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Interplay Between Mechanosensitive Adhesions and Membrane Tension Regulates Cell Motility
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The initiation of directional cell motion requires symmetry breaking that can happen with or without external
stimuli. During cell crawling, forces generated by the cytoskeleton and their transmission through mechanosen-
sitive adhesions to the extracellular substrate play a crucial role. In a recently proposed one-dimensional model
[P. Sens, Proc. Natl. Acad. Sci. USA 117, 24670 (2020)], a mechanical feedback loop between force-sensitive
adhesions and cell tension was shown to be sufficient to explain spontaneous symmetry breaking and multiple
motility patterns through stick-slip dynamics, without the need to account for signaling networks or active polar
gels. We extend this model to two dimensions to study the interplay between cell shape and mechanics during
crawling. Through a local force balance along a deformable boundary, we show that the membrane tension
coupled with shape change can regulate the spatiotemporal evolution of the stochastic binding of mechanosensi-
tive adhesions. Linear stability analysis identifies the unstable parameter regimes where spontaneous symmetry
breaking can take place. Using simulations to solve the fully coupled nonlinear system of equations, we show
that, starting from a randomly perturbed circular shape, this instability can lead to keratocyte-like shapes.
Simulations predict that different adhesion kinetics and membrane tension can result in different cell motility
modes including gliding, zigzag, rotating, and sometimes chaotic movements. Thus, using a minimal model of
cell motility, we identify that the interplay between adhesions and tension can select emergent motility modes.
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I. INTRODUCTION

The mechanism of cell crawling on substrates is impor-
tant for understanding numerous biological processes such
as morphogenesis and wound healing [1]. Experiments have
revealed that several main subcellular processes, including
actin polymerization [2], adhesion [3], and myosin contrac-
tion [4], are spatially and temporally orchestrated to generate
coherent cellular motion. These experiments have also lent
themselves to systematic theoretical and computational mod-
eling [5]. Among these different subprocesses, the initiation
of motion is of particular interest because it can happen both
due to external cues and spontaneously due to intrinsic bio-
chemical or mechanical instabilities, in a process known as
cell self-polarization [6,7]. A polarized cell undergoes dis-
tinct molecular processes at the front and rear, such as the
distribution of Rho family GTPases which regulate the actin
protrusion and adhesion formation [8]; this distribution spec-
ifies a direction for motility. Interestingly, despite the vast
number of molecular players involved [8,9], cell migration is
essentially a mechanical process [10,11]. The integration of
cell signaling into mechanical processes has led to different
scales of biophysical models [11–13].

Depending on the cell type, migrating cells can as-
sume different shapes. For example, fibroblasts have multiple
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protrusions [14–16], while fast-moving keratocytes are char-
acterized by their flat, smooth, fan-shaped leading edges [17].
Despite these differences, a common mechanism for cells to
undergo directional motion can be summarized as follows:
the leading edge of the cell protrudes as a result of the speed
difference between actin polymerization and retrograde flow,
the rear retracts to keep up with the front [4,18], and mem-
brane tension plays a crucial role in this process because
it can coordinate the protrusion and retraction as a global
regulator for cell shape change and motility [19–21]. With this
picture, many phenomenological models have been proposed
to explain the underlying mechanisms for motility and shape
determination. These include models constructed based on
the graded radial extension hypothesis [22], viscoelastic actin
network and myosin transport [23], force balance between
treadmilling actin filaments and membrane tension [17,24],
two-phase fluids with actin polymerization [25], and many
other redundant mechanisms [26]. Later, more comprehensive
free-boundary models incorporated other features such as the
discrete stick-slip adhesions [27,28], the orientational order
of the actin filament network [29–32], and the feedback loop
between actin flow, myosin, and adhesion [33] and are re-
viewed in Ref. [34]. Most of these simulations either start with
a crescent shape to match experimental observations [22,23],
with perturbations or polarity fields along a specified direction
[27–33], or with a prescribed front [25]. Therefore, how the
cell shape transitions from random fluctuations to persistent
motile shapes remains unclear from these models.

Apart from steady-moving states, keratocytes can also un-
dergo more complex motility modes such as bipedal motion
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FIG. 1. (a) Schematic describing self-polarization in cells. Fluctuations of certain wavelengths are amplified by the intrinsic instability
of the feedback loop between adhesions and membrane tension, leading to self-polarization. (b) Schematic describing the various motility
modes. Directional motion is the uniaxial motion of the cell in one preferred direction. Bipedal motion involves antiphase retraction of the
left-right trailing edge and lateral oscillation of the cell. In turning motion, the cell rotates in a certain direction with left-right asymmetry.
(c) Sketch of the two-dimensional model (top view). The cell shape is determined by the difference between the polymerization velocity vp

and the retrograde velocity vr , where vr is related to the off rate of adhesive bonds distributed within the lamellipodium with width l1 along
the cell boundary. The force balance between friction, membrane tension, and contraction is maintained at the cell edge. (d) Sketch of the
two-dimensional model (side view). The adhesive bonds bind to the substrate with a constant rate kon and unbind with a force-dependent rate
koff as the actin filaments move.

and spontaneous turning, or a combination of both [35–38].
Experimental and modeling studies reveal that the stick-slip
adhesive sites at the rear and their coupling with the cy-
toskeleton dynamics are crucial for such unsteady motions
[37–39]. However, the models used to investigate this cou-
pling need prior knowledge of the positions of adhesion
sites and the broken symmetries. As a result, they cannot
predict how the distributions of adhesions are formed in
the first place. Other simulations that obtain bipedal motion
without prescribed adhesion sites take the substrate defor-
mations into account [40,41], but treat adhesion dynamics
phenomenologically.

