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Abstract

A tensegrity structure is a special truss structure in a stable equilibrium with selected members
designated for only tension loading, and the members in tension forming a continuous network of
cables separated by a set of compressive members. This chapter develops an explicit analytical
model of the nonlinear dynamics of a large class of tensegrity structures constructed of rigid rods
connected by a continuous network of elastic cables. The kinematics are described by positions
and velocities of the ends of the rigid rods; hence, the use of angular velocities of each rod is avoided.

The model yields an analytical expression for accelerations of all rods, making the model efficient
for simulation, because the update and inversion of a nonlinear mass matrix are not required. The
model is intended for shape control and design of deployable structures. Indeed, the explicit
analytical expressions are provided herein for the study of stable equilibria and controllability, but
control issues are not treated.

18.1 Introduction

The history of structural design can be divided into four eras classified by design objectives. In the
prehistoric era, which produced such structures as Stonehenge, the objective was simply to oppose
gravity, to take static loads. The classical era, considered the dynamic response and placed design
constraints on the eigenvectors as well as eigenvalues. In the modern era, design constraints could
be so demanding that the dynamic response objectives require feedback control. In this era, the
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control discipline followed the classical structure design, where the structure and control disciplines
were ingredients in a multidisciplinary system design, but no interdisciplinary tools were developed
to integrate the design of the structure and the control. Hence, in this modern era, the dynamics of
the structure and control were not cooperating to the fullest extent possible. The post-modern era
of structural systems is identified by attempts to unify the structure and control design for a common
objective.

The ultimate performance capability of many new products and systems cannot be achieved until
mathematical tools exist that can extract the full measure of cooperation possible between the
dynamics of all components (structural components, controls, sensors, actuators, etc.). This requires
new research. Control theory describes how the design of one component (the controller) should
be influenced by the (given) dynamics of all other components. However, in systems design, where
more than one component remains to be designed, there is inadequate theory to suggest how the
dynamics of two or more components should influence each other at the design stage. In the future,
controlled structures will not be conceived merely as multidisciplinary design steps, where a plate,
beam, or shell is first designed, followed by the addition of control actuation. Rather, controlled
structures will be conceived as an interdisciplinary process in which both material architecture and
feedback information architecture will be jointly determined. New paradigms for material and
structure design might be found to help unify the disciplines. Such a search motivates this work.
Preliminary work on the integration of structure and control design appears in Skelton!? and
Grigoriadis et al.3

Bendsoe and others*” optimize structures by beginning with a solid brick and deleting finite
elements until minimal mass or other objective functions are extremized. But, a very important
factor in determining performance is the paradigm used for structure design. This chapter describes
the dynamics of a structural system composed of axially loaded compression members and tendon
members that easily allow the unification of structure and control functions. Sensing and actuating
functions can sense or control the tension or the length of tension members. Under the assumption
that the axial loads are much smaller than the buckling loads, we treat the rods as rigid bodies.
Because all members experience only axial loads, the mathematical model is more accurate than
models of systems with members in bending. This unidirectional loading of members is a distinct
advantage of our paradigm, since it eliminates many nonlinearities that plague other controlled
structural concepts: hysteresis, friction, deadzones, and backlash.

It has been known since the middle of the 20th century that continua cannot explain the strength
of materials. While science can now observe at the nanoscale to witness the architecture of materials
preferred by nature, we cannot yet design or manufacture manmade materials that duplicate the
incredible structural efficiencies of natural systems. Nature’s strongest fiber, the spider fiber,
arranges simple nontoxic materials (amino acids) into a microstructure that contains a continuous
network of members in tension (amorphous strains) and a discontinuous set of members in com-
pression (the B-pleated sheets in Figure 18.1).3°

This class of structure, with a continuous network of tension members and a discontinuous
network of compression members, will be called a Class 1 tensegrity structure. The important
lessons learned from the tensegrity structure of the spider fiber are that

1. Structural members never reverse their role. The compressive members never take tension
and, of course, tension members never take compression.

2. Compressive members do not touch (there are no joints in the structure).

3. Tensile strength is largely determined by the local topology of tension and compressive
members.

Another example from nature, with important lessons for our new paradigms is the carbon
nanotube often called the Fullerene (or Buckytube), which is a derivative of the Buckyball. Imagine
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FIGURE 18.1 Nature’s strongest fiber: the Spider Fiber. (From Termonia, Y., Macromolecules, 27, 7378-7381,
1994. Reprinted with permission from the American Chemical Society.)

FIGURE 18.2 Buckytubes.

a 1-atom thick sheet of a graphene, which has hexagonal holes due to the arrangements of material
at the atomic level (see Figure 18.2). Now imagine that the flat sheet is closed into a tube by
choosing an axis about which the sheet is closed to form a tube. A specific set of rules must define
this closure which takes the sheet to a tube, and the electrical and mechanical properties of the
resulting tube depend on the rules of closure (axis of wrap, relative to the local hexagonal topol-
ogy).'? Smalley won the Nobel Prize in 1996 for these insights into the Fullerenes. The spider fiber
and the Fullerene provide the motivation to construct manmade materials whose overall mechanical,
thermal, and electrical properties can be predetermined by choosing the local topology and the
rules of closure which generate the three-dimensional structure from a given local topology. By
combining these motivations from Fullerenes with the tensegrity architecture of the spider fiber,
this chapter derives the static and dynamic models of a shell class of tensegrity structures. Future
papers will exploit the control advantages of such structures. The existing literature on tensegrity
deals mainly!!>> with some elementary work on dynamics in Skelton and Sultan,?* Skelton and
He,? and Murakami et al.26

© 2002 by CRC Press LLC



FIGURE 18.3 Needle Tower of Kenneth Snelson, Class 1 tensegrity. Kroller Miiller Museum, The Netherlands.
(From Connelly, R. and Beck, A., American Scientist, 86(2), 143, 1998. With permissions.)

18.2 Tensegrity Definitions

Kenneth Snelson built the first tensegrity structure in 1948 (Figure 18.3) and Buckminster Fuller
coined the word “tensegrity.” For 50 years tensegrity has existed as an art form with some archi-
tectural appeal, but engineering use has been hampered by the lack of models for the dynamics.
In fact, engineering use of tensegrity was doubted by the inventor himself. Kenneth Snelson in a
letter to R. Motro said, “As I see it, this type of structure, at least in its purest form, is not likely
to prove highly efficient or utilitarian.” This statement might partially explain why no one bothered
to develop math models to convert the art form into engineering practice. We seek to use science
to prove the artist wrong, that his invention is indeed more valuable than the artistic scope that he
ascribed to it. Mathematical models are essential design tools to make engineered products. This
chapter provides a dynamical model of a class of tensegrity structures that is appropriate for space
structures.

We derive the nonlinear equations of motion for space structures that can be deployed or held
to a precise shape by feedback control, although control is beyond the scope of this chapter. For
engineering purposes, more precise definitions of tensegrity are needed.

One can imagine a truss as a structure whose compressive members are all connected with ball
joints so that no torques can be transmitted. Of course, tension members connected to compressive
members do not transmit torques, so that our truss is composed of members experiencing no
moments. The following definitions are useful.

Definition 18.1 A given configuration of a structure is in a stable equilibrium if, in the absence
of external forces, an arbitrarily small initial deformation returns to the given configuration.

Definition 18.2 A tensegrity structure is a stable system of axially loaded members.

Definition 18.3 A stable structure is said to be a “Class 1” tensegrity structure if the members
in tension form a continuous network, and the members in compression form a discontinuous set
of members.
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FIGURE 18.4 Class | and Class 2 tense  grity structures.
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FIGURE 18.5 Topology of an (8,4) Class 1 tense  grity shell.

Definition 18.4 A stable structure is said to be a “Class 2” tense grity structure if the members
in tension form a continuous set of members, and there are at most tw 0 members in compress:
connected to each node.

Figure 18.4 illustrates Class 1 and Class 2 tensegrity structures.

Consider the topology of structural members given in Figure 18.5, where thick lines indicate
rigid rods which tak e compressi ve loads and the thin lines represent tendons. This is a Clas
tense grity structure.

Definition 18.5 Let the topology of Figure 18.5 describe a three-dimensional structure by con-
necting points A to A, BtoB, Cto.C,1tol. This constitutes d‘Class 1 tense grity shéllif there
exists a set of tensions in all tendons taﬁy, o= 1(— 10, B=1 — n, y= 1 — m) such that the
structure is in a stable equilibrium.
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FIGURE 18.6 A typical ij element.

18.2.1 A Typical Element

The axial members in Figure 18.5 illustrate only the pattern of member connections and not the
actual loaded configuration. The purpose of this section is two-fold: (i) to define a typical “element”
which can be repeated to generate all elements, and (ii) to define rules of closure that will generate
a “shell” type of structure.

Consider the members that make the typical ij element where i = 1, 2, ..., n indexes the element
to the left, and j= 1, 2, ..., m indexes the element up the page in Figure 18.5. We describe the
axial elements by vectors. That is, the vectors describing the ij element, are t,;, t,;, ... t,o; and 1,
r,;, where, within the ij element, t,; is a vector whose tail is fixed at the specified end of tendon
number o, and the head of the vector is fixed at the other end of tendon number o as shown in
Figure 18.6 where o= 1, 2, ..., 10. The ij element has two compressive members we call “rods,”
shaded in Figure 18.6. Within the ij element the vector r,; lies along the rod r,; and the vector r;
lies along the rod r,;. The first goal of this chapter is to derive the equations of motion for the
dynamics of the two rods in the ij element. The second goal is to write the dynamics for the entire
system composed of nm elements. Figures 18.5 and 18.7 illustrate these closure rules for the case
(n, m) = (8,4) and (n, m) = (3,1).

Lemma 18.1 Consider the structure of Figure 18.5 with elements defined by Figure 18.6. A Class 2
tensegrity shell is formed by adding constraints such that for alli= 1/, 2, ..., n, and form > j > I,
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ts, +tg, = 0,
t, +ty, = 0.

This closes nodes ny; and ny;, ;.. to a single node, and closes nodes ny, ;; and ny; , to a single
node (with ball joints). The nodes are closed outside the rod, so that all tension elements are on
the exterior of the tensegrity structure and the rods are in the interior.

