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Abstract

 

Tensegrity structures consist of strings (in tension) and bars (in compression). Strings are strong, light,
and foldable, so tensegrity structures have the potential to be light but strong and deployable. Pulleys,
NiTi wire, or other actuators to selectively tighten some strings on a tensegrity structure can be used
to control its shape. This chapter describes some principles we have found to be true in a detailed study
of mathematical models of several tensegrity structures. We describe properties of these structures
which appear to have a good chance of holding quite generally. We describe how pretensing all strings
of a tensegrity makes its shape robust to various loading forces. Another property (proven analytically)
asserts that the shape of a tensegrity structure can be changed substantially with little change in the
potential energy of the structure. Thus, shape control should be inexpensive. This is in contrast to
control of classical structures which require substantial energy to change their shapes. A different aspect
of the chapter is the presentation of several tensegrities that are light but extremely strong. The concept
of self-similar structures is used to find minimal mass subject to a specified buckling constraint. The
stiffness and strength of these structures are determined.

 

17.1 Introduction

 

Tensegrity structures are built of bars and strings attached to the ends of the bars. The bars can
resist compressive force and the strings cannot. Most bar–string configurations which one might
conceive are not in equilibrium, and if actually constructed will collapse to a different shape. Only
bar–string configurations in a stable equilibrium will be called 

 

tensegrity structures

 

.
If well designed, the application of forces to a tensegrity structure will deform it into a slightly

different shape in a way that supports the applied forces. Tensegrity structures are very special
cases of trusses, where members are assigned special functions. Some members are always in
tension and others are always in compression. We will adopt the words “strings” for the tensile
members, and “bars” for compressive members. (The different choices of words to describe the
tensile members as “strings,” “tendons,” or “cables” are motivated only by the scale of applications.)
A tensegrity structure’s bars cannot be attached to each other through joints that impart torques.
The end of a bar can be attached to strings or ball jointed to other bars.

The artist Kenneth Snelson

 

1

 

 (Figure 17.1) built the first tensegrity structure and his artwork was
the inspiration for the first author’s interest in tensegrity. Buckminster Fuller

 

2

 

 coined the word
“tensegrity” from two words: “tension” and “integrity.”

 

17.1.1 The Benefits of Tensegrity

 

A large amount of literature on the geometry, artform, and architectural appeal of tensegrity
structures exists, but there is little on the dynamics and mechanics of these structures.

 

2-19

 

 Form-
finding results for simple symmetric structures appear

 

10,20-24

 

 and show an array of stable tensegrity
units is connected to yield a large stable system, which can be deployable.

 

14

 

 Tensegrity structures
for civil engineering purposes have been built and described.

 

25-27

 

 Several reasons are given below
why tensegrity structures should receive new attention from mathematicians and engineers, even
though the concepts are 50 years old.

 

17.1.1.1 Tension Stabilizes

 

A compressive member loses stiffness as it is loaded, whereas a tensile member gains stiffness as
it is loaded. Stiffness is lost in two ways in a compressive member. In the absence of any bending
moments in the axially loaded members, the forces act exactly through the mass center, the material
spreads, increasing the diameter of the center cross section; whereas the tensile member reduces
its cross-section under load. In the presence of bending moments due to offsets in the line of force
application and the center of mass, the bar becomes softer due to the bending motion. For most
materials, the tensile strength of a longitudinal member is larger than its buckling (compressive)
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strength. (Obviously, sand, masonary, and unreinforced concrete are exceptions to this rule.) Hence,
a large stiffness-to-mass ratio can be achieved by increasing the use of tensile members.

 

17.1.1.2 Tensegrity Structures are Efficient

 

It has been known since the middle of the 20th century that continua cannot explain the strength of
materials. The geometry of material layout is critical to strength at all scales, from nanoscale biological
systems to megascale civil structures. Traditionally, humans have conceived and built structures in
rectilinear fashion. Civil structures tend to be made with orthogonal beams, plates, and columns.
Orthogonal members are also used in aircraft wings with longerons and spars. However, evidence
suggests that this “orthogonal” architecture does not usually yield the minimal mass design for a given
set of stiffness properties.

 

28

 

 Bendsoe and Kikuchi,

 

29

 

 Jarre,

 

30

 

 and others have shown that the optimal
distribution of mass for specific stiffness objectives tends to be neither a solid mass of material with
a fixed external geometry, nor material laid out in orthogonal components. Material is needed only in
the essential load paths, not the orthogonal paths of traditional manmade structures. 

 

Tensegrity structures

 

use longitudinal members arranged in very unusual (and nonorthogonal) patterns to achieve strength
with small mass. Another way in which tensegrity systems become mass efficient is with self-similar
constructions replacing one tensegrity member by yet another tensegrity structure.

 

17.1.1.3 Tensegrity Structures are Deployable

 

Materials of high strength tend to have a very limited displacement capability. Such piezoelectric
materials are capable of only a small displacement and “smart” structures using sensors and
actuators have only a small displacement capability. Because the compressive members of tensegrity
structures are either disjoint or connected with ball joints, large displacement, deployability, and
stowage in a compact volume will be immediate virtues of tensegrity structures.

 

8,11

 

 This feature
offers operational and portability advantages. A portable bridge, or a power transmission tower
made as a tensegrity structure could be manufactured in the factory, stowed on a truck or helicopter
in a small volume, transported to the construction site, and deployed using only winches for erection
through cable tension. Erectable temporary shelters could be manufactured, transported, and
deployed in a similar manner. Deployable structures in space (complex mechanical structures
combined with active control technology) can save launch costs by reducing the mass required, or
by eliminating the requirement for assembly by humans.

 

FIGURE 17.1

 

Snelson’s tensegrity structure. (From Connelly, R. and Beck, A., 

 

American Scientist,

 

 86(2), 143,
1998. Kenneth Snelson, Needle Tower 11, 1969, Kröller Müller Museum. With permission.)
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17.1.1.4 Tensegrity Structures are Easily Tunable

 

The same deployment technique can also make small adjustments for fine tuning of the loaded
structures, or adjustment of a damaged structure. Structures that are designed to allow tuning will be
an important feature of next generation mechanical structures, including civil engineering structures.

 

17.1.1.5 Tensegrity Structures Can be More Reliably Modeled

 

All members of a tensegrity structure are axially loaded. Perhaps the most promising scientific
feature of tensegrity structures is that while the 

 

global

 

 structure bends with external static loads,
none of the 

 

individual

 

 members of the tensegrity structure experience bending moments. (In this
chapter, we design all compressive members to experience loads well below their Euler buckling
loads.) Generally, members that experience deformation in two or three dimensions are much harder
to model than members that experience deformation in only one dimension. The Euler buckling
load of a compressive member is from a bending instability calculation, and it is known in practice
to be very unreliable. That is, the actual buckling load measured from the test data has a larger
variation and is not as predictable as the tensile strength. Hence, increased use of tensile members
is expected to yield more robust models and more efficient structures. More reliable models can
be expected for axially loaded members compared to models for members in bending.

 

31

 

17.1.1.6 Tensegrity Structures Facilitate High Precision Control

 

Structures that can be more precisely modeled can be more precisely controlled. Hence, tensegrity
structures might open the door to quantum leaps in the precision of controlled structures. The
architecture (geometry) dictates the mathematical properties and, hence, these mathematical results
easily scale from the nanoscale to the megascale, from applications in microsurgery to antennas,
to aircraft wings, and to robotic manipulators.

 

17.1.1.7 Tensegrity is a Paradigm that Promotes the Integration of Structure 
and Control Disciplines

 

A given tensile or compressive member of a tensegrity structure can serve multiple functions. It
can simultaneously be a load-carrying member of the structure, a sensor (measuring tension or
length), an actuator (such as nickel-titanium wire), a thermal insulator, or an electrical conductor.
In other words, by proper choice of materials and geometry, a grand challenge awaits the tensegrity
designer: How to control the electrical, thermal, and mechanical energy in a material or structure?
For example, smart tensegrity wings could use shape control to maneuver the aircraft or to optimize
the air foil as a function of flight condition, without the use of hinged surfaces. Tensegrity structures
provide a promising paradigm for integrating structure and control design.

 

17.1.1.8 Tensegrity Structures are Motivated from Biology

 

Figure 17.2 shows a rendition of a spider fiber, where amino acids of two types have formed hard

 

β−

 

pleated sheets that can take compression, and thin strands that take tension.

 

32,33

 

 The 

 

β−

 

pleated
sheets are discontinuous and the tension members form a continuous network. Hence, the nano-
structure of the spider fiber is a tensegrity structure. Nature’s endorsement of tensegrity structures
warrants our attention because per unit mass, spider fiber is the strongest natural fiber.

Articles by Ingber

 

7,34,35

 

 argue that tensegrity is the fundamental building architecture of life. His
observations come from experiments in cell biology, where prestressed truss structures of the
tensegrity type have been observed in cells. It is encouraging to see the similarities in structural
building blocks over a wide range of scales. If tensegrity is nature’s preferred building architecture,
modern analytical and computational capabilities of tensegrity could make the same incredible
efficiency possessed by natural systems transferrable to manmade systems, from the nano- to the
megascale. This is a grand design challenge, to develop scientific procedures to create smart
tensegrity structures that can regulate the flow of thermal, mechanical, and electrical energy in a
material system by proper choice of materials, geometry, and controls. This chapter contributes to
this cause by exploring the mechanical properties of simple tensegrity structures.
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The remainder of the introduction describes the main results of this chapter. We start with formal
definitions and then turn to results.

 

17.1.2 Definitions and Examples

 

This is an introduction to the mechanics of a class of prestressed structural systems that are
composed only of axially loaded members. We need a couple of definitions to describe tensegrity
scientifically.

 

Definition 17.1    

 

We say that the geometry of a material system is in a stable equilibrium if all
particles in the material system return to this geometry, as time goes to infinity, starting from any
initial position arbitrarily close to this geometry.