Mogilner et al. suggested that cell polarization and turn-
ing may share similar mechanisms that involve the feedback
between actomyosin flows and stick-slip dynamics of adhe-
sions [5]. Recently, Sens proposed a one-dimensional (1D)
mechanical feedback loop between the binding and unbinding
of cell-substrate adhesions and linear cell tension that can
lead to the spontaneous symmetry breaking [10]. Based on
a mean-field approximation of the molecular clutch model
for adhesions, this theoretical model also predicted various
one-dimensional cell locomotion behaviors such as steady
crawling, bistability, and bipedal motion as observed in exper-
iments [37,38], bridging the gap between microscopic factors
and whole cell locomotion. Combining the mechanosensitive
unbinding of adhesions [10] that are based on first principles
with cell shape change can provide a natural description for
the formation and the stick-slip dynamics of adhesions and

how they can lead to unsteady motions. However, this model
does not explore the link between the mechanical feedback
loop and cell shape and motility modes. Such an explo-
ration requires a two-dimensional (2D) formulation with a
deformable boundary. Here, we asked whether the mechan-
ical feedback loop between adhesion and cell shape change
is sufficient to explain the dynamics of cell shape change
and motility modes. Specifically, we extend the 1D model
in Ref. [10] to two dimensions with deformable boundaries
to investigate how the coupling between membrane tension
and the stick-slip dynamics of adhesions determines cell shape
change and the spatial distribution of traction forces resulting
in sustained motion. Linear stability analysis of the model
shows that uniform steady states are unstable in certain pa-
rameter regimes due to the stick-slip nature of the adhesions.
Numerical simulations in two dimensions predict that the
force balance between the membrane tension, mechanosen-
sitive adhesions, and the contractility near the cell edge is
sufficient for a circular-shaped cell to spontaneously initi-
ate and sustain motion [Fig. 1(a)], and the various motility
modes mentioned above can be captured [Fig. 1(b)] even
without the consideration of the complex reorganization of
the cytoskeleton. Thus, our 2D model is able to capture the
initiation of cell polarization and the different motility modes
(directional, bipedal, and turning) by tuning the physical
parameters, and demonstrates the crucial role for interplay be-
tween adhesions, contractility, and membrane tension in cell
motility.
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II. MODEL DEVELOPMENT

A. Governing equations

At cellular length scales, inertia is negligible [12], so
that forces are balanced everywhere at any instant of time.
When the actin filaments treadmill at the edge of the cell,
the membrane imposes an opposing force while actomyosin
contraction generates a contractile force [Fig. 1(c)]. These
two forces lead to the retrograde flow of actin filaments
away from the cell edge and are locally balanced by a fric-
tion force pointing outwards and created by transmembrane
adhesions that can stochastically bind or unbind to the flat
substrate [42]:

Fcontraction + Fmembrane + F friction = 0. (1)

Here, we apply a coarse-grained approach and assume the
focal adhesions are concentrated in a narrow region near
the cell periphery with width l1, as proposed in Ref. [10].
The cell boundary is thus treated as a one-dimensional curve
�(t ) evolving in a two-dimensional plane (see Fig. 1 of the
Supplemental Material [43]), where the adhesion clusters are
material points containing a collection of ρl1 adhesive linkers
on average per unit length along the curve. The position vector
of a material point on the boundary at time t is represented
by x(α, t ), where α ∈ [0, 2π ] is a Lagrangian parameter (a
detailed description of the geometry and parametrization can
be found in the Supplemental Material [43]). At each material
point, the total number of adhesive linkers for each adhesion
cluster is assumed to be conserved [42]. Each of the adhe-
sive linkers can unbind and rebind between the substrate and
the sliding actin filaments with an off rate koff and an on
rate kon [Fig. 1(d)], and the effect of thermal fluctuations is
modeled with an effective diffusivity D. Denoting the cur-
rent arclength as s(α, t ) ∈ [0, L(t )], the fraction of bound
linkers n(α, t ) at each material point evolves by the kinetic
equation

∂n

∂t
(α, t ) = kon(1 − n) − koffn + D

∂2n

∂s2
. (2)

According to the Bell-Evans formula [44,45], the mechanical
force fb felt by a given linker will lower the energy barrier for
it to unbind from the substrate, such that the off rate increases
exponentially with the force as koff = k0

off exp( fb/ f0), where
k0

off is the off rate under zero force and f0 is a molecular force
scale for the linker to rupture with a typical order of several
piconewtons. For simplicity, the on rate kon is assumed to be a
force-independent constant.

The mechanosensitivity of the adhesions allows us to cap-
ture the biphasic relation between the friction force and the
retrograde velocity vr [46–49]. Here, we adopt a minimal
mean-field approximation [10] where the average extension
of a linker is approximated by the retrograde velocity vr times
its average lifetime 1/koff. Each linker is viewed as an elastic
spring with spring constant kb. By Hooke’s law, the force ex-
perienced by a single linker is given by fb = kbvr/koff. Hence,
the retrograde velocity and the dimensionless off rate r =
koff/k0

off can be related by vr = vβr log r, where vβ = k0
off f0/kb

is a characteristic velocity scale related to the mechanosensi-
tive unbinding process. In addition to the friction generated by
the mechanosensitive adhesions, viscous dissipation between

the actin flow and the substrate contributes to a linear friction
ζ0vr . Assuming that protrusions as well as the retrograde
flow are locally normal to the cell boundary [50,51], the total
friction force is given by

F friction =
(

ζ0vr + ζ1
nvr

r

)
n, (3)

where n is a unit outward normal vector on the cell edge �(t )
and ζ1 = ρl1kb/k0

off.
To highlight the interplay between the mechanosensitive

adhesions and the membrane tension, we simply treat the
contractile force per unit length as a constant force point-
ing inwards along the normal direction, Fcontraction = −σcn.
The timescale for the rebinding and unbinding of adhe-
sions (seconds) [52] is much longer than the timescale for
the membrane force to equilibrate (milliseconds) [17], so
the membrane tension, σm, is assumed to be spatially uni-
form along the cell boundary. The force per unit length
integrated over the lamellipodium height is then given
by Fmembrane = −2hσmHn, where H = 1/h + κ is the to-
tal curvature given by the in-plane curvature κ and the
lamellipodium radius h along the vertical direction to the
substrate.

We further assume that the membrane tension depends
linearly on the total area A(t ) of the cell as it evolves in time,

dσm

dt
(t ) = kσ

dA

dt
, (4)

where kσ is an effective stiffness that accounts for the extensi-
bility of the membrane. Finally, the shape of the cell evolves
according to the kinematic boundary condition

∂x
∂t

(α, t ) = (vp − vr )n, (5)

where the normal velocity is determined by the difference be-
tween the actin polymerization velocity vp and the retrograde
velocity vr . Here, we treat the polymerization velocity as a
constant along the cell edge following Refs. [53,54], although
it can be a function of the myosin density as hypothesized in
some more detailed modeling approaches [51]. Note that our
model neglects the dynamics of the cell cytoskeleton and the
cytoplasmic flows occurring inside the bulk, as the relevant
forces are assumed to be balanced inside and the retrograde
flows tend to concentrate near the cell periphery [33].

B. Nondimensionalization

We nondimensionalize the governing equations with the
following scales. The characteristic timescale is given by the
off rate under zero force load 1/k0

off. The mechanosensitive
unbinding process provides a characteristic velocity scale vβ

as mentioned in the previous section. The cell size is charac-
terized by its average radius R0. The dimensionless variables
are listed as follows:

t∗ = tk0
off, v∗

r = vr

vβ

, x∗ = x
R0

, σ ∗
m = 2σm

ζ0vβ

. (6)

The dimensionless parameters governing the system can be
classified into two groups, namely, parameters that character-
ize the stick-slip dynamics of the adhesions and parameters
that characterize the general cell properties. We estimate their
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TABLE I. Range of dimensionless model parameters. See
the Supplemental Material [43] for dimensional parameter values
[10,23,33,42,47,52,55–61].

Dimensionless parameter Approximate value

ζ ∗
1 = ζ1/ζ0 400–600

ron = kon/k0
off 10–60

D∗ = D/k0
offR

2
0 0.01–0.1

ε = vβ/k0
offR0 0.001

h∗ = h/R0 0.01
σ ∗

c = σc/ζ0vβ 100
k∗
σ = 2kσ R0/ζ0k0

off 1000
v∗

p = vp/vβ 200

orders of magnitude from experiments and previous modeling
approaches (see the Supplemental Material [43]), as summa-
rized in Table I. The first group contains the dimensionless
relative adhesion strength ζ ∗

1 = ζ1/ζ0 that compares the con-
tribution of the adhesive friction (sticking) and the viscous
friction (slipping), the dimensionless on rate ron = kon/k0

off,
and the dimensionless diffusion coefficient D∗ = D/k0

offR
2
0.

The second group contains the dimensionless lamellipodium
height h∗ = h/R0, the dimensionless length ε = vβ/k0

offR0

that compares the length scale provided by the off rate and
the retrograde velocity with the cell size, the dimension-
less effective stiffness k∗

σ = 2kσ R0/ζ0k0
off that compares the

cell stiffness to the adhesive friction, the dimensionless ac-
tomyosin contraction σ ∗

c = σc/ζ0vβ , and the dimensionless
polymerization velocity v∗

p = vp/vβ .
The dimensionless governing equations can be summa-

rized as follows, where the stars have been dropped for
simplicity:

∂x
∂t

(α, t ) = ε(vp − r log r)n, (7)

∂n

∂t
(α, t ) = ron(1 − n) − rn + D

∂2n

∂s2
, (8)

dσm

dt
(t ) = kσ

dA

dt
(t ), (9)

σc + σm(1 + κh) = r log r + ζ1n log r. (10)

C. Numerical implementation

To describe the geometry, the tangent angle, θ , and the
arclength derivative, sα , are introduced as independent vari-
ables instead of x [62]. By specifying the arclength derivative
as sα = L/2π , the mesh points are kept equally spaced in
arclength at every time step. The derivatives with respect to s
and α can be exchanged through ∂α = sα∂s: this enables us to
apply a finite difference scheme in the fixed α-parametric do-
main, to which the curve is mapped as a circle and uniformly
discretized in α as αi = 2π (i − 1)/N, i = 1, . . . , N + 1. The
method was validated by comparison to the linear stability
results at short times (see Fig. 2 of the Supplemental Material
[43]), and by comparison with a different scheme based on
spline interpolation; excellent agreement was found between
the two schemes, with the θ -L method providing enhanced
computational speed.

All simulations start from a circular configuration with a
uniform fraction of bound linkers, which is perturbed initially,
along with other corresponding physical quantities, using the
first 100 Fourier modes with amplitudes varying randomly
from −10−4 to 10−4. Given the geometric and physical vari-
ables at time step t n, we update their values at t n+1 by the
following steps:

(1) Update the shape of the curve x with the θ -L formula-
tion using an explicit Euler scheme. Compute other geometric
quantities such as the normal vector and the curvature.

(2) Update the membrane tension σm with the explicit
Euler scheme.

(3) Update the fraction of bound linkers n with a Crank-
Nicolson scheme.

(4) Update the off rate by solving the force balance (10)
iteratively using Newton’s method and obtain the normal ve-
locity.

The spatial derivatives are discretized by central fi-
nite difference and the integrals are computed by the
trapezoidal rule with end correction. The number of grid
points is taken as N = 2000 and the time step is set
to t = 10−3.

III. RESULTS

A. Initiation of cell motion through a stick-slip instability

We first analyze the linear stability of the model to un-
cover a mechanism for cell spontaneous symmetry breaking
and motility initiation through an instability arising from
the stick-slip dynamics of the mechanosensitive adhesions.
A similar instability was discussed in Ref. [10] for the 1D
case as a “stick-slip instability,” which gave rise to persis-
tent oscillations between protrusion and retraction phases
by switching between sticking and slipping states. Here,
we show that, when cell shape change is considered, this
instability still exists but distinct modes of deformation
are subject to distinct instability criteria due to the spatial
effects.

We take the base state for the analysis to be a stationary
circle with radius R̄ = 1 where the retrograde velocity bal-
ances with the protrusion velocity vp = r̄ log r̄ everywhere,
and the fraction of bound linkers is uniformly distributed
along the edge with the steady-state value n̄ = ron/(ron + r̄).
Henceforth, overbars are used to denote base-state variables.
From the force balance (10), the base-state membrane tension
then satisfies

σ̄m = 1

1 + h/R̄
(r̄ log r̄ + ζ1n̄ log r̄ − σc). (11)

We consider small perturbations around the base state with the
ansatz φ = φ̄ + δφ = φ̄ + ∑

k φk exp(ikθ + λkt ). Here φ̄ rep-
resents the base-state value of variable φ, and φk and λk denote
the initial magnitude of perturbation and corresponding di-
mensionless growth rate of the kth normal mode, respectively.
Note that, in our model, the membrane tension is assumed
to be uniform along the cell edge, so perturbations of the
membrane tension with modes k �= 0 are set to zero. Inserting
the ansatz into the governing equations and linearizing the
system for small perturbations yields eigenvalue problems for
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the growth rates λk . For k = 0,

(
1 + log r̄ + ζ1

n̄

r̄

)
λ2

0 +
{(

1 + log r̄ + ζ1
n̄

r̄

)
(ron + r̄)

+
[(

1+ h

R̄

)
2π R̄kσ−εhσ̄m

R̄2

]
(1+ log r̄)−ζ1n̄ log r̄

}
λ0

+
[(

1+ h

R̄

)
2π R̄kσ−εhσ̄m

R̄2

]
(1+ log r̄)(ron + r̄) = 0,

(12)

and for k �= 0,

(
1 + log r̄ + ζ1

n̄

r̄

)
λ2

k

+
[(

1 + log r̄ + ζ1
n̄

r̄

)(
ron + r̄ + Dk2

R̄2

)

+ εhσ̄m

R̄2
(k2 − 1)(1 + log r̄) − ζ1n̄ log r̄

]
λk

+ εhσ̄m

R̄2
(k2 − 1)(1 + log r̄)

(
ron + r̄ + Dk2

R̄2

)
= 0.

(13)

The governing equations are nonlinearly coupled and, conse-
quently, they provide constraints on the initial perturbations
(see the Supplemental Material [43] for details). These con-
straints satisfy a quadratic equation for the perturbation
amplitudes with two possible conjugate imaginary solutions,
corresponding to two independent modes of perturbation,
analogous to the one-dimensional case [10] where the two
independent modes are the symmetric and the antisymmetric
modes.

The various Fourier modes represent different modes
of deformation. Typical dispersion relations for parame-
ter choices relevant to physiological condition values are
plotted in Fig. 2. We find that the precise choice of pa-
rameters does not affect the qualitative behavior of the
dispersion relation, which can be summarized as follows.
The mode k = 0 describes a spatially homogeneous pertur-
bation and corresponds to the global dilation or contraction
of the cell. This is the only mode to be affected by the
effective membrane stiffness kσ , and we find it to be al-
ways linearly stable at physiological values of the stiffness
(kσ ∼ 103). Thus, membrane elasticity always acts to main-
tain the cell area at its base value in the linear regime.
The mode k = 1 is the only mode that is not center sym-
metric and captures translational motion of the center of
mass; its growth rate is found to be purely real regard-
less of the choice of model parameters. Interestingly, that
growth rate is independent of the membrane tension, a
consequence of the fact that the k = 1 mode, which de-
scribes translation of the center of mass, does not affect the
local curvature at linear order (see Eq. (3) of the Supple-
mental Material [43]). When this mode becomes unstable,
the corresponding perturbation is amplified and leads to
a symmetry breaking in space that singles out a certain
direction to initiate locomotion. Note that, different from

FIG. 2. Dispersion relations showing the real and imaginary
parts of the growth rate λk as functions of wave number k for various
choices of the parameters related to adhesion kinetics: (a) growth
rates under different relative adhesion strengths ζ1 with ron = 20,
D = 0.01, σc = 100; (b) growth rates under different on rates ron

with ζ1 = 600, D = 0.01, σc = 100; (c) growth rates under differ-
ent diffusion coefficients D with ζ1 = 600, ron = 20, σc = 100; and
(d) growth rates under different contraction strengths σc with ζ1 =
600, ron = 20, D = 0.01. In all cases, the parameters related to the
general cell properties are fixed as ε = 0.001, h = 0.01, kσ = 1000,
rp = 50.