The point here is that a Class 2 shell can be obtained as a special case of the Class 1 shell, by
imposing constraints (18.1). To create a tensegrity structure not all tendons in Figure 18.5 are
necessary. The following definition eliminates tendons t,; and t;,;, i=1—n, j=1 — m).

Definition 18.6 Consider the shell of Figures 18.4. and 18.5, which may be Class 1 or Class 2
depending on whether constraints (18.1) are applied. In the absence of dotted tendons (labeled t,
and t,,), this is called a primal tensegrity shell. When all tendons t,, t,, are present in Figure 18.5,
it is called simply a Class 1 or Class 2 tensegrity shell.

The remainder of this chapter focuses on the general Class 1 shell of Figures 18.5 and 18.6.

18.2.2 Rules of Closure for the Shell Class

Each tendon exerts a positive force away from a node and f,, is the force exerted by tendon ¢,
and f, denotes the force vector acting on the node n,,;. All f,; forces are postive in the direction
of the arrows in Figure 18.6, where w,,; is the external applied force at node n,;, o= 1, 2, 3, 4. At

the base, the rules of closure, from Figures 18.5 and 18.6, are

ouj?

toy = —t;,i=1,2,...,n (18.2)
to = 0 (18.3)
too = — by (18.4)
tog = to, = —ty, (18.5)

0 = tgi=tsio=tyo=1tyyo i=1,2, ..., n. (18.6)
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At the top, the closure rules are

Com = —im (18.7)
tioom = —trom = —toum (18.8)
iy = 0 (18.9)
0 = tiiguen) = Loimer) = Gariyms)

= Cienomen = Barnmen- (18.10)

At the closure of the circumference (where i = 1):
t90/' = t9nj, t60(j—l) = t6n(/—1)’ t70(/-1) = t7n(j—1) (18.11)
tso; = ts; to; = o tioog-1) = tiong-1y- (18.12)

From Figures 18.5 and 18.6, when j = 1, then
0= f7i(/‘—l) = f7(i—l)(/'—1) = f5i(/'—1) = flO(i—l)(/'—l)’ (18.13)
and for j = m where,

0= fii001) = foiimany = By = Bisnyonsny- (18.14)
Nodes nyy;, ny,;, ny; for j=1, 2, ..., m are involved in the longitudinal “zipper” that closes the

structure in circumference. The forces at these nodes are written explicitly to illustrate the closure

rules.

In 18.4, rod dynamics will be expressed in terms of sums and differences of the nodal forces,
so the forces acting on each node are presented in the following form, convenient for later use.

The definitions of the matrices B, are found in Appendix 18.E.
The forces acting on the nodes can be written in vector form:

f=Bf+ Bofo + Wow

where

fd
1 0
f, ¢d f W
f=|: | f/=| 2| f=|:|w=|:|
fm f.([ fr(r: wm

We = BlockDiag [ ---,W,, W,, ---1],

B, B, 0 - 0 B, B, 0
B, B, . . 0 B,
B'=|0 B . . o|m=|: -
i . . B B, :
0 0 B, B 0
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Now that we have an expression for the forces, let us write the dynamics.

18.3 Dynamics of a Two-Rod Element

Any discussion of rigid body dynamics should properly begin with some decision on how the
motion of each body is to be described. A common way to describe rigid body orientation is to
use three successive angular rotations to define the orientation of three mutually orthogonal axes
fixed in the body. The measure numbers of the angular velocity of the body may then be expressed
in terms of these angles and their time derivatives.

This approach must be reconsidered when the body of interest is idealized as a rod. The reason
is that the concept of “body fixed axes” becomes ambiguous. Two different sets of axes with a
common axis along the rod can be considered equally “body fixed” in the sense that all mass
particles of the rod have zero velocity in both sets. This remains true even if relative rotation is
allowed along the common axis. The angular velocity of the rod is also ill defined because the
component of angular velocity along the rod axis is arbitrary. For these reasons, we are motivated
to seek a kinematical description which avoids introducing “body-fixed” reference frames and
angular velocity. This objective may be accomplished by describing the configuration of the system
in terms of vectors located only the end points of the rods. In this case, no angles are used.

We will use the following notational conventions. Lower case, bold-faced symbols with an
underline indicate vector quantities with magnitude and direction in three-dimensional space. These
are the usual vector quantities we are familiar with from elementary dynamics. The same bold-
faced symbols without an underline indicate a matrix whose elements are scalars. Sometimes we
also need to introduce matrices whose elements are vectors. These quantities are indicated with an
upper case symbol that is both bold faced and underlined.

As an example of this notation, a position vector can be expressed as

pil
Bi = [gl €, 93] P |= Ep,"
Di

In this expression, p, is a column matrix whose elements are the measure numbers of P, for the mutually
orthogonal inertial unit vectors e, e,, and e;. Similarly, we may represent a force vector f as

A

f = Ef

i ="

Matrix notation will be used in most of the development to follow.
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FIGURE 18.8 A single rigid rod.

We now consider a single rod as shown in Figure 18.8 with nodal forces f , and fz applied to
the ends of the rod.
The following theorem will be fundamental to our development.

Theorem 18.1 Given a rigid rod of constant mass m and constant length L, the governing
equations may be described as:

G+Kq=Hf (18.17)

qz pz_p1

P I 0
= |f+£ ; 0 0
f-|ithl g 2 Z,K{ e }
f,—f, mi0  q, 0 L q,q,],

The notation ¥ denotes the skew symmetric matrix formed from the elements of r:

where

0 -n 5 7

F=|rn 0 -nlr=|n

- n 0 4

and the square of this matrix is
2 2
—hh hn hn
2_ 2_ 2

=1 5 h=h K
2 2
i h hTh

The matrix elements r, r,, 3, q; (5 g3 etc. are to be interpreted as the measure numbers of the
corresponding vectors for an orthogonal set of inertially fixed unit vectors e,, €,, and e,. Thus,
using the convention introduced earlier,

r=Er, q =Eq, etc.
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The proof of Theorem 18.1 is given in Appendix 18.A. This theorem provides the basis of our
dynamic model for the shell class of tensegrity structures.

Now consider the dynamics of the two-rod element of the Class 1 tensegrity shell in Figure 18.5.
Here, we assume the lengths of the rods are constant. From Theorem 18.1 and Appendix 18.A, the
motion equations for the ij unit can be described as

my;

A A
2 q”j = flij+ fZij

m,.. A A
61U (qzij X CIQ,'/') = qz,'j X(fZij_flij)
, (18.18)
oy Qo+ dy; - Aoy = 0
Q- Uy =L,
Sy =1+,
(g X ) = A X (B — )
6 4ij 4ij 4ij 4ij 3ij ’ (1819)

q4ij : q4ij Ty - d4ij =0

_
Q- by = Ly

where the mass of the rod ouj is m,;
inertial reference frame (E). Hence,

and [|r ;|| = L;. As before, we refer everything to a common

q11j 5y Q31 41
U Al G | Doy Gy | D3| Ty | B e |
913 35 933 943

T
qll.jA[q]Ti/., S ‘L{i;]’

and the force vectors appear in the form

2l L R I L
=, |0 ﬁ”q;f’ 2%, |0 é.qiii’

1ij

fm +f2ij
Hlij 0 flt/ - th/
H, = 0 H,,  £;,4 P b
3ij 4ij
£, -f,
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Using Theorem 18.1, the dynamics for the ij unit can be expressed as follows:

q,;+Q,q, =Hf

i

where
Q,-| ’ o, 0
V0 Lidy @, L [ |0 LiaganL |

o _[@ 0
i 0 Qz:jj’

.
q=[qlTl,...,q;,qlrz,...,q:2,...,qITm,...,q)Tml] )
The shell system dynamics are given by
q+K q=Hf, (18.20)

where f is defined in (18.15) and

- - - - - - T
q=[q 0 A €]l
K, = BlockDiagQ,,....Q,.Q,....Q ,...Q ...Q |

r nl>

H

BlockDiag[H,,....H, H, .H, . .H _.H |

nl? 22 " m?>

18.4 Choice of Independent Variables and
Coordinate Transformations

Tendon vectors 7,5, are needed to express the forces. Hence, the dynamical model will be completed
by expressing the tendon forces, f, in terms of variables q. From Figures 18.6 and 18.9, it follows
that vectors f)l.]. and p; can be described by

i i1 j j-1
pszpn"'zr]kl _ztm +2tlik+2t5ik_ Ly (18.21)
k=l k=l [ =

P, = P, + 1, +ty — T (18.22)

To describe the geometry, we choose the independent vectors {r;, ry;, ts;, fori=1,2, ..., n, j=
1,2, ...,m} and {p,,, t; fori=1,2,...,n,j=1,2,...,myand i <n when j=1}.