 

In general, a variety of boundary conditions may be imposed, to distinguish, for example, between
bridges and space structures. But, for the purposes of this chapter we characterize only the material
system with free–free boundary conditions, as for a space structure. We will herein characterize
the bars as rigid bodies and the strings as one-dimensional elastic bodies. Hence, a material system
is in equilibrium if the nodal points of the bars in the system are in equilibrium.

 

Definition 17.2    

 

A

 

 Class k tensegrity structure 

 

is a stable equilibrium of axially loaded elements,
with a maximum of k compressive members connected at the node(s).

 

Fact 17.1    

 

Class k tensegrity structures 

 

must have tension members

 

.

Fact 17.1 follows from the requirement to have a stable equilibrium.

 

Fact 17.2    

 

Kenneth Snelson’s structures of which 

 

Figure

 

 17.1 is an example are all 

 

Class 1
tensegrity structures,

 

 using Definition 17.1. Buckminster Fuller coined the word tensegrity to imply
a connected set of tension members and a disconnected set of compression members. This fits our
“Class 1” definition.

 

A Class 1 tensegrity structure has a connected network of members in tension, while the network
of compressive members is disconnected. To illustrate these various definitions, Figure 17.3(a)

 

FIGURE 17.2

 

 Structure of the Spider Fiber. (From Termonia, Y., 

 

Macromolecules

 

, 27, 7378–7381, 1994.
Reprinted with permission from the American Chemical Society.)
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illustrates the simplest tensegrity structure, composed of one bar and one string in tension. Thin
lines are strings and shaded bars are compressive members. Figure 17.3(b) describes the next
simplest arrangement, with two bars. Figure 17.3(c) is a Class 2 tensegrity structure because two
bars are connected at the nodes. Figure 17.3(c) represents a Class 2 tensegrity in the plane. However,
as a three-dimensional structure, it is not a tensegrity structure because the equilibrium is unstable
(the tensegrity definition requires a stable equilibrium).

From these definitions, the existence of a tensegrity structure having a specified geometry reduces
to the question of whether there exist finite tensions that can be applied to the tensile members to
hold the system in that geometry, in a stable equilibrium.

We have illustrated that the geometry of the nodal points and the connections cannot be arbitrarily
specified. The role that geometry plays in the mechanical properties of tensegrity structures is the
focus of this chapter.

The planar tensegrity examples shown follow a naming convention that describes the number of
compressive members and tension members. The number of compressive members is associated
with the letter C, while the number of tensile members is associated with T. For example, a structure
that contains two compressive members and four tension members is called a 

 

C

 

2

 

T

 

4 tensegrity.

 

17.1.3 The Analyzed Structures

 

The basic examples we analyzed are the structures shown in Figure 17.4, where thin lines are the
strings and the thick lines are bars. Also, we analyzed various structures built from these basic
structural units. Each structure was analyzed under several types of loading. In particular, the top
and bottom loads indicated on the 

 

C

 

2

 

T

 

4 structure point in opposite directions, thereby resulting in
bending. We also analyzed a 

 

C

 

2

 

T

 

4 structure with top and bottom loads pointing in the same
direction, that is, a compressive situation. The 

 

C

 

4

 

T

 

2 structure of Figure 17.4(b) reduces to a 

 

C

 

4

 

T

 

1
structure when the horizontal string is absent. The mass and stiffness properties of such structures
will be of interest under compressive loads, 

 

F

 

, as shown. The 3-bar SVD (defined in 17.4.1) was
studied under two types of loading: axial and lateral. Axial loading is compressive while lateral
loading results in bending.

 

17.1.4 Main Results on Tensegrity Stiffness

 

A reasonable test of any tensegrity structure is to apply several forces each of magnitude 

 

F

 

 at
several places and plot how some measure of its shape changes. We call the plot of  vs.

 

F

 

 a stiffness profile of the structure. The chapter analyzes stiffness profiles of a variety of tensegrity
structures. We paid special attention to the role of pretension set in the strings of the tensegrity.
While we have not done an exhaustive study, there are properties common to these examples which
we now describe. How well these properties extend to all tensegrity structures remains to be seen.

 

FIGURE 17.3

 

Tensegrity structures.

dF dshape
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However, laying out the principles here is an essential first step to discovering those universal
properties that do exist.

The following example with masses and springs prepares us for two basic principles which we
have observed in the tensegrity paradigm.

 

17.1.4.1 Basic Principle 1: Robustness from Pretension

 

As a parable to illustrate this phenomenon, we resort to the simple example of a mass attached to
two bungy cords. (See Figure 17.5.)

Here 

 

K

 

L

 

, 

 

K

 

R

 

 are the spring constants, 

 

F

 

 is an external force pushing right on the mass, and 

 

t

 

L

 

,

 

t

 

R

 

 are tensions in the bungy cords when 

 

F 

 

= 0. The bungy cords have the property that when they
are shorter than their rest length they become inactive. If we set any positive pretensions 

 

t

 

L

 

, 

 

t

 

R

 

,
there is a corresponding equilibrium configuration, and we shall be concerned with how the shape
of this configuration changes as force 

 

F

 

 is applied. Shape is a peculiar word to use here when we
mean position of the mass, but it forshadows discussions about very general tensegrity structures.
The effect of the stiffness of the structure is seen in Figure 17.6.

 

FIGURE 17.4

 

Tensegrities studied in this chapter (not to scale), (a) 

 

C

 

2

 

T

 

4 bending loads (left) and compressive
loads (right), (b) 

 

C

 

4

 

T

 

2, and (c) 3-bar SVD axial loads (left) and lateral loads (right).

 

FIGURE 17.5

 

Mass–spring system.

(a)

(b) (c)

8596Ch17Frame  Page 321  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



There are two key quantities in this graph which we see repeatedly in tensegrity structures. The
first is the critical value F1 where the stiffness drops. It is easy to see that F1 equals the value of
F at which the right cord goes slack. Thus, F1 increases with the pretension in the right cord. The
second key parameter in this figure is the size of the jump as measured by the ratio

When r = 1, the stiffness plot is a straight horizontal line with no discontinuity. Therefore, the
amount of pretension affects the value of F1, but has no influence on the stiffness. One can also
notice that increasing the value of r increases the size of the jump. What determines the size of r
is just the ratio κ of the spring constants , since r = 1 + κ, indeed r is an increasing
function of κ

r ≅ ∞    if    κ ≅ ∞.

Of course, pretension is impossible if KR = 0. Pretension increases F1 and, hence, allows us to stay
in the high stiffness regime given by Stens, over a larger range of applied external force F.

17.1.4.2 Robustness from Pretension Principle for Tensegrity Structures

Pretension is known in the structures community as a method of increasing the load-bearing capacity
of a structure through the use of strings that are stretched to a desired tension. This allows the structure
to support greater loads without as much deflection as compared to a structure without any pretension.

For a tensegrity structure, the role of pretension is monumental. For example, in the analysis of
the planar tensegrity structure, the slackening of a string results in dramatic nonlinear changes in
the bending rigidity. Increasing the pretension allows for greater bending loads to be carried by
the structure while still exhibiting near constant bending rigidity. In other words, the slackening of
a string occurs for a larger external load. We can loosely describe this as a robustness property, in
that the structure can be designed with a certain pretension to accomodate uncertainties in the
loading (bending) environment. Not only does pretension have a consequence for these mechanical
properties, but also for the so-called prestressable problem, which is left for the statics problem.
The prestressable problem involves finding a geometry which can sustain its shape without external
forces being applied and with all strings in tension.12,20

17.1.4.2.1 Tensegrity Structures in Bending
What we find is that bending stiffness profiles for all examples we study have levels Stens when all
strings are in tension, Sslack1 when one string is slack, and then other levels as other strings go slack
or as strong forces push the structure into radically different shapes (see Figure 17.7). These very
high force regimes can be very complicated and so we do not analyze them. Loose motivation for

FIGURE 17.6 Mass–spring system stiffness profile.

r
S

S
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slack

:=
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the form of a bending stiffness profile curve was given in the mass and two bungy cord example,
in which case we had two stiffness levels.

One can imagine a more complicated tensegrity geometry that will possibly yield many stiffness
levels. This intuition arises from the possibility that multiple strings can become slack depending
on the directions and magnitudes of the loading environment. One hypothetical situation is shown
in Figure 17.7 where three levels are obtained. All tensegrity examples in the chapter have bending
stiffness profiles of this form, at least until the force F radically distorts the figure. The specific
profile is heavily influenced by the geometry of the tensegrity structure as well as of the stiffness
of the strings, Kstring, and bars, Kbar. In particular, the ratio

is an informative parameter.
General properties common to our bending examples are

1. When no string is slack, the geometry of a tensegrity and the materials used have much more
effect on its stiffness than the amount of pretension in its strings.

2. As long as all strings are in tension (that is, F < F1), stiffness has little dependence on F or
on the amount of pretension in the strings.

3. A larger pretension in the strings produces a larger F1.
4. As F exceeds F1 the stiffness quickly drops.
5. The ratio

is an increasing function of K. Moreover, r1 → ∞ as K → ∞ (if the bars are flabby, the
structure is flabby once a string goes slack). Similar parameters, r2, can be defined for each
change of stiffness.

Examples in this chapter that substantiate these principles are the stiffness profile of C2T4 under
bending loads as shown in Figure 17.12. Also, the laterally loaded 3-bar SVD tensegrity shows the
same behavior with respect to the above principles, Figure 17.54 and Figure 17.55.

17.1.4.2.2 Tensegrity Structures in Compression
For compressive loads, the relationships between stiffness, pretension, and force do not always
obey the simple principles listed above. In fact, we see three qualitatively different stiffness profiles
in our compression loading studies. We now summarize these three behavior patterns.