the translational invariance mentioned in Ref. [54], the cell
shape in our model is always coupled to the distribution
of the fraction of bound linkers. As a result, a perturbation of
the k = 1 mode not only denotes a rigid translocation of the
geometry, but also induces a front-rear gradient of the force-
sensitive adhesions. This mechanism is similar to the global
polarization-translation coupling mode proposed by Lavi et al.
[63]. Subsequent modes with k > 1 describe various shape
deformations with increasingly shorter wavelengths. At rel-
atively low wave numbers, the dispersion relation typically
displays two real positive growth rates. As k increases, these
give way to two complex conjugate growth rates, suggest-
ing that there can exist oscillations and traveling waves
propagating along the edge, known as “stick-slip” waves,
which are similar to the lateral waves predicted along a flat
edge [10]. Finally, all modes beyond a certain wave number
become stable, indicating that high-frequency perturbations
will decay.

The dependence of the growth rates on the relevant system
parameters can also be gleaned from Fig. 2. We first note
that a Hopf bifurcation can occur for modes with high wave
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FIG. 3. Spatiotemporal evolution of a fan-shaped cell during the initiation of motion (t = 0 to t = 2) from a nonlinear numerical simulation.
(a) Time evolution of the cell shape, where the edge is colored by the fraction of bound linkers. The two black dots show the initial and
current center-of-mass positions. [(b)–(e)] Kymographs of the fraction of bound linkers, n, off rate r, total friction r log r + ζ1n log r, and local
curvature κ , as functions of normalized arclength s/L and time t . Parameters values: ε = 0.001, h = 0.01, kσ = 1000, σc = 100, rp = 50,
ron = 25, ζ = 600, D = 0.05.

numbers as the parameters vary, where the real growth rates
become growth rates with conjugate imaginary parts, simi-
lar to the 1D case [10]. We focus on the role of the three
parameters that characterize adhesion kinetics. The relative
adhesion strength ζ1 and the on rate ron are found to affect
both the magnitude of the unstable growth rates as well as the
number of unstable modes, while the effect of the diffusion
coefficient D is to damp high-order modes. As ζ1 increases,
both the magnitude of the positive real growth rates and the
number of unstable modes increase. The effect of the on
rate ron, on the other hand, is nonmonotonic and exhibits a
biphasic behavior. When the on rate increases, the magnitudes
of unstable growth rates first increase and then decrease. This
suggests the possibility of a stick-slip instability similar to the
1D case [10], and provides a mechanism for the cell to os-
cillate between protruding (sticking) and retracting (slipping)
states at the two distinct ends. Here, in two dimensions, certain
modes of perturbation are amplified by the mechanosensitive
nature of the adhesion clusters and their coupling with the
retrograde flow, leading to the local adhesion sites switching
between sticking and slipping motions in distinct regions. To
make the biphasic relationship between friction and retrograde
flow possible, the relative adhesion strength needs to be strong
enough for the adhesive friction to play a role compared to the
linear friction. Moreover, the rebinding rate cannot be either
too small or too large, since in both cases the adhesive linkers
either dissociate or rebind to the substrate too quickly. As a
result, there is no possible stick-slip transition and the system
remains linearly stable. That optimal locomotion efficiency
occurs for intermediate adhesions was demonstrated in exper-
iments by varying the concentration of integrins and blocking
integrins [64].

Our model assumed a uniform contractile force along the
cell edge as a way to single out the role of mechanosensi-
tive adhesions in driving symmetry breaking. The effect of

actomyosin contraction on stability is shown in Fig. 2(d),
where it is found to have a weak but destabilizing effect on
the system. This finding is qualitatively consistent with previ-
ous contraction-driven cell motility models and with various
experimental observations [33,65,66].

B. Instability of mode k = 1 leads to the formation of the front
and rear in the early stage of locomotion

As already mentioned above, the instability of the k = 1
mode provides a mechanism for the self-polarization of the
cells and initiation of motility. This is further demonstrated in
our numerical simulations. A typical temporal evolution of a
cell shape at short times is illustrated in Fig. 3(a), where the
cell edge is colored by the fraction of bound linkers. Starting
from a circular shape and a randomly perturbed initial distri-
bution of bound linkers at t = 0, high-frequency fluctuations
are found to decay very rapidly (t = 0.5) as predicted by
the stability analysis. The k = 1 mode, which has the largest
growth rate, grows simultaneously, resulting in the formation
of a potential cell front where more linkers are bound to
the substrate and of a potential rear where fewer linkers are
bound (t = 1). The polymerization velocity then exceeds the
retrograde velocity in the front while the opposite occurs at the
rear, leading to expansion in the front, shrinkage at the rear,
and translocation of the center of mass (t = 1.5). The front
further keeps protruding while the rear keeps retracting, and
the cell ultimately evolves to a fanlike shape with a smooth
leading edge (t = 2) very similar to the characteristic shape
of coherent keratocytes [37].

The spatiotemporal evolutions of the fraction of bound
linkers, off rate, friction force, and curvature during these
early stages are plotted as kymographs in Figs. 3(b)–3(e).
As a result of the growth of the k = 1 mode, the retrograde
velocity is low in the front of the cell and high at the rear.
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FIG. 4. (a) Stability diagram and motility modes in the (ron, ζ1) parameter space: blue shadings show regions of instability for modes
k = 1, 2, 5, 10, 15 (from light to dark blue), and symbols indicate the motility modes observed in nonlinear simulations, whose dynamics are
illustrated in the remaining panels. Five simulations were performed for each data point. Points labeled as “mixed” display multiple types of
dynamics depending on the initial condition. Points labeled as “others” display irregular dynamics that are not easily categorized. (b) Gliding
mode, (ron, α1) = (16, 600), t = 10. (c) Gliding mode, (ron, α1) = (56, 560), t = 10. (d) Rotational mode, (ron, α1) = (24, 540), t = 10.
(e) Zigzag mode, (ron, α1) = (26, 600), t = 10. (f) Zigzag mode, (ron, α1) = (36, 560), t = 15. (g) Others, (ron, α1) = (38, 580), t = 20.
(h) Others, (ron, α1) = (40, 540), t = 20. (i) Others, (ron, α1) = (40, 600), t = 20. (j) Others, (ron, α1) = (44, 560), t = 20. In all cases,
the other parameters were set to ε = 0.001, h = 0.01, kσ = 1000, σc = 100, rp = 50, D = 0.05. The cell contours are colored by the fraction
of bound linkers n, and the purple curves show the center-of-mass trajectories in each case. See Movies S1–S9 in the Supplemental Material
[43] for videos of the dynamics.

Consequently, strong adhesion develops in the front where
the off rate is low and hence most linkers are bound to the
substrate. Meanwhile the off rate is high with most linkers
unbound along regions at the back and sides, similar to the
traction stress distribution revealed by experiments in migrat-
ing cells [67]. Comparing the spatiotemporal distribution of
the friction and the curvature [Figs. 3(d) and 3(e)] shows that
regions with high friction coincide with regions with high
curvature as required by the force balance equation. This is
also consistent with experiments [67] where traction stress
concentrates at the sides. Note that, unlike many previous
modeling approaches [37] where the breaking of front-rear
symmetry and adhesion distribution were treated as inputs
to trigger the initiation of motion and turning, our model

provides a route for this distribution of adhesions to emerge
spontaneously.

C. The stability diagram predicts various motility modes

Next, we turn our focus to long-time dynamics and the
effect of adhesion kinetic parameters. While the initiation
of locomotion through the instability of the k = 1 mode is
generic, various cell motility modes are observed at long times
depending on the relative adhesion strength ζ1 and on rate ron.
We categorize them in a phase diagram in Fig. 4(a), in which
the blue shaded regions highlight the linearly unstable regimes
for the Fourier modes with wave numbers k = 1, 2, 5, 10, 15,
while the dots denote the long-time motility modes. Each dot
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represents five simulations with different random initial per-
turbations. A systematic exploration of the parameter space
allowed us to classify the motility modes by the following
criteria: (i) if the cell moves in a straight line with no turns
over the entire simulation time range (t = 100), we call it
a “gliding” mode [Figs. 4(b) and 4(c)]; (ii) if the cell turns
only towards one direction, we call it a “rotational” mode
[Fig. 4(d)]; (iii) if the cell turns alternatively between left and
right resulting in a lateral oscillation, we call it a “zigzag”
mode [Figs. 4(e) and 4(f)]; (iv) for some combinations of
parameters and for different initial conditions, we observed
“mixed” modes where the cell can exhibit different types of
motions including the three cases mentioned above; and (v)
finally, there exist more complicated types of motion that do
not fit into any of the cases above and that we label as “others”
[Figs. 4(g)–4(j)]. Most of the motility modes described here
have been observed in experiments as well as in previous
models: the gliding motion is well known in fast-moving
fish keratocytes [68], the zigzag motion is analogous to the
“bipedal” motion of oscillating keratocytes [37,38], and spon-
taneous turning has also been observed in keratocytes even in
the absence of external cues [35,39].

Although the dynamics at long times are essentially non-
linear, Fig. 4(a) shows a clear correlation between the stability
diagram and the motility modes. In regions of the parameter
space with fewer unstable modes, where the on rate is either
relatively low or high, the motion tends to be uniaxial with
the cell remaining polarized with left-right symmetry. More
complex dynamics arise for intermediate on rates, which we
attribute to the stick-slip instability. Rotational and zigzag
modes arise in this regime, and are characterized by broken
left-right symmetry in addition to front-rear asymmetry, re-
sulting in quasiperiodic turns in the cell trajectory. We take
a closer look at these turns in Figs. 5(a) and 5(b), where we
plot the temporal evolution of the membrane tension together
with the corresponding shapes and center-of-mass velocities
within one oscillation period for the rotational and zigzag
modes, respectively. At the initiation of a turn, the distribution
of bound linkers is first observed to become asymmetric, with
an increase in the fraction of bound linkers on one side of
the cell. This results in enhanced sticking on that side along
with slipping on the opposite side, allowing the cell to turn
in that direction, and this mechanism is reminiscent of the
“sticking wave” predicted in the 1D flat case [10]. As the
cell shape becomes asymmetric and the cell rotates, the mem-
brane tension is found to increase and reaches a peak value
before relaxing again in the later stage of the turn. In the
zigzag case, the high adhesion region alternatively switches
between the left and right sides of the cell, while for the
rotational cases the direction in which the high adhesion re-
gions form remains fixed, with equal probabilities for a cell
to turn clockwise or counterclockwise. The Hopf bifurcation
of higher-order modes may be responsible for this transition
from uniaxial translation to oscillatory motion. Moreover, we
find that there is a strong correlation between cell shapes and
motility modes. For the gliding cases, the cell adopts either
a triangular-like shape [for small on rates, Fig. 4(b)] or a
nearly circular shape [for large on rates, Fig. 4(c)], while
for the zigzag and rotational motions, the cells are more fan
shaped with curved fronts [Figs. 4(d)–4(f)]. Another key ob-

FIG. 5. Temporal evolution of the membrane tension and corre-
sponding cell shapes and center-of-mass velocities as functions of
time during one period of oscillation for the (a) rotational mode
with (ron, α1) = (24, 540) and (b) zigzag mode with (ron, α1) =
(26, 600). The cell shapes are colored by the local fraction of bound
linkers n, and the orange arrows show the instantaneous center-of-
mass velocity. In both cases, other parameters are fixed as ε = 0.001,
h = 0.01, kσ = 1000, σc = 100, rp = 50, D = 0.05.

servation is that, regardless of the randomness in the initial
perturbations, the emerging shapes corresponding to a given
set of parameters are robust; we further elaborate on this point
below.

D. Robustness of motility modes

The observations above suggest that the feedback loop
between mechanosensitive adhesions and membrane tension
uniquely determines the emergent motility mode for a given
set of system parameters, irrespective of the initial condi-
tion or history of the system. To further demonstrate the
robustness of these modes, we vary the parameters during a
simulation to analyze transitions between modes. A typical
transition is shown in Fig. 6(a): starting from a cell per-
forming a gliding motion, we abruptly vary the value of ron

from 16 to 30 at t0 = 25, causing it to switch to a zigzag
mode. As shown in the snapshots, the cell glides smoothly
at first, and, after the change in ron, its shape quickly ad-
justs and starts undergoing zigzags. The oscillation frequency
and cell morphology after the transition are similar to the
corresponding zigzag motions with ron = 30 starting from a
randomly perturbed initial condition. The time instant t0 at
which we start altering the parameters, the period of time
t within which we gradually alter the parameters, and the
intermediate states do not significantly affect the zigzag dy-
namics [Fig. 6(b)]. To quantitatively compare the resulting
zigzag modes emerging through different routes, we plot the
temporal evolution of the membrane tension in Fig. 6(b) for
different choices of t0 and t . After increasing the on rate
and the adhesion strength, the cell expands, leading to an
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FIG. 6. Transition between different motility modes. (a) Snap-
shots of a gliding cell switching into a zigzag mode as the adhesion
parameters (ron, α1) abruptly change from (16,580) to (30,580)
at t = 25. Other parameters are fixed as ε = 0.001, h = 0.01,
kσ = 1000, rp = 50, D = 0.05. (b) Temporal evolution of the mem-
brane tension as the parameters (ron, α1) are varied to cause changes
in motility modes. Here, t denotes the duration of the time interval
over which the parameters are gradually varied. See movies S10–S12
in the Supplemental Material [43] for videos of the dynamics.

increase in the membrane tension towards the tension value
of the new state, regardless of the history of states. This is
in agreement with the one-dimensional case [10] as well as
experiments [19] where the membrane tension in motile cells
is determined by the adhesion strength and cytoskeletal forces,
and increases as cell-substrate adhesion strengthens—in our
model, as either the on rate or relative adhesion strength
increases.

Similar transitions are also observed when we change
parameters between other modes (see the Supplemental Ma-
terial [43], Movies S10–S12). In all cases, after changing
the parameters, the cell first goes through a transient state
and then soon evolves into the motility mode selected by
the new set of parameters in the phase diagram of Fig. 4.
This further suggests that these motility modes are attrac-
tors of the dynamical system, with the model solutions

approaching either fixed points or stable limit cycles in phase
space.

E. Effect of adhesion parameters

Finally, we investigate the effect of varying adhesion
kinetic parameters on cell geometry, mechanics, and loco-
motion. For various combinations of ron and ζ1, we calculate
the time-averaged circularity 4πA/L2 (with a maximum value
of 1 corresponding to a perfect circle), the average mem-
brane tension, and the average distance of the center of mass
from the origin xc = ∑M

i=1 |x(i)
c − x(0)

c |/M, and plot them as
phase diagrams in Fig. 7 where the motility modes are also
labeled. Note that the precise boundary between each mode
changes slightly as we vary the diffusion coefficient D, but
the qualitative behavior remains unchanged. For the gliding
modes with low on rates, the cell adopts a nearly triangular
shape with low circularity, with only a weak dependence on
ζ1. As the on rate increases, the shapes all become more
circular regardless of motility mode as seen in Fig. 7(a).
A possible explanation for this behavior is that, as the on
rate increases, the difference in the fraction of bound linkers
between the front and the rear decreases, and therefore the
difference in the sticking and slipping velocity also decreases,
resulting in less-deformed shapes. The average membrane ten-
sion shows little correlation with the various motility modes
in Fig. 7(b), and is mainly determined by the on rate and
the relative adhesion strength, consistent with the discussion
above [10,19].

The ability of a cell to explore space depends strongly on
its motility mode as illustrated in Fig. 7(c), where we show
the phase diagram for the average distance traveled by the
cell. The gliding and the zigzag modes are more unidirectional
and thus allow the cell to travel for a longer distance than
in the rotational mode. In the case of zigzag trajectories, the
left-right oscillations can be accompanied by a circular motion
when the relative adhesion strength and the on rate increase,
leading to a decrease in the distance traveled. Ultimately, the
zigzag mode gives way to trajectories labeled as “others”

FIG. 7. Phase diagrams in the (ron, ζ1) parameter space showing color maps of the time-averaged (a) cell circularity 4πA/L2, (b) membrane
tension σm, and (c) average distance of the center of mass from the origin, xc. The diagrams show averages over five simulations of duration
T = 95. Symbols indicate the corresponding motility modes previous identified in Fig. 4. Other parameters are fixed as ε = 0.001, h = 0.01,
kσ = 1000, σc = 100, rp = 50, D = 0.05.
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FIG. 8. A simple mechanical feedback loop between membrane
tension and adhesions determines cell shape and direction of motility.

in Fig. 7(c), which are characterized by irregular turns and
may result from the superposition of multiple oscillatory
periods.

IV. DISCUSSION

In this work, we have extended the one-dimensional model
coupling actin polymerization, adhesion, membrane tension,
and shape change previously proposed by Sens [10] to two
dimensions to elucidate the role of friction originating from
adhesion kinetics in the initiation of migration, the deter-
mination of cell shape, and the selection of motility modes
through its nonlinear coupling to the membrane tension. With
this minimal model, we showed that motile cells can display
rich dynamical behaviors by relying on a relatively simple set
of physical mechanisms and couplings. We first performed
a linear stability analysis and demonstrated that the k = 1
mode, describing translocation of the center of mass, is always
the most unstable and is responsible for the cell to obtain
its polarity and identify a direction in space for migration
by spontaneous symmetry breaking. Our linear analysis of
this process [Eq. (13)] suggests that the initiation of polar-
ization is driven by the interplay of the adhesion kinetics
and retrograde flow. We then conducted nonlinear numerical
simulations and showed that, driven by a constant actin poly-
merization rate, the model was able to capture various motility
modes commonly seen in experiments, such as unidirectional
gliding, bipedal motion, and turning. We identified the non-
linear coupling between stochastic adhesion and membrane
tension as the key mechanism involved in the selection of
motility modes. Specifically, the relative adhesion strength
and on rate were shown to govern membrane tension, which
in turn connects spatially distributed adhesions and thus cou-
ples the retrograde flow with shape change and adhesion
kinetics.

The basic physical mechanisms involved in this process are
summarized in Fig. 8. A local increase in the off rate r can

have two distinct effects: a decrease in the fraction of bound
linkers n and a local retraction of the cell edge. The latter
will lead to a global decrease in cell area and, consequently, a
decrease in membrane tension due to the membrane elasticity.
The force balance (10) dictates that the decrease in n will
cause an increase in the off rate r, whereas the decrease in
membrane tension will cause r to decrease. Therefore, there is
a competition between the membrane tension and the fraction
of bound linkers in the regulation of the off rate, tuned by the
relative adhesion strength ζ1. When ζ1 is large, the effect of
n dominates, resulting in a positive feedback on r, rendering
the system unstable. On the other hand, when ζ1 is small,
the situation is the opposite and the system is stable. These
predictions are borne out by the results of our stability analysis
and numerical simulations. Though membrane tension does
not affect the stability of the k = 1 mode, it does affect the
stability of higher-order modes and was shown to be involved
in cell turns and associated shape changes in the nonlinear
regime (Fig. 5).

Our model predictions qualitatively recapitulate experi-
mental observations of symmetry breaking and cell motility
modes. Using experimental measurements and mechanical
models, Barnhart et al. showed that two feedback loops—one
between actin flow and adhesions and the other between actin
flow and myosins—are required to initiate motility in fish
keratocytes [33]. Similarly, using a phase-field approach, Shao
et al. [28] showed that coupling between adhesions, actin
flow, and myosin contraction is required to recapitulate differ-
ent experimental observations of keratocyte shape change. In
the present work, we showed that the “stick-slip” instability
initially proposed by Sens in one dimension [10] can lead
to spontaneous initiation of motility by symmetry breaking
in two dimensions, and that the feedback between adhesion
near the cell edge and membrane tension is sufficient to cap-
ture the emergence of complex motility modes. Our study
demonstrates that cell polarization, as well as nonlinear motil-
ity characteristics and cell shape selection, can potentially
be explained by sole consideration of the balance of forces
and fluxes applied at the cell edge, independently of bulk
cytoskeletal dynamics. An interesting and as yet unexplained
experimental observation that our model may help shed light
on is that, at low temperatures, the trajectories of fast-moving
keratocytes tend to be more unidirectional, while their motion
is more circular and less persistent at high temperatures [5].
Previous studies have proposed a “steering wheel” mechanism
[39], whereby the turning of a cell is caused by asymmetri-
cally distributed adhesion sites at the rear, but the relationship
between the turning and temperature is unclear. This effect can
be explained by the molecular clutch approach for adhesions
in our model. According to Bell’s theory [44], the reaction
rate increases with temperature, so binding and unbinding
processes should be more active at high temperatures. By
this effect, an increase in temperature drives an increase in
the on rate and relative adhesion strength, and thus drives the
transition from gliding to zigzag, rotational, and other modes.

While our model captures many experimental observations
and makes testable predictions on the interaction between
membrane tension and adhesion, it has certain limitations.
In particular, it does not account for the complex molecular
machinery underlying actomyosin contraction or associated
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signaling pathways and only contains a single mechanical
feedback loop. We also note that even though we obtain
fan-shaped cells in the early stages of motion, the shapes
ultimately become triangular for gliding cells, which could
be a result of the constant actin polymerization velocity as-
sumed in our model and of ignoring actin remodeling events
[5,11,13,51]. The contraction generated by the distinct distri-
bution of myosin motors in crawling cells is also neglected in
our model. In some studies, contraction alone can be shown
to generate spontaneous symmetry breaking and motions [65].

Finally, like other cell motility models [27,29,33], we have as-
sumed that membrane tension is spatially uniform, yet spatial
variations in tension have been observed in cells in experi-
ments [69]. An extension of our approach to incorporate some
of these additional details as well as internal active stresses
has the potential to further enrich the model.
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