This section discusses the relationship between the q variables and the string and rod vectors
t,p, and ry;. From Figures 18.5 and 18.6, the position vectors from the origin of the reference frame,
E, to the nodal points, p, i Paip P and Py can be described as follows:
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Py =Py
le/ = pij +rlz]
0 (18.23)
P3; =Py
p4,/ ﬁzj + rzl:/.
We define
- A .
Q=P +Py; =2p; + 1y,
A p—
q2ij _pz,'j - p“j = rlij
(18.24)
A an
q3; =Py; TP = pr +1,;
A
»q4ij :p4,-j - p3ij = r2ij
Then,
a4 [ I3 I3 0 0 p,
Al | -I, I, 0 0 D,
y q3 0 0 13 13 p3
q, i L 0 0 -I, L||p, )
i (18.25)
213 I3 0 0 p
— 0 L 0 0|~
0 0 21, L||p
0 0 0 L||r

L i
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In shape control, we will later be interested in the p vector to describe all nodal points of the

structure. This relation is

p:

Pq P = BlockDiag [...,P,, ....P,,.
L 0 o] [ -L 0
L 0 0 1L, L o
0 I, L| 2{(0 o0 I
0 -1, I 0 0 I

3

(18.26)

The equations of motion will be written in the q coordinates. Substitution of (18.21) and (18.22)
into (18.24) yields the relationship between q and the independent variables t., t, r|, r, as follows:

q,; =2
4y =Ty
[ i i—1 j j )
43, = 2lp, + zrlkl _Z t t Ztlik +2t51k
k=1 k=1 k=2 k=1

B i i1 Jj j-1 )
Pyt E ,rlkl _E ,tm + E 'tlik +2t5ik -
L k=1 k=1 k=2 k=1 ]

Uy =Ty

To put (18.27) in a matrix

form, define the matrices:

1j

(18.27)

_Zij

rlij
r2ij .
L= forj=2, 3,..., m,
1y t
5ij
_tlij
pllﬂ tl(i-l)l
I, r.
L= ML= " ffori=2,.,n,
l.211 l.21'1
tsn_ tsn
and
=00, L, T
€A, I, 0 0 20, I, 0 0
0 L 0 0] |0 L 0 0
o1, 21, -I, 2L 21, 21, -I, 2I,
0 0 I 0 0 0 1, o

© 2002 by CRC Press LLC



-1 0 0 21, 2, 21, 0 0
I, 0 0 0 0 0 0 0
C = N A D=
0 I, 21, 2I 2, 21, 0 O
| 0 I, 0 0 0 0 0 0
(21, 2I, 0 O 2L, 21, 0 2I,
0 0 0 o 0 0 0 0
E = s F =
=2I, 21, 0 0 2, 21, 0 2I,
| 0 0 0 o 0 0 0 0
[0 0 21, 2I, =21, 2L, 0 2L,
0 o0 0 0 0 0 0 0
J = > G =
0 0 2I, 2I 2L, 2L, 0 2L,
0 0 0 0 0 0 0 0
Then (18.27) can be written simply
q=Ql (18.28)

where the 12nm X 12nm matrix Q is composed of the 12 X 12 matrices A—H as follows:

Q, 0 0
Q, Q, B :
Q- Q, Q, Q, . : ’ (18.29)

Q21 Q32 Q32 Q32 Q22

(A 0 0]
D B :
D E B : .
Q, = . n X n blocks of 12 x 12 matrices,
D E E B :
: : : 0
D E E E Bj
(F 0 0]
D G :
D E G : .
Q, = D E E : 12n X 12n matrix,
: : : . .0
D E E E E G]

Q,, = BlockDiag |[...,C, ...,C],
Q;, = BlockDiag [....J, ....J1,
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where each Q is 12n X 12n and there are m row blocks and m column blocks in Q. Appendix
18.B provides an explicit expression for the inverse matrix Q, which will be needed later to express
the tendon forces in terms of q.

Equation (18.28) provides the relationship between the selected generalized coordinates and an
independent set of the tendon and rod vectors forming 1. All remaining tendon vectors may be
written as a linear combination of 1. This relation will now be established. The following equations
are written by inspection of Figures 18.5, 18.6, and 18.7 where

L =Py T, — Py (18.30)

and fori=1,2,...,n j=1,2,...,m we have
ty = Py~ Py * By » (G > D
ty =P, Py
by =ty + Ty = Py + ;=P

Loy = Py =Py F0y) - (F<m) (18.31)

A

L7 = Py = Prisnyja) - (j<m)
by =Py Th; =Py = Ty —bs; ¥y

Loy =P — Py + 1)

A

thij = P+nyj T oy — Py

For j = 1 we replace t,; with
=P - Pist-
For j = m we replace ty; and t,; with
Coim = Pisiym T ogirtym — Py, +Tyi)

t7im = pim - (p(iﬂ)m + I.2(i+l)m)‘

where pj Ap, ., p,Ap,, and i+ n=i Equation (18.31) has the matrix form,

|

l

t,] [0 0 -1, -IL 0 0 0 0
t.t| [0 0 o0 o 0 0 I, 0
t,|] [0 0 o o|[p 0 0 -I, offp
gt [0 0 0 odin)Jo 0 0 oy
i1t o 0o o ol|p 0 0 0o of|lp
t| [0 0 o o[, [0 0 0o o]
t,| [0 0 0o o 0 0 0 0
t,), [0 0 0 o] 0 0 o0 o]
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t, 0 0 -1, -L] 0 0 0 0
t, 00 0 0 0 0 I, -I,
t, 0 0 0 0 0 0 -I, I,
t 110 0 0 0 110 0 0 0
Al “2l0 0 0o o |YenT3lo o o o |dewm
7
t, 0 o0 0 0 0 o0 0 0
t, 0 O 0 0 0 0 0 0
te], [0 0 0 0] o 0 o o0
(1, -I, 0 0] (0 0 0 0]
I, I, 0 0 0 0 o0 0
L I, 0 0 0o 0 0 0
0 0 -I, -I U | I
+ - 0 0 I ’ 13 qim + 0 0 13 13 q(i+1)m'
2 3 3 2 3 T3
I, I, -I, I, 0 0
-, I, 0 0 L -I, 0 0
| 0 0 -1, 1 i 0 I, I |
Also, from (18.30) and (18.32)
P p
T T
t, =[-1,000]|l.)| +|LIo0o0]|
1nl [ 3, ] p [ 3,73, ] p
I.2 11 r2 nl
L = [ I%’ 2I 0, O]qu [ Iz’%l3’0’ 0] qd,:
=Eq,, +E.q,, (18.35)
qll
=[E;.0.---.0, E7] ) e E, e R*?,
qnl

=R,q, =[ R, 0]q, R, eR™™"

lnl

With the obvious definitions of the 24 X 12 matrices E,, E,, E;, E,, E4, E4, E;, equations in
(18.34) are written in the form, where qo, = q,,1, Q41,= 935

i_ ~
t, = Ezq(z‘—l)l + E3qi1 + E4q(i+1)1 + ESq(i+1)2’

tta; = Elqi(./'fl) + EZq(H)/ + qu + E4q(i+l)j + ESq(i+I)(j+l)’ (1 8-36)

lm = Elql(mfl) + EZq(ifl)m + E3qim + E4q(i+1)m'
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Now from (18.34) and (18.35), define

dr
Lt

nl

ta'T

dar
. Lt

1 :[th (7 ¢l nm]T

th
Inl> *11 > %21 °* O tn2|

=t e e

1nl?
to get
ld — Rq R e R(24nm+3)><]2nm q e Rlan ld e R(24nm+3)
—{{O 0 0]
Rll R12 . .
R21 R11 R12 :
R= 0 R21 R11 R12 ol Rij = R24"X12", Ro c R3X12”,
' R21 l{ll 0
. .. 512
L 0 0 R21 Rll
[E, E, 0 E, ] K E, 0
E, E E, . : 0 0 E,
0 E, E, E, . : : ’
R“ = . E E E 0o R12 =1
2 3 4 :
0 . . - E4 0
E, 0 0 E, E| E; 0
Riyy=0ifk>LR,,  =0ifk>1

R, = BlockDiag|--.E E - | E, e R*?i=155

R, = [E

0

0.--.0.E,]Eg =%[ -1,,1,,0,0],

6

1

E, 25[13’ 1.0 0]

(18.37)

ﬁll and ﬁn have the same structure as R, except E, is replaced by E4, and E4, respectively.
Equation (18.37) will be needed to express the tendon forces in terms of q. Equations (18.28) and
(18.37) yield the dependent vectors (t,,, t,, t;, t,, t;, t;, ty, t,) in terms of the independent vectors

(ts, t,, T}, ;). Therefore,

1 =RQl. (18.38)
18.5 Tendon Forces
Let the tendon forces be described by
t,
£, =F,; L (18.39)
t(xij
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For tensegrity structures with some slack strings, the magnitude of the force F,; can be zero, for
taut strings F,; > 0. Because tendons cannnot compress, F,; cannot be negative. Hence, the

magnitude of the force is

by = kcxij( aif| Z(xij) (18.40)
where
0 ,ifL, > Ht H
kyAY I
U k>0 i Ly <ty
oj ? ouj ouj
Ly —u, +L,;20 (18.41)
where L‘;“.j >0 is the rest length of tendon 7,,; before any control is applied, and the control is u,;,

the change 1n the rest length. The control shortens or lengthens the tendon, so u
or negative, but wa >0. So u,; must obey the constraint (18.41), and

«;j €an be positive

olij
Uy < L5, > 0. (18.42)

Note that for #,,, and for au.=2, 3, 4, 6, 7, 8, 9, 10 the vectors t,; appear in the vector I related
to q from (4.7) by 1Y= Rq, and for a.= 5, 1 the vectors t,,; appear in the vector 1 related to q from

(18.28), by 1= Q' q. Let P, denote the selected row of R associated with t,; for aij = 1nl and
fora=2,3,4,6,7,8,9, 10. Let P also denote the selected row of Q! when ov= 5, 1. Then,

oLij
tm‘j - g(qu’ ij ¥12mm (18.43)
] =R R0 0 (18.44)

From (18.39) and (18.40),

focij == Kou‘j (q)q + b(xij (q)um‘j
where
_1
Koy @) 2 kL (07 RE R =1 R Ky € R (18.45)
1 <
b, (@) =k, (q"RLR, ) R,q. b, €R™ (18.46)
Hence,
[ le_j 1 [ KZij ]
f3i/' K3ij
f4ij K4ij
f: — f()lf/' — Kﬁij q
f7ij K7lif
f8ii K8ij
f9ij K9ij
gfl()ijg _Klofj
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sz,-,- - F“z,-,- -
b; U
b 4ij Uy
N b, Uy
b7l.j Up;
b81j u8ii
b9ij Uy,;
L bl()ij4 Uy
or
d _ d d__d
f,-,- ——Kl.jq+P,.qu, (18.47)
and
o _ | 50 __KSij q+ bSiiO Sij
v flz] Klij 0 bll] ull]
or
f;’ :—K;q+PiJ”.u;. (18.48)
Now substitute (18.47) and (18.48) into
’_flnl— ’_Klnlﬂ —Pm] “”mlﬂ
a d
fldl K;ll Plll ull
£/ =|£ |=-| K2 lq+ P! v, |=-K{q+Piuf
_fj]_ _Kf«lld L P,flud_“ffud
£ [KL| |P: uj,
fd Kd Pd ud
g == = lg+ = 2 = _Kq, +Pul.
fndz Kzz sz uZz
Hence, in general,
f! = -K’q+Pu’
J J J
or by defining
K Pl
K¢ P!
K'=| 2| P'=|"? (18.49)
Kd Pd
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fi= -Kiq + P/