FIGURE 17.7 Gedanken stiffness profile.

K
K

K
:= string

bar

r
S

S1:= tens

slack
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The C2T4 planar tensegrity exhibits the pretension robustness properties of Principles I, II, III,
as shown in Figure 17.6. The pretension tends to prevent slack strings.

The C4T2 structure has a stiffness profile of the form in Figure 17.8. Only in the C4T1 and C4T2
examples does stiffness immediately start to fall as we begin to apply a load.

The axially loaded 3-bar-SVD, the stiffness profile even for small forces, is seriously affected
by the amount of pretension in the structure. Rather than stiffness being constant for F < F1 as is
the case with bending, we see in Figure 17.9 that stiffness increases with F for small and moderate
forces. The qualitative form of the stiffness profile is shown in Figure 17.9. We have not system-
atically analyzed the role of the stiffness ratio K in compression situations.

17.1.4.2.3 Summary
Except for the C4T2 compression situation, when a load is applied to a tensegrity structure the
stiffness is essentially constant as the loading force increases unless a string goes slack.

17.1.4.3 Basic Principle 2: Changing Shape with Small Control Energy

We begin our discussion not with a tensegrity structure, but with an analogy. Imagine, as in
Figure 17.10, that the rigid boundary conditions of Figure 17.5 become frictionless pulleys. Suppose
we are able to actuate the pulleys and we wish to move the mass to the right, we can turn each
pulley clockwise. The pretension can be large and yet very small control torques are needed to
change the position of the nodal mass.

FIGURE 17.8 Stiffness profile for C4T2 in compression.

FIGURE 17.9 Stiffness profile of 3-bar SVD in compression.

FIGURE 17.10 Mass–spring control system.
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Tensegrity structures, even very complicated ones, can be actuated by placing pulleys at the
nodes (ends of bars) and running the end of each string through a pulley. Thus, we think of two
pulleys being associated with each string and the rotation of the pulleys can be used to shorten or
loosen the string. The mass–spring example foreshadows the fact that even in tensegrity structures,
shape changes (moving nodes changes the shape) can be achieved with little change in the potential
energy of the system.

17.1.5 Mass vs. Strength

The chapter also considers the issue of the strength vs. mass of tensegrity structures. We find our
planar examples to be very informative. We shall consider two types of strength. They are the size
of the bending forces and the size of compressive forces required to break the object.

First, in 17.2 we study the ratio of bending strength to mass. We compare this for our C2T4 unit
to a solid rectangular beam of the same mass. As expected, reasonably constructed C2T4 units will
be stronger. We do this comparison to a rectangular beam by way of illustrating the mass vs.
strength question, because a thorough study would compare tensegrity structures to various kinds
of trusses and would require a very long chapter.

We analyze compression stiffness of the C2T4 tensegrity. The C2T4 has worse strength under
compression than a solid rectangular bar. We analyze the compression stiffness of C4T2 and
C4T1 structures and use self-similar concepts to reduce mass, while constraining stiffness to a
desired value. The C4T1 structure has a better compression strength-to-mass ratio than a solid
bar when δ < 29°. The C4T1, while strong (not easily broken), may not have an extremely high
stiffness.

17.1.5.1 A 2D Beam Composed of Tensegrity Units

After analyzing one C2T4 tensegrity unit, we lay n of them side by side to form a beam. We derive
in 17.2.3 that the Euler buckling formula for a beam adapts directly to this case. From this we
conclude that the strength of the beam under compression is determined primarily by the bending
rigidity (EI)n of each of its units. In principle, one can build beams with arbitrarily great bending
strength. In practice this requires more study. Thus, the favorable bending properties found for
C2T4 bode well for beams made with tensegrity units.

17.1.5.2 A 2D Tensegrity Column

In 17.3 we take the C4T2 structure in Figure 17.4(b) and replace each bar with a smaller C4T2
structure, then we replace each bar of this new structure with a yet smaller C4T2 structure. In
principle, such a self-similar construction can be repeated to any level. Assuming that the strings
do not fail and have significantly less mass than the bars, we find that the compression strength
increases without bound if we keep the mass of the total bars constant. This completely ignores
the geometrical fact that as we go to finer and finer levels in the fractal construction, the bars
increasingly overlap. Thus, at least in theory, we have a class of tensegrity structures with
unlimited compression strength to mass ratio. Further issues of robustness to lateral and bending
forces would have to be investigated to insure practicality of such structures. However, our
dramatic findings based on a pure compression analysis are intriguing. The self-similar concept
can be extended to the third dimension in order to design a realistic structure that could be
implemented in a column.

The chapter is arranged as follows: Section 17.2 analyzes a very simple planar tensegrity structure
to show an efficient structure in bending; Section 17.3 analyzes a planar tensegrity structure efficient
in compression; Section 17.4 defines a shell class of tensegrity structures and examines several
members of this class; Section 17.5 offers conclusions and future work. The appendices explain
nonlinear and linear analysis of planar tensegrity.
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17.2 Planar Tensegrity Structures Efficient in Bending

In this section, we examine the bending rigidity of a single tensegrity unit, a planar tensegrity
model under pure bending as shown in Figure 17.11, where thin lines are the four strings and the
two thick lines are bars. Because the structure in Figure 17.11 has two compressive and four tensile
members, we refer to it as a C2T4 structure.

17.2.1 Bending Rigidity of a Single Tensegrity Unit

To arrive at a definition of bending stiffness suitable to C2T4, note that the moment M acting on
the section is given by

M = FLbar sin δ,  (17.1)

where F is the magnitude of the external force, Lbar is the length of the bar, and δ is the angle that
the bars make with strings in the deformed state, as shown in Figure 17.11.

In Figure 17.11, ρ is the radius of curvature of the tensegrity unit under bending deformation.
It can be shown from Figure 17.11 that

 (17.2)

The bending rigidity is defined by EI = Mρ. Hence,

 (17.3)

where EI is the equivalent bending rigidity of the planar one-stage tensegrity unit and u is the nodal
displacement. The evaluation of the bending rigidity of the planar unit requires the evaluation of
u, which will follow under various hypotheses. The bending rigidity will later be obtained by
substituting u in (17.3).

FIGURE 17.11 Planar one-stage tensegrity unit under pure bending.
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17.2.1.1 Effective Bending Rigidity with Pretension

In the absence of external forces f, let A0 be the matrix defined in Appendix 17.A in terms of the
initial prestressed geometry, and let t0 be the initial pretension applied on the members of the
tensegrity. Then,

 (17.4)

For a nontrivial solution of Equation (17.4), A0 must have a right null space. Furthermore, the
elements of t0 obtained by solving Equation (17.4) must be such that the strings are always in
tension, where t0-strings ≥ 0 will be used to denote that each element of the vector is nonnegative.
For this particular example of planar tensegrity, the null space of A0 is only one dimensional. t0

always exists, satisfying (17.4), and t0 can be scaled by any arbitrary positive scalar multiplier.
However, the requirement of a stable equilibrium in the tensegrity definition places one additional
constraint to the conditions (17.4); the geometry from which A0 is constructed must be a stable
equilibrium.

In the following discussions, Es, (EA)s, and As denote the Young’s modulus of elasticity, the axial
rigidity and the cross-sectional area of the strings, respectively, whereas Eb, (EA)b, and Ab, denote
those of the bars, respectively. (EI)b denotes the bending rigidity of the bars.

The equations of the static equilibrium and the bending rigidity of the tensegrity unit are nonlinear
functions of the geometry δ, the pretension t0, the external force F, and the stiffnesses of the strings
and bars. In this case, the nodal displacement u is obtained by solving nonlinear equations of the static
equilibrium (see Appendix 17.A for the underlying assumptions and for a detailed derivation)

A (u) KA (u)T u = F – A (u)t0  (17.5)

Also, t0 is the pretension applied in the strings, K is a diagonal matrix containing axial stiffness of
each member, i.e., Kii = (EA)i/Li, where Li is the length of the i-th member; u represents small nodal
displacements in the neighborhood of equilibrium caused by small increments in the external forces.
The standard Newton–Raphson method is applied to solve (17.5) at each incremental load step Fk =
Fk-1 + ∆F. Matrix A(uk) is updated at each iteration until a convergent solution for uk is found.

Figure 17.12 depicts EI as a function of the angle δ, pretension of the top string, and the rigidity
ratio K which is defined as the ratio of the axial rigidity of the strings to the axial rigidity of the
bars, i.e., K = (EA)s/(EA)b. The pretension is measured as a function of the prestrain in the top
string Σ0. In obtaining Figure 17.12, the bars were assumed to be equal in diameter and the strings
were also assumed to be of equal diameter. Both the bars as well as the strings were assumed to
be made of steel for which Young’s modulus of elasticity E was taken to be 2.06 × 1011N/m2, and
the yield strength of the steel σy was taken to be 6.90 × 108N/m2. In Figure 17.12, EI is plotted
against the ratio of the external load F to the yield force of the string. The yield force of the string
is defined as the force that causes the strings to reach the elastic limit. The yield force for the
strings is computed as

Yield force of string = σyAs,

where σy is the yield strength and As is the cross-sectional area of the string. The external force F
was gradually increased until at least one of the strings yielded.

The following conclusions can be drawn from Figure 17.12:

1. Figure 17.12(a) suggests that the bending rigidity EI of a tensegrity unit with all taut strings
increases with an increase in the angle δ, up to a maximum at δ = 90°.

2. Maximum bending rigidity EI is obtained when none of the strings is slack, and the EI is
approximately constant for any external force until one of the strings go slack.

  
A t 0 t t t t0 0 = = ≥, [ ], .           0 0 0- - -0 0T

bars strings strings
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3. Figure 17.12(b) shows that the pretension does not have much effect on the magnitude of
EI of a planar tensegrity unit. However, pretension does play a remarkable role in preventing
the string from going slack which, in turn, increases the range of the constant EI against
external loading. This provides robustness of EI predictions against uncertain external forces.
This feature provides robustness against uncertainties in external forces.

