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Abstract— This paper concerns the use of the finite signal-
to-noise (FSN) model to design a state estimator. First, the
sufficient conditions for the existence of the state estimator are
provided. These conditions are expressed in terms of linear
matrix inequalities (LMIs) and the parametrization of all the
solutions is provided. Then an LMI based estimator design is
addressed and the algorithm to solve the filtering problem is
also given. The performance of the linear filter is examined by
means of the numerical examples.

I. INTRODUCTION

The traditional noise model used in estimation and control
theory is white noise whose intensity is independent of the
variance of the signal it is corrupting. However, in many
engineering applications such as electromechanical systems,
this traditional noise model has serious deficiencies. A new
noise model, the Finite Signal-to-Noise (FSN) model, was
proposed in [8], [11], [12] where the intensity of the noise
corrupting the signal depends affinely on the variance of that
signal.

FSN noise models are more practical than normal white
noise models, since they allow the variances of the noises to
be affinely related to the variances of the signals they corrupt.
Such noises are found in digital signal processing with both
fixed and floating point arithmetic. Such models are found
in analog sensors and actuators which produce more noise
when the power supplies in these devices must provide more
power (for an increased dynamic range of the signals in the
estimation or control problem).

One important benefit of the FSN model in a linear control
problem is that it keeps the control finite at the maximal
accuracy [7]. This is in contrast to LQG theory, where the
maximal accuracy occurs at infinite control. Therefore, the
FSN model has a significant effect on the robustness of the
controller [5].

Recent studies also show the use of the FSN model for
economic system design [3], [4]. Many engineering problems
involve economic considerations, especially in mechanical
and biochemical engineering. Assuming that the component
cost is proportional to its signal-to-noise ratio, it is reasonable
to integrate the instrumentation and control design, to obtain
a low cost system for given performance requirements.

There has been great effort in recent years to provide a
control theory for the FSN model. See [5], [6], [8] for a dis-
cussion of control problems with FSN noise models . Since
this model reflects more realistic properties in engineering, as

well as neuroscience [1], a complete theory which includes
control and estimation should be developed.

This paper focuses on the study of estimation problem
for the FSN model. Reference [12] demonstrates that the
estimation problem is nonconvex. We shall show that a
mild additional constraint for scaling will make the problem
convex. The basic problem solved is to find a state estimator
that bounds the estimation error below a specified error
covariance.

The paper is organized as follows. In section 2, the
estimation problem with the FSN model is formulated. In
section 3, the sufficient conditions for the existence of the
state estimator are given. Section 4 derives a linear estimator
subject to a performance requirement. In section 5, a numer-
ical example is presented, and the comparison between the
FSN filter design and the Kalman filter is discussed.

The notation used in this paper is fairly standard. The
transpose of a real matrix A is denoted by AT ; for symmetric
matrix, the standard notation > 0 (≥ 0) is used to denote
positive definite matrix (positive semi-definite matrix), and
the notation < 0 (≤ 0) is used to denote negative definite
matrix (negative semi-definite matrix); ε(·) denotes the ex-
pectation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the following linear system with state space
representation

ẋ = Ax + Dω, (1)

y = Cx + v, (2)

z = Czx, (3)

where x ∈ Rnx is state variable, y ∈ Rny is the measurement
output; ω ∈ Rnw and v ∈ Rny are zero-mean FSN white
noises with intensities W, V respectively; and A, C and D
are constant matrices which have proper dimensions.

Here we consider that the noise source is modeled accord-
ing to the FSN assumption, where the intensity of the noise
corrupting a signal is proportional to the intensity of that
signal. That is, assuming

ε∞{ω(t)} = 0, ε∞{ω(t)ω(τ)T } = Wδ(t − τ), (4)

ε∞{v(t)} = 0, ε∞{v(t)v(τ)T } = V δ(t − τ), (5)

where ε∞ = limt→∞ε(·), ε(·) is the expectation operator.
Suppose the vector ωa ∈ Rnw describes the signal that is



corrupted by the noise ω, and ωa is linearly related to state
variable x

ωa = Mx. (6)

Define the state covariance matrix

X = ε∞{x(t)x(t)T }, (7)

therefore

W = W0 + ΣωMXMT Σω, (8)

V = V0 + ΣvCXCT Σv, (9)

where W0, V0 are given positive definite constant matrices,
and

Σω = diag{σω1 , σω2 , . . . , σωnω
}, (10)

Σv = diag{σv1 , σv2 , . . . , σvny
}, (11)

where σωi
, σvi

are Noise-to-Signal Ratio (NSR) of the ith

channel respectively.
For this system, the objective is to design a linear filter

with the state space representation

˙̂x = Ax̂ + F (y − Cx̂), (12)

ẑ = Czx̂, (13)

where x̂ is the estimate of the state x, F is the filter gain to
be determined such that (A − FC) is asymptotically stable,
and the estimation error has covariance less than a specified
matrix. The estimation error is x̃ = x− x̂, and the estimation
error system is given by

˙̃x = (A − FC)x̃ + Dω − Fv, (14)

z̃ = Czx̃, (15)

where z̃ denotes the estimation error of particular interests.
The key idea of this filtering problem is to find the estimate
x̂ of x such that the performance criterion ε∞{z̃z̃T } < Ω is
satisfied.

In this paper, the following two problems are analyzed.
First, we will explore the existence condition of the state
estimator. We will be able to provide the sufficient conditions
for the existence of the state estimator based on Linear Matrix
Inequalities (LMIs). Second, we will determine if there exists
a filter gain F such that ε∞{z̃z̃T } < Ω is satisfied for the
given Ω.

III. EXISTENCE CONDITION

In the following we will consider the augmented estima-
tion error dynamics

ẋ = Ax + Dw, (16)

where

x =
(

x̃
x̂

)
, w =

(
ω
v

)
, (17)

A =
(

A − FC 0
FC A

)
= A0 + B0FC0, (18)

D =
(

D −F
0 F

)
= D0 + B0FE0, (19)

A0 =
(

A 0
0 A

)
, B0 =

( −I
I

)
, (20)

C0 =
(

C 0
)
, D0 =

(
D 0
0 0

)
, (21)

E0 =
(

0 I
)
. (22)

Definition 1 (Mean Square Stable) The error system
(16) with FSN noise inputs is mean square stable if the state
covariance matrix associated with this error system exists
and is positive definite.

We start by defining the upper bound of the state covari-
ance matrix of system (16) as

X ≥ ε∞{x(t)x(t)T }, (23)

if it exists, it satisfies the following inequality:

0 > XAT + AX + D
(

W 0
0 V

)
DT . (24)

Substitution of (8), (9), (18), (19) into the above inequality,
yields

0 > X (A0 + B0FC0)T + (A0 + B0FC0)X
+N1XN T

1 + (B0FG0)X (B0FG0)T

+(D0 + B0FE0)W0(D0 + B0FE0)T , (25)

where

N1 =
(

DΣωM DΣωM
0 0

)
, (26)

W0 =
(

W0 0
0 V0

)
, (27)

G0 =
( −ΣvC −ΣvC

)
. (28)

Lemma 1: (assume W0 = I) The inequality of (25) can
be written as

ΓFΛ + (ΓFΛ)T + Θ < 0, (29)

where

Θ =

⎛
⎝ A0X + XAT

0 + N1XN T
1 0 D0

0 −X 0
DT

0 0 −I

⎞
⎠ , (30)

Γ =

⎛
⎝ B0

0
0

⎞
⎠ , (31)

Λ =
( C0X G0X E0

)
. (32)



Proof: By using the Schur complement formula, the
inequality (25) can be written as( XAT + AX + N1XN T

1 (B0FG0)X D0 + B0FE0

X (B0FG0)
T −X 0

(D0 + B0FE0)
T 0 −I

)
< 0,

where A is defined in (18). Breaking the above matrix into
two matrices and substituting (30) into the above inequality,
yields

Θ+

(
(B0FC0)X + X (B0FC0)

T (B0FG0)X B0FE0

X (B0FG0)
T 0 0

(B0FE0)
T 0 0

)
< 0.

Rewrite the above inequality as the following

Θ +

⎛
⎝ B0

0
0

⎞
⎠F

( C0X G0X E0

)

+

(⎛⎝ B0

0
0

⎞
⎠F

( C0X G0X E0

))T

< 0,

By the definition of Γ and Λ given in the lemma, it yields

ΓFΛ + (ΓFΛ)T + Θ < 0.

In order to find the existence conditions of the state
estimator and the parametrization of all the solutions, the
following lemma from [9] can be applied.

Lemma 2 (Projection Lemma): Let Γ, Λ, Θ be given.
There exists a matrix F satisfying ΓFΛ + (ΓFΛ)T + Θ < 0
if and only if the following two conditions hold

Γ⊥ΘΓ⊥T

< 0, (33)

ΛT⊥
ΘΛT⊥T

< 0. (34)

Supposed the above statements hold, then all the solution F
are given by

F = −R−1ΓT ΦΛT (ΛΦΛT )−1+S1/2L(ΛΦΛT )−1/2, (35)

where

S = R−1 − R−1ΓT [Φ − ΦΛT (ΛΦΛT )−1ΛΦ]ΓR−1. (36)

L is an arbitrary matrix such that ‖L‖ < 1 and R is an
arbitrary positive definite matrix such that

Φ = (ΓR−1ΓT − Θ)−1 > 0. (37)

Lemma 3: The condition (33) and (34) are equivalent
to the following statement: there exist symmetric positive
definite matrices X , P ∈ R2nx×2nx that satisfy

XP = I, (38)

B⊥
0 (A0X + XAT

0 + N1XN T
1 + D0DT

0 )B⊥T

0 < 0, (39)⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠

⊥⎛
⎝ PA0 + AT

0 P + PN1XN T
1 P 0 PD0

0 −P 0
DT

0 P 0 −I

⎞
⎠

·
⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠

⊥T

< 0. (40)

Proof: The result follows from Lemma 1 and Projection
Lemma where we note that

Γ⊥ =

⎛
⎝ B0

0
0

⎞
⎠

⊥

=

⎛
⎝ B⊥

0 0 0
0 I 0
0 0 I

⎞
⎠ .

Substituting the above equation and (30) into (33), yields⎛
⎝ B⊥

0 (A0X + XAT
0 + N1XN T

1 )B⊥T

0 0 B⊥
0 D0

0 −X 0
DT

0 B⊥T

0 0 −I

⎞
⎠ < 0.

A Schur complement of this matrix is(
B⊥

0 (A0X + XAT
0 + N1XN T

1 )B⊥T

0 0
0 −X

)

+
( B⊥

0 D0

0

)(
DT

0 B⊥T

0 0
)

< 0,

therefore(
B⊥

0 (A0X + XAT
0 + N1XN T

1 + D0DT
0 )B⊥T

0 0
0 −X

)
< 0,

which is equivalent to

B⊥
0 (A0X + XAT

0 + N1XN T
1 + D0DT

0 )B⊥T

0 < 0, X > 0.

Furthermore, since

ΛT⊥
=

⎛
⎝ XCT

0

XGT
0

ET
0

⎞
⎠

⊥

=

⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠

⊥⎛
⎝ X−1 0 0

0 X−1 0
0 0 I

⎞
⎠ ,

defining X−1 = P , and substituting (30) and the above
equation into (34), yields⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠

⊥⎛
⎝ PA0 + AT

0 P + PN1XN T
1 P 0 PD0

0 −P 0
DT

0 P 0 −I

⎞
⎠

·
⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠

⊥T

< 0.

The above theorem provides the existence condition for
the state estimator, and the characterization given in Lemma
3 is necessary and sufficient. However, we introduce a
nonconvex constraint XP = I , which makes our problem



more difficult to solve. The next theorem shows how to write
these conditions into convex constraints by using Finsler’s
Lemma from [9].

Lemma 4 (Finsler’s Lemma): Let x ∈ Rn, Q ∈ Sn and
B ∈ Rn×m. Let B⊥ be any matrix such that B⊥B = 0. The
following statements are equivalent:

i) xTQx < 0, ∀BT x = 0, x �= 0,

ii) B⊥QB⊥T

< 0,

iii) ∃µ ∈ R : Q− µBBT < 0,

iv) ∃Y ∈ Rm×n : Q + BY + YTBT < 0.

Finsler’s Lemma is a specialized version of the Projection
Lemma, and it can be applied to obtain LMI formulations in
control and estimation theory.

Theorem 1: There exists a state estimator gain F to solve
(24) if there exist a symmetric matrix P ∈ R2nx×2nx and
µ1 < 0, µ2 < 0 ∈ R that satisfies

P > 0, (41)⎛
⎜⎜⎝

PA0 + AT
0 P PN1 PD0 PB0

N T
1 P −P 0 0

DT
0 P 0 −I 0

BT
0 P 0 0 µ1I

⎞
⎟⎟⎠ < 0, (42)

⎛
⎜⎜⎜⎜⎝

PA0 + AT
0 P 0 PD0 CT

0 PN1

0 −P 0 GT
0 0

DT
0 P 0 −I ET

0 0
C0 G0 E0 µ2I 0

N T
1 P 0 0 0 −P

⎞
⎟⎟⎟⎟⎠ < 0. (43)

Proof: The result follows from Lemma 3 and Finsler’s
Lemma. If the inequality (39) holds, it is equivalent to the
following: there exists a µ1 ∈ R such that

A0X + XAT
0 + N1XN T

1 + D0DT
0 − µ1B0BT

0 < 0.

Apply the congruence transformation

X−1(A0X +XAT
0 +N1XN T

1 +D0DT
0 −µ1B0BT

0 )X−1 < 0,

with P := X−1 > 0, µ1 < 0 and the Schur complement, it
provides the LMI⎛

⎜⎜⎝
PA0 + AT

0 P PN1 PD0 PB0

N T
1 P −P 0 0

DT
0 P 0 −I 0

BT
0 P 0 0 µ1I

⎞
⎟⎟⎠ < 0. (44)

If the inequality (40) holds, it is equivalent to the existence
of a µ2 ∈ R such that⎛

⎝ PA0 + AT
0 P + PN1XN T

1 P 0 PD0

0 −P 0
DT

0 P 0 −I

⎞
⎠

−µ2

⎛
⎝ CT

0

GT
0

ET
0

⎞
⎠( C0 G0 E0

)
< 0.

Applying Schur complements twice with µ2 < 0, it obtains
the following LMI⎛
⎜⎜⎜⎜⎝

PA0 + AT
0 P 0 PD0 CT

0 PN1

0 −P 0 GT
0 0

DT
0 P 0 −I ET

0 0
C0 G0 E0 µ2I 0

N T
1 P 0 0 0 −P

⎞
⎟⎟⎟⎟⎠ < 0.

IV. FSN FILTER DESIGN

The key idea of the filtering problem to be addressed here
is to determine a linear filter F such that the performance cri-
terion, ε∞{z̃z̃T } < Ω, is satisfied. We know that ε∞{z̃z̃T }
can be computed from

ε∞{z̃z̃T } = Cz ε∞{x̃x̃T } CT
z = C̄zX C̄z

T
, (45)

where the state covariance matrix X is defined in (23) and

C̄z = Cz

[
I 0

]
. (46)

The algorithm to solve the filtering problem can be derived
from the following theorem.

Theorem 2: There exists a filter F such that ε∞{z̃z̃T } <
Ω if there exists a positive definite symmetric matrix P ∈
R2nx×2nx and µ1 < 0, µ2 < 0 ∈ R that satisfy (42), (43)
and (

Ω C̄z

C̄z
T

P

)
> 0. (47)

All the solutions F are given by

F = −R−1ΓT ΦΛT (ΛΦΛT )−1+S1/2L(ΛΦΛT )−1/2, (48)

where

S = R−1 − R−1ΓT [Φ − ΦΛT (ΛΦΛT )−1ΛΦ]ΓR−1. (49)

L is an arbitrary matrix such that ‖L‖ < 1 and R is an
arbitrary positive definite matrix such that

Φ = (ΓR−1ΓT − Θ)−1 > 0, (50)

and

Θ =

⎛
⎝ A0P

−1 + P−1AT
0 + N1P

−1N T
1 0 D0

0 −P−1 0
DT

0 0 −I

⎞
⎠ ,

Γ =

⎛
⎝ B0

0
0

⎞
⎠ ,

Λ =
( C0P

−1 G0P
−1 E0

)
.

Proof: The inequality (47) can be manipulated by

ε∞{z̃z̃T } = C̄zX C̄z
T

< Ω,



then we can use Schur complement to convert it into a LMI(
Ω C̄z

C̄z
T X−1

)
=
(

Ω C̄z

C̄z
T

P

)
> 0.

And the proof for solving F follows a similar approach in
[9].

We observe that the optimization approach proposed in this
theorem is a convex programming problem stated as LMIs,
which can be solved by efficient methods.

V. NUMERICAL EXAMPLE

In order to determine the applicability of the method, an
example to solve for the filter design is presented next. We
will consider a simple mechanical system which consists
of a mass, a spring and a damper. The plant noise and
measurement noise are modelled as FSN white noise.⎧⎪⎪⎨

⎪⎪⎩
ẋ =

(
0 1
−1 −1

)
x +

(
1
1

)
ω,

y =
(

3 3
)
x + v,

z =
(

1 1
)
x.

For simplicity, we assume that Σω = σωI , Σv = σvI .
The Noise-to-Signal Ratio (NSR) is σω = 0.1, σv = 0.1
respectively, and

M =
(

1 0.5
)
.

The performance criterion for the filter design is
ε∞{z̃z̃T } < Ω where Ω = 4.

The filter that results from our method is

˙̂x =
( −0.00895 0.99105

−0.99494 −0.99494

)
x̂ +

(
0.002985
−0.001685

)
y.

The simulation result shows that the output covariance of
the estimation error is

ε∞{z̃z̃T } = 2.9585,

which satisfies the design requirement, since 2.9585 < 4.
The performance of the FSN filter introduced in this paper

is illustrated in Fig. 1, where the error of each state variable
is plotted. When compared to Fig. 1, Fig. 2 demonstrates
the inferiority of the Kalman filter, which ignores the FSN
structure of the noise by setting W = W0 and V = V0 in
(8) and (9). Note that the peak values of the state error using
the standard Kalman filter (from Fig. 2) are approximately
38 and 23 respectively, as compared to peak errors of
approximately 7 and 13 respectively for the FSN estimator.

VI. CONCLUSIONS

FSN noise models are more practical than normal white
noise models, since they allow the size (intensity) of the
noises to be affinely related to the size (variance) of the
signals they corrupt. Such noises are found in digital signal
processing with both fixed and floating point arithmetic. Such
models are found in analog sensors and actuators which
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Fig. 1. Estimation error of FSN filter

0 5 10 15 20 25

−6

−4

−2

0

2

4

6

8

10

12

Time

E
st

im
at

io
n 

er
ro

r

Fig. 2. Estimation error of Kalman filter

produce more noise when the power supplies in these devices
must provide more power (for an increased dynamic range
of the signals in the estimation or control problem).

This paper derives the sufficient conditions for the ex-
istence of the state estimator with FSN noise models. By
adding a mild constraint, the original problem (of estimating
to within a specified covariance error bound), is solved
as a convex problem. Associated with the solvable convex
conditions, an LMI based approach is examined for the
design of the estimator with the FSN model. This estima-
tor design guarantees the performance requirement and the
design algorithm is convergent.
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