Likewise, for f forces (18.48),

B ()— B o 7 B o 1r o ]
£ KJ, P u,
£’ K¢ P/ u
| 21 21 21
fi = 7 et - :
fUl KUI PUI uol
L nl_J L nl] L nl ) L " nl |
[ eo | [(yro0 ] (Do I[..0 ]
flj Klj PU uj;
0 o o o
fo = f2j __ Kz,' q+ sz u,;
J : : - :
f:j K;’/. P:j uzj
f]f’ = —K;q + ij’u;f (18.50)

fo= - K°q + P°u’.
Substituting (18.49) and (18.50) into (18.E.21) yields
f = —(B’K? + B’K°)q + B‘P4u‘ + B°P°u’ + Wew, (18.51)

which is written simply as

f =—Kq+Bu+W°w, (18.52)

by defining,
K = B'K? + B’K’,

f;é[B"P", BP°],

BP, BP! 0 . 0 |
B.P BP! BP! :
pipi | © BsP{ BP/ : :
: S BRY 0 |
: P B,P/
i 0 0 Esp;;_l BsPZ_
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BP” BP, 0 - 0
0 BP BP .
BP’=| SO BP0
: ‘ - B,P
0 cee cee 0 B7Pr’;

B.K’+BK’+BK/+BK;
Iist +B,K{+B,K{+B K/ +BK}
) ESK‘Z" +B,K!+B,K;+B K] +B,K;
K=BK‘+B’K’=| BK{+B.K{+B,K!+BK;+B,K! (18.53)

BK! , +BK! +BK’!+BK’ +BK’

m-1 m

E51(5171 + B()KZI + B7K21

uy u;
uj u;
ug ug
d d
u, u,
d g
- u u
i= | u= | M (18.54)
u u
o 0
u u
2 2
ug ug
o o
u, u,
o o
_u)n B _um B

In vector u in (18.54), u,,, appears twice (for notational convenience u,,, appears in ﬁl" and in
u;). From the rules of closure, t,; = — t,;; and t;;,= — t(;,, 1= 1,2, ..., n, but t,;, t;,, to;, £y, all
appear in (18.54). Hence, the rules of closure leave only n(10m — 2) tendons in the structure, but
(18.54) contains 10nm + 1 tendons. To eliminate the redundant variables in (18.54) define u =
Tu, where u is the independent set u €"'""? and u e R'""' is given by (18.54). We choose
to keep t;;,, in u and delete t,,,, by setting t,,,, = —t;,,. We choose to keep t,; and delete t,;, by
setting t,,; = —t,;;, i =1, 2, ..., n. This requires new definitions of certain subvectors as follows in
(18.57) and (18.58). The vector u is now defined in (18.54). We have reduced the u vector by
2n + 1 scalars to u. The T matrix is formed by the following blocks,
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0 0 0 01 0
T, S
T, S
IX
IB
T= T
(18.55)
T2
12
IZ
IZ
12
c R(lOan)X(n(]OmfZ))
where
T = eR8><7
I
T, = ( z ) e R™
0000 -100
06><2
s=|0 ~1|e R*. (18.56)
0 0

There are n blocks labeled T, n(m — 2) blocks labeled I (for m < 2 no I, blocks needed, see
appendix 18.D), n blocks labeled T,, nm blocks labeled I, blocks, and n blocks labeled S.

The u{ block becomes

=>
>
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The ujl block becomes

Man
ﬁtlim MSnm
ﬁ;jm u471m

al 2ad |l =|ug,, |eR™, i=1,2,3 .n j=m (18.58)
: u7nm
»AZmA uSnm
>u9nm‘

e

The u;" block is the ﬁl" block with the first element u,,, removed, because it is included in u’,.
From (18.17) and (18.52),

q+ (K, (@+K, (9)q =B(@u+D(@w, (18.59)
where,
Kp = H(q) K (q),

B = H(q) B(q)T,
D = H(q)We.

The nodal points of the structure are located by the vector p. Suppose that a selected set of nodal
points are chosen as outputs of interest. Then

yp = Cp = CPq (18.60)

where P is defined by (18.26). The length of tendon vector t,; = @lm.jq is given from (18.44).
Therefore, the output vector y, describing all tendon lengths, is

— | aTopT 2
Y=Y b Yoy = (q %wygftqu) :
Another ouput of interest might be tension, so from (18.40) and (18.44)
Yy =| Fai b Foy = kY~ L) -

The static equilibria can be studied from the equations

K,(q)q = B(q)u + D(g)w, y, = CPq. (18.61)
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Initial Conditions Perspective View

1010 9

Initial Conditions Top View

FIGURE 18.10 Initial conditions with nodal points on cylinder surface.

Steady State Equilibrium Perspective View

20+
18-
16-
141
121
10-
84
6-
4
2

0.l
10 3

0 5

10 10

5

FIGURE 18.11 Steady-state equilibrium.

FIGURE 18.12 Tendon dynamics.

Of course, one way to generate equilibria is by simulation from arbitrary initial conditions and
record the steady-state value of q. The exhaustive definitive study of the stable equilibria is in a

separate paper.?’

Damping strategies for controlled tensegrity structures are a subject of further research. The
example case given in Appendix 18.D was coded in Matlab and simulated. Artificial critical damping
was included in the simulation below. The simulation does not include external disturbances or
control inputs. All nodes of the structure were placed symmetrically around the surface of a cylinder,
as seen in Figure 18.10. Spring constants and natural rest lengths were specified equally for all
tendons in the structure. One would expect the structure to collapse in on itself with this given
initial condition. A plot of steady-state equilibrium is given in Figure 18.11 and string lengths in

Figure 18.12.
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18.6 Conclusion

This chapter developed the exact nonlinear equations for a Class 1 tensegrity shell, having nm rigid
rods and n(10m — 2) tendons, subject to the assumption that the tendons are linear-elastic, and the
rods are rigid rods of constant length. The equations are described in terms of 6nm degrees of
freedom, and the accelerations are given explicitly. Hence, no inversion of the mass matrix is
required. For large systems this greatly improves the accuracy of simulations.

Tensegrity systems of four classes are characterized by these models. Class 2 includes rods that
are in contact at nodal points, with a ball joint, transmitting no torques. In Class 1 the rods do not
touch and a stable equilibrium must be achieved by pretension in the tendons. The primal shell
class contains the minimum number of tendons (8nm) for which stability is possible.

Tensegrity structures offer some potential advantages over classical structural systems composed
of continua (such as columns, beams, plates, and shells). The overall structure can bend but all
elements of the structure experience only axial loads, so no member bending. The absence of
bending in the members promises more precise models (and hopefully more precise control).
Prestress allows members to be uni-directionally loaded, meaning that no member experiences
reversal in the direction of the load carried by the member. This eliminates a host of nonlinear
problems known to create difficulties in control (hysteresis, dead zones, and friction).
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Appendix 18.A Proof of Theorem 18.1

Refer to Figure 18.8 and define

using the vectors p and p, which locate the end points of the rod. The rod mass center is located
by the vector,

P.=.4, (18.A.1)
Hence, the translation equation of motion for the mass center of the rod is
. m .. A ~
mp_ = Eg] =(f, +1,), (18.A.2)

where a dot over a vector is a time derivative with respect to the inertial reference frame. A vector
p locating a mass element, dm, along the centerline of the rod is

1 1
p=p, +p(p, _Bl):§g1 +(p—5)gz, 0<p<l, p:%, (18.A.3)

and the velocity of the mass dm, v, is

(p—*)q (18.A.4)

v—'l
v=p=_4,

The angular momentum for the rod about the mass center, h,, is

h, J(f P )Xpdm (18.A.5)

where the mass dm can be described using dx = L dp as

dm =(%)(L dp)=m dp. (18.A.6)

Hence, (18.A.2) can be rewritten as follows:
I .
=| (p—p, ) xp(mdp) (18.A.7)
0
where (18.A.1) and (18.A.3) yield

P-P, =(p-)q, (18.A.8)

(18.A.4)~(18.A.8) yield
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: 1 1. 1.
h = mJ; (P_E)ﬂz X{Eg, +(P_§)ﬂz} dp

A | S|
=mq2><{ql_[02(p—2)dp+q2L(p—2)2dp}

~ g 1[1 2 1 ] +[1( _1)3]'-
X 2P P 4T 5P | %

— m o
_Egzxgz

(18.A.9)

The applied torque about the mass center, T, is
_ 1 A4
T. =5g2 x(f,—f,)

Then, substituting h. and T, from (18.A.9) into Euler’s equations, we obtain

or

h, :E(gz Xq,+4q, ng)
(18.A.10)
m .. 1 A4
:Egz x4, :Egz x(£, - 1,)

Hence, (18.A.2) and (18.A.10) yield the motion equations for the rod:

%ﬁl =f, +f,

. A (18.A.11)
%(gz Xg2)= q, x(f, 1)

We have assumed that the rod length L is constant. Hence, the following constraints for q, hold:

2

9,9,=1L
d . SN  —0
E(gz'gz)_gz'gz-i-gz'gz_ q,°9,=
d S c —0
E(gz'gz)_gz'gz_’—gz'gz_

Collecting (18.A.11) and the constraint equations we have

%Ql =£|+£2

©@,x9,)  =9,xE-0) (18.A.12)
9,9,+9,°4, =0

q,q, =L
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We now develop the matrix version of (18.A.12). Recall that

Also note that E"E = 3 x3 identity. After some manipulation, (18.A.12) can be written as:
5q,=f +f,
24,4, =4, - f)
e (18.A.13)
q;qz = _ngz
qzrq2 =I.