4. In Figure 17.12(c) we chose structures having the same geometry and the same total stiffness,
but different K, where K is the ratio of the axial rigidity of the bars to the axial rigidity of
the strings. We then see that K has little influence on EI as long as none of the strings are
slack. However, the bending rigidity of the tensegrity unit with slack string influenced K,
with maximum EI occurring at K = 0 (rigid bars).

It was also observed that as the angle δ is increased or as the stiffness of the bar is decreased,
the force-sharing mechanism of the members of the tensegrity unit changes quite noticeably. This
phenomena is seen only in the case when the top string is slack. For example, for K = 1/9 and ε0 =
0.05%, for small values of δ, the major portion of the external force is carried by the bottom string,
whereas after some value of δ (greater than 45°), the major portion of the external force is carried
by the vertical side strings rather than the bottom string. In such cases, the vertical side strings

FIGURE 17.12 Bending rigidity EI of the planar tensegrity unit for (a) different initial angle δ with rigidity ratio
K = 1/9 and prestrain in the top string ε0 = 0.05%, (b) different ε0 with K = 1/9, (c) different K with δ = 60° and ε0 =
0.05%. Lbar for all cases is 0.25 m.

(a) (b) (c)
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could reach their elastic limit prior to the bottom string. Similar phenomena were also observed
for a case of K = 100, δ = 60°, and ε0 = 0.05%. In such cases, as shown in Figure 17.12(a) for δ =
70° and δ = 75°, the EI drops drastically once the top string goes slack. Figure 17.13 summarizes
the conclusions on bending rigidity, where the arrows indicate increasing directions of δ, t0, or K.

Note that when t0 is the pretension applied to the top string, the pretension in the vertical side
strings is equal to t0/tan δ. The cases of δ > 80° were not computed, but it is clear that the bending
rigidity is a step function as δ approaches 90°, with EI constant until the top string becomes slack,
then the EI goes to zero as the external load increases further.

17.2.1.2 Bending Rigidity of the Planar Tensegrity for the Rigid Bar Case (K = 0)

The previous section briefly described the basis of the calculations for Figure 17.11. The following
sections consider the special case K = 0 to show more analytical insight. The nonslack case describes
the structure when all strings exert force. The slack case describes the structure when string 3 exerts
zero force, due to the deformation of the structure. Therefore, the force in string 3 must be computed
to determine when to switch between the slack and nonslack equations.

17.2.1.2.1 Some Relations from Geometry and Statics
Nonslack Case: Summing forces at each node we obtain the equilibrium conditions

ƒc cos δ = F + t3 – t2 sin θ  (17.6)

ƒc cos δ = t1 + t2 sin θ – F  (17.7)

ƒc sin δ = t2 cos θ,  (17.8)

where ƒc is the compressive load in a bar, F is the external load applied to the structure, and ti is
the force exerted by string i defined as

ti = ki(li – li0).  (17.9)

The following relations are defined from the geometry of Figure 17.11:

l1 = Lbar cos δ + Lbar tan θ sin δ

l2 = Lbar sin δ sec θ

l3 = Lbar cos δ – Lbar sin δ tan θ

h = Lbar sin δ,  (17.10)

FIGURE 17.13 Trends relating geometry δ, prestress t0, and material K.
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where li denote the geometric length of the strings. We will find the relation between δ and θ by
eliminating fc and F from (17.6)–(17.8)

 (17.11)

Substitution of relations (17.10) and (17.9) into (17.11) yields

 (17.12)

If ki = k, then (17.12) simplifies to

 (17.13)

Slack Case: In order to find a relation between δ and θ for the slack case when t3 has zero
tension, we use (17.12) and set k3 to zero. With the simplification that we use the same material
properties, we obtain

0 = Lbar tan θ sin δ tan δ + 2l20 cos θ – l10 tan δ – Lbar sin δ.  (17.14)

This relationship between δ and θ will be used in (17.22) to describe bending rigidity.

17.2.1.2.2 Bending Rigidity Equations
The bending rigidity is defined in (17.3) in terms of ρ and F. Now we will solve the geometric and
static equations for ρ and F in terms of the parameters θ, δ of the structure. For the nonslack case,
we will use (17.13) to get an analytical formula for the EI. For the slack case, we do not have an
analytical formula. Hence, this must be done numerically.

From geometry, we can obtain ρ,

Solving for ρ we obtain

 (17.15)

Nonslack Case: In the nonslack case, we now apply the relation in (17.13) to simplify (17.15)

 (17.16)
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From (17.6)–(17.8) we can solve for the equilibrium external F

– k3 Lbar cos δ + k3 Lbar sin δ tan θ + k3l30).  (17.17)

Again, using (17.13) and ki = k, Equation (17.17) simplifies to

 (17.18)

We can substitute (17.18) and (17.16) into (17.3)

 (17.19)

and we obtain the bending rigidity of the planar structure with no slack strings present. The
expression for string length l3 in the nonslack case reduces to

 (17.20)

This expression can be used to determine the angle which causes l3 to become slack.
Slack Case: Similarly, for the case when string 3 goes slack, we set k3 = 0 and ki = k in (17.17),

which yield simply

 (17.21)

and

 (17.22)

See Figure 17.12(c) for a plot of EI for the K = 0 (rigid bar) case.

17.2.1.2.3 Constants and Conversions
All plots shown are generated with the following data which can then be converted as follows if
necessary.
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Young’s Modulus, E  = 2.06 × 1011 N/m2

Yield Stress, σ  = 6.9 × 108 N/m2

Diameter of Tendons  = 1 mm

Cross-Sectional Area of Tendon  = 7.8540 × 10–7 m2

Length of Bar, Lbar  = .25 m

Prestress  = e0

Initial Angle  = δ0

The spring constant of a string is

 (17.23)

The following equation can be used to compute the equivalent rest length given some measure
of prestress t0

t0 = (EA)s e0 = k(l – l0)

.  (17.24)

17.2.1.3 Effective Bending Rigidity with Slack String (K > 0)

As noted earlier, the tensegrity unit is a statically indeterminate structure (meaning that matrix A
is not full column rank) as long as the strings remain taut during the application of the external
load. However, as soon as one of the strings goes slack, the tensegrity unit becomes statically
determinate. In the following, an expression for bending rigidity of the tensegrity unit with an
initially slack top string is derived. Even in the case of a statically determinate tensegrity unit with
slack string, the problem is still a large displacement and nonlinear problem. However, a linear
solution, valid for small displacements only, resulting in a quite simple and analytical form can be
found. Based on the assumptions of small displacements, an analytical expression for EI of the
tensegrity unit with slack top string has been derived in Appendix 17.B and is given below.

 (17.25)

The EI obtained from nonlinear analysis, i.e., from (17.3) together with (17.5), is compared with
the EI obtained from linear analysis, i.e., from (17.25), and is shown in Figure 17.14. Figure 17.14
shows that the linear analysis provides a lower bound to the actual bending rigidity. The linear
estimation of EI, i.e., (17.25), is plotted in Figure 17.15 as a function of the initial angle δ for
different values of the stiffness ratio K. Both bars and the strings are assumed to be made of steel,
as before. It is seen in Figure 17.15 that the EI of the tensegrity unit with slack top string attains
a maximum value for some value of δ. The decrease of EI (after the maximum) is due to the change
in the force sharing mechanism of the members of the tensegrity unit, as discussed earlier. For
small values of δ, the major portion of the external force is carried by the bottom string, whereas
for larger values of δ, the vertical side strings start to share the external force. As δ is further
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increased, the major portion of the external force is carried by the vertical side strings rather than
the bottom string. This explains the decrease in EI with the increase in δ after some values of δ
for which EI is maximum.

The locus of the maximum EI is also shown in Figure 17.15. The maximum value of EI and the
δ for which EI is maximum depend on the relative stiffness of the string and the bars, i.e., they
depend on K. From Figure 17.15 note that the maximum EI is obtained when the bars are much

FIGURE 17.14 Comparison of EI from nonlinear analysis with the EI from linear analysis with slack top string
(Lbar = 0.25 m, δ = 60° and K = 1/9).

FIGURE 17.15 EI with slack top string with respect to the angle δ for Lbar = 0.25m.
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stiffer than the strings. EI is maximum when the bars are perfectly rigid, i.e., K → 0. It is seen in
Figure 17.15 and can also be shown analytically from (17.25) that for the case of bars much stiffer
than the strings, K → 0, the maximum EI of the tensegrity unit with slack top string is obtained
when δ = 45°. In constrast, note from Figure 17.12(a) that when no strings are slack, the maximum
bending rigidity occurs with δ = 90°.

17.2.2 Mass Efficiency of the C2T4 Class 1 Tensegrity in Bending

This section demonstrates that beams composed of tensegrity units can be more efficient than
continua beams. We make this point with a very specific example of a single-unit C2T4 structure.
In a later section we allow the number of unit cells to approach infinity to describe a long beam.
Let Figure 17.16 describe the configuration of interest. Note that the top string is slack (because
the analysis is easier), even though the stiffness will be greater before the string is slack. The
compressive load in the bar, Fc.

Fc = F/cos δ

Designing the bar to buckle at this force yields

where the mass of the two bars is (ρ1 = bar mass density)

Hence, eliminating rbar gives for the force

The moment applied to the unit is

 (17.30)

To compare this structure with a simple classical structure, suppose the same moment is applied
to a single bar of a rectangular cross section with b units high and a units wide and yield strength
σy such that

(17.31)

FIGURE 17.16 C2T4 tensegrity with slack top string.
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then, for the rectangular bar

 (17.32)

Equating (17.30) and (17.32), using L0 = Lbar cos δ, yields the material/geometry conservation
law (  is a material property and g is a property of the geometry)

 (17.33)

The mass ratio µ is infinity if δ = 0°, 90°, and the lower bound on the mass ratio is achieved
when  = 26.565°.

Lemma 17.1    Let σy denote the yield stress of a bar with modulus of elasticity E1 and dimension
a × b × L0. Let M denote the bending moment about an axis perpendicular to the b dimension. M
is the moment at which the bar fails in bending. Then, the C2T4 tensegrity fails at the same M but
has less mass if  and minimal mass is achieved at .

Proof:    From (17.33),

 (17.34)

where the lower bound  is achieved at  by setting ∂g/∂δ = 0 and solving
cos2 δ = 4sin2 δ, or tan δ = 1/2.    ❏

For steel with (σy , E1) = (6.9 × 108, 2 × 1011) 

(17.35)

where the lower bound is achieved for  = 26.565°. Hence, for geometry of the steel
comparison bar given by then mb = 0.51 m0, showing
49% improvemen t  i n  mas s  f o r  a  g iven  y i e ld  momen t .  Fo r  t he  geome t ry

, mb = 0.2m0, showing 80% improvement in mass for a given yield
moment, M. The main point here is that strength and mass efficiency are achieved by geometry
(δ = 26.565°), not materials.

It can be shown that the compressive force in a bar when the system C2T4 is under a pure
bending load exhibits a similar robustness property that was shown with the bending rigidity. The
force in a bar is constant until a string becomes slack, which is shown in Figure 17.17.

17.2.3 Global Bending of a Beam Made from C2T4 Units

The question naturally arises “what is the bending rigidity of a beam made from many tensegrity
cells?” 17.2.3.2 answers that question. First, in Section 17.2.3.1 we review the standard beam theory.

17.2.3.1 Bucklings Load

For a beam loaded as shown in Figure 17.18, we have

 (17.36)
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equivalently,

 (17.37)

where

p2 = F/EI,  (17.38)

where EI is the bending rigidity of the beam, v is the transverse displacement measured from the
neutral axis (denoted by the dotted line in Figure 17.18), z represents the longitudinal axis, L is

FIGURE 17.17 Comparison of force in the bar obtained from linear and nonlinear analysis for pure bending
loading. (Strings and bars are made of steel, Young’s modulus E = 2.06 × 1011 N/m2, yield stress σy = 6.90 × 108

N/m2, diameter of string = 1 mm, diameter of bar = 3 mm, K = 1/9, δ = 30°, ε0 = 0.05% and L0 = 1.0 m.)

FIGURE 17.18 Bending of a beam with eccentric load at the ends.
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the length of the beam, e is the eccentricity of the external load F. The eccentricity of the external
load is defined as the distance between the point of action of the force and the neutral axis of the
beam.

The solution of the above equation is

v = A sin pz + B cos pz – e  (17.39)

where constants A and B depend on the boundary conditions. For a pin–pin boundary condition,
A and B are evaluated to be

,    and    B = e  (17.40)

Therefore, the deflection is given by

 (17.41)

17.2.3.2 Buckling of Beam with Many C2T4 Tensegrity Cells

Assume that the beam as shown in Figure 17.18 is made of n small tensegrity units similar to the
one shown in Figure 17.11, such that L = nL0, and the bending rigidity EI appearing in (17.36) and
(17.38) is replaced by EI given by (17.25). Also, since we are analyzing a case when the beam
breaks, we shall assume that the applied force is large compared to the pretension. The beam
buckles at the unit receiving the greatest moment. Because the moment varies linearly with the
bending and the bending is greatest at the center of the beam, the tensegrity unit at the center
buckles. The maximum moment Mmax leading to the worst case scenario is related to the maximum
deflection at the center vmax. From (17.41),

.  (17.42)

Simple algebra converts this to

 (17.43)

The worst case Mmax is equal to Fvmax + Fe and is given by

 (17.44)

Now we combine this with the buckling formula for one tensegrity unit to get its breaking moment
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Thus, from Equations (17.44) and (17.45), if F exceeds FgB given by

 (17.46)

the central unit buckles, and FgB is called the global buckling load.
Multiplying both sides of (17.46) by (nL0)2 and introducing three new variables,

F = FgB(nL0)2,     (17.47)

we rewrite (17.46) as

 (17.48)

Equivalently,

,  (17.49)

where η is a function defined as

.  (17.50)

η is a monotonically increasing function in

,  (17.51)

satisfying

η ≥ F  (17.52)

It is interesting to know the buckling properties of the beam as the number of the tensegrity
elements become large. As n → ∞, (nL0)2 → ∞, and from (17.49) and (17.51)

 (17.53)

and � approaches the limit from below. From Equations (17.47) and (17.49),

 (17.54)

Thus, for large n, using (17.53), we get

F EI

L
gB

nL F
EI

b

gBcos

( )
cos

 0
2

2

0
2

3







=
π

δ

  
P = ( )π

δ
2

0
2

3EI

L
b cos ,

  
K = 1

2
1
EI

,

F

K F
P

cos( ) = n L2
0
2

η( )F P= n L2
0
2

 
η( )

cos ( )
F

F
K F

=
 

 
0

2
12

2≤ ≤ 



F

K
π

  
F P

K
= [ ] → 





−η π1 2
0
2

2

22
2

n L

F
n L

n LgB = ( )[ ]−1 1
2

0
2

1 2
0
2η P

8596Ch17Frame  Page 338  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



 (17.55)

The global buckling load as given by (17.55) is exactly the same as the classical Euler’s buckling
equation evaluated for the bending rigidity EI of the tensegrity unit. Therefore, asymptotically the
buckling performance of the beam depends only on the characteristics of EI and  just as a classical
beam.

Note, for each n

The implication here is that the standard Euler buckling formula applies where EI is a function
of the geometrical properties of the tensegrity unit. Figure 17.12(a) shows that EI can be assigned
any finite value. Hence, the beam can be arbitrarily stiff if the tensegrity unit has horizontal length
arbitrarily small. This is achieved by using an arbitrarily large number of tensegrity units with large
δ (arbitrarily close to 90°). More work is needed to define practical limits on stiffness.

17.2.4 A Class 1 C2T4 Planar Tensegrity in Compression

In this section we derive equations that describe the stiffness of the Class 1 C2T4 planar tensegrity
under compressive loads. The nonslack case describes the structure when all strings exert force.
The slack case describes the structure when string 3 and string 1 exert zero force, due to the
deformation of the structure. Therefore, the force in string 3 and string 1 must be computed in
order to determine when to switch between the slack and nonslack equations. We make the
assumption that bars are rigid, that is, K = 0.

17.2.4.1 Compressive Stiffness Derivation

Nonslack Case: Summing forces at each node we obtain the equilibrium conditions

 (17.56)

 (17.57)

,  (17.58)

where fc is the compressive load in a bar, F is the external load applied to the structure, and ti is
the force exerted by string i defined as

.

The following relations are defined from the geometry of Figure 17.19:
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 (17.59)

Solving for F we obtain

 (17.60)

Using the relation L0 = Lbar cos δ and tan  results in

 (17.61)

We will also make the assumption now that all strings have the same material properties,
specifically, li0 = l0. Now, the stiffness can be computed as

 (17.62)

Similarly, for the slack case, when t1 and t3 are slack, we follow the same derivation setting t1 =
t3 = 0 in (17.56)–(17.58)

.  (17.63)

Substitution of L0 = Lbar cos δ yields

.  (17.64)

Taking the derivative with respect to L0 gives

FIGURE 17.19 C2T4 in compression.
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.  (17.65)

A plot of stiffness for the nonslack and slack case vs. applied force is given in Figure 17.20,
where k = 9.1523 × 105 N/m, δ = 45º, Lbar = 0.25 m, and the force, F, ranges between 0 and 600 N.

17.2.5 Summary

Tensegrity structures have geometric structure that can be designed to achieve desirable mechanical
properties. First, this chapter demonstrates how bending rigidity varies with the geometrical param-
eters. The bending rigidity is reduced when a string goes slack, and pretension delays the onset of
slack strings. The important conclusions made in this section are

• Beams made from tensegrity units can be stiffer than their continuous beam counterparts.

• Pretension can be used to maintain a constant bending rigidity over a wider range of external
loads. This can be important to robustness, when the range of external loads can be uncertain.

• For larger loads the bending stiffness is dominated by geometry, not pretension. This explains
the mass efficiency of tensegrity structures since one can achieve high stiffness by choosing
the right geometry.

• The ratio of mass to bending rigidity of the C2T4 tensegrity is shown to be smaller than for
a rectangular cross-section bar, provided the geometry is chosen properly (angle between
bars must be less than 53°). Comparisons to a conventional truss would be instructive. There
are many possibilities.

17.3 Planar Class K Tensegrity Structures Efficient 
in Compression

It is not hard to show that the Class 1 C2T4 tensegrity of Figure 17.19 is not as mass efficient as
a single rigid bar. That is, the mass of the structure in Figure 17.19 is greater than the mass of a

FIGURE 17.20 Stiffness of C2T4 vs. applied load, plotted until strings yield.
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single bar which buckles at the same load 2F. This motivates the examination of Class 2 tensegrity
structures which have the potential of greater strength and stiffness due to ball joints that can
efficiently transfer loads from one bar to another. Compressive members are disconnected in the
traditional definition2 of tensegrity structures, which we call Class 1 tensegrity. However, if stiff
tendons connecting two nodes are very short, then for all practical purposes, the nodes behave as
though they are connected. Hence, Class 1 tensegrity generates Class k tensegrity structures as
special cases when certain tendons become relatively short. Class k tensegrity describes a network
of axially loaded members in which the ends of not more than k compressive members are connected
(by ball joints, of course, because torques are not permitted) at nodes of the network.

In this section, we examine one basic structure that is efficient under compressive loads. In order
to design a structure that can carry a compressive load with small mass we employ Class k tensegrity
together with the concept of self-similarity. Self-similar structures involve replacing a compressive
member with a more efficient compressive system. This algorithm, or fractal, can be repeated for
each member in the structure. The basic principle responsible for the compression efficiency of
this structure is geometrical advantage, combined with the use of tensile members that have been
shown to exhibit large load to mass ratios. We begin the derivation by starting with a single bar
and its Euler buckling conditions. Then this bar is replaced by four smaller bars and one tensile
member. This process can be generalized and the formulae are given in the following sections. The
objective is to characterize the mass of the structure in terms of strength and stiffness. This allows
one to design for minimal mass while bounding stiffness. In designing this structure there are trade-
offs; for example, geometrical complexity poses manufacturing difficulties.

The materials of the bars and strings used for all calculations in this section are steel, which has
the mass density ρ = 7.862 , Young’s modulus E = 2.0611  and yield strength σ = 6.98

. Except when specified, we will normalize the length of the structures L0 = 1 in numerical
calculations.

17.3.1 Compressive Properties of the C4T2 Class 2 Tensegrity

Suppose a bar of radius r0 and length L0, as shown in Figure 17.21 buckles at load F. Then,

,  (17.66)

where E0 is the Young’s modulus of the bar material.

The mass of the bar is

,  (17.67)

where ρ0 is the mass density of the bar.

Equations (17.66) and (17.67) yield the force–mass relationship

.  (17.68)

FIGURE 17.21 A bar under compression.
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Now consider the four-bar pinned configuration in Figure 17.22, which is designed to buckle at
the same load F. Notice that the Class 2 tensegrity of Figure 17.22 is in the dual (where bars are
replaced by strings and vice versa) of the Class 1 tensegrity of Figure 17.3(b), and is of the same
type as the Class 2 tensegrity in Figure 17.3(c).

We first examine the case when tendon th is slack. The four identical bars buckle at the bar
compressive load F1 and the mass of each of the four bars is  Hence,

 (17.69)

where (r1, L1, E1, ρ1) is respectively, the radius, length, Young’s modulus, and mass density of each
bar, and the mass of the system C4T1 in Figure 17.22 is

Since from the Figure 17.22, the length of each bar is L1 and the compressive load in each bar is
F1 given by,

,  (17.70)

then, from (17.68)–(17.70)

.  (17.71)

Note from (17.70) that the C4T2 structure with no external force F and tension th = Fx in the
horizontal string, places every member of the structure under the same load as a C4T1 structure
(which has no horizontal string) with an external load F = Fx. In both cases, .

Solving for the mass ratio, from (17.71)

 (17.72)

For slack tendon th = 0, note that µ1 < 1 if δ < cos–1  = 29.477°. Of course, in the slack case
(when th = 0), one might refer to Figure 17.22 as a C4T1 structure, and we will use this designation
to describe the system of Figure 17.22 when th is slack. Increasing pretension in th to generate the
nonslack case can be examined later. The results are summarized as follows:

FIGURE 17.22 A C4T2 planar Class 2 tensegrity structure.
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Proposition 17.1    With slack horizontal string th = 0, assume that strings are massless, and that
the C4T1 system in Figure 17.22 is designed to buckle at the same load F as the original bar of
mass m0 in Figure 17.21. Then, the total mass m1 of the C4T1 system is , which
is less than m0 whenever δ < 29.477 degrees.

Proof:    This follows by setting µ1 = 1 in (17.72).

Some illustrative data that reflect the geometrical properties of the C4T1 in comparison with a
bar which buckles with the same force F are shown in Table 17.1. For example, when δ = 10°, the
C4T1 requires only 73.5% of the mass of the bar to resist the same compressive force. The data
in Table 17.1 are computed from the following relationships for the C4T1 structure. The radius of
each bar in the C4T1 system is r1

,

and

From this point forward we will assume the same material for all bars. Hence,

Likewise,

and

Also,

TABLE 17.1 Properties of the C4T1 Structurea

δ = 10° δ = 20°

r1 .602r0 .623r0

m1 .735m0 .826m0

L1 .508L0 .532L0

a Strings are assumed massless.
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17.3.2 C4T2 Planar Tensegrity in Compression

In this section we derive equations that describe the stiffness of the C4T2 planar tensegrity under
compressive loads. Pretension would serve to increase the restoring force in the string, allowing
greater loads to be applied with smaller deformations. This is clearly shown in the force balance
Equation (17.70), where pretension can be applied through the use of the rest length Lh0 of the
string, and th = kh(L0 – Lh0), where kh is the stiffness of the horizontal string.

17.3.2.1 Compressive Stiffness Derivation

From Figure 17.22, the equilibrium configuration can be expressed as

,  (17.73)

where t, L0, Lt , and Lt0 are the tension, length of the structure, length of the string, and the rest
length of the vertical string, respectively. The length of the string can be written as

,

where L1 denotes the length of one bar. This relation simplifies the force balance equation to

.  (17.74)

Figure 17.23 shows the plot of the load deflection curve of a C4T2 structure with different δ.
The compressive stiffness can be calculated by taking the derivative of (17.74) with respect to L0

as follows,

 (17.75)

FIGURE 17.23 Load-deflection curve of C4T2 structure with different δ (Ke = 1, Kh = 3Kt = 3, Ll = 1).
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Therefore, the stiffness is defined as

.  (17.76)

Figure 17.24 shows the plot of stiffness vs. the length of the structure and Figure 17.25 shows
the plot of stiffness vs. the applied load F on the structure. Figures 17.23–17.25 demonstrate a step
change in stiffness when tendon th goes slack. Note also that the C4T1 structure (th slack) demon-
strates the property described in Figure 17.8. Structures which demonstrate robustness to external
forces (that is, they maintain stiffness until strings go slack) do not preserve strength very well,
whereas structures which demonstrate strength robustness have poor stiffness properties.

FIGURE 17.24 Stiffness vs. length of C4T11 structure with different δ0 (Ke = 1, Kh = 3Ke = 3, L1 = 1).

FIGURE 17.25 Stiffness vs. force of C4T1 structure with different δ (Ke = 1, Kh = 3Ke = 3, L1 = 1).
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17.3.3 Self-Similar Structures of the C4T1 Type

Now let each of the four bars of the C4T1 system (that is, the C4T2 system with th = 0) in Figure 17.22
be replaced by another C4T1 system. The new 16 bar structure of Figure 17.26 is called C4T12, and
is designed to buckle at the same load F. Hence, if F2 represents the force in each of the 16 bars, with
length L2 and radius r2, and mass m2/16, then, for δ1 = δ2 = δ the relations below are obtained.

 (17.77)

 (17.78)

 (17.79)

 (17.80)

 (17.81)

 (17.82)

 (17.83)

 (17.84)

FIGURE 17.26 A C4T12 planar tensegrity structure. Points A are the same, and points B are the same, to illustrate
that two identical bars overlap.
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 (17.85)

 (17.86)

Now let us replace each bar in the structure of Figure 17.26 by yet another C4T1 structure and
continue this process indefinitely. To simplify the language for these instructions, we coin some
names that will simplify the description of the process we consider later.

Definition 17.3    Let the operation which replaces the bar of length L0 with the design of
Figure 17.22 be called the “C4T1 operator.” This replaces one compressive member with four
compressive members plus one tension member, where the bar radii obey (17.88). Let δ be the
same for any i. Let the operation which replaces the design of the bar Figure 17.21 with the design
of Figure 17.26 be called the “C4T12 operator.” If this C4T1 operation is repeated i times, then
call it the C4T1i operator, yielding the C4T1i system.

Lemma 17.2    Let the C4T1i operator be applied to the initial bar, always using the same material
and preserving buckling strength. Then, δ1 = δ the mass mi, bar radius ri , bar length Li of the
C4T1i system satisfy:

 (17.87)

 (17.88)

 (17.89)

 (17.90)

 (17.91)

.  (17.92)

Note from (17.90) that the length-to-diameter ratio of the bars decreases with i if δ < 60°.
Figure 17.27 illustrates C4T1i structures for i = 3, 4, 5, 6. Taking the limit of (17.87) as i → ∞

proves the following:

Theorem 17.1    Suppose the compressive force which buckles a C4T1i system is a specified value,
F. Then if δ < 29.477°, the total mass of the bars in the C4T1i system approaches zero as i → ∞.

Proof:    Take i toward infinity in (17.87).    ❏
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Now suppose the number of self-similar iterations continue until the lengths of the bars are not
longer than their diameters. Then, buckling cannot occur, and the structure is theoretically infinitely
strong against buckling of the bars, but of course, the strings can still break. Therefore, ignoring
the obvious overlapping of material as the iterations become large, we cite this result which is more
intriguing than practical.

Proposition 17.2    The C4T1i structure is infinitely strong against buckling if i, δ satisfy

 (17.93)

Proof:    The Euler buckling formula FB =  applies to beams whose diameter is smaller
than the length. Otherwise, buckling cannot occur. From Lemma 17.2, the diameter equals the
length of the bar when . From (17.90) the i such that ,
satisfies

    ❏  (17.94)

As an example of (17.93) and (17.94), compared to a bar of length L0 and radius r0, the C4T118

structure with α = 10° buckles at the same load as the original bar, has .39% of the mass of the

FIGURE 17.27 A C4T1i planar tensegrity structure for i = 3, 4, 5, 6.
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original bar, and is infinitely stronger than the bar. For a given specified strength, this example
suggests that solid materials are quite wasteful of mass. Of course, the above result has ignored
the fact that the material overlaps, if one tried to place all elements in the same plane. However,
multiple planar layers of elements can be pinned to give the desired planar effect mathematically
described herein. A more important omission of the above analysis is the calculation of string mass.
The string mass increases with self-similar iterations (increases with i) because strings are added
in the process. The mass of the bars decrease with i, so obviously minimal mass of the system
(bars plus strings) occurs at finite i. This calculation will be shown momentarily.

17.3.3.1 Robustness of the C4T1

In this section we discuss briefly the issue of stability under a lateral force FL = 0 in Figure 17.22.
We begin by mentioning two disastrous circumstances. First, if the applied force F is small and FL

is big, then the C4T1 will collapse. Second, if the angle δ is very small and F is big, then a modest
lateral force FL will collapse the structure. Of course, a larger pretension in th will protect against
larger FL. Three important points on more general structures of this type: first, big F always helps
lateral robustness; second, larger δ helps lateral robustness; third, increasing th helps robustness.

17.3.3.2 Mass and Tension of String in a C4T11 Structure

The mass mt1, length Lt1 and tension t1 of string in the C4T11 structure are expressed as

 (17.95)

 (17.96)

and

,  (17.97)

respectively.
With (17.95) and (17.97),

Hence,

So, the mass of string mt1 is

 (17.98)
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17.3.3.3 Total Mass of a C4T11 Structure

From (17.87) and (17.98), the total mass m1 of the C4T11 structure is

 (17.99)

For the same material of bar and string as that of the original structure, (17.99) is reduced to

 (17.100)

So, the minimal mass occurs at δ = 0º, yielding m1 = . This configuration is shown in Figure 17.28.
Figure 17.29 shows the plot of mass ratio  vs. δ for different l0. It can be seen that the

upper bound of δ is less than 29.477318º for mass reduction and also depends on the length-to-
diameter ratio l0.

FIGURE 17.28 The minimal mass of C4T11 structure (bottom) that replaces the C4T10 structure (top) with a
cross-section area comparison (right).

FIGURE 17.29 Mass ratio  vs. δ for different length-to-diameter ratio .
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17.3.3.4 C4T1i Structures

For bars, the Young’s modulus, density, and length-to-diameter ratio in C4T1i will be denoted as
Ei, ρi, and li, respectively. For strings, the Young’s modulus, density, and yield strength in every
stage j of C4T1i (where j = 0, 1, 2…i -1, i) will be denoted as Etj, ρtj, and σtj, respectively. The
extra subscript “t” is used to distinguish the string from the bar. Applying the C4T1i operator to
the original bar allows one to proceed from the C4T10 to C4T1i system. Similar to the analysis
before, the total mass of bars is

 (17.101)

The buckling load of each bar is

 (17.102)

From the geometry of the structure, the length and load of each bar are

 (17.103)

and

 (17.104)

respectively, where δj is the angle described in the same way as in Figure 17.26 and all δj might
be equal, or might be different.

17.3.3.5 Mass of Bars in a C4T1i Structure

From (17.101), (17.102), (17.103), and (17.106), the total mass of the bars in C4T1i can be related
to the mass of C4T10 through

.  (17.105)

17.3.3.6 Length to Diameter Ratio of Bar in a C4T1i Structure

The length-to-diameter ratio of the bars in C4T1i will be li given by

.  (17.106)
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17.3.3.7 Mass and Tension of Strings in a C4T1i Structure

Generalizing the concept from the previous section, the mass, length, and tension of the strings in
the j-th iteration (j = 1,2,3,…i–1, i) of C4T1i will be

 (17.107)

where (rtj, Ltj) is the radius and length of the strings,

 (17.108)

and

 (17.109)

where σtj is the yield stress of the string.
With (17.107), (17.108), and (17.109), the mass of the each string in the i-th iteration can be

related to the mass of C4T10

.  (17.110)

17.3.3.8 Total Mass of C4T1i Structure

The total mass mi of the C4T1i structure will be

With (17.105) and (17.110)

.  (17.111)

For the same angle δj = δ and same material of bars and strings in every j-th stage, the total mass
can be simplified to

 (17.112)

m L rtj
j

tj tj tj= −4 1 2ρ π ,

L L
L

tj j j
j

r
j

r

= =
=

2
2

2
0

1

sin
sin

cos
.δ

δ
δΠ

t F
F

rj j j
j

r
j

j
tj tj= = =

=

2
2

21

2sin
sin

cos
,δ

δ
δ

σ π
Π

t
E m

L i

m

Lj
j

r
j

r
tj

tj s
j

s

tj j

=






= 














=

=2

4
4
4

2

21

0 0
2

0
2

0
4

1

0

sin

cos

cos

sin

δ
δ

π
ρ

σ
δ

ρ δΠ
Π

m
E

l
mtj

j

tj r
j

r

tj=




=

0
2 2

0
2

1
2

0
016

π δ
σ δ

ρ
ρ

sin

cosΠ

m m mi bi tj

j

i

= +
=

∑
1

.

m
E

E

E

l
mi

i

i

j
i

j

j

tj r
j

j

tj

j

i

=




















 +





















= ==

∑0

0 1
5

0
2 2

0
2

1
2

01

0

1
2

1
2

1
2 16

ρ
ρ δ

π δ
σ δ

ρ
ρΠ Πcos

sin

cos

m
E

l
mi

t
i

i

= 



 + −

















1
2 16

1
15

0
2

0
2 2 0

2

cos cos
.

δ
π

σ δ

8596Ch17Frame  Page 353  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



Figure 17.30 shows the plot of mass ratio ( ) vs. the number of iterations for different δ
and l0 = 30. From the figure, smaller angles δ will lead to larger mass reduction, and a larger length-
to-diameter ratio l0 also enhances the mass reduction effect.

Figure 17.31 shows the plot of the mass ratio of bars to strings vs. the angle δ for l0 = 30. Bars
will dominate the mass of structure at small δ and at a small number of iterations i.

Figure 17.32 shows the plot of δ vs. the number of iterations for different length-to-diameter
ratios such that mi = m0. Regions below each curve are the allowed regions for mass reduction.
Note that if δ ≤ 29.477318º and the use of materials are the same for every iteration, from (17.105),
the mass of bars decreases as the number of iterations increases. However, the mass reduction will
be offset by the increase of string mass as can be seen from (17.112). Therefore, maximum mass
reduction can be achieved in some finite number of iterations that depends on the angle δ and
length-to-diameter ratio l0. In fact, from (17.112), the mass reduction will be maximum when the
number of iterations i is given by the following theorem:

Theorem 17.2    Assume all bars and strings are composed of the same material. Let the C4T1i

operator be applied to the original bar to get the C4T1i system, where the iterations are designed

FIGURE 17.30 Mass ratio  vs. number of iterations for length-to-diameter ratio l0 = 30.

FIGURE 17.31 Mass ratio  vs. δ of C4T1i with .
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to preserve the buckling strength of the original bar. Minimum mass is achieved at a finite number
of iterations and this number is given by either i1 or i2, where

 (17.113)

where  ( ) implies rounding up (down) to the closest integer. One must check the mass at both
i1 and i2 to choose the smallest mass.

Proof:    Let  then, from (17.112),

.

Take the derivative of µ w.r.t i by using the rule  = ax In a, and set it equal to zero to obtain

.

Rearranging the equation gives

.

Solving for i yields (17.113).    ❏

Figure 17.33 shows the plot of the optimal iteration in (17.113) vs. angle δ for maximum mass
reduction.

Figure 17.34 shows the plot of the ratio of bar mass to string mass vs. δ at the optimal iteration
given by (17.113). Note that at about δ = 17º and l0 = 30, the total bar mass and the total string
mass are equal.

Figure 17.35 shows the corresponding plot of total mass ratio.

FIGURE 17.32 δ vs. number of iterations i for different for mass ratio  = 1 of iteration i.
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FIGURE 17.33 Optimal number of iterations i vs. δ for the maximum mass reduction.

FIGURE 17.34 Mass ratio of bars to strings  vs. δ at the optimal iteration.

FIGURE 17.35 Total mass ratio  vs. δ at the optimal iteration.
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17.3.4 Stiffness of the C4T1i Structure

17.3.4.1 Stiffness Definition

For the C4T1i, the structure will change its length (measured from two nodal points where external
load is applied) in the same direction as the applied force. Therefore, the stiffness calculation is a
one-dimensional problem. For an external load F applied to the structure of length L, the stiffness
K of the structure is defined as

,  (17.114)

where the negative sign means the length of the structure decreases as the applied load increases.
Since the external load can be related to the potential energy of the structure U by

,

the stiffness can also be calculated from the potential energy by

.  (17.115)

17.3.4.2 The Stiffness Equation of a C4T1i Structure

In the calculations of stiffness (see Appendix 17.C), it is assumed that the stiffness of bars kbi and
strings ktj, where 1 ≤ j ≤ i, is constant under deformation. This is not always a good assumption,
but other string stiffness models, such as  can be analyzed in a straightforward manner.
If Li0 and Ltj0 are the rest lengths of bars in the i-th iteration and strings in the j-th iteration,
respectively, the stiffness of C4T1i is given by

,  (17.116)

where, in the buckling design (see Appendix 17.B)
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In particular, if the materials of the bars and strings used are the same as those of original structure
(C4T10) and δj = δ, the stiffness equation will be simplified to

 (17.117)

where

17.3.4.3 The Rigid Bar Case

If the bar has infinite rigidity (large compared to the stiffness of strings), this means

,

then, the stiffness equation becomes

,  (17.118)

where

Figure 17.36 shows the plot of the stiffness Ki vs. δ for length-to-diameter ratio l0 = 30.
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Figure 17.37 shows the plot of the stiffness ratio  vs. δ for the infinite rigid bar C4T1i

structure. Note that the ratio is independent of l0.
Because the stiffness reduces with each iteration i, it is of interest to know how many iterations

may be taken before the stiffness violates a desired lower bound K.

Proposition 17.3    Given δ and a desired lower bound stiffness K of C4T1i, that is, K ≤ Ki , the
number of iterations i which achieves this stiffness requirement is bounded by

 (17.119)

Proof:    From (17.118),

Rearrange the inequality to expose cos2i δ on one side and then take the log of both sides to obtain
(17.119)    ❏

FIGURE 17.36 Stiffness Ki of C4T1i structure with rigid bars vs. δ for l0 = 30.

FIGURE 17.37 Stiffness ratio  of C4T1i structure with rigid bars vs. δ.
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17.3.4.4 The Elastic Bar Case

If the bars in the C4T1i structure are elastic,

,

and hence (17.117) will be used for numerical calculations.
Figure 17.38 shows the plot of the stiffness Ki vs. δ for length-to-diameter ratio l0 = 30.
Figure 17.39 shows the corresponding plot of the stiffness ratio  vs. δ for Figure 17.38.

A comparison of Figures 17.36 to 17.39 reveals that with elastic bars, system stiffness is much less
than for a system made with rigid bars.

17.3.4.4.1 Stiffness Ratio Ki / K0

The stiffness of C4T10 (a single bar) is

FIGURE 17.38 Stiffness-to-length ratio  vs. δ for length-to-diameter ratio l0 = 30, for elastic bars.

FIGURE 17.39 Stiffness ratio  vs. δ for length-to-diameter ratio l0 = 30, for elastic bars.

5 10 15 20 25 30105

106

107

108

109

δ

S
ti

ff
n

es
s 

to
 le

n
g

th
 r

at
io

 K
i /

L
0

i = 1 to 10 

K

L
i

0

5 10 15 20 25 30
10-3

10-2

10-1

100

101

δ

S
ti

ff
n

es
s 

ra
ti

o
 K

i /
k t1

i = 1 to 10 

K

kt
i

1

k

k
ti

bi

≠ 0

K Ki t1

8596Ch17Frame  Page 360  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



 (17.120)

With (17.117), the stiffness ratio Ki / K0 is given by

 (17.121)

where other physical quantities are the same as those given in (17.117).
Figure 17.40 shows the plot of the stiffness ratio Ki / K0 vs. δ for length-to-diameter ratio l0 = 30.
Figures 17.37, 17.39, and 17.40 demonstrate that stiffness is much less sensitive to geometry

(choice of δ) when bars are elastic than when the bars are rigid.

17.3.4.4.2 Stiffness to Mass Ratio
From (17.112) and (17.117), the stiffness-to-mass ratio is given by

 (17.122)

where other physical quantities are the same as those given in (17.117).
Figures 17.41 plots the stiffness-to-mass ratio, Ki /mi vs. δ, length-to-diameter ratio l0 = 30. The

stiffness-to-mass ratio remains constant with self-similar iteration i at δ = 0° and always decreases
with the increase of iterations i and δ.

17.3.5 C4T1i Structure with Elastic Bars and Constant Stiffness

Given a bar of radius r0 and length L0 under applied force F (not buckling load), this section shows
how to design the C4T1i structure to minimize the use of mass by replacing the bar with the C4T1i

structure such that the stiffness of the structure is the same as that of a bar under the same applied load F.
It is assumed that the stiffness of member bars and strings is constant and it is given by

FIGURE 17.40 Stiffness ratio  vs. δ for l0 = 30, for elastic bars.
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 (17.123)

where r and L are the cross-section radius and length of bars or strings when the C4T1i structure
is under external load F.

17.3.5.1 C4T11 at δ = 0°

At δ = 0°, it is known from the previous section that the use of mass is minimum while the stiffness
is maximum. Therefore, a simple analysis of C4T11 at δ = 0 will give an idea of whether it is
possible to reduce the mass while preserving stiffness.

For the C4T10 structure, the stiffness is given by

 (17.124)

For a C4T11 structure at δ = 0°, i.e., two pairs of parallel bars in series with each other, the length
of each bar is L0 /2 and its stiffness is

 (17.125)

For this four-bar arrangement, the equivalent stiffness is same as the stiffness of each bar, i.e.,

 (17.126)

To preserve stiffness, it is required that

FIGURE 17.41 Stiffness-to-mass ratio  vs. δ for l0 = 30.
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So,

 (17.127)

Then, the mass of C4T11 at δ = 0° for stiffness preserving design is

 (17.128)

which indicates, at δ = 0°, that the mass of C4T11 is equal to that of C4T10 in a stiffness-preserving
design. Therefore, the mass reduction of C4T1i structure in a stiffness-preserving design is unlikely
to happen. However, if the horizontal string th is added in the C4T11 element to make it a C4T2
element, then stiffness can be improved, as shown in (17.76).

17.3.6 Summary

The concept of self-similar tensegrity structures of Class k has been illustrated. For the example of
massless strings and rigid bars replacing a bar with a Class 2 tensegrity structure C4T1 with specially
chosen geometry, δ < 29°, the mass of the new system is less than the mass of the bar, the strength of
the bar is matched, and a stiffness bound can be satisfied. Continuing this process for a finite member
of iterations yields a system mass that is minimal for these stated constraints. This optimization problem
is analytically solved and does not require complex numerical codes. For elastic bars, analytical
expressions are derived for the stiffness, and choosing the parameters to achieve a specified stiffness
is straightforward numerical work. The stiffness and stiffness-to-mass ratio always decrease with self-
similar iteration, and with increasing angle δ, improved with the number of self-similar iterations,
whereas the stiffness always decreases.

17.4 Statics of a 3-Bar Tensegrity

17.4.1 Classes of Tensegrity

The tensegrity unit studied here is the simplest three-dimensional tensegrity unit which is comprised
of three bars held together in space by strings to form a tensegrity unit. A tensegrity unit comprising
three bars will be called a 3-bar tensegrity. A 3-bar tensegrity is constructed by using three bars in
each stage which are twisted either in clockwise or in counter-clockwise direction. The top strings
connecting the top of each bar support the next stage in which the bars are twisted in a direction
opposite to the bars in the previous stage. In this way any number of stages can be constructed
which will have an alternating clockwise and counter-clockwise rotation of the bars in each
successive stage. This is the type of structure in Snelson’s Needle Tower, Figure 17.1. The strings
that support the next stage are known as the “saddle strings (S).” The strings that connect the top
of bars of one stage to the top of bars of the adjacent stages or the bottom of bars of one stage to
the bottom of bars of the adjacent stages are known as the “diagonal strings (D),” whereas the
strings that connect the top of the bars of one stage to the bottom of the bars of the same stage are
known as the “vertical strings (V).”

Figure 17.42 illustrates an unfolded tensegrity architecture where the dotted lines denote the
vertical strings in Figure 17.43 and thick lines denote bars. Closure of the structure by joining
points A, B, C, and D yields a tensegrity beam with four bars per stage as opposed to the example
in Figure 17.43 which employs only three bars per stage. Any number of bars per stage may be
employed by increasing the number of bars laid in the lateral direction and any number of stages
can be formed by increasing the rows in the vertical direction as in Figure 17.42.
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Even with only three bars in one stage, which represents the simplest form of a three-dimensional
tensegrity unit, various types of tensegrities can be constructed depending on how these bars have
been held in space to form a beam that satisfies the definition of tensegrity. Three variations of a
3-bar per stage structure are described below.

17.4.1.1 3-Bar SVD Class 1 Tensegrity

A typical two-stage 3-bar SVD tensegrity is shown in Figure 17.43(a) in which the bars of the
bottom stage are twisted in the counter-clockwise direction. As is seen in Figure 17.42 and
Figure 17.43(a), these tensegrities are constructed by using all three types of strings, saddle strings
(S), vertical strings (V), and the diagonal strings (D), hence the name SVD tensegrity.

17.4.1.2 3-Bar SD Class 1 Tensegrity

These types of tensegrities are constructed by eliminating the vertical strings to obtain a stable
equilibrium with the minimal number of strings. Thus, a SD-type tensegrity only has saddle (S)
and the diagonal strings (D), as shown in Figure 17.42 and Figure 17.43(b).

lllFIGURE 17.42 Unfolded tensegrity architecture.

FIGURE 17.43 Types of structures with three bars in one stage. (a) 3-Bar SVD tensegrity; (b) 3-bar SD tensegrity,
(c) 3-bar SS tensegrity.

(a) (b) (c)
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17.4.1.3 3-Bar SS Class 2 Tensegrity

It is natural to examine the case when the bars are connected with a ball joint. If one connects
points P and P′ in Figure 17.42, the resulting structure is shown in Figure 17.43(c). The analysis
of this class of structures is postponed for a later publication.

The static properties of a 3-bar SVD-type tensegrity is studied in this chapter. A typical two-
stage 3-bar SVD-type tensegrity is shown in Figure 17.44 in which the bars of the bottom stage
are twisted in the counter-clockwise direction. The coordinate system used is also shown in the
same figure. The same configuration will be used for all subsequent studies on the statics of the
tensegrity. The notations and symbols, along with the definitions of angles α and δ, and overlap
between the stages, used in the following discussions are also shown in Figure 17.44.

The assumptions related to the geometrical configuration of the tensegrity structure are listed
below:

1. The projection of the top and the bottom triangles (vertices) on the horizontal plane makes
a regular hexagon.

2. The projection of bars on the horizontal plane makes an angle α with the sides of the base
triangle. The angle α is taken to be positive (+) if the projection of the bar lies inside the
base triangle, otherwise α is considered as negative (–).

3. All of the bars are assumed to have the same declination angle δ.
4. All bars are of equal length, L.

17.4.2 Existence Conditions for 3-Bar SVD Tensegrity

The existence of a tensegrity structure requires that all bars be in compression and all strings be
in tension in the absence of the external loads. Mathematically, the existence of a tensegrity system
must satisfy the following set of equations:

 (17.129)

For our use, we shall define the conditions stated in (17.129) as the “tensegrity condition.”
Note that A of (17.129) is now a function of α, δ, and h, the generalized coordinates, labeled q

generