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Active transport of a passive 
colloid in a bath of run‑and‑tumble 
particles
Tanumoy Dhar  & David Saintillan *

The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-
and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an 
asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely 
by frictionless steric interactions. We estimate the effective long-time diffusivity D of the suspended 
colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of 
activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, 
and the number density of swimmers in the bath. We also propose a semi-analytical model for the 
colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on 
the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical 
simulations and analytical results in the experimentally-relevant regime of low swimmer density, low 
mobility ratio, and high activity.

Systems driven out of equilibrium are ubiquitous, and underlying active fluctuations play an important role in 
governing their behavior. One such example is the ability of active microswimmers to transport colloids1–4 and 
perform mechanical work5–8. The sole propulsion of individual microswimmers can lead to novel transport 
characteristics, such as enhanced diffusion9–12, where the long-time diffusivity of suspended passive particles 
in bacterial suspensions far exceeds its Brownian counterpart. Seminal experiments by Wu and Libchaber1 first 
highlighted this phenomenon and uncovered a transition from short-time directed motion (non-Gaussian and 
super-diffusive) to long-time diffusive (Gaussian) motion. A succession of subsequent experiments3,9,12–18 further 
probed this effect, and for instance examined the role of the concentration of bacteria and the effect of the size 
ratio of the colloid to the bacteria. The type of microswimmer used was also shown to affect the dynamics of 
the colloids suspended in a bath: for example, certain algae (C. reinhardtii) drive oscillatory flows19,20 resulting 
in loop-like colloid trajectories21, an effect that can be rationalized using far-field hydrodynamics of this swim-
ming organism22–24. An extensive amount of theoretical3,12,25–32 and numerical works2,10,26,33,34 were performed 
over the last two decades, and several models were proposed to elucidate the respective roles of steric18,27 vs 
hydrodynamic10,26,34,35 effects in driving colloidal diffusion. Recent experiments have shown that bacteria4,36 
and other self-propelled particles36–38 can undergo direct collisions with colloidal clusters, substantiating the 
significance of steric interactions relative to hydrodynamic interactions. However, modeling endeavors focused 
on predicting colloid dispersion in active suspensions have encountered various limitations, primarily attribut-
able to the challenges involved in quantifying the scattering dynamics between the active particle and the colloid. 
Recently, Lagarde et al.18 put forth a collision model that treats bacteria-colloid interactions as purely repulsive. 
The present work is inspired by the scattering models of Jakuszeit et al.39 and Saintillan40, used to study the 
dispersion of an active particle in porous media. Regardless of the nature of interactions, the anomalous short-
time dynamics exhibited by colloids suspended in bacterial baths are always found to map to Gaussian statistics 
at long times. The quantitative understanding of this microscopic enhancement of the long-time diffusivity of 
passive colloids in active baths remains, however, incomplete, even in the seemingly simple case of steric interac-
tions. Previous works3,12,15,26 have provided phenomenological arguments for such diffusion. Yet, an analytical 
model relating the diffusion coefficient to system parameters based on first principles is still lacking for baths 
of run-and-tumble particles.

To address this gap, we propose a minimal model incorporating swimmer-colloid collisions in two dimen-
sions (where the majority of the experiments1,3,4,14,18,41 are performed) to effectively capture the effect of system 
parameter variations on the dispersion. The proposed model relies on a collision-resolution algorithm that 
solves for constraint forces arising from swimmer-colloid contacts at every instant in time. We employ stochastic 
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simulations to estimate the effective diffusivity D of the suspended colloid, highlighting its dependence on the 
level of activity or Péclet number Pe, mobility ratio µ of the colloid to a swimmer, and number density ρ of swim-
mers in the active bath. These system parameters are defined more precisely later. We also posit a semi-analytical 
model for the colloid diffusivity in terms of the variance and correlation time of the fluctuating active force 
resulting from swimmer collisions. Our theoretical predictions agree well with particle simulations in the limit 
of low swimmer density, low mobility ratio and high Péclet number, and provide a simple analytical framework 
for the description of long-time colloidal dispersion in baths of run-and-tumble microswimmers.

The paper is organized as follows. In the problem formulation, we present the swimmer-colloid collision 
model, the dimensionless governing equations, and the computational framework. Next, we present results from 
stochastic simulations, where we highlight the dependence of the long-time colloid diffusivity on the system 
parameters. Following that, we propose an asymptotic theory valid for low mobility ratios (µ → 0) . This theory 
relates the diffusivity to the variance and correlation time of the fluctuating force on a fixed colloid subject to colli-
sions with run-and-tumble microswimmers, and involves the determination of the mean number of swimmers in 
contact with the colloid. The proposed semi-analytical theory is shown to match well with the simulation results 
in the limit of large colloids and long swimmer persistence lengths. Finally, we provide concluding remarks.

Problem formulation
Swimmer‑colloid collision model
We analyze the dispersion of a passive colloid suspended in a dilute collection of non-interacting self-propelled 
particles in two dimensions using a minimal model for swimmer-colloid collisions. Swimmers ( i = 1, . . . ,N ), 
with positions ri and orientations pi (where |pi| = 1 ), are modeled as point particles and perform a run-and-
tumble motion42,43 away from the colloid: straight swimming runs of duration τ with constant velocity u along 
the unit director pi are interrupted with instantaneous reorientation events or tumbles (see Fig. 1b where the 
swimmer with orientation p1(t) performs a tumble at a point denoted by T1 ). The time τ between consecutive 
tumbles is an exponentially distributed random variate with mean τ̄ and cumulative probability distribution 
function �(τ) = 1− exp(−τ/τ̄ ) for τ ≥ 0 . The choice of an exponential distribution to model the tumbling 
rate of the Escherichia coli bacterium44–46 is an assumption and has been widely used in previous theoretical 
studies47,48. In the present work, we assume that the swimming velocity u, orientation pi and run time τ of the 
swimmer remain independent of its spatial proximity to the colloid, which serves as a convenient approximation 
for computational simulations. In free space, far from the colloid, a swimmer performs unimpeded run-and-
tumble motion. During a run away from the colloid, the swimmer dynamics simply follows:

A steric collision occurs whenever a swimmer comes in contact with the surface of the colloid, assumed to be of 
circular shape with radius A. The geometry of a collision is illustrated in the schematic of Fig. 1a. We choose a 
Cartesian (x, y) coordinate system that is fixed in the active bath, where ri and R are the instantaneous swimmer 
and colloid positions, respectively. The current orientation of the swimmer is pi = (cos θi , sin θi) , where the 
angle θi during a particular run is a random variable drawn from a uniform distribution in the interval [0, 2π) . 

(1)ṙi = upi .

(a) (b)

Figure 1.   Problem definition: (a) Schematic diagram of a swimmer in contact with the colloid and associated 
nomenclature (see main text for details); (b) Representative swimmer dynamics, where sections of a run 
performed in the bulk or on the colloid surface are shown in green and yellow, respectively, and where tumbles 
are depicted as red dots. As a swimmer slides on the colloid surface, it can either escape by swimming away 
tangentially (swimmer 2), or finish its run and perform its next tumble on the surface (swimmer 3).
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The wall-normal unit vector qi at the point of contact C is directed from the colloid into the active bath. The 
angle αi ∈ [−π ,π ] in Fig. 1a captures the projection of pi on qi and is henceforth called contact angle. Note that 
αi changes with time over the course of a run as the swimmer slides over the colloid surface. Symmetry with 
respect to the direction qi dictates that the probability density function of αi be an even function. Finally, the 
angle βi ∈ [0, 2π) captures the angular position of the swimmer on the colloid surface with respect to the (X, Y) 
coordinate system.

We model swimmer-colloid interactions as steric frictionless collisions: When a swimmer comes in contact 
with the colloid, its relative velocity with respect to the colloid vanishes in the normal direction, effectively estab-
lishing a no-penetration boundary condition. By assumption, the swimmer orientation remains unchanged for 
the duration of the current run, and it simply undergoes sliding motion along the colloid surface until it either 
swims or tumbles away. If the contact angle reaches ±π/2 before the end of the run, the swimmer escapes from 
the colloid surface and completes its run in a straight line in the bulk (see Fig. 1b where swimmer 2 comes in 
contact with the colloid at point C2 and escapes at point E2 where p2 becomes tangent to the surface). If, on the 
other hand, the swimmer concludes its run on the surface of the colloid, it will perform its next tumble on the 
surface. If its new orientation points into the bulk, it will immediately leave the colloid surface (see swimmer 3 
in Fig. 1b). If its new orientation points toward the colloid, it will start the next run sliding on the colloid surface, 
until it either escapes or tumbles again.

During the interaction between the swimmer and the colloid, both entities apply contact forces ±Fiqi of 
equal magnitude but in opposite directions. As the swimmer slides on the surface of the colloid, the contact 
force magnitude changes with the swimmer’s evolving position and orientation. Tangential resistance to sliding 
is not considered, resulting in a contact force directed solely along the normal direction. The swimmer’s velocity 
is modified as a result of the collision:

where m is the mobility of the swimmer, assumed to be isotropic for simplicity. The dynamics of the colloid is 
driven by the net contact force resulting from the collisions with any swimmers currently on its surface and 
follows

where M is the mobility of the colloid. Here, c(t) is the number of swimmers in contact with the colloid at any 
given instant in time. As we explain in detail in the numerical method section below, the contact forces Fi are 
determined numerically to satisfy the no-penetration condition:

We also introduce ζ = 1/m and Z = 1/M as the friction coefficients of a swimmer and of the colloid, respec-
tively. Throughout the remainder of the present work, we choose the convention of employing uppercase letters 
to represent physical variables associated with the passive colloid, and lowercase letters for those associated 
with a swimmer.

We underscore that the minimal model presented herein provides a simple framework for understanding col-
loidal dispersion in active baths, but also relies on strong simplifying assumptions: in the context of experiments, 
short-ranged hydrodynamic effects (lubrication49–51 and alignment torques52,53) experienced by the swimmers can 
lead to scattering at angles that are often non-tangent to the colloid surface54. Solid friction between swimmers 
and the colloid may also affect the dynamics by slowing down the motion of the swimmers during collisions, and 
by causing rotation of the colloid; the effect on translational diffusion, however, is expected to be weak. Experi-
ments demonstrate that the tumbling rate 1/τ is reduced for certain swimmers such as E. coli near boundaries, 
which effectively acts towards trapping the swimmer at the walls55,56. Finally, the present model does not capture 
the convex trajectory of the swimmer around the colloid predicted by models that account for swimmer-colloid 
hydrodynamic interactions54,57, but is supported by the recent experimental observations of Lagarde et al.18.

Dimensionless governing equations
The governing equations are non-dimensionalized using length scale A and time scale A/u. Contact forces are 
made dimensionless using the swim force58–60 Fswim = ζu , which is the force one needs to apply to a swimmer 
to fix its position in space. In free space, away from the colloid, the dynamics of a swimmer during its run simply 
follows

At the colloid surface, it becomes:

The evolution equation for the position of the colloid reads:

where the mobility ratio µ is defined as

(2)ṙi = upi +mFiqi ,

(3)Ṙ = −M

c
∑

i=1

Fiqi ,

(4)(ṙi − Ṙ) · qi = 0.

(5)ṙi = pi .

(6)ṙi = pi + Fiqi .

(7)Ṙ = −µ

c
∑

i=1

Fiqi ,
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Note that the mobility of a particle in Stokes flow is inversely proportional to its size. The mobility ratio µ , 
therefore, can also be interpreted as a measure of the ratio of the swimmer size to the colloid size, despite the 
swimmers being pointlike in our model, with the limits of µ → 0 and µ → ∞ describing large and small col-
loids, respectively.

In addition to the mobility ratio, two dimensionless parameters govern the problem. The Péclet number, 
defined as Pe = uτ̄ /A , compares the mean run time τ̄ to the time A/u for a swimmer to travel a distance of one 
colloid radius, and is a dimensionless measure of the persistence of swimmer trajectories. Note that Pe does 
not appear explicitly in the governing equations, but defines the mean of the exponential distribution used to 
model the swimmer run times. Finally, the number density ρ of swimmers is defined as the ratio of the total 
number of swimmers N in the square domain of length L to the area L2 − πA2 available to the swimmers. In 
dimensionless variables,

Numerical method
We implement a contact-force resolution-based computational algorithm for simulating the dynamics of a sin-
gle passive mobile colloid in a suspension of non-interacting run-and-tumble particles in two dimensions. The 
simulations are performed inside a periodic square domain of linear dimension L chosen to be much larger 
than the colloid size and typical run length ( L ≫ max{Pe, 1} in dimensionless variables), which N swimmers 
are distributed at random both spatially and orientationally. The values of L and N are chosen to achieve the 
desired number density ρ as defined in Eq. (9). We discretize time with a fixed time step �t ≪ min{Pe, 1} and 
use time-marching to advance the positions of the swimmers and colloid.

Far from the colloid, a swimmer trajectory simply evolves as ri(t +�t) = ri(t)+ pi�t over the course of 
one time step. During any given time step, a number c(t) of swimmers will collide with the colloid. The positions 
of these swimmers are updated as

where the normal contact force Fi , taken to be constant over one time step, must be determined. During that 
same time step, the position R of the colloid is evolved as

which couples all the contact forces. To solve for the magnitude of these forces, we apply the no-penetration 
condition of Eq. (4) at the location of each contact. This leads to the following set of coupled linear equations:

where F = {F1, F2...Fc} is a vector of length c(t) containing the unknown contact forces, and I is the identity 
matrix. The matrix A and the vector B are geometric quantities that depend on the current configuration of 
the swimmers on the colloid surface:

The system of equations (12) is constructed at every time step and inverted numerically to obtain the contact 
forces. The swimmer and colloid positions are subsequently updated using Eq. (10) and Eq. (11), respectively. 
Note that the present formulation can still result in occasional swimmer-colloid overlaps (|ri − R| < 1) due to 
the time discretization. As a result, we check for overlaps at the end of each time step and, if necessary, implement 
the additional correction for the swimmer position based on the updated colloid location:

Numerical results and discussion
In this section, we present results from numerical simulations for a wide range of system parameters. Figure 2 
shows several representative colloid trajectories (for t = 0 to 5000) at different densities ρ and different Péclet 
numbers Pe in panels a and b, respectively (see figure caption for details, and also see Supplementary Material for 
a video of a typical simulation). The trajectories, along which increasing color intensity is used to show the pas-
sage of time, are correlated random walks, albeit with a short correlation time as we discuss further below. Visual 

(8)µ =
M

m
=

ζ

Z
.

(9)ρ =
NA2

L2 − πA2
.

(10)ri(t +�t) = ri(t)+ [pi + Fi(t)qi]�t,

(11)R(t +�t) = R(t)− µ

c(t)
∑

i=1

Fi(t)qi�t,

(12)(I+ µA) ·F = −B,

(13)A =


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inspection suggests that dispersion gets stronger with either increasing ρ (compare blue and green curves in a) 
or Pe (compare purple and orange curves in b), trends that we quantify and explain in the following discussion.

Figure  3 shows the time evolution of the mean squared displacement of the colloid, defined as 
�|�R(t)|2� = �|R(t)− R(0)|2� , where �·� denotes the ensemble average over multiple realizations of single col-
loid trajectories. The system parameters are the same as in Fig. 2. At short time scales ( t ∼ 10−2 − 10−1 ), the 
mean squared displacement grows as tγ with γ ≈ 2 . At later times, a transition to diffusive behavior (with γ ≈ 1 ) 
is observed, consistent with previous experimental studies. The crossover time from the ballistic to the diffusive 
regime varies for different system parameters as is evident in Fig. 3a,b. We quantify the long-time dispersion of 
the colloid in terms of its diffusivity D defined as:

The diffusivity was numerically determined for a wide range of number densities ρ , Péclet numbers Pe, and 
mobility ratios µ , and the results are summarized in Fig. 4. Note that each data point in Fig. 4 is an average over 
5000 independent realizations.

The variation of D with number density ρ is illustrated in Fig. 4a for different values of Pe at µ = 0.5 . At 
low to moderate swimmer densities, increasing ρ leads to a linear increase of D , which can be rationalized by 
a concomitant increase in the number of swimmer-colloid collisions as we analyze further below. This linear 
dependence on ρ is in agreement with previous experimental studies3,4,15,18. Upon further increasing the density 
of the active bath, the diffusivity D is found to reach a peak and then slightly decrease with ρ at high densities. A 
similar departure of the diffusivity from linear growth with increasing swimmer density was previously reported 
by Lagarde et al.18, in both experiments and numerical simulations. The explanation provided by Lagarde et al. is 
based on the hypothesis that multiple bacteria simultaneously interact with the colloid at high densities, resulting 

(15)D = lim
t→∞

1

4

d

dt
�|�R(t)|2�.

Figure 2.   Simulated trajectories of the passive colloid for different parameter values. The three distinct color 
gradients are for different: (a) number densities of swimmers: ρ = 0.08 (blue), 0.8 (green) and 8 (red) (with 
Pe = 5.0 and µ = 0.5 ); (b) Péclet numbers: Pe = 0.05 (purple), 0.5 (orange) and 5 (grey) (with ρ = 0.8 and 
µ = 0.5 ). The increasing intensity of color captures increasing time. All the trajectories are for t = 0 to 5000. The 
black dot shows the initial colloid location. See Supplementary Material for a video showing a typical simulation.

(a) (b)

Figure 3.   Variation of the mean squared displacement with time, for different: (a) number densities of 
swimmers: ρ = 0.08 (blue), 0.8 (green) and 8 (red) (with Pe = 5.0 and µ = 0.5 ); (b) Péclet numbers: Pe = 0.05 
(purple), 0.5 (orange) and 5 (grey) (with ρ = 0.8 and µ = 0.5 ). The dashed black lines show the linear diffusive 
scaling at long times.
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in a trend that breaks the linear growth of D . This explanation is consistent with our simulations: the departure 
from the linear increase in Fig. 4a occurs for ρ � 1 , which coincides approximately with the density at which 
the mean number of swimmers on the surface of the colloid at any given time exceeds 1 (see Fig. 6 below). The 
slight decrease with ρ observed at high densities in Fig. 4a can be understood by the same effect: when many 
swimmers interact with the colloid at the same time, partial cancellation of the forces they exert on the colloid 
occurs, resulting in a lower diffusivity; this will be confirmed in Fig. 8 when we discuss the dependence of the 
net force variance on ρ . To the best of our knowledge, this decrease in D with respect to density at large ρ has not 
been experimentally observed in bacterial suspensions. Indeed, the regime where it occurs in our model may be 
challenging to realize experimentally, as it requires moderate to high mobility ratios (i.e., small colloids) as well 
as many swimmers interacting with the colloid at any given time. In a system with finite-sized swimmers, steric 
hindrance would likely impose an upper bound on the number of active particles capable of simultaneously 
colliding with the colloid surface. Furthermore, bacterial suspensions at such high densities may also exhibit 
collective motion, which would further act to enhance D.

The dependence of diffusivity on Péclet number is shown in Fig. 4b for different swimmer densities. At lower 
values of Pe ( Pe � 1) , D increases linearly with Pe, since persistent swimmers push on the colloid surface for a 
longer time before they escape or tumble into the bulk as the Péclet number is increased. For sufficiently large 
Péclet number ( Pe � 1 ), the diffusivity saturates. This can be attributed to the fact that at large values of Pe most 
collisions result in an escape, and therefore the amount of time that a swimmer interacts with the colloid becomes 
independent of Pe; this trend will be confirmed in Fig. 5c when we discuss the autocorrelation time for the net 
force on the colloid. Finally, panel c of Fig. 4 shows the dependence of D on the mobility ratio µ . In the limit of 
large colloids ( µ � 1 ), the dependence is quadratic as D ∼ µ2 , but D is found to eventually saturate in the limit 
of small colloids ( µ � 1 ). Next, we rationalize some of these trends by deriving a semi-analytical model for the 
diffusivity in the limits of low swimmer density, high Péclet number and low mobility ratio.

Semi‑analytical description
In this section, we present an analytical model for the diffusivity of a passive colloid suspended in the active bath. 
Following Hinch61, we start from the equations of motion for the suspended colloid and show that the effective 
dispersion coefficient can be related to the time autocorrelation function of the net active force it experiences 
due to collisions with the active bath. We then show how that autocorrelation function can be estimated ana-
lytically in the asymptotic limit of low mobility ratios (µ → 0) , in which we obtain a closed-form expression 
for the diffusivity. We then compare our theory to results from simulations and find excellent agreement in the 
limit of validity of the model.

Diffusivity calculation
The run-and-tumble random walk of the active microswimmers translates to fluctuations in the motion of the 
colloid. The starting point for our diffusivity calculation in the absence of Brownian fluctuations is the equation 
of motion (3) of the passive colloid, written as

where Fa(t) is the net instantaneous fluctuating active force resulting from collisions with the swimmers:

As explained in the discussion of the swimmer-colloid collision model, the net force on the colloid results from 
contact forces with the swimmers on its surface, and thus depends on the number c(t) of swimmers in contact, 

(16)Ṙ = µFa(t),

(17)Fa(t) = −

c(t)
∑

i=1

Fi(t)qi(t).

(c)(b)(a)

Figure 4.   Variation of the diffusivity D of the colloid with: (a) number density ρ of swimmers for different 
values of Pe; (b) Péclet number Pe, for the different values of ρ ; (c) mobility ratio µ of the colloid to the 
swimmer. The mobility ratio is kept constant at µ = 0.5 in panels a and b. The dashed lines in each panel 
highlight asymptotic scalings at low values of ρ , Pe and µ.
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as well as their positions and orientations on the colloid surface, which determine the magnitude of the contact 
forces Fi(t) and their directions qi(t) . Integrating Eq. (16) and choosing the origin such that R(0) = 0 , the dis-
placement of the passive colloid is found to be,

We use this expression to calculate the mean square displacement as

(18)�R(t) = R(t)− R(0) =

∫ t

0
µFa(t′) dt′.

(19)�|�R(t)|2� = µ2

∫ t

0

∫ t

0
�Fa(t′) · Fa(t′′)� dt′dt′′,

(a) (b) (c)

Figure 5.   (a) Variations of x and y components of the net active force on the colloid with time for Péclet 
numbers Pe = 0.1 (i), 1 (ii) and 10 (iii), for constant density of swimmers ρ = 8.04 and mobility ratio µ = 0.5 . 
(b) Time autocorrelation CF(�t) of the net active force, defined in Eq. (20), for the same conditions as in a. (c) 
Time constant ξ of the force autocorrelation function, obtained by exponential fit, as a function of (i) Péclet 
number (for ρ = 1 and µ = 0.01 ), and (ii) swimmer density (for Pe = 8 and different mobility ratios). In c(i), 
the solid black curve shows the lower-bound estimate derived in Eq. (26).

(a) (b)

Figure 6.   Dependence of the mean number 〈c〉 of swimmers in contact with the colloid with (a) Péclet number 
Pe, for ρ = 8.04 and µ = 0.5 ; and (b) density of the swimmers ρ for Pe = 8.0 and different mobility ratios. In 
(a), the error bars show half a standard deviation around the mean, and the inset illustrates temporal variations 
of c(t) at Pe = 10 . In both panels, the solid black curves show the theoretical prediction of Eq. (36).
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where the angle brackets �·� denote the ensemble average. Eq. (19) is the well-known Green-Kubo relation62.
We gain intuition on the force autocorrelation function by plotting data from simulations in Fig. 5a, showing 

the x and y components of the active force as functions of time for different Péclet numbers. As expected, the 
net active force fluctuates around zero, �Fa(t)� = 0 . As the Péclet number increases, time fluctuations become 
slower, indicating an increase in the autocorrelation time scale. This is quantified in Fig. 5b, where we plot the 
autocorrelation function CF(�t) defined as

where the denominator �|Fa|2� is the active force variance. Initially, the autocorrelation function decays expo-
nentially with time as CF(�t) = exp(−�t/ξ) . At sufficiently large �t , the auto-correlation function fluctuates 
about zero, which explains the departure from the exponential behavior and the sharp drop in CF(�t) seen in 
the semilog plot in Fig. 5b. Leveraging this exponential decay, we can rewrite the mean-squared displacement 
of Eq. (19) as

Eq. (15) then provides the long-time diffusivity D as

Calculation of D using this formula requires the determination of the net active force autocorrelation time scale 
ξ and variance �|Fa|2� . Next, we explain how these two quantities can be estimated in some limits.

Time‑autocorrelation constant
The autocorrelation time scale ξ is a function of Pe, ρ and µ , and can be extracted numerically from the data of 
Fig. 5b. Its dependence on Péclet number is illustrated in Fig. 5c(i). Consistent with the observations of panels a 
and b, we find that the correlation time increases with Pe. At low Péclet numbers, that increase is nearly linear; 
indeed, at low Pe, the typical duration of a collision scales with Pe as we will explain in more detail below. At 
high Péclet numbers, the correlation time plateaus and asymptotes to a value slightly above 1; indeed, in that 
regime, most swimmers slide off the colloid before the end of their run, so that the typical duration of a collision 
is of order 1. The dependence of ξ on density ρ and mobility ratio µ is shown in Fig. 5c(ii): the correlation time 
is found to be roughly independent of µ and shows a slight decrease with ρ , albeit very weak.

A lower-bound estimate for the time constant ξ can be derived analytically as the average time 〈τint〉 that a 
swimmer interacts with the colloid over the course of one collision. This average time can be calculated exactly 
in the limit of low mobility ratios ( µ → 0 ) based on the model of Saintillan40. When a collision occurs with 
incidence angle α0 , there are two possible outcomes: either the swimmer will finish its current run on the colloid 
surface, or it will escape the surface by sliding off tangentially. This outcome depends on the remaining time τr 
in the run after collision. In dimensionless variables, the time to escape tangentially, in the case of a fixed colloid 
( µ = 0 ), can be calculated as

Escape will only occur if the remaining time τr exceeds the escape time te , which defines a critical incidence 
angle for escape, αc(τ ) = 2 tan−1[exp(−τr)] (see Saintillan40 for more details). Note that the collision time τr 
is a random variable over the interval [0, τ ] ; for the purpose of estimating the longest possible interaction time 
during a run, we set τr = τ . The interaction time in that case is

In this expression, both α0 and τ are random variables. We first take an average over the incidence angle, which 
is uniformly distributed over [0,π/2]40, yielding

Next, we integrate over exponentially distributed run times, providing the estimate for the time autocorrelation 
constant as:

This estimate is plotted in Fig. 5c(i), where it is found to underpredict the correlation time at low Pe, but captures 
the correct asymptote at high Pe. The departure at low Pe can be rationalized as follows. When the Péclet number 
is small, most runs involving a collision end on the surface of the colloid; half of the subsequent runs then start 
with a collision, leading to a longer interaction time than estimated here. On the other hand, at high Pe, nearly 
all collisions result in an escape, which explains why the estimate of Eq. (26) matches the data well in that limit.

(20)CF(�t) =
�Fa(t) · Fa(t +�t)�

�|Fa|2�
,

(21)�|�R(t)|2� = 2µ2

∫ t

0
(t − t ′)�|Fa|2� exp(−t ′/ξ) dt′ = 2(ξµ)2�|Fa|2�

[

exp(−t/ξ)+ (t/ξ)− 1
]

.

(22)D = lim
t→∞

(ξµ)2�|Fa|2�

2

[

−1

ξ
exp(−t/ξ)+

1

ξ

]

=
ξµ2�|Fa|2�

2
.

(23)te(α0) = − log tan(α0/2).

(24)τint(α0, τ) =

{

τ if 0 ≤ α0 < αc(τ ),
te if αc(τ ) ≤ α0 ≤ π/2.

(25)�τint�α0(τ ) =
2

π
ταc(τ )−

2

π

∫ π/2

αc(τ )

log tan(α0/2) dα0.

(26)ξ = �τint�α0,τ =

∫ ∞

0
�τint�α0(τ )

exp(−τ/Pe)

Pe
dτ .
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Fluctuating active force variance
We now seek to estimate the force variance �|Fa|2� , where the net active force was defined in Eq. (17). Here again, 
we focus on the limit of low-mobility ratio, µ → 0 . In that limit, the contact force magnitudes in Eq. (12) become 
decoupled, and are simply given by

The net instantaneous active force on the colloid resulting from swimmer collisions is therefore

and its variance can be obtained as

where �(αi ,αj) = cosαi(t) · cosαj(t) and �(βi ,βj) = cosβi(t) · cosβj(t)+ sin βi(t) · sin βj(t) . The ensemble 
average is over all possible values of c(t), αi and βi . The angular positions βi of the swimmers on the colloid sur-
face are uniformly distributed between 0 and 2π , and are uncorrelated. Averaging over βi and βj therefore gives

so that the variance becomes

In the low-mobility-ratio limit, the dynamics of the swimmers on the surface are uncorrelated, therefore the 
variance further simplifies to

where 〈c〉 is the average number of swimmers interacting with the colloid at any given time, and 〈cos2 α〉 is the 
average squared cosine of the contact angle. Next, we turn to the determination of these two quantities.

Surface swimmer density
The mean number of swimmers on the surface of the colloid can also be estimated based on the prior work of 
Saintillan40 for a fixed colloid. As explained in that model, swimmer-colloid collisions are of two types: collisions 
of type A involve a swimmer starting its run in the bulk and encountering the colloid, while collisions of type 
B involve a swimmer starting its run on the colloid surface after a tumble leading to a new orientation pointing 
towards the colloid. For a collision of type B to occur, the swimmer should have ended its previous run on the 
colloid surface. As shown by Saintillan40, the probabilities for any swimmer to undergo a collision of type A or 
B during any given run can be calculated as

where φ = π/L2 is the area fraction of the colloid in the square domain of size L, and PescA  and PescB  are the prob-
abilities for a collision of type A or B to lead to an escape from the colloid surface. These escape probabilities can 
be obtained by analysis of collision dynamics and were found to be

with ᾱ = 2 tan−1[exp(−Pe)] . Note that Eqs. (33) and (34) were technically derived for constant run time40, here 
taken equal to Pe; we will show below that they yield a quantitative estimate for 〈c〉 despite this approximation.

We can now estimate the probability Ps that a swimmer will end its current run on the surface of the colloid. 
For this to happen, the swimmer must undergo a collision of either type A or B and finish its run on the surface. 
Therefore,

The mean number of swimmers in contact with the colloid can then be estimated as �c� = NPs , where N is the 
total number of swimmers in the domain. In the limit of L ≫ 1 (large domain size), we can expand the expo-
nential in a Taylor series, yielding the simple form

(27)Fi(t) = pi(t) · qi(t) = − cosαi(t).

(28)Fa(t) = −

c(t)
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i=1

cosαi(t)

(
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sin βi(t)

)

,

(29)�|Fa|2� =
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〉

,

(30)
∫ 2π

0
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�(βi ,βj)p(βi)p(βj) dβi dβj = δij,
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where ρ is the mean swimmer number density introduced in Eq. (9). The linear dependence on ρ is unsurpris-
ing, since swimmers are non-interacting in our model. At low Péclet number, the number of swimmers on the 
surface grows linearly with Pe as �c� ≈ 4Peρ : indeed, in that regime, most swimmers incurring a collision will 
finish their run on the colloid surface and therefore spend a time on the surface that scales linearly with Pe. On 
the other hand, at high Péclet number, 〈c〉 becomes independent of Pe and asymptotes to πρ : in this regime, most 
swimmers colliding with the colloid will escape the colloid surface before the end of their run, and therefore 
spend a time on the colloid surface that is independent of Pe.

We test the prediction of Eq. (36) against numerical data in Fig. 6. The dependence on Pe is shown in panel 
a for a density of ρ = 8.04 and a mobility ratio of µ = 0.5 , and excellent agreement is found between the theory 
and the numerical data, despite the approximations made (constant run length, fixed colloid). In particular, 
the low- and high-Péclet-number asymptotes match the data perfectly; the largest deviations are observed for 
Pe = O(1) , where the agreement remains very good. The inset displays the temporal variation of the number of 
swimmers in contact c(t) with the colloid for Pe = 10 and highlights significant variations around the mean. The 
variance of c(t) is in fact found to be equal to the mean, Var(c) = �c� , consistent with Poisson statistics. Panel b 
shows the dependence of 〈c〉 with ρ for Pe = 8.0 and for different mobility ratios. Here again, excellent match is 
obtained between theory and data, independent of the value of µ.

Contact angle distribution
To complete the calculation of the force variance, we need an estimate for the average squared cosine of the 
contact angle α . The probability density function for α is not easily obtained theoretically: indeed, it depends on 
the distribution of the incidence angle α0 at the start of a collision, as well as on the dynamics of the swimmer on 
the colloid surface during contact and on any possible tumbles that may occur during the collision. In particular, 
we expect a dependence on Pe. To estimate 〈cos2 α〉 , we instead turn to numerical data, and plot in Fig. 7a the 
probability density function of cos2 α for different Péclet numbers. The probability density functions peak near 
cos2 α = 0 and 1, and are nearly symmetric about 1/2, with a slight bias towards 1 that is very weak and most 
visible at low values of Pe. As a result, we expect �cos2 α� ≈ 1/2 over a wide range of Pe. Departures from this 
value are quantified more precisely in Fig. 7b, where they are most significant at low Pe but never exceed 10% 
over the whole range of Péclet numbers considered in this study.

Force variance
Figure 8 shows the active force variance �|Fa|2� as a function of swimmer number density ρ , for a Péclet number 
of Pe = 8 . The plot compares numerical data for different values of the mobility ratio with the derived theoretical 
estimate of 〈c〉〈cos2 α〉 , which is technically valid in the limit of µ → 0 . At zero mobility ratio, there is a quantita-
tive agreement between data and theory. As the mobility ratio increases, the force variance is found to decrease; 
the dependence on ρ remains linear at low densities, but significant departures are observed for moderate values 
of µ at high densities. Since our estimates for both 〈c〉 and 〈cos2 α〉 are valid independent of ρ and µ (see discus-
sions of surface swimmer density and contact angle distribution above), this suggests that it is the derivation of 
Eq. (32) itself that breaks down. Indeed, when deriving Eq. (32), we assumed µ = 0 , which entirely decouples 
the dynamics of the swimmers on the colloid surface as can be seen from Eq. (12). At moderate mobility ratios, 
correlations between swimmers interacting with the colloid via Eq. (12) will affect the contact forces, and these 
correlations should become all the more significant at high densities when many swimmers at in contact with 

(36)�c� ≈
π2 − 4π tan−1[exp(−Pe)]

π − 2 tan−1[exp(−Pe)]
ρ,

(a) (b)

Figure 7.   (a) Probability density functions of the squared cosine of the contact angle α for different Péclet 
numbers Pe, obtained from numerical simulations with ρ = 8.04 and µ = 0.01 . (b) Deviation of 〈cos2 α〉 about 
1/2 as a function of Péclet number for different swimmer densities and µ = 0.01.
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the colloid at any given time. In particular, the decrease in �|Fa|2� seen in Fig. 8 suggests that correlations may 
result in a partial cancelation of forces, which is not captured by our simple theoretical model.

Effective dispersion
Combining the results of Eqs. (22), (32) and (36), we obtain the following theoretical prediction for the long-
time diffusivity:

The correlation time ξ(Pe) can either be obtained numerically from simulation data as in Fig. 5, or estimated 
theoretically using Eq. (26), with the caveat that this estimate is quantitative only at high Péclet number. In that 
limit ( Pe → ∞ ), Eq. (37) can be expanded to obtain the asymptotic result,

or, in dimensional variables,

We compare the prediction of Eq. (37) to simulation data in Fig. 9, showing the variation of the effective dif-
fusivity D , scaled by µ2 , with Péclet number and swimmer density. The theoretical prediction in Fig. 9 uses 
the analytical estimate of Eq. (26) for ξ(Pe) . In both plots, rescaling D by µ2 collapses the data at low mobility 
ratios in agreement with the model, with some departures observed for µ � 0.25 , especially at large densities, 
consistent with the observations of Figs. 4c and 8. Figure 9a shows the variation of D /µ2 with Péclet number. 
The theoretical model captures the data very well in the limit of Pe ≥ 1 and µ → 0 . At lower Péclet numbers, 
the theory departs from the simulation results as expected, and could be improved by deriving more accurate 
estimates for ξ(Pe) and 〈cos2 α〉 . The dependence on swimmer density ρ is investigated in Fig. 9b, where the 
linear prediction of Eq. (9) captures the data quantitatively at low mobility ratios and low to moderate densities. 
As expected based on the model assumptions, departures are observed at high µ and ρ and can be traced back 
to departures in the force variance in Fig. 8.

In summary, our theory agrees very well with particle simulations in the regimes of low swimmer den-
sity, low mobility ratio, and high Péclet number, and provides a simple analytical framework for the descrip-
tion of long-time colloidal dispersion in baths of run-and-tumble microswimmers. It should be noted that the 
parameter regime in which our model works best is experimentally relevant. Using an experimental estimate of 
ζ ∼ 10−8 − 10−7Ns/m for the drag on a bacterium18,63, along with Stokes drag Z = 1/M = 6πηA for a colloid in 
water with radius A = 0.5− 10µm3,4,18,64, we estimate the mobility ratio to be in the range of µ ∈ [0.1, 10] in typi-
cal experiments. Yet lower mobility ratios, reaching down to 0.01, occur in systems involving colloidal clusters4. 
Based on experimental estimates of typical bacterial swim speeds ( u = 5− 25µm/sec)3,4,18,63 and mean run time 
( ̄τ ∼ 1 sec)4, as well as colloid sizes, we estimate the Péclet number to vary in the range of Pe ∈ [1, 50] . We also 
estimate that the typical 2D density of swimmer suspensions, based on recent experiments near flat substrates4,18, 

(37)D ≈

(

π2 − 4π tan−1[exp(−Pe)]

π − 2 tan−1[exp(−Pe)]

)

ξ(Pe)µ2ρ

4
.

(38)D ≈ 0.91µ2ρ,

(39)D ≈ 0.91µ2ρuA3.

Figure 8.   Variance �|Fa|2� of the net active force on the passive colloid as a function of swimmer number 
density ρ for different mobility ratios µ for Pe = 8 . The solid black line shows the analytical expression of 
Eq. (32).
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is in the range of ρ ∈ [0.01, 1] . Finally, based on typical sizes for bacteria4,18,63 and colloids4,18 in experiments, we 
can estimate the 2D density of swimmer suspensions required for swimmer-swimmer interactions to become 
significant to be in the range of ρ ∈ [1, 30] ; These densities exceeds those used in most experiments (ρ ∈ [0.01, 1]) , 
which justifies the neglect of swimmer-swimmer interactions in our simulations and model.

We also note that our model, and in particular the predicted linear dependence on ρ and u at high Péclet num-
bers, is consistent with various past experiments and models. In early experiments using C. reinhardtii, Leptos et 
al.21 experimentally measured the diffusivity of suspended tracers and observed a clear linear dependence with 
number density. Subsequent experiments performed by Miño et al.3 on the diffusion of passive particles near a 
solid substrate in E. coli suspensions found a linear dependence on the active flux J = ρvu , where ρv is the volume 
density of bacteria. This result again agrees with Eq. (39), although they found only a weak dependence on the size 
of the colloid, which they attributed to a hydrodynamic mechanism for the diffusivity enhancement. A similar 
result was obtained by Jepson et al.12 for the diffusion of non-motile bacteria in a motile bath. Hydrodynamic 
theories such as those of Lin et al.34 or Kasyap et al.25, which explain the diffusivity enhancement based on dipolar 
flow disturbances induced by microswimmers, indeed predict a linear dependence on the active flux J, but with 
a prefactor that is independent of µ and depends on the fourth power of microswimmer size rather than colloid 
size. Lagarde et al.18 performed both experiments and numerical simulations based on steric interactions; they 
found a linear dependence of D on u, but did not characterize the dependence on swimmer density and mobility 
ratio. More recently, Burkholder and Brady27 derived a model for the diffusivity of a passive colloid resulting from 
steric interactions with a bath of active Brownian particles, and predicted a quadratic dependence on µ as well as 
a linear dependence on ρu in the limit of persistent swimmers. They also predicted a quadratic dependence on u 
at low Péclet number, which is also consistent with our data in Fig. 4b. To the best of our knowledge, our model is 
the first to specifically address the case of athermal run-and-tumble swimmers, and to provide a semi-analytical 
prediction for the dependence of D on all system parameters for that particular system.

Conclusions
Using stochastic simulations and an asymptotic theory, we have analyzed the dispersion of a passive colloid 
immersed in an unbounded suspension of non-interacting active run-and-tumble particles in two dimensions. 
We found a linear increase of the colloid diffusivity with swimmer density at low to moderate densities, consistent 
with past experiments and models3,4,12,21,26,27, followed by a peak and slight decrease at very high densities, in a 
regime that is not experimentally relevant. The variation of D with the persistence of the swimmer trajectories, 
as captured by the Péclet number, shows a linear increase with Pe that slows down and plateaus for Pe � 1 ; in 
dimensional variables, that corresponds to a diffusivity that scales quadratically then linearly with the micro-
swimmer speed u, once again in agreement with past models27. The dependence of D on the mobility ratio of the 
colloid to the swimmer was found to be quadratic at low mobility ratios but to saturate for µ � 1 (small colloids).

Using a theoretical model based on the Green-Kubo formula, we related the long-time colloid diffusivity to the 
variance of the net fluctuating force on the colloid resulting from collisions with the swimmers. A semi-analytical 
expression for the force variance was obtained under the assumptions of low mobility ratio ( µ � 0.25 ), low swim-
mer density ( ρ � 1 ), and high Péclet number ( Pe � 1 ), a regime relevant to many experimental systems. In that 
regime, the dependence of D on system parameters is simple and given by Eq. (39), and quantitative agreement 
is found between theory and stochastic simulations.

(a) (b)

Figure 9.   Variation of the diffusivity D , scaled by the square of the mobility ratio µ2 , with: (a) Péclet number 
Pe, for a fixed swimmer density of ρ = 0.2 ; and (b) swimmer density ρ for Pe = 8 . Symbols show results from 
stochastic simulations for different values of µ , while the solid black curves show the semi-analytical model of 
Eq. (37).
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The model introduced herein remains minimal and neglects many complexities inherent to biological and 
synthetic active systems55,65,66. For instance, several experiments demonstrate that biochemical signaling67–69 and 
the large variability of run times of the E. Coli cells70 can lead to a non-Poissonian distribution for the run-and-
tumble statistics. Such distributions could be added to our current model with relative ease. Many experiments 
involve a monolayer of colloids sedimented on a flat substrate in a bacterial suspension. In these systems, hydro-
dynamic interactions with the wall can have various effects including enhanced drag, bacterial accumulation at 
the wall52,71, swimming in circles49,53,72. In some cases, bacteria navigate either above or below the colloid18, an 
effect that could be captured by extending the model to three dimensions. Such extension to 3D was recently 
discussed by Saintillan40, and may allow further studies of colloid sedimentation in active suspensions73,74, or 
of melting of colloidal crystals by active baths75. Other effects that are of interest are hydrodynamic interactions 
between the swimmers and colloid25,34, which can significantly alter scattering dynamics54, as well as the effect of 
swimmer57,76 and colloid6,7,77,78 shape. Some of these effects are straightforward extensions of the present model 
and may be addressed in future work.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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