Introduce scaled force vectors by dividing the applied forces by m and mL

A A ~ 2 A A A~ 6
=t +f)—, g, =(f, —£,)——.
g1 (l Z)m g2 (1 Z)mLZ

Then, (18.A.13) can be rewritten as

q, =8
4,4, = 4,(-g,)
9,4, =—4,q,
qlq, =1

q, |. 0 qQ| -
qQ,=| .,. |- g L (18.A.15)
[qi} ’ {—qzrqz] {0]2

Lemma For any vector q, such that q'q = L?,

(18.A.14)

Solving for q, requires,

Proof:
0 —q, q,
0 q; -4, q, q 0 —q
3 1 2
—q 0 q q =I1 A.
3 1 2 || _ 4 q 0 3
q, -4, 0 q;
q, q, q;

Since the coefficient of ij2 in (18.A.15) has linearly independent columns by virtue of the Lemma,
the unique solution for q, is
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. [a ([ o Q|
= = L 18.A.16
® [qi} (Lqiqz] {O]gz ] ( )

where the pseudo inverse is uniquely given by

HEERISEEH]

It is easily verified that the existence condition for q, in (18.A.15) is satisfied since
o a.] | © } |:(12:| )
I- R g, L [=0,
[ [q§ }[qﬁ } ]{[—qlqz 0]

_%4
L2

Hence, (18.A.16) yields

q,= q, + 458, (18.A.17)

Bringing the first equation of (18.A.14) together with (18.A.17) leads to

q 0 0 I 0
il P Doy [q'}: > [g‘} (18.A.18)
q, 0 ?13 q, 0 q, || 8

Recalling the definition of g, and g, we obtain

q . 0 .T.O q| 2 I 0
£l f1+f2
6] lE -1 |

Equation (18.A.19) is identical to (18.17), so this completes the proof of Theorem 18.1.

1} (18.A.19)

where we clarify

Example 1
4 =p +p, = Pyt Py _ 41
P e tn] 40]

_ | Pa—Pu|_|49n
qz _pz _p1 - - >
Dy =Py 9

The generalized forces are now defined as
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|

FIGURE 18.A.1 A rigid bar of the length L and mass m.

28 a2 Juth _ 6 o & 6 For =t
gl_m(fl+f2)_m|:ﬁ2+f22:|’ g2_mL2 (fz fl)_mL2 |:f22_fi2}

From (18.A.16),

4, 0 0 0 0 q, 1 0 0 0

4, _ 0 0 20 - 0 a1, + 0 1 0 0 g

ézl 0 0 _(hll}qzz 20 . 49 0 0 qu ~4,9 || 8,

@5 0 0 0 - qmz;m 9 0 0] -4,49, q;l
Example 2

Using the formulation developed in 18.A.3, 18.A.4, and 18.A.5 we derive the dynamics of a planar
tensegrity. The rules of closure become:

t.=—t,
t;=t
t,=-t,
t, =—t,

We define the independent vectors 1° and 1¢:
K

=" =]t

r2
t L

The nodal forces are

>
>

+1 (f,—f, +w)+{E -1 +w,)
i :1_:2 _| & =frw) -~ +w,)
L+ | | E W)+ (E i+ w,)
AS_:‘ £ +£,+w)—(-f,—f. +w,)
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We can write

Iz _Iz _Iz Iz Iz 12
o -1, . I -1, I . I, -1,
-1, I I -1, 0 0
I, I I I 0 0
where
w
f !
o __ d __ _ W2
o =[t] £ =|f, | w= W,
£,
w4

D—1P—1°°

[§)

S}

Or, with the obvious definitions for B¢, B¢, and W, in matrix notation:

f=B°f + B! f'+ W,w.

The nodal vectors are defined as follows:

(P, =p
P, =p+r
p;=p
[Py = p+r,
and
p=p+r+t,—r,.
We define

[ A
q,=p, +p, =2p+r

A
q,=p,~P, =1

A
q9,=P,~P; =L,

The relation between ¢ and p can be written as follows:

q L I, 0 0fp
|| -I, 1, 0 0 p,
e, |7lo o 1, 1,p
q, 0 0 -I, Lijp,

© 2002 by CRC Press LLC
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5
t]
tl
E 2
t
B
o)
[4
4
FIGURE 18.A.2 A planar tensegrity.
and
q, 21, I, 0 0p
q= q, _ 0 L 0 0|~ —Qr.
q, 21, 21, -1, 2L |r,
| 0o o 1, o]t

(18.A.21)

We can now write the dependent variables 14 in terms of independent variables 1°. From (18.30)

and (18.31):

t=p+r —(p+r +t;-1y,

L=p-(p+r +t;-1).

By inspection of Figure 18.A.2, (18.30) and (18.31) reduce to:

t,=r, -t
t,=-r, +r,—t;5
t;=r, +1t
or,
t, 0 0
d
I“'=(t,|=|0 -I
t 0 I

Equation (18.A.21) yields
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p L -I,L 0 0] [q
e ni_1 0 2, 0 0 | _Q'q
| 20 0 0 2L| |q,
ts _Iz _Iz Iz Iz q,
Hence,
Iz Iz _Iz I2
1“=— I2 —12 —I2 I2 q=Rq

_Iz Iz 12 Iz

We can now write out the tendon forces as follows:

fl Kl bl ul
= |= - |K, |q+ b, u, |,

f, K, b, | u,

or
fi= -Kiq + Pu?

and

fo= [f5] = —[K;] q + [bs] [us],
or

fo= - K°q + P,

using the same definitions for K and b as found in (18.45) and (18.46), simply by removing the ij
element indices. Substitution into (18.A.20) yields:

f =B’(-K’q+Pu’)+B‘(-K’q+Pu’)
=-(B’K’ +B‘K‘)q + (B’P“u’ + B‘'P"u’).
With the matrices derived in this section, we can express the dynamics in the form of (18.20):

q+(K, + K )q=Bu + Dw,

K =Q,

K =HK,
4

B = HB,
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D = HW’=HW,,

where
1, 0 0
0 3@ o0 0
H=H, = 2 0 Lfo 2 . o |
m 2
N A
0 0 0 0
K = Ql 0 Ll_z(.lnglz 0 0 ,
! 0 0 0 0
0 0 0 L'qq.],
KéBde + B()K()’
ﬁé[Bde, B()P”],
and

2 2
~o | T4n 99 | ~o | ~49x 441942
q2 - 2 P q4 - » |
921492 —4q 94194 4y

e g P
4,9, =95 795 4494 =94 95
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Appendix 18.B Algebraic Inversion of the Q Matrix

This appendix will algebraically invert a 5 X 5 block Q matrix. Given Q in the form:

Q, 0 0 0
QZI Q22 0 0

SRR

Q=1Q, Q, Q, 0 (18.B.1)
QZI Q32 Q32 Q22
»QZI Q32 Q32 Q32 Q22‘
we define x and y matrices so that
Qx=y (18.B.2)
where
x,] v, ]
X2 y2
X =[X [y =1y, (18.B.3)
Xy Y,
[ Xs ] LY ]
Solving (18.B.2) for x we obtain
x=Qly (18.B.4)

Substituting (18.B.1) and (18.B.3) into (18.B.2) and carrying out the matrix operations we obtain

>Q11X1 =Yy,
Q,x,+Q,x, =Y,
Q, X, +Qy,X, + QX =Y, (18.B.5)
Q,x, +Qux, +Qux, + Q,x, =Y,
QX +QpX, + QX+ QX +QX5 =Yy,

Solving this system of equations for x will give us the desired Q! matrix. Solving each equation
for x we have

1 =Q;11y1
2 :QEZI(_QZIX1+ ¥,)
3 =Qn(-Qux,— Qyx, +yy) (18.B.6)

4 :Q;(_Qzlxl_Qan - Qux;ty,)
5 =Q;;(_Q21X1 - Qpx, - Q32X3—Q32X4 +ys)

R

Elimination of x on the right side of (18.B.6) by substitution yields
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=A,y, Ay,
=AY, + ALY, ALY,

=AY, ALY, + A43y3 +A,Y,

=AY+ ALY, ALY+ Ay, + Ay

X, =AY,

XZ

X;

Xy

XS

Or, in matrix form,

A
A21

Q_1 = A
A41
,A51

where we have used the notation A

A, :Ql_ll

>

_ -1 -1
21 — _Q22Q21Q11

row, column

= _Q;21Q21A11

N
R [

g
)

>> > >

0
0
A
A
A

Ay = Q;szQ;Qleﬁl - Q;;QZIQ;II
A41 = _Q’ZQ%zQzszQZQleS + ZQEQszQZQmeﬂ - Q;ZIQZIQI_II

A = _3Q;21Q32Q;;Q32QZQ21Q1_11 + 3Q;21Q32Q;;Q21Q1_11
+ Q;ZIQQQ;ZIQZZQEZIQQQ;ZIQZIQI_II - Q;ZIQZIQI_II

Ap=Ay;=A,=A;= ngl

Ap=A,=A, = _Q;;Q32Q;;
Ap=Ag= Q;;sznglengzl - QZQ32Q£
A52 = _nglezQ;;Qsnglesz; + 2Q;;Q32Q;21Q%2Q;21 - nglengzl

33

43

5 o o o o

=-A,,Q, A,

Using repeated patterns, the inverse may be computed by

A
A2|

OA,,
Q—l — 92A2|
e’A,,
O'A,,

11

© 2002 by CRC Press LLC

22

32

OA,,
O’A,,

22
A32 A22
A32

OA,,

55 ]

with the following definitions

22

(18.B.7)

(18.B.8)

(18.B.9)



using

0=1I-A,Q,,)

A= Q)

Ay =-AQ,A
A,=Q,

A,= —A,QuA,,.

Only A, ,A,, A, A,,, and powers of © need to be calculated to obtain Q7! for any (n, m).
The only matrix inversion that needs to be computed to obtain Q™' is Q; and Q;, , substantially
reducing computer processing time for computer simulations.
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Appendix 18.C General Case for (n, m) = (i, 1)

In Appendix E the forces acting on each node are presented, making special exceptions for the
case when (j = m = 1). The exceptions arise for (j = m = 1) because one stage now contains both
closure rules for the base and the top of the structure. In the following synthesis we use f,;, and
f,,, from (18.E.1) and f;;; and f,,, from (18.E.4). At the right, where (i = 1, j = 1):

i Thy
£ | 2
11 P P
311 Ty
L *311 7 411
(_f +f +f1nl+f2nl+wlll)+(511 1 f _f +W211)
_ (-f 211 3||+f1n1+f2n1+wm) (511 111_f4n f811+W2|1)
(f811_f711_f321 +f +W211)+( 611 f +f +W411)
_(fsn _f7|1 _f321 +f421 +W311) (. 611 f +f7nl +W411)
At the center, where (1 <i<mn,j=1):
i Thy
£ |t T taa
fi=] fl
s Ty
| *3i1 — 4l
(f](H)l+f2(1 Bl =, +8, +w, )+, —f, +f, -, +w,,)
_ (fl(i—l)l +f2(z Dl f2,1 +f311 +Wm)_(_f1,1 f41| +f f i +W2il)
(f8i1 _fm f3(i+1)1 +f4(1+1)1 +W3i1)+( fsn +f()zl 6(1 1) +f7(1 Dl JrW4i1)
_(fsn _f7il _f3(i+1)1 +f4(1+1)1 + w3il)_(_f5il +f6il fG(i—l) +f7(i—1)1 W4il)
At the left end of the base in Figure 18.5, where (i = n, j = 1):
f l+ 2nl
F = £ =
nl P P
3nl + 4nl
L*3n1 — Man1
(18.C.1)
(fl(nfl)l +f2( n-1)1 +f?nl f + Wlnl)+( 1nl f +f5nl f + w2nl)
_ (fl(n i +f2(n i +f,, - f2nl +w,)—(-f,, - f4nl +f,, fSnl +Wo,)
(= f7nl+f fm+f W, 1)+( 6( n—1)1 f5nl+f +f -1)1 +W4n1)
_(_fm +fs fm +f411 +W3n1) (f, 6( n—1)1 fsm +f6nl +f7(n 1)1 4,11)

Using,
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=

g}

L7101
L, 00 0 0 0 0 0 [I, I, -I, 0
L A P T
oo 0 -, 1, 0 o0 of"Tlo o o o1,
0 0 0 I, -I, 0 0 0 o 0 o0 I,
0 0 0 0 0 0 0 0 1, -,
o 0 0 0 0 0 0 o, |-, 1,
+ f21+ 11
0 -, I, 0 0 0 0 ofl>"|-1, o
0 -1, L, 0 0 0 0 0 I, 0
1, I, 0 0
I, -1, 0 0
To o 1, 1,|"
0 0 1, -

Or, in matrix notation, with the implied matrix definitions,

f, =B f! +B/ £+ B/ £ +B £ +B, £ +Ww,,.

nl nl 11711 21721 11711 1n1™1nl

L 00 0 0 0 0 0 O, 1, -1, 0
P L o I S
"Zloo0o 0 -1, 1, 0 o oftuTlo 0 o oI

0 0 0 I, -I, 0 0 0 0o 0 o -

0 0 0 0 0 0 0 0 0 I,

o 0 0 0 0 0 0 0 0 1

+ £+ * |t

0 -1, I, 0 0 0 0 o|@nlp o]

0 -1, I, 0 0 0 0 0 0 0

1, L] [, I, 0 0

a1 I, -1, 0 0

3 3 o0 3 3
Aa, o |B*e o 1, 1 ™
1, 0 o 0 I, -I,
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=]

(18.C.2)
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Or, in matrix form,

F _nded d pd d pd 0 po o0 po
f,= BOlf(i—l)l +B £+ BZlf/z‘H)l + BOlf(i—l)l +B ]+ Ww,,.

I, 00 0 0 0 0 0 O, L L 0 0 I
cbo o0 0 00 0, L L0 01
““loo0 0 -, 1L, 0 o ofevTlo 0 o 1, -I I

0 0 0 I -I, 0 0 0 0 0 o0 I, -I I,

0 0 0 0 0 0 0 0 0 1 1, 0

0 0 0 0 0 0 0 0, lo L] 10|
+ o : o

o -1, L, 0 0 0 o oo ol|wnT o, o|™

0 -1, I, 0 0 0 0 0 0 0 L, 0

-1, L, L 0 0

1, L, -1, 0 0
+| e+

o™ o o 1, x|
K o o0 I, -IL

Or, in matrix form,

fi’ll = Bg]f(tfl—l)l +Bldlfndl + Bglf]d] +B81f(l:1—1)1 +lef:l + Blnlflnl +anl :
Now assemble (18.C.2)—(18.C.4) into the form
f=Bf'+Bf +Ww,,
where
71/ fl(;' Wi
ry f fo. w
f,= ! ’fldz[tl‘zl}’ ;= ! W, = 7
| :
£, £ Wy
B(l)nl ]I;Zl Bgl 0 0 B(i:l *Bfl 0
Lo B,
B, = ) , B, =|0 .
; 0 0 Y
0 B : . . B}
_ d' ' ' Ad' Zl 0 -0 By,
_Blnl B21 0 0 B()l Bll_ B

W, = BlockDiag[. W, W,]

Or, simply, (18.C.5) has the form (18.E.21), where

© 2002 by CRC Press LLC

(18.C.3)

= — ]
=

(18.C.4)

(18.C.5)

o
Bnl



f=f =t =, w=w, ,W =W,

B‘=B,,B°=B,.

The next set of necessary exceptions that apply to the model (i,1) arises in the form of the R
matrix that relates the dependent tendons set to the generalized coordinates (1Y =Rq). For any
(i,1) case R takes the form following the same procedure as in (18.32) and (18.33).

where

=l
|

=
B

I
N | =

w -

)

o = ER

o~

N

R

i)

===

e

w

(18.C.6)

=
H e e m
B~

W

The transformation matrix T that is applied to the control inputs takes the following form. The
only exception to (18.55) is that there are no Iy blocks due to the fact that there are no stages
between the boundary conditions at the base and the top of the structure. The second set of I,
blocks is also not needed since m = 1. Hence, the appropriate T matrix for z = Tua is

017

where S is defined by (18.56), and
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(10n+1)x8n
S|eR ,




1 0 0 O 0 O

O 1 0 0O 0 0

O 0 1 0 0 O
, 10 0 0 1 0 0 o6
T = eR™.

0O 0 0 O 1 0

0O 0 0 O 0 1

0O 0 0 O 0 o0

0 0 0 0 -1 0]

There are n T; blocks, n S blocks, and n I, blocks. The control inputs are now defined as

The u! block becomes

- u
ui‘ll 2nl
u
,d 3nl
u21
u4n] 6x1
rd _ d rd _ . __ L —
u’ =uy fu; = eR”,i=1,23-n j=m=1
Ug
. nl
,d u7nl
| nl_J
| Usn1 |

Appendix 18.D will explicitly show all matrix forms for the specific example (n,m) = (3,1).
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Appendix 18.D Example Case (n,m) = (3,1)

Given the equation for the dynamics of the shell class of tensegrity structures:

q+(K, (@) +K,(q)q=B(qu+D(q)w.

We explicitly write out the matrices that define the problem:

4, | P
qul l.lll
q}]l l.211
E Lsip
q,] [ A o ol[i,,][A o0 o ?
q=q,=|q, |= 3: =Q,,=[D B o0||L,|=|D B 0 rZ: ,
q; ; D E Bj|L D E B
ql3] l.]21
o3 i3
433 o
| D431 | | 531 |
where Q,, is (36 x 36). Furthermore,
Q, 0 0
K@-=[0 Q, 0
0 0 Q

which is also a (36 X 36) matrix.

K,(q)= HK = H(B‘K’ + B’K") = H,(B,K! + B/K")

i A K

Hll 0 0 Bln] B;il Bgl B;z{] Kd

i~ a 11

Kp =10 H, 0 0 BE)II B1[1 Bgl K¢
Y -~ 21

0 0 H31 _Bln] Bgl B("i)l B;{I Kd

31
B, 0 0][KS
+|BS, B! 0 ||KS
0 B, B,K;

(36 X 36) = (36 x 36) [(36 X 75) * (75 X 36) + (36 x 18) * (18 X 36)]

In order to form K, R is needed. In order to form K, Q' is needed. Therefore, we obtain
R as follows:

© 2002 by CRC Press LLC



t! R
19=1¢ =| B'|=Rq = _o ,
| L;, q R, lq,]
t@ E, ~0 E, :
t;il — E? E4 I::2 "
.| |E. E E, g
tg1 E4 E2 E3 !

where the matrix is dimension (75 x 36).

B(q) = HBT = H[B“P¢,B°P°|T

A P¢ 0 0 0
Blnl B;il Bgl BZ] ! d
Ipd pd nd d 1 0 P11 0 0
[B[ P! ] - [B3Pl( ] - 0 BOI Bn Btzl d
n d nd d 0 0 P21 0
Blnl BZI BO] Bll 0 0 0 le
where the dimensions are (36 X 25) = (36 x 75) * (75 x 25).
B}, 0 0 ||P} 0 0
[BP°|= [BP’]= |B;, By, o0 |[0 P, 0
0 B, B/ [0 0 P},
and the dimensions are (36 X 6) = (36 X 18) * (18 X 6).
[0 0 | 01]
T 0 0 S 0 0
H,, 0 0 0 T 0 0 S 0
B=|0 H, o0 |[[BP.BP]O 0 T 0 0 S
0 0 H, 0 0 0 I 0 0
0 0 0 0 I 0
| 0 0 0 0 0 | I

and the dimensions are (36 X 24) = (36 X 36) * (36 x 31) * (31 x 24).

The control inputs u,; are defined as

(24x1)
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where

uan
3nl
u
4nl 1 . .
wi=| " |eR™, i=1,23j=1.
uén]

u7nl

L""8nl |

Bue R

The external forces applied to the nodes arise in the product Dw, where
D(q)=HW’=H[W]={0 H, 0 |0 W
0 0 H, (|0 0

with dimensions: (36 x 36) = (36 X 36) * (36 x 36).

SO

Dw e R ©%*D,
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Appendix 18.E Nodal Forces

At the base, right end of Figure 18.5, where (i=1,j=1):

>
>

+

11

]

>
>

11 11

Ryl
|
>
+
ekl

=~

1 11

>

11 411

St

—(_f211 +f311 +flnl +f2nl +W111)+(f511 _fm _f411 _fsn +W211)

_ (_f211 +f311 +fln] +f2nl +W111)_(f51| _fm _f411 _fsn +W211)
(f811_f7ll +f1011 _f32|+f:121+w311)+(f611 —f511+f212+f”2+w4”)
(fsn _f711+f|011_f321+f;21 +W31|)_(f611_f511+f2|2+f112+w41|)

At the center of the base, where (1 <i<n,j=1):

(fl(i—l)l + f2(i—1)1 - f2i1 + f3;‘1 W )+ (_fm - f4il + fSil - f8i1 + w2i1)

_ Ko oy =B+ +w ) - (Ey -1, —f, —f, +w,,)
(g — £, +1, f +1 + W3il) + (_fsn + f6i1 - flO(i—l) + fli2 + f2i2 + W4i1)

81— N7l T N0il T 3G+ T 4G+
_(fsu - f7,'1 + flOil - f3(i+l)1 + f4(i+l)1 +Wy) - (_fsn + f6i1 - flO(i—l) + fli2 + f2i2 + W)
At the left end of the base in Figure 18.5, where (i =n, j = 1):
1nl + 2nl
f = £ =
e+ f
3nl 4nl
_f3nl — Mn1
(fl(n—l)l + f2(n71)1 + f3nl - fzm + Wlnl) + (_flnl - f4n1 + f5nl - f8nl + Wzm) (18.E.T)

f +f +f

vt T Ego 8, B +w - —F +E - f W)

-t +f +f,, — £, +f,, +w

7nl 8nl 1011 311 )+(_f1 _fSnI +f6nl +f|nz +f2n2 +W4nl)

3nl 0(n-1)1

_(_fm + f8nl + fl()nl - f311 + f411 + Wi, )= (_fl()(n—l)l - f5nl + f(ml + fln2 + f2112 + W4nl)_

At the second stage, where (1 <i<n, j=2):
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2 + 212
f12 — ;:112 ;312
3127 4
L 312 7 412
( f6nl +f7nl f9n2 lez +f312 +W|12)+( 112 f4|2 +f512 f812 +f912 + Wz]z)
_ ( f +f f —f2|2+f312+w”2) ( 12— +f512 f812+f912+W212)
( f +f 2 T f1012 - f322 +f422 + w312) + (_f512 +f6|2 - fl()n2 +f113 +f213 + W412)
( f )t f )t fl()12 f322 +f422 + w312) _(_f512 +f6]2 - fl()nZ +f113 +f213 + W412)
fliz +{.2i2
fi2 — ;:liz :—%iz
32 42
L73i2 ™ C4i2 (18.E.2)
( 6(i— 1)1 7(, 1 f9(i—1)2 _f2i2 +f3[2 +wy, )+ - f4i2 + fS‘Z _f8i2 + f9i2 + W2i2)
_ ( si-nt T 7(1 D1 f9(i—l)2 fm +f112 +W112) 1;2 f4;2 +f512 fs:z +f912 + szz)
( £, + L T _f3(i+l)2 + f4(z+1)2 + W312) +( —f, +f, - flO(i—l)z +H,+E,+ W4i2)
( £, + L T, _f3(i+l)2 + f4(z+1)2 + W3i2) ( £, +f,— flO(i—l)2 i+ + w4,2)
€1n2 + a2
F - f]nZ T2
" f3n2 + “dn2
L"3n2 ~ Man2
( 6(n— 1)1 7()1 D1 f9<n71)2 - f2n2 +f3n2 + Wln2)+ (_fmz _f4n2 + fSn f8n2 + f9n2 2n2)
_ ( 6(n— 1)1 7(n71)1 _f9(n71)2 - f +f )t W1n2) - (_fan _f4n2 + f - f »t f9n2 2n2)
( f7)12 + f8n2 +f]0n2 fﬂz +f412 W, ) ( fsnz +f6n2 flO(n—])Z +fm +fznz W, )
( f7)12 +f8n2 +f]0n2 fﬂz +f412 TwW; ) ( fsnz +f6n2 flO(n—])Z +fm +f2n3 v, )

At the typical stage (1 <j<m, 1 <i<n):

1j

( 6n(j— l) 7n(/ 1) f9n_

—f, —f, +f +wm) (< = Eay + B, =+ 6+ W)

41j 91j

P TR PR )+( it Tt f81,+f91.+w21.)

6n(/ l) 7n(/ 1) Inj 21j 31

(_f71j + f81j + flOlj - f32j + f42j + W3lj) + (_fsu + f61j - flOnj + f11(,’+1) + f21(,+1) + w41j)

(<51, s + By = Fy + iy W)= (g + B = fio + Gy + oy +Wa )

10nj 11(j+1) 21(j+1)

© 2002 by CRC Press LLC



Sl

-

]l
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fll.'f + Azif
fl,;, Bl
£+ 1y
'3~ T4
[+ Erinon = By =By + By + W)+ — £+, — £ + £, + W)
(£ DG-1) +f7(i—l)(j—l) -, b -f, i +1, Gt W)~ (-, —f4[j +f - — 1 i +1, i T Way)
(_f7ij +f; gt floy f3(i+1)/ + f4(:+1)/ Wi ) +(= f + f fl()(i—l)/ + f11(1+1) + f2:(,+1) 4ij)
_(_fm‘ + fsu + flOzi - f3(i+l)/ + f4(z+1), + w3i/') - (_fsly + fﬁij - flO(i—l)_i + fli(j+1) + f21(7+1) + WAzj)
M + T2nj
A T2
Tanj + Lanj
_fsnj - f4nj
(- £ DG-1) +H, D(-1) f9(n—1)] fznj + f3nj W)+ (= fl f4n, +f9nj f8nj +f9n] W)
(F D(j-1) +o H(j-1) f9(n71)j f2n/ +1, T W) — (= f f4nj +f5; —f; '+f '+w2n/)
(—f +f, +f10,., f, i +f,,. +w3n/)+( f i+ f fm(H)j +f1n<,~+1) +fzn<,+1> 4nj)
L = f7n] + fsm + flOVlj le; + f41/ + W3nj) - (_fSrtj + ff)nj - flO(nfl)j + fln(j+1) + on(;+1) + w4nj)
i<n, j=m)
Lim * B
fllm T 2im
Lym * {‘4lm
L *31m _f4]m
[(—f 6n(m-1) +f7n(m 1 f2|m +f3lm _f9nm +w]nm)+( 41m +f _fxlm f]]m +f9]m + wan)
(f 6n(m 1 +f7n(m Rl ST S P T R S T +f51m Esim =i+ for T Wa)
o+ s = F + Ly + W3y, )+ gy 8, —EG, 0, W4,
G P T f42m +Wap,) = sy 8 = T + 8+ Wa)
By + fZim
lim " 2im
A';im + f4im
L L3im — Laim
—(_fs it T Eracnmen = foionm = Foi + B + Wi )+ (S, =, g, — g+, w0,
(£, 6(i-l(m-1) T f7(i—l)(m n - f9(i Dm fZ!m + fhm + wlim) - (_flim - f4im + f5:m f8!m + f9mz + W2im)
(s 8 =y F B + W) + (s, =B, g, 800, +W,,)
_( (S fSnn Enm T Eaim ¥ W) — (_fSim i T i i + W)
b+,
flnm Lo
Ly f4nm
L L30m ~ Lanm
[(f, 6(n=tym-1) T £ D(m=1) f‘)(n—l)m =t A, T W)L L e, W)
(- l)(m b vy = Eom = B+ F + W) =y =B 85, =+, W50
s+ i = B Er W3 )+ E e = Fomin T rmim T W)
( 7um T 8nm _f3]m + f4lm + w%mn) (-t Snm +f6nm - fﬁ(nfl)m +f7(n Dm + w4nm)

(18.E.3)

(18.E.4)



Y =)
f2 fns f4 f6 f7 foo fu; i
L J

f1

Or, in matrix notation, with the implied matrix definitions,

(18.E.5)

+ Blnlflnl + lel'

f

o o po
11 +B12 12

f

d ed 0
£ +B5 £ +B),

_ pd ed d pd d pd
- Bnlfnl +Bllfll +B12 12

fll
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Or, in matrix form,

f,=BIf, +Bf +BLEL +BLEL + B

i 1141 214+ 01 (i-1)1

(18.E.6)
+BLL+BLEL+ W,
L 0 0 00 0 0 O -I, I, -1 0 0 -I, 0 0
¢ I, 0 0 00 0 0 O £ I, I, I, 0 0 I, 0 0 £
"o 0o 0 00 0 o L|enTlo o o0 I -1, 1, o I|"
0O 0 0 00 0 0 I 0 0 0 -1, -1, I 0 I,
0 0O 0 0 0 0 0 O 0 0 0O 00 0 0 O
0 0O 0 0 0 0 0 O 4 0 0 0O 00 0 0 O 4
+ £o, + £
I O 0 00 0 o0 ofc" 0o -I, I, 00 0 0 O
-, 0 0 00 0 0 O o -I, I, 00 0 0 O
[0 I | 0] 0 0 -1,
0 I3 fu —I,; 0 fo 0 0 fu 3 f
+ + + +
0 0 (n-11 I,; 0 nl 0 I3 n2 0 1nl
10 0 I 0 | 0 -1, 0
rI3 I, 0 0 7
I, -I, 0 0
+ .
o o 1 1 |'m
_0 0 I, —13_
Or, in matrix form,
fnl = Bglf(l:'z—l)l + Biilfnd] + szffz + Bglfld] + B(o)lf(‘;—l)l
(18.E.7)
+ B:;lf:l + B;)an()Z + Blnlflnl + anl’
-I, I, -l 0 0 -1, I, 0 0 0 0O 00 0 0 O
_ -1, I I, 0 0 I, -I, 0 e 0 0 0O 00 0 0 O g
e“lo 0 o 1, -, L, o L|"Tlo -, L 00 0 o0 o2
0 0 0 -1, -I, I, 0 I, 0 -I, I, 00 0 0 O
0 O 0 00 o0 0 o 0o 0 0 -I, I, 0 0 O
0 o 0 00 0 0 o0, |0 0 O -I, I, 0 0 Of,
+ £+ ‘ ) £,
I, O 0 00 0 O0 O/ |0 0 O 0O 0 o0 o0 of"
-, 0 0 00 0 0 O 0 0 0 O 0 o0 0 o
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===
SR
oo e o

p
w

w

0
0

Or, in matrix form,

=R — ]
=== ]
=) SR ——

w
b
u

w

Or, in matrix form,

-t o
o oo o

w
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00 0 -I 0 I, -1, 00
00 0 -I 0 o | 7h I o 00 o
+ +
0 0 0 0 L o(-1, 0 [ (o0 |
00 0 0 I, I. 0 0 -1,
0 0
0 0
Ww.,.
13 I3 12
I, -1,
f12 = E1112f1dz + Blzllfzdz + Bilzf1d3 + ﬁjlfjl + szsz
(18.E.8)
+ B101f102 + BTZfI‘; + le2'
I, 0 0 0 -I, I, -I, 0 0 -I, I 0
I, 0 0 ofd +—I3 , L 0 0 I, -1, ofd
0 0 0 o|“™M o o0 0 I, -I, 1, 0 |2
0O 0 0 0 0o o0 0 -I, -I, I, 0 I
00 0 0 0 0 0 0 00 0 -I, 0
00 0 0 o0of_ [0 0 0 00 0 -I, 0],
o+ : fe
00 0 0 0/” {0 0 0 00 O O L@
00 0 0 0 0 0 0 00 0 O I,
00 0 0 0 I, -1,
00 0 0 of, - 6|
00 0 o ofwntly ol
00 0 0 0 I, 0
I, 0 0
-I, 0 0
W.,.
0 I, 1|7
0 I, -I
r nded nded d ed d ed d ed
fiZ = Bn]f(i—])l + Bl2fi2 +B12fi3 +Bn2f(i—l)2 +B2]f(i+l)2
(18.E.9)
+B/\f) + Bl + Ww,,.
0O 0 0 0 0 0 0 -I, I, 0 0 0
0 0 0 of |0 0 0 -I, I, 0 0 Of,
4+ : f
0O 0 0 o0/™1]0 0 0o o0 0 O O of™W
0 0 0 0 0O 0 0 0 0 0 0 0



0 0o o o0 o0 -1, 0 -, I, -I, 0 o0 -I, I 0
. 0O 0 0 00 0 -I 0 fd_12+ -I, I I 0 0 I, -1, 0 fdz
0O 0 0 o0 O0 O 0 o (=D 0 0 0 I, -1, I, 0 L
0 0 0 0 0 o 0 I 0 0 0 -I, -1, I, 0 I,
[0 O 0 00 o0 0 O 0 0 I, -1,
0 O 0 00 o0 0 O g 0 0 r -I 1 £
+ + +
L 0.0 00 0 0 o™ |0 L |™ |-I, 0™
-1 O 0 00 0 0 O 0 -1, I, 0
’13 I, 0 0
I, -1, 0 0
To o 1, 1, |V
_0 0 I, -1,
Or, in matrix form,
r d pd nded d pd nded d pd 0 po
fn2 = B21f12 + Bnlf(n—l)l + Ban(n—l)Z + B12fn2 + B12fn3 + B12fn3
(18.E.10)
+B) £, +Ww .
0O 0 0 -I, I, 0 0 O -I, I, -1 0 0 -1, I, 0
F - 0O 0 0o -I, I, 0 0 0 I -I, I, I 0 0 I, -1, 0 ¢
YTlo 0 0 0O 0 0 0 of"D 0 0 0 I, -1, I, 0 LY
0o 0 0 o 0 0 o0 o 0 0 0 -1, -1, I, 0 I,
(0 0 0o o0 0 0 -I, 0 0 0 0O 00 0 o0 O
0O 0 0 o0 0 0 -I 0|, (0 0 0O 00 0 0 of,
+ ’ ¢+ f;.
0O 0 0o 00 O 0 LY 10 -1, I, 00 0 O 0|~
0 0 o0 00 O 0 I, 0 -I, I, 00 0 0 0
[0 O 0 00 o0 0 O I, -1,
0 0O 0 00 0 0 oOf, -I, I,
+ £+ £
L 0 0 00 0 o0 o' |-I, 0V
-, 0 0 0 0 0 0 0 I, o0
(0 0 I, I, 0 0
0o 0| I, -I, 0 0
Hox (Mot o 1, 1|
10 -1, 0 0 I, -1,
Or, in matrix form,
ra nded nded d ed d pd d ed
flj = Bnlfn(j—]) + B]Zflj +anfnj + B2If2j +B]2fl(j+l)
(18.E.11)
+ B;’lfl‘; + Bi'szé,-m + lej.
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Or, in matrix form,

(18.E.12)

d pd
12fi(j+l)

+B

d
f(i+l)j

d
])j+B 1

d pd d pd
]Zfij +Bn2f(i—

_ pded n
=B, fin+B

L

f,

+Ww...
ij

o o0
12fi( j+1)

0 po
llfij +B

+B
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Or, in matrix form,

r nded nded d ed d ed d ed
fnj = Bn]f(nfl)(jfl) + B]anj +Bn2f(nfl)j +B21flj +B12fn(j+])
(18.E.13)
+ B;’lf;} + B;’zf;’(m) + anj.

-I, I, -1 0 0 -1, I, 0 0 0 0O 00 o0 0 O
,=—I3 I, I, 0 0 | -1, 0d+0 0 0O 00 o0 o Ofd
m=to 0 0 I, -I, I o0 o™ |0 -I, I, 00 0 O o™

0 0 0 -1, -1, I, 0 0 0 -I, I, 00 0 0 O

(0 0 0 0 0 0 0 o0 o 0 0 -I, I, 0 0 O

0o 0 o 0 0 0 0 Ofd o 0 0 -I, I, 0 O Ofd
+ + S

0 0 0 -I, I, 0O o0 of™ (0 0 0 0O 0 0 0 of”"mD
0 0 0 L -I, 0 0 0 0 0 o0 O 0 o0 o0 0

713 _13 I3 13 0 0

-1, I, I, -I, 0 0
+ | W, .

_13 0 Im 0 0 13 13 Im

| L 0 0 0 I, -1

Or, in matrix form,
flm = Bfmfldm + Bglf;m + Bme:m + E)(I{Ifnd(m—l) + Blolfl(;n + lem' (18E 14)

0O 0 0 -1, I, 0 0 O 0o 0 0 0 0 0 -I, 0
f_0 0 0 -I, I, 0 0 Ofd +0 0 0 0 0 0 -1, Ofd
m710 0 0 0 0 0 0 O/¢Yvjo 0 0 -I, I, 0 0 OfC)n

0 0 O O 0 o0 o0 o o 0 o I, -I, 0 0

-1, I, -1 0 0 -1, I, 0 0 0 0O 00 o0 0 o
+—I3 I, I 0 0 I, -1, 0f1d+0 0 0 00 o0 O qu
o o0 o I, -I I 0 of™ (0 -I, I, 00 0 0 O
0 0 0 -1, -1, I, 0 0 0 -I, I, 00 0 0 O
I, -1, I, I, 0 0
_13 3 0 I3 _13 0 0
+ _13 0 fim+ 0 0 13 I3 Wim
L, 0 0 o I, -I,
Or, in matrix notation,
r _pded d pd d pd d pd
fim - Bnlf(i—l)(m—l) + Bnmf(i—l)m + Blmfim + B21f(i+l)m
(18.E.15)
+ B/ f +Ww, .
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0 0 0 -1, , 0 0 0 0 0 0 0 0 o0 -I
cZf0 00 0 0 0, o0 0 0 0 0 L
oo 0 0 0 0 0 o0 oMb o 0 0 -I I, 0 0

0O 0 o o 0 0 0 o 0 0 o I, -1, 0 0

-1, I, -, 0 0 -I, I, 0 0 0 0 00 0

gL 0 0 0 o0 0 00 0

0 o0 o0 I, -I, I, 0 om0 -I, I, 00 0

(0 0o o -1, I, L 0 0 0 -I, I, 00 0

[ 1, -1, I I 0 0

= I, -I, 0 0

+ fo +

L, om0 o 1, 1, [

L, 0 0 0 I, -I
Or, in matrix notation,

ra _ pded d d d ed d pd
fnm - Bnlf(n—l)(m—l) + Bnmlf(n—l)m + Blm fnm + BZlflm
+B/f° +Ww

11 nm nm"*

Now assemble (18.E.5)—(18.E.16) into the form
f, =B.f'+B,t/ +Bf’ +B,f) + Ww,

where

flt-z; fl{; le 1j
_ f £ 7 w f
fld_|:tl.:;l:|, f;l— 2j ,fjg 2j ,Wj_ :2] ,fj: 2j
) :
e o w f
nj nj n nj
—Bln] B;il Bgl 0 0 B:I
0 B, 0
B,=|
10 . . .0
0o - o BY
_Blnl Bgl 0 o 0 Bgl Bfl |

B, = BlockDiag[...,sz,sz,...],

B, = BlockDiag|....B{,,B!,,.. ],
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0
0
d
0 f(n—l)m
0

c oo o
=5
5

(18.E.16)

(18.E.17)



(B, 0 0
By, :
B =| 0 L
. .. B, 0
0 - 0 B B ]

W, = BlockDiag [..., W, W, ...].

Also, from (18.E.5)—(18.E.16)

f, =Bt/ +B.f/ +B,f' +B.f; + B,f; + Ww,,

where

~ o —Ed Bd
0 0 0 B,‘f, (‘,2 A
nd . . Bn2
B! . 0 0
ES _ 0 . . ~.. : R B6 — :
: . - . 0 )
—, 0
0 e 0 B, 0 4
- - | B, 0

Also from (18.E.5)-(18.E.16)

f, =B.f/ +B.f/ +B,f/ +B.f/ + B,/

0
11’... 5

0 - 0

+Ww,,

f, = ESf(ar]n—l) + Bxfli + B7fn(1 +Ww,,
B, . . . 0
B - 0 :
S 0
0 . . Bgl
L B(ZII 0 0 BZm B;lm i
Or, simply, the vector form of (18.E.17)—(18.E.19) is
f =Bt + Bf° + Ww,
where
f{[
f, fld £y W,
f=: =2 f=|:|w=|"*|
fm f.d f; wm
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(18.E.18)

(18.E.19)

(18.E.20)

(18.E.21)



W? = BlockDiag [---, W,, W,, -],

=}
=

=
Il
[—]

Bd 0 ,BO

[

Il
- o
-
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