of long-chain flexible polymers such as DNA molecules has received much

attention recently, both in experiments [37, 63] and computer simulations [95, 97, 37, 189,

190]. The consensus from these studies is that flexible polymers in a pressure-driven chan-

nel flow migrate away from the walls toward the centerline, leading to the formation of a

depletion layer, whose characteristic thickness greatly exceeds the radius of gyration of a

single molecule. Graham and coworkers proposed a theoretical model explaining the mi-

gration as a consequence of hydrodynamic interactions between the walls and the entropic

force dipole exerted by a stretched polymer on the fluid, leading to a deterministic drift

away from the walls [97, 121]. As higher shear rates result in stronger molecular stretching,

the drift is expected to increase with flow strength, as indeed observed experimentally [63]

and in numerical simulations [97].

Experimental evidence of depletion layers in flowing solutions of rigid and semi-flexible

polymers has also been reported [6]. Yet in these systems the depletion layer thickness,

which also increases with shear rate, typically remains of the order of the radius of gyra-

tion of a molecule. Models for rigid polymers have focused on steric exclusion with the

walls [6, 48, 164]. While neglecting wall hydrodynamic interactions, these studies were

reasonably successful at explaining experimental observations, including the thickening of

the depletion in strong flows, which may be a consequence of more frequent collisions with

the walls owing to an increased rate of molecular tumbling.

The precise effects of wall hydrodynamic interactions and the applicability of the en-

tropic dipole model of Ma & Graham [121] in the case of less flexible polymers therefore

deserve closer attention. In this Chapter, we employ Brownian dynamics simulations to

address these issues. A Kuhn step level polymer model is described in Section 7.2, which

is based on the slender-body theory described in Section 2.4: it allows the simulation of a

short chain of a few persistence lengths and includes multibody hydrodynamic interactions

between the chain segments and the channel walls. Results are discussed in Section 7.3,

where we emphasize the effect of flexibility. A summary and concluding remarks are given

in Section 7.4.
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Figure 7.1: Problem geometry: we consider the pressure-driven flow of a dilute polymer
solution between two infinite flat plates. A polymer molecule is modeled as a chain of
freely-jointed hydrodynamically interacting Brownian rods

7.2 Model and numerical implementation

We consider the pressure-driven flow of a dilute polymer solution between two infinite flat

plates separated by a distance H (Figure 7.1). A polymer molecule is modeled as a chain

composed of N freely-jointed rigid rods of length L and aspect ratio A, as previously done

by Nyland et al. [141], Ådland & Mikkelsen [2], and most recently Butler & Shaqfeh [33].

As the method we employ is similar in many respects to those used in Chapters 3 and 6,

it is only outlined here. The spatial configuration of a given rod α is determined by the

position xα of its center of mass and by a unit vector pα aligned with its major axis. The

motion of each rod is described using slender-body theory for Stokes flow of Section 2.4,

which relates the linear and angular velocities of the rod to the fluid velocity u(x) and to

a line distribution fα of point force singularities along the rod axis [12]:

ẋα + sαṗα − u(xα + sαpα) = (I + pαpα) · fα(sα), (7.1)

where sα denotes a linear coordinate along the axis of the rod of interest, with origin

the center of the rod. Equation (7.1), in which terms of order (log 2A)−1 have been

neglected, is an asymptotic approximation valid for high aspect ratios (A ≫ 1). In the

present discussion lengths and times are made dimensionless using the characteristic scales

lc = L and tc = 4πµL3/kT log 2A, where µ and kT are the viscosity and thermal energy

of the solvent, respectively. The linear and angular velocities of the rod are obtained by
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integration of Equation (7.1) (cf. Section 2.4.2):

ẋα =

∫ 1/2

−1/2
u(xα + sαpα)dsα + (I + pαpα) · F (0)

α , (7.2)

ṗα = 12 (I − pαpα) ·

∫ 1/2

−1/2
sαu(xα + sαpα)dsα + 12 (I − pαpα) · F (1)

α , (7.3)

where F
(0)
α and F

(1)
α denote the zeroth and first moments of the force distribution along

the rod axis, and are related to the total external force and torque on the rod.

Hydrodynamic interactions between rods and with the walls are captured through the

fluid velocity u in Equations (7.1) through (7.3), which is the sum of the imposed pressure

driven flow u∞ and the disturbance velocities induced by the other rods in the polymer

chain, and by the presence of the walls. For example, along rod α, u becomes:

u(x) = u∞(x) +
1

2 log 2A

N
∑

β=1

∫ 1/2

−1/2
JW (x;xβ + sβpβ) · fβ(sβ)dsβ, (7.4)

where JW (x;x0) denotes the Green’s function for Stokes flow in the geometry of interest,

from which the Oseen-Burgers tensor is subtracted when β = α. In this work the exact

Green’s function between two infinite flat plates, as first determined by Liron & Mochon

[117], was implemented in its regularized form as described by Staben et al. [180]. In the

case of a pressure-driven flow between two flat plates, the imposed fluid velocity is:

u∞(x) = Pe
z

L

(

1 −
z

H

)

x̂, where Pe = γ̇w × tc. (7.5)

The Péclet number Pe, which measures the relative effects of the imposed flow and of

thermal diffusion on the dynamics of a chain segment, is defined as the product of the

wall shear rate γ̇w = 6U0/H (where U0 is the cross-sectional average fluid velocity) and

the characteristic thermal time scale tc defined above.

Equations (7.1)–(7.4) constitute an integral system for the force distributions along

the chain segments. As in the previous Chapters, we solve this system approximately



7.2. MODEL AND NUMERICAL IMPLEMENTATION 205

by expanding the force distribution along each rod in Legendre polynomials and only

retaining the first two terms (cf. Section 2.4.3):

fα(sα) ≈ F (0)
α + 12sα

[

Sαpα + (I − pαpα) · F (1)
α

]

. (7.6)

We have introduced the stresslet Sα on rod α, which is a scalar quantity arising from the

inability of the rod to stretch or compress along its major axis:

Sα = −
1

2

∫ 1/2

−1/2
sαpα · u(xα + sαpα)dsα. (7.7)

The linearization Equation (7.6) reduces the integral system for the force distributions to

an N × N linear system for the stresslets on the chain segments, which is easily inverted

by Gaussian elimination. Once the stresslets are known they can be substituted into the

linearized force distribution Equation (7.6), which itself is used to obtain the disturbance

velocity Equation (7.4). The rod motions are then inferred using Equations (7.2)–(7.3).

The method thus described allows for the calculation of the rod velocities in terms of the

imposed flow velocity and of the external force and torque on each rod, which can be

written symbolically as:

Ṙ = Ṙ∞ + M (R) · F , (7.8)

where R denotes a generalized position vector containing the center-of-mass positions and

orientations of all the rods, and F is a generalized force vector containing the zeroth

and first force moments on each rod. The tensor M is the grand mobility operator, which

accounts for hydrodynamic interactions between rods and with the walls up to the stresslet

term.

In this work the rods are subjected to constraint forces, excluded volume forces, and

Brownian forces, all of which are discussed in detail by Butler & Shaqfeh [33]. The con-

straint forces F c are required to maintain the integrity of the chain, and are calculated

using the method of Lagrange multipliers to satisfy the constraint that adjacent chain seg-

ments must remain linked. Excluded volume interactions are captured through strong and
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short-ranged repulsive forces F e, which prevent overlap between chain segments and with

the channel walls. Finally the Brownian forces F b model collisions between the solvent

molecules and the chain, and are stochastic variables that must satisfy the fluctuation-

dissipation theorem that we introduced in Section 6.4.2:

⟨F b(t)⟩ = 0, ⟨F b(t) ⊗ F b(t′)⟩ = 2δ(t − t′)M−1, (7.9)

where ⟨·⟩ denotes the ensemble average, and δ(t) is the Dirac delta function. They are

calculated in a classic manner as:

F b =

√

2

∆t
B · W , (7.10)

where ∆t is the time step, B satisfies B · BT = M−1 and is obtained by Cholesky de-

composition of the inverse of the grand mobility matrix, and W is a vector of length 6N

containing random numbers from a Gaussian distribution with zero mean and unit vari-

ance. Note that instead of using a Cholesky decomposition, one may have applied the more

efficient Fixman’s method which we described and implemented in Section 6.4.2. Finally,

the stochastic motion of the chain inside the gap is integrated in time using Fixman’s

midpoint algorithm [65], which is appropriate for Brownian systems with configuration-

dependent diffusivities [72].

7.3 Results and discussion

In the following discussion, length are conveniently expressed in terms of the bulk radius

of gyration, which is defined as:

R2
g = ⟨

1

N

N+1
∑

i=1

(xi − ⟨x⟩)2⟩, (7.11)

where xi, i = 1, ..., N + 1 denote the position of the rods ends, and ⟨x⟩ denotes the

chain center of mass. In the following we make use of the bulk value of Rg, measured
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Figure 7.2: Determination of the polymer relaxation time, in the case N = 6: an ensemble
of initially straight chains is allowed to relax, and the longest relaxation time τ is obtained
by fitting a decaying exponential to the last 30 % of extension: ⟨X⟩/L = A exp(−t/τ)+B.

for a chain at equilibrium in an infinite fluid. We shall also express flow strengths in

terms of the Weissenberg number Wi, or ratio of the longest bulk relaxation time τ of the

chain to the characteristic time scale of the flow (defined as the inverse of the wall shear

rate): Wi = γ̇wτ . The longest bulk relaxation time is obtained by letting an ensemble of

initially straight chains relax in an infinite fluid, and by fitting a decaying exponential to

the last 30 % of extension: ⟨X⟩/L = A exp(−t/τ) + B (cf. Figure 7.2). Equivalently, the

Weissenberg number is given by the product of the Péclet number and the dimensionless

chain relaxation time. Note that in very confined geometries, both the radius of gyration

and the relaxation time can be impacted by the presence of walls, the effects of which is are

to decrease Rg and slow down relaxation [30, 7, 194, 195, 95, 96]. However these effects only

become significant when H < Rg: for the cases investigated here where H is significantly

larger than the radius of gyration, both Rg and τ are unaffected by confinement and we

can therefore use their bulk values.

Typical concentration profiles across the gap are shown in Figure 7.3(a) for a chain

composed of N = 6 segments and for various flow strengths in a channel of width H = 8Rg.

The profiles, which are qualitatively similar to those obtained previously by other authors
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Figure 7.3: (a) Center-of-mass concentration profile and (b) average normalized stretch in
the flow direction in a channel of width H = 8Rg at various flow strengths, for a molecule
composed of N = 6 segments of aspect ratio A = 10.

in the case of much longer chains [95, 97, 189, 190], present several interesting features.

A clear depletion layer is observed in the vicinity of the walls. While this depletion layer

exists even in the absence of flow (Wi = 0), where its thickness is of the order of one radius

of gyration, it is shown to grow as Wi increases, resulting in fairly peaked distributions in

strong flows. The profiles for Wi > 0 also exhibit a slight depletion at the centerline, which

is a consequence of the gradient in the cross-streamline center-of-mass diffusivity resulting

from the nonuniform stretching of the chain in the inhomogeneous shear. This nonuniform

stretching is illustrated in Figure 7.3(b), showing the average molecular stretch ⟨X⟩ in the

flow direction, normalized by the chain contour length NL. While the stretch profile is

uniform in the absence of flow, significant variations of ⟨X⟩ across the gap are visible

when flow is applied, with markedly stronger molecular stretch near the walls than near

the centerline owing to the variations in shear rate. Interestingly, the dependence of ⟨X⟩

on the flow strength is rather weak when Wi > 0, a possible consequence of hydrodynamic

interaction with the walls as further discussed below.
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Figure 7.4: Influence of hydrodynamic interactions on (a) the center-of-mass concentration
profile and (b) the average normalized stretch for a molecule composed of N = 6 segments
of aspect ratio A = 10, in a channel of width H = 8Rg at Wi = 100. The different curves
show different levels of modeling: no hydrodynamic interactions, two-body hydrodynamic
interactions, and multibody hydrodynamic interactions at the stresslet level.

To confirm the role of hydrodynamic interactions in the migration of the chains to-

ward the centerline, simulations were performed in which the interactions were completely

turned off, corresponding to a freely-draining chain with anisotropic drag. The results are

summarized in Figure 7.4, showing concentration profiles and average stretch profiles with

and without HI. The figure also shows profiles with a different level of modeling, in which

the stresslet on each rod (Equation 7.7) was calculated based on u∞ only: in that case

each segment feels the disturbance velocity induced by the other segments placed in the

imposed field u∞ (including the associated wall disturbance), but the multiple reflections

between the segments are not included (two-body HI). While the profiles corresponding

to the two levels of modeling for HI cannot be distinguished, completely neglecting hydro-

dynamic interactions yields qualitatively different results, with a very strong depletion at

the channel centerline and no clear migration away from the walls (other than that due

to excluded volume): in that case the depletion at the centerline is a consequence of the

anisotropic drag on the chain segments, which results in a gradient in cross-streamline
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Figure 7.5: Concentration profiles for various chain lengths N when: (a) the Péclet number
Pe and ratio H/L of the channel width to the Kuhn step length are held constant (Pe =
100, H/L = 8); (b) the Weissenberg number Wi and ratio H/Rg of the channel width to
the bulk radius of gyration are held constant (Wi = 50, H/Rg = 8).

diffusivity qualitatively similar to that observed for a single Brownian rod [139, 164]. This

is in qualitative agreement with the previous observations of Jendrejack et al. [97] for

bead-spring chains, and confirms the importance of wall hydrodynamic interactions in the

description of channel flows of flexible molecules. The effects of HI on molecular stretch

are also visible in Figure 7.4(b), where it appears that hydrodynamic interactions reduce

the ability for the chain to stretch in the vicinity of the walls. Note that this effect has

also been observed in experiments [63], and may explain the weak dependence of molecular

stretch on flow strength observed in Figure 7.3(b).

Figure 7.5 illustrates the influence of chain flexibility (measured by the number of

Kuhn steps N) on the cross-streamline migration. In Figure 7.5(a) the Péclet number Pe

and the ratio H/L of the channel width to the Kuhn step length are held constant: in

this situation longer chains migrate much more strongly away from the walls than shorter

ones, as exemplified by the very flat and very peaked profiles for N = 1 and N = 10

respectively. In this sense chain flexibility appears to facilitate migration, a consequence



7.3. RESULTS AND DISCUSSION 211

θ
Rg

Wi

N = 1

N = 2

N = 6

N = 8

θ
Rg

N

Wi = 0

Wi = 50

Wi = 200

(a) (b)

Figure 7.6: Depletion layer thickness θ (measured as the distance from the wall where
the concentration reaches its mean value) as a function of: (a) the flow strength (or
Weissenberg number Wi), and (b) the chain length N , for molecules composed of N
segments of aspect ratio A = 10 in a channel of width H = 8Rg.

of the entropic force dipole exerted on the fluid [121], which is stronger in longer chains

but nonexistent in the limit of a fully rigid rod (N = 1), where the only force dipole

on the fluid is deterministic and due to the stresslet induced by the imposed shear rate.

Most interestingly, the concentration profiles for the chain lengths N ≥ 2 are observed to

collapse onto a single curve when the Weissenberg number Wi and the ratio H/Rg of the

channel width to the bulk radius of gyration are held constant, as shown in Figure 7.5(b)

for Wi = 50 and H = 8Rg. Note that a similar collapse is also observed at other values

of the Weissenberg number. This suggests in particular that Wi and H/Rg, rather than

Pe and H/L, are the appropriate dimensionless groups for quantifying the effects of flow

strength and channel width on the shear-induced migration. The fully rigid case (N = 1)

however differs qualitatively, as shown in Figure 7.5(b): it is characterized by a much

weaker migration (the mechanism for which is discussed below), and by a fairly strong

depletion at the centerline as result of the gradient in center-of-mass diffusivity induced

by the differential alignment of the rod across the channel width [139, 164].
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Some of the observations mentioned above are summarized in Figure 7.6, showing

the effects of flow strength and chain flexibility on the thickness θ of the wall depletion

layer, defined as the position away from the walls where the concentration profile reaches

its mean value. Figure 7.6(a) illustrates the thickening of the depletion layer with flow

strength: θ/Rg is observed to increase from a value of approximately 1.5 in the absence

of flow (Wi = 0) up to approximately 2.3 at Wi = 200 (for flexible chains N ≥ 2). Again

when θ is scaled by Rg the dependence on chain length is negligible, as the depletion layer

thicknesses for N = 2, 6, and 8 collapse onto a single master curve. The insensitivity of

the depletion layer thickness upon chain length is also illustrated in Figure 7.6(b), where

it is observed that for a given flow strength θ/Rg does not depend on N over the range

N = 2 to 10. Figure 7.6(a) also confirms the significantly different behavior of fully rigid

chains (N = 1), for which depletions layers are much thinner than for flexible chains; yet

a thickening of θ/Rg with flow strength is also observed.

The case of a fully rigid polymer (N = 1) was shown to differ qualitatively from

the flexible case and therefore deserves further attention. Unlike a flexible chain which

relaxes by entropic recoil, a rodlike polymer relaxes by randomization of its orientation.

The mechanism for shear-induced migration proposed by Jendrejack et al. [97] and Ma

& Graham [121] for flexible polymers, based on the entropic force dipole exerted by a

chain on the fluid as it tries to recoil while being stretched by flow, therefore does not

trivially carry over to rodlike polymers. Owing to its resistance to stretching, a rigid rod

in a non-uniform flow also exerts a force dipole on the fluid, the magnitude of which is the

stresslet S defined in Equation (7.7). While S clearly scales with flow strength, its sign

and magnitude both depend on the orientation of the rod relative to the imposed flow,

which itself is determined by the balance between fluid flow and thermal diffusion.

These considerations can be made more quantitative using similar arguments as in Ma

& Graham [121]. The force dipole D on a freely-suspended rod with orientation p in the

pressure-driven flow Equation (7.5) is given in dimensionless variables by:

D = S

(

pp −
I

3

)

≈
1

24
pxpzγ̇(z)

(

pp −
I

3

)

, (7.12)
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where S is the stresslet on the rod, and γ̇(z) = ∂u∞/∂z = Pe(1 − 2z/H)/L is the local

shear rate. The rightmost expression in Equation (7.12) is the leading-order term in an

expansion of Equation (7.7). As shown by Smart & Leighton [173], a force dipole D in

the vicinity of a no-slip wall is subject to a drift velocity as a result of hydrodynamic

interactions:

UD = −
3

8h2 log 2A

(

I +
1

2
nn

)

· D · n, (7.13)

where n is a unit vector normal to the plane of the wall and h is the distance from the

wall. Substituting (7.12) into (7.13), and superimposing the effects of both walls (an

approximation valid for large gaps H/L ≫ 1), we find that the cross-streamline drift

velocity of the rigid rod is to leading order:

UD
z = −

γ̇(z)

128 log 2A
f(φ)

[
1

z2
−

1

(H − z)2

]

, (7.14)

where f(φ) is a function of the projected angle φ of the rod orientation vector p onto

the (x, z)-plane and measured with respect to the x-axis: f(φ) = cos φ sin φ(3 sin2 φ − 1).

Note that a more accurate albeit less intuitive expression for UD
z accounting for multipole

reflections between the rod and the two walls is easily derived using the slender-body

theory described in §7.2.

Equation (7.14) shows that the rod can migrate either toward or away from the walls

depending on the sign of f(φ), which is plotted on Figure 7.7(a). We see that both

signs are possible depending on the value of the projected angle. In a sufficiently strong

shear flow a rod will spend most of its time almost aligned in the flow direction (φ ! 0),

leading to a migration away from the walls (f(φ) ≥ 0 for 0 ≤ φ ≤ 35 ). Note however

that f(0) = 0, so that a very strong flow, while leading to large values of the shear rate

γ̇(z) in Equation (7.14) for UD
z , will also result in a very strong alignment of the rod

for which ⟨f(φ)⟩ may be small: the overall effect on the migration is therefore a subtle

interplay between the magnitude of the dipole induced on the rod and the orientation

of the rod with respect to the flow. The precise effect of flow strength is illustrated

in Figure 7.7(b), showing the mean cross-streamline drift velocity ⟨UD
z ⟩ as a function
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Figure 7.7: (a) Dependence f(φ) of the cross-streamline drift velocity UD
z upon the pro-

jected angle φ of a rigid rod in the (x, z)-plane: f(φ) = cos φ sin φ(3 sin2 φ− 1). (b) Profile
of the mean cross-streamline drift velocity ⟨UD

z ⟩ for a rod of aspect ratio A = 10 in a
channel of width H = 8Rg, at various flow strengths, obtained from simulations.

of position and for various values of the Weissenberg number, obtained using the full

slender-body theory of §7.2 and calculated numerically over the course of the simulations.

In particular, migration away from the walls is observed, and the magnitude of the drift

increases with flow strength. Figure 7.7(b) also shows that the drift velocity is quite weak

in the bulk of the channel, which may explain the relatively weak migration observed in

Figure 7.5.

7.4 Concluding remarks

We have performed Brownian dynamics simulations of short-chain polymers in the pressure-

driven flow between two infinite flat plates, in which we modeled a polymer molecule as

a chain of freely-jointed hydrodynamically interacting Brownian rods. Our simulations

showed that cross-streamline migration toward the channel centerline occurs as a result of

hydrodynamic interaction of the polymer with the wall. While flexible chains of various
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lengths (2 ≤ N ≤ 10) all behave in a similar fashion for given values of the Weissenberg

number Wi and of H/Rg, the ratio of the channel width to the bulk radius of gyration,

fully rigid polymers (N = 1) are observed to undergo a much weaker migration, the

mechanism for which differs qualitatively and is based on a coupling between the stresslet

induced by the flow on the rod, the orientation of the rod as determined by the balance

of flow and thermal fluctuations, and hydrodynamic interactions with the walls.



Chapter 8

Conclusions and directions for

future work

In this work, we have considered a number of problems in which complex dynamics arise

in a particulate suspension or polymer solution as a consequence of the long-ranged hy-

drodynamic interactions between the suspended particles. In particular, our aim was to

understand how particle shape or deformability modify these dynamics and in some in-

stances result in new phenomena that are otherwise unobserved in suspensions of rigid

isotropic particles. The approach followed here has consisted of investigating a few model

problems with the aim of identifying the relevant physical mechanisms. Yet all of the

problems described herein have broader implications for numerous physical phenomena or

technological applications involving complex fluids.

In Chapters 3, 4 and 5, we developed efficient computer algorithms to simulate the

inhomogeneous sedimentation in dispersions of rigid anistropic particles (such as fibers

and spheroids) and deformable particles (such as viscous droplets, elastic microcapsules

and flexible polymers). Our simulations were successful at capturing the concentration

instability that occurs in these systems, and we performed a detailed investigation of

the suspension microstructure and of the large-scale collective dynamics that result from

the instability. Results on statistical properties such as the mean sedimentation speed,
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velocity fluctuations and orientation distributions were also reported, and the effects of the

instability on these quantities were discussed. By combining the simulation results with

theoretical analyses and scaling arguments, we were able to describe a likely mechanism for

the instability and determine a number of parameters affecting the wavenumber selection.

In Chapter 6, we focused on electrokinetically-driven hydrodynamic interactions in

suspensions of polarizable particles. Previous investigations of these interactions had been

very limited, and our study provided the first detailed description of this phenomenon

in the case of rodlike particles. In particular, we demonstrated using theory and nu-

merical simulations that the induced-charge electrophoretic flows that are driven at the

particle surfaces when polarizable particles are placed in an electric field result in relative

motions and pairing dynamics. The effects of these interactions in suspensions of both

non-Brownian and Brownian particles were discussed, and results were presented for pair

probabilities, hydrodynamic dispersion coefficients, velocity fluctuations, and orientation

distributions.

Finally in Chapter 7, we investigated the effects of flexibility and of wall hydrodynamic

interactions on the dynamics of short-chain flexible polymers in a pressure-driven channel

flow. While this problem had recently been addressed in the case of long-chain polymers

such as DNA, much less was known on the precise effects of flexibility when the chain length

is a few random-walk steps. Using a detailed model for hydrodynamic interactions between

the chain segments and channel walls, we performed Brownian dynamics simulations and

showed that shear-induced migration away from the solid boundaries still occurs even for

very short chains. We also discussed the case of fully rigid polymers, in which case a

slightly different mechanism for migration was proposed.

For all of these problems, numerical simulations have proven a tremendous ally for

the modeling the complex effects arising from multibody hydrodynamic interactions. The

long-ranged nature of these interactions, which often act on length scales comparable to

the system size, indeed defies simple analytical models. In fact, the work described here

has shown the need for sophisticated algorithms if systems of realistic sizes are to be

accurately simulated: much work therefore remains to be done as we attempt to simulate
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yet larger and more complex systems. Several areas of complex fluid dynamics are yet to

be fully understood, and we describe a few of these below.

Concentrated systems: The problems described in this work all involved suspen-

sions that were dilute, so that relatively simple models based on far-field descriptions

of hydrodynamic interactions were often sufficient to capture the dynamics of inter-

est. In fact, the simulation method used in Chapters 4 and 5 completely neglected

short-range interactions, and yet yielded good comparisons with the experimental

data. In many instances more concentrated suspensions are important: in these

cases small-scale variations of the velocity fields, contacts or other close interactions

may play a significant part in the dynamics. The modeling of these effects is typically

quite difficult, and only a few successful attempts have been made. The Stokesian

dynamics method introduced in Section 1.2.4 allows the simulation of concentrated

suspensions of spheres, with volume fractions approaching the maximum random

packing limit; its application remains however quite costly, especially for colloidal

suspensions, and is therefore limited to systems of a few thousands of particles in

fairly simple geometries. Other approaches for concentrated systems consist of ne-

glecting far-field hydrodynamic interactions altogether by invoking screening by the

surrounding particles, an approximation that may need to be quantified.

Confined systems: Recent applications involving complex fluids in small scale

systems such as micro- and nanofluidic devices have exposed the need for more

efficient models to capture dynamics in strongly confined systems. Interactions with

the boundaries, whether steric or hydrodynamic, as well as the short-scale variations

of fluid flows in these devices indeed result in unexpected dynamics, one example

of which was described in Chapter 7. Current methods to self-consistently simulate

confined systems, such as those listed in Section 2.5, are not generally useful: while

the Green’s function method described in Chapter 7 is only easily applied in very

simple geometries, more general methods based on the boundary integral equation

are hardly practical owing to their very high cost.
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Inertial effects: In this work, we have only considered flows in which both fluid and

particle inertia could be neglected with respect to viscous effects (Re, St → 0). In

the large-scale suspensions that arise for instance in environmental systems as well as

in some industrial applications, fluid and/or particle inertia may become significant

and lead to additional effects that cannot be anticipated using the methods presented

here. Methods based on the boundary integral equation or multipole expansion do

not easily carry over to the inertial regime, as the nonlinearity of the Navier-Stokes

equations precludes the use of Green’s functions. Yet other methods, similar in

essence to that described in Section 4 and based on momentum coupling between

the Navier-Stokes equations and Newton’s equation of motion using distributed force

fields can be used for flows at finite Stokes or Reynolds number (e.g. [22, 23, 31]):

these methods have yet to be generally applied.

Complex physics: The greatest challenge of complex fluid dynamics today may

reside in the description of systems involving multiple physical phenomena, such as

electric, thermal, chemical or mechanical phenomena. Such systems arise commonly

in micro- and nanofluidic devices, where the short length and time scales involved

often result in the interplay of various effects; such is also the case in numerous bio-

physical systems. The difficulty in tackling these problems is twofold. On the one

hand, a precise understanding of the basic physical phenomena and their coupling

is in most cases still lacking. For instance electrokinetic phenomena, which result

from the dynamics of diffuse ions in solution, are traditionally described using con-

tinuum models: these models however are observed to break down in some instances

where discrete ion effects become significant (e.g. steric effects inside electrical dou-

ble layers). On the other hand, the numerical simulation of these phenomena offers

new challenges owing to the large number of degrees of freedom and of the highly

nonlinear coupling between the various effects. Much work therefore remains be to

done before an accurate understanding of many of these systems is achieved.



Appendix A

Periodic fundamental solution and

Ewald summation formula

A.1 Periodic fundamental solution

This section derives the periodic fundamental solution of the Stokes equations, which

was first obtained by Hasimoto [81]. The derivation presented here is similar to that of

Hasimoto, although other approaches are possible. Pozrikidis [148] gives a comprehensive

review of both two- and three-dimensional solutions, for singly, doubly and triply periodic

arrays.

Consider the flow past a three-dimensional periodic array of point forces F applied at

positions:

rn = n1a1 + n2a2 + n3a3, (A.1)

where a1, a2, a3 are the lattice unit vectors and n1, n2, n3 ∈ Z. Let τ0 denote the volume

of the unit cell: τ0 = a1 · (a2 × a3). The Stokes equations take on the following form:

µ∇
2u = ∇p + F

∑

n

δ(r − rn) and ∇ · u = 0, (A.2)

where δ(r − rn) is the three-dimensional Dirac delta function.
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The flow field is expected to be periodic, and therefore we can expand u and −∇p in

Fourier series as follows:

u =
∑

k

uke−2πik·r (A.3)

−∇p =
∑

k

P ke−2πik·r (A.4)

The vectors k are the reciprocal lattice vectors: k = n1b1 + n2b2 + n3b3 and satisfy:

k · aj = nj for j = 1, 2, 3. The basis vectors b1, b2, b3 in the reciprocal lattice can be

found to be:

b1 =
a2 × a3

τ0
, b2 =

a3 × a1

τ0
, b3 =

a1 × a2

τ0
(A.5)

When the original lattice is orthogonal, bj is equal to aj rescaled by the unit volume τ0.

We have the following representation for the three-dimensional periodic Dirac delta

function:
∑

n

δ(r − rn) =
1

τ0

∑

k

e−2πik·r, (A.6)

which can be derived by expanding the left-hand side in Fourier series:

∑

n

δ(r − rn) =
∑

k

cke−2πik·r, (A.7)

and solving for the Fourier coefficient as follows:

ck =
1

τ0

∫

τ0

∑

n

δ(r − rn)e2πik·rdV =
1

τ0

∫

τ0

δ(r)e2πik·rdV =
1

τ0
. (A.8)

Substituting (A.3), (A.4) and (A.6) into the momentum equation gives:

µ∇
2

(

∑

k

uke−2πik·r

)

= −
∑

k

P ke−2πik·r +
F

τ0

∑

k

e−2πik·r (A.9)
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from which we easily obtain:

−4π2µk2uk = −P k +
F

τ0
, ∀k = n1b1 + n2b2 + n3b3. (A.10)

We wish to solve for the Fourier coefficients of the velocity uk and pressure gradient

P k. First observe that (A.10) for k = 0 gives:

P 0 =
F

τ0
, (A.11)

meaning that the force exerted by the particles on the fluid is balanced by a mean pressure

gradient.

The continuity equation also leads to:

∇ ·

(

∑

k

uke−2πik·r

)

=
∑

k

k · uke−2πik·r = 0 (A.12)

and hence k · uk = 0 for all k. Thus taking the dot product of (A.10) with k allows one

to eliminate uk and gives:

k · P k =
k · F

τ0
. (A.13)

Taking the curl of (A.4) also shows easily that P k×k = 0. This shows that P k is colinear

with k and therefore:

P k =
(P k · k)k

k2
=

(k · F )k

τ0k2
, ∀k ≠ 0. (A.14)

Having found the Fourier coefficients for the pressure gradient, we can substitute (A.14)

back into (A.10) to find those for the velocity:

uk =
1

4π2µτ0

(
kk

k4
−

I

k2

)

· F , ∀k ≠ 0. (A.15)

We have determined the Fourier coefficients of the velocity and pressure gradient of
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the fluid, which can now be expressed as:

u = u0 −
1

4πµ

[

S1 − ∇(∇S2)
]

F , (A.16)

−∇p =
F

τ0
−

1

4π
∇(∇S1)F , (A.17)

where S1 and S2 are the following sums:

S1 =
1

πτ0

∑

k≠0

e−2πik·r

k2
, (A.18)

S2 = −
1

4π3τ0

∑

k≠0

e−2πik·r

k4
. (A.19)

Equations (A.16)–(A.17) are an exact solution to the Stokes equations. Yet the Fourier

sums S1 and S2 still decay quite slowly as 1/k2 and 1/k4, making their direct calculation

impractical. Next, we derive the Ewald summation formula, which allows the transforma-

tion of S1 and S2 into exponentially convergent sums.

A.2 Ewald summation formula

The starting point for the transformation consists of using the following integral represen-

tation for 1/k2m, valid for any integer m > 0:

1

k2m
=

πm

Γ(m)

∫ ∞

0
e−πk2ββm−1dβ, (A.20)

where Γ(m) is the complete Γ-function. We wish to evaluate sums of the form:

σm =
∑

k≠0

e−2πik·r

k2m
, (A.21)

from which S1 = σ1/πτ0 and S2 = −σ2/4π3τ0. Using Equation (A.20) we find:

σm =
πm

Γ(m)

∑

k≠0

∫ ∞

0
e−πk2β−2πik·rβm−1dβ. (A.22)
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Split the integral with respect to β into two parts by introducing a parameter α ∈ [0,∞]

called Ewald coefficient, and apply Ewald’s θ-transformation formula

∑

k

e−πk2β−2πik·r =
τ0

β3/2

∑

n

e−π(r−rn)2/β (A.23)

to the integral from 0 to α. We obtain:

∑

k≠0

∫ ∞

0
eπk2β−2πik·rβm−1dβ =

∫ α

0

[

τ0

β3/2

∑

n

e−π(r−rn)2/β − 1

]

βm−1dβ

+
∑

k≠0

∫ ∞

α
e−πk2β−2πik·rβm−1dβ, (A.24)

in which the −1 in the first term on the right-hand side comes from the term k = 0 in the

sums. Changing the integration variable to ξ = α/β in the first integral, and to ξ = β/α

in the second integral, we obtain the following expression for σm:

σm =
πmαm

Γ(m)

[

τ0

α3/2

∑

n

∫ ∞

1
e−

π(r−rn)2ξ
α ξ−m+1/2dξ −

1

m

+
∑

k≠0

e−2πik·r

∫ ∞

1
e−παk2ξξm−1dξ

⎤

⎦ . (A.25)

Introducing the incomplete Γ-functions φν(x) =
∫∞
1 ξνe−xξdξ, this simplifies to:

σm =
πmαm

Γ(m)

⎡

⎣
τ0

α3/2

∑

n

φ−m+ 1
2

(
π(r − r)2

α

)

−
1

m
+
∑

k≠0

e−2πik·rφm−1(παk2)

⎤

⎦ . (A.26)

The incomplete Γ-functions are calculated by application of the following recursion for-

mula: xφν = e−x + νφν−1. In particular:

φ0(x) =
e−x

x
, and φ−1/2(x) =

√

π

x
erfc(

√
x). (A.27)
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Cardinal B-spline interpolation

B.1 General properties of Cardinal B-splines

This appendix presents a few basic results on the Cardinal B-splines used for the interpo-

lation in the SPME algorithm of Chapter 3. A similar, somewhat more detailed discussion

can be found in Essmann et al. [57], or in Schoenberg [165].

A Cardinal spline of order p is a function defined over the set of real numbers R, of

class Cp−2 (i.e. p − 2 times continuously differentiable), and such that its restriction to

any interval [m,m + 1) for any integer m is a polynomial of degree less than or equal to

p − 1. The set of Cardinal splines of order p is denoted Sp and is easily shown to be a

vector space. Quite obviously, Sp is stable by integer translation, i.e. if f(u) is in Sp, so

is f(u − m) for any integer m. A linear basis for this vector space is provided by the

Cardinal B-splines, which are defined as follows. For any real number u ∈ R, introduce

the notations u+ = max(u, 0) = (u+|u|)/2, and up
+ = (u+)p. Define the following function

over R:

Mp(u) =
1

(p − 1)!

p
∑

k=0

(−1)k
p!

k!(p − k)!
(u − k)p−1

+ , u ∈ R. (B.1)

It can be shown that Mp(u) is a Cardinal spline, and that the set of its integer translates

Mp(u − m), called Cardinal B-splines, forms a basis of Sp. This means in particular that

225



226 APPENDIX B. CARDINAL B-SPLINE INTERPOLATION

any function f(u) in Sp can be written uniquely as:

f(u) =
+∞
∑

m=−∞

cmMp(u − m). (B.2)

The function Mp(u) can be shown to have the following interesting properties:

1. Mp(u) > 0 for u ∈ (0, p), and Mp(u) = 0 otherwise. In particular, this shows that

all the p-th order Cardinal B-splines have compact support of length p + 1.

2. Mp(u) is symmetric with respect to the center of its support: Mp(p − u) = Mp(u).

3. The Cardinal B-splines sum up to 1:
+∞
∑

m=−∞

Mp(u − m) = 1.

4. The p-th order B-splines can be obtained from the lower-order B-splines by a recur-

sion formula:

Mp(u) =
u

p − 1
Mp−1(u) +

p − u

p − 1
Mp−1(u − 1). (B.3)

In practice Equation (B.3) is used to compute the Cardinal B-splines, rather than

the definition Equation (B.1).

5. The derivatives of the B-splines can be obtained from lower-order B-splines:

d

du
Mp(u) = Mp−1(u) + Mp−1(u − 1). (B.4)

A list of the Cardinal B-splines of orders 1 through 7 can be found in Deserno and

Holm [49].

B.2 Interpolation of complex exponentials

Let us now proceed to show how the Cardinal B-splines can be used to interpolate complex

exponentials. Consider the complex-valued function g(u) = exp (2πiku/K), where u is a

real number, and k and K are fixed integers. To alleviate the notations we will set
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z = exp (2πik/K), so that now g(u) = zu where z is some fixed complex number. Quite

obviously, we have the property that g(u+1) = zg(u). We wish to interpolate the function

g by a p-th order spline gp ∈ Sp which satisfies the same property: gp(u + 1) = zgp(u).

Since gp(u) is a Cardinal spline, it can be decomposed on the basis of B-splines:

gp(u) =
+∞
∑

m=−∞

cmMp(u − m), (B.5)

and also:

gp(u + 1) =
+∞
∑

m=−∞

cmMp(u + 1 − m) =
+∞
∑

m=−∞

cm+1Mp(u − m). (B.6)

Invoking the uniqueness of the decompositions Equations (B.5) and (B.6), we must have

cm+1 = zcm for all integers m for the property gp(u+1) = zgp(u) to be satisfied. A simple

recursion leads to cm = zmc0 for all integers m, and hence:

gp(u) = c0Φp(u) where Φp(u) =
+∞
∑

m=−∞

zmMp(u − m). (B.7)

If Φp(0) is non-zero, we can choose the coefficient c0 to be 1/Φp(0). Then we have by

construction gp(0) = 1, and gp(m) = zgp(m − 1) for any integer m, so that by simple

recursion gp(m) = zmgp(0) = zm. It can be shown that the only case where Φp(0) = 0 is

when p is odd and 2|k| = K. In all other cases we have constructed a p-th order spline

which interpolates the function g(u) at all the integers. Recalling the original definition

of z, and defining:

b(k) =
1

Φp(0)
=

exp

(

2πi
k

K
(p − 1)

)

p−2
∑

m=0

Mp(m + 1) exp

(

2πi
km

K

)
, (B.8)

we obtain:

exp

(

2πi
ku

K

)

≃ b(k)
∞
∑

m=−∞

Mp(u − m) exp

(

2πi
km

K

)

. (B.9)

The error in the approximation Equation (B.9) can be shown to be bounded by (2|k|/K)p.



Appendix C

Numerical accuracy of the slip

solutions

The solution of the Stokes equations described in Section 4.2.1 is based on a few approxi-

mations, the effects of which are investigated in this Appendix. First we study the effects

of the tangential flow boundary condition at the container walls in Section C.1, where we

provide a comparison to a more accurate solution satisfying the no-slip boundary condition

on two of the vertical walls. The effects of the grid resolution (number of Fourier modes)

are then discussed in Section C.2.

C.1 Effect of the tangential flow boundary condition

The simulations of Chapter 4 have shown the importance of the no-flux boundary con-

dition for the fluid of the bottom of the container, which is responsible for large-scale

recirculation and appears to play a central role in the wavenumber selection of the con-

centration instability. While the no-flux condition is crucial at the bottom wall, previous

investigations have suggested that the no-slip boundary condition on the container side

walls may play a part in the damping of the velocity fluctuations (e.g. [28, 132]). The

Green’s function for Stokes flow is indeed strongly affected in confined geometries, where
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Slip No-slip

Time Window ⟨uz⟩ ∆uz ⟨uz⟩ ∆uz

t = 0
0 < z < 180 0.79 1.20 0.78 0.59

45 < z < 67.5 0.83 1.17 0.79 0.61

t = 20
0 < z < 180 1.38 2.43 1.18 1.12

45 < z < 67.5 1.52 3.09 1.21 1.19

t = 40
0 < z < 180 1.18 1.35 1.03 0.87

45 < z < 67.5 1.21 1.60 1.11 0.98

t = 60
0 < z < 180 1.15 1.20 1.05 0.89

45 < z < 67.5 1.13 1.47 1.05 0.85

t = 80
0 < z < 180 1.06 0.85 1.06 0.80

45 < z < 67.5 1.10 0.91 1.07 0.80

Table C.1: Influence of the flow boundary condition on the container side walls. Average
sedimentation velocities ⟨uz⟩ and velocity fluctuations in the vertical direction ∆uz were
evaluated for a set of particle configurations corresponding to various stages during sedi-
mentation (t = 0 to 80), using the tangential flow boundary condition described in Section
4.2.1 (‘slip’), and the Green’s function of Mucha et al. [132], which satisfies the no-slip
boundary condition on two of the side walls (‘no-slip’). The particle configurations used
were obtained from a full simulation using the tangential flow boundary condition, in a
suspension of 29,702 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32,
Ly = 12, Lz = 180 (volume fraction φ = 0.1 %). The statistics were calculated in two
different windows: 0 < z < 180 (entire container), and 45 < z < 67.5 (same window as in
Figure 4.8).

hydrodynamic interactions decay faster and are effectively screened over distances of the

order of the shortest wall separation.

While the Green’s function for Stokes flow between two parallel walls is known [117,

17, 180, 99]), no analytical form exists in the case of finite containers such as the ones

considered in this work. For the purpose of comparison with the slip solution used in our

work, we implemented the Green’s function proposed by Mucha et al. [132], which satisfies

the no-slip boundary condition on two of the side walls (typically the two closest ones) and

a tangential flow boundary condition on the remaining walls. This Green’s function uses

expansions in Fourier series in the two directions parallel to the no-slip walls, which are

typically truncated at a finite number of modes; yet the absence of periodicity in the third
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direction precludes the use of fast Fourier transforms as for the slip solution, resulting in

a higher computational cost for the evaluation of hydrodynamic interactions. The reader

is referred to the appendix of Mucha et al. [132] for a detailed discussion of the no-slip

solution.

Results of the comparison are summarized in Table C.1, where we show the effects

of the boundary condition on the mean velocity and velocity fluctuations. These two

quantities were calculated with either of the two Green’s functions for a series of particle

configurations corresponding to various stages of the sedimentation in a suspension of

spheroids. While the mean velocities are quite similar in both cases (albeit somewhat

higher with slip boundaries), Table C.1 shows that velocity fluctuations are systematically

overestimated when slip is allowed, by up to a factor of 2 at the peak of the fluctuations.

This result, which supports the previous conclusions of Brenner [28] and Mucha et al. [132],

also explains some of the differences noted in Section 4.2.5 between our simulation results

and the experimental data of Herzhaft & Guazzelli [84].

C.2 Effect of the grid resolution

The effects of the grid resolution (i.e. number of Fourier modes) on the sedimentation

statistics were also investigated. The results of this study are summarized in Table C.2,

which reports velocity statistics obtained using three different grid resolutions. Note that

in the method described in Sections 4.2.1 and 4.2.1, an increase in the number of Fourier

modes also results in the reduction of the extent of the force assignment function, so that

in the limit of an infinite number of modes the exact solution for a point force (Dirac delta

function) should be recovered. As shown in Table C.2, the effect of the grid resolution

on the mean sedimentation velocity are negligible. The velocity fluctuations however are

affected more strongly, and are observed to decrease as the number of modes increases;

significant errors can be expected using very coarse grids. In the simulations described in

Chapters 4 and 5 we typically used on the order of 32 modes in the horizontal directions

and 128 modes in the vertical direction.
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Number of Fourier modes

16 × 16 × 64 32 × 16 × 128 64 × 32 × 256

Time Window ⟨uz⟩ ∆uz ⟨uz⟩ ∆uz ⟨uz⟩ ∆uz

t = 0
0 < z < 180 0.81 1.82 0.79 1.20 0.77 0.99

45 < z < 67.5 0.84 1.85 0.83 1.17 0.81 0.92

t = 20
0 < z < 180 1.36 2.98 1.38 2.43 1.38 2.22

45 < z < 67.5 1.54 3.75 1.52 3.09 1.52 2.89

t = 40
0 < z < 180 1.09 1.93 1.18 1.35 1.21 1.19

45 < z < 67.5 1.17 2.31 1.21 1.60 1.31 1.51

t = 60
0 < z < 180 1.06 1.60 1.15 1.20 1.22 1.32

45 < z < 67.5 1.16 1.83 1.13 1.47 1.18 1.45

t = 80
0 < z < 180 0.96 1.13 1.06 0.85 1.18 0.98

45 < z < 67.5 1.03 1.21 1.10 0.91 1.20 1.03

Table C.2: Influence of the grid resolution on the accuracy of the Stokes flow solution.
Average sedimentation velocities ⟨uz⟩ and velocity fluctuations in the vertical direction
∆uz were evaluated for a set of particle configurations corresponding to various stages
during sedimentation (t = 0 to 80), for various grid resolutions (i.e. numbers of Fourier
modes). The same particle configurations were used as in Table C.1, and the statistics were
calculated in two different windows: 0 < z < 180 (entire container), and 45 < z < 67.5
(same window as in figure 4.8).



Appendix D

Pair interactions by the method of

reflections

This Appendix uses the method of reflections [101] combined with multipole expansions to

analytically derive an asymptotic expression for the relative motion between two aligned

rods as a series in powers of l/|x|. Note that a similar series can also be obtained by

expanding Equations (6.47)–(6.49); however the method of reflections provides an intuitive

justification for these equations, and does not make any assumptions on the linearity or

direction of the force distributions along the rods.

D.1 Zeroth-order velocity

We consider the situation of Figure 6.4 where the two rods are aligned in the direction of

the electric field and the first rod is located at the origin. The first step of the method

of reflections consists of determining the linear velocity of the second rod placed in the

electrophoretic disturbance field that the first rod would create if it were by itself. This

disturbance field is that induced by the linear force distribution of Equation (6.39), which

for an aligned rod simplifies to:

f
(0)
1 (s1) = −

2πεs1

log 2γ
G2

∥E
2
∞p. (D.1)
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From Equation (2.22) the disturbance velocity at an arbitrary position x is:

u
(0)
1 (x) =

1

8πµ

∫ l

−l
K(x − s1p) · f

(0)
1 (s1)ds1. (D.2)

Expanding K(x − s1p) in a Taylor series around s1 = 0, and substituting Equation (D.1)

for the force distribution, we can express the disturbance velocity as:

u
(0)
1 (x) =

εG2
∥E

2
∞

4µ log 2γ

[
2l3

3
p · ∇K(x) +

l5

15
ppp : ∇∇∇K(x)

]

· p + O(|x|−6). (D.3)

Note that only odd derivatives appear in the expansion due to the linearity of the force

distribution. Using the notation cos Θ = (x · p)/|x|, evaluation of the derivatives yields:

p · ∇K(x) · p =
(

1 − 3 cos2 Θ
) x

|x|3
, (D.4)

ppp : ∇∇∇K(x) · p =
(

−9 + 90 cos2 Θ − 105 cos4 Θ
) x

|x|5

+
(

−18 cos Θ + 30 cos3 Θ
) p

|x|4
.

(D.5)

The translational velocity of the second rod placed in the disturbance field u
(0)
1 is then

given by Equation (6.28):

U
(0)
2 =

1

2l

∫ l

−l
u

(0)
1 (x2 + s2p)ds2. (D.6)

This time, expanding u
(0)
1 (x2 + s2p) in a Taylor series about s2 = 0, we find:

U
(0)
2 = u

(0)
1 (x2) +

l2

6
pp : ∇∇u

(0)
1 (x2) + O(|x2|−6). (D.7)

Substituting the expression found for u
(0)
1 (Equation D.3), we obtain the velocity of the

second rod as:

U
(0)
2 =

εG2
∥E

2
∞l

6µ log 2γ

[
(

1 − 3 cos2 Θ
) xl2

|x|3
+

4

5

(

−3 + 30 cos2 Θ − 35 cos4 Θ
) xl4

|x|5

+
4

5

(

−6 cos Θ + 10 cos3 Θ
) pl4

|x|4

]

+ O(|x|−6),

(D.8)
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where we used x2 = x. Similarly, u
(0)
1 induces a rotation of the second rod at an angular

velocity given by Equation (6.29):

Ω
(0)
2 =

3

2l3

∫ l

−l
s2p × u

(0)
1 (x2 + s2p)ds2, (D.9)

or, upon expansion of u
(0)
1 (x2 + s2p) about s2 = 0:

Ω
(0)
2 = p ×

(

p · ∇u
(0)
1 (x2) +

l2

10
ppp : ∇∇∇u

(0)
1 (x2)

)

+ O(|x2|−6). (D.10)

All calculations done, the zeroth-order angular velocity is found to be:

Ω
(0)
2 =

εG2
∥E

2
∞l

2µ log 2γ

[
(

−3 cos Θ + 15 cos3 Θ
) p × xl3

|x|4

+15
(

15 cos Θ − 70 cos3 Θ + 63 cos5 Θ
) p × xl5

|x|6

]

+ O(|x|−6).

(D.11)

For obvious symmetry reasons, the velocity of the first rod induced by the electrophoretic

flow on the second rod is the opposite of Equation (D.8), while both angular velocities are

the same.

D.2 First reflection

In addition to causing the motion of the second rod, the zeroth-order disturbance u
(0)
1

created by the first rod also induces a force distribution along the second rod, given by

Equation (6.31):

f
(1)
2 (s2) =

4πµ

log 2γ

(

I −
1

2
pp

)

·

[

U
(0)
2 + s2Ω

(0)
2 × p − u

(0)
1 (x2 + s2p)

]

, (D.12)

which creates the following disturbance flow:

u
(1)
2 (x) =

1

8πµ

∫ l

−l
K(x − x2 − s2p) · f

(1)
2 (s2)ds2. (D.13)

Expanding both K(x− x2 − s2p) and u
(0)
1 (x2 + s2p) in Taylor series about s2 = 0 yields:

u
(1)
2 (x) = −

l3

2 log 2γ
p · ∇K(x − x2) ·

∂f
(1)
2 (s2)

∂s2

∣
∣
∣
∣
∣
s2=0

+ O(|x − x2|−6), (D.14)
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which convects the first rod at a velocity:

U
(1)
1 =

1

2l

∫ l

−l
u

(1)
2 (x1 + s1p)ds1 = u

(1)
2 (x1) + O(|x1 − x2|−6). (D.15)

The derivatives in Equation (D.14) can be calculated, and recalling that x2 − x1 = x we

find that the first reflection of the electrophoretic velocity from the second rod back to the

first rod results in the following velocity:

U (1) =
εG2

∥E
2
∞l

18µ(log 2γ)2
(

1 − 15 cos2 Θ + 51 cos4 Θ − 45 cos6 Θ
) xl5

|x|6
+ O(|x|−6). (D.16)

For symmetry reasons the first reflection on the second rod leads to U
(1)
2 = −U

(1)
1 . Note

that the reflected disturbance flow Equation (D.13) also induces an additional angular

velocity on the first rod, which scales as O(|x|−6) and therefore is not computed here.

D.3 Relative motion to order |x|−6

Realizing that the relative velocity between the two rods is equal to U = 2U2, the above

derivations provide an asymptotic expansion for the relative velocity:

U = U (0) + U (1) + O(|x|−6), (D.17)

where:

U (0) =
εG2

∥E
2
∞l

3µ log 2γ

[
(

1 − 3 cos2 Θ
) xl2

|x|3
+

4

5

(

−3 + 30 cos2 Θ − 35 cos4 Θ
) xl4

|x|5

+
4

5

(

−6 cos Θ + 10 cos3 Θ
) pl4

|x|4

]

,

(D.18)

U (1) =
εG2

∥E
2
∞l

9µ(log 2γ)2
(

1 − 15 cos2 Θ + 51 cos4 Θ − 45 cos6 Θ
) xl5

|x|6
. (D.19)

Both rods also rotate at the same angular velocity:

Ω =
εG2

∥E
2
∞l

2µ log 2γ

[
(

−3 cos Θ + 15 cos3 Θ
) p × xl3

|x|4

+15
(

15 cos Θ − 70 cos3 Θ + 63 cos5 Θ
) p × xl5

|x|6

]

+ O(|x|−6).

(D.20)
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Higher terms in the expansions could be obtained by considering further reflections of the

disturbance field and keeping additional terms in the multipole expansions. Importantly,

one should note that the angular velocity is non-zero, and two rods initially aligned with

the electric field will not remain so. The assumption of alignment with the field made in

Section 6.3.1 is therefore not exact; yet simulations show that departures from the perfect

alignment are typically quite weak. Note also that the exact same asymptotic expression

for the relative velocity could have been obtained by expanding Equation (6.49) in a

Taylor series; higher order terms however would differ, as the method of reflections can

account for nonlinear force distributions, unlike the slender-body model of Section 6.3.1

(cf. Equation (6.45)).

D.4 Asymptotic form of the pair distribution function

Equation (6.52) for the pair distribution p(x) can be solved analytically in the far-field.

Indeed, the leading-order term in U is radial, as shown in Equation (D.18), so that in

spherical coordinates (ρ,Θ) (where ρ = |x| and cos Θ = (x · p)/|x|) Equation (6.52)

simplifies to:
εG2

∥E
2
∞l

3µ log 2γ

(

1 − 3 cos2 Θ
) 1

ρ2

∂

∂ρ
(log p) = −∇ · U . (D.21)

It is easy to see that U (0) is divergence-free, and that the leading order term in the

divergence is therefore ∇ · U (1). Calculating the leading order term in ∇ · U (1) and

integrating Equation (D.21) subject to the boundary condition p(ρ,Θ) → 1 as ρ → ∞

yields:

p(ρ,Θ) = exp

(

−
(1 − 12 cos2 Θ + 15 cos4 Θ)l3

6 log 2γρ3

)

, (D.22)

using Equation (D.19) from the method of reflections. In particular, p(ρ,Θ) tends to 1

exponentially as ρ → ∞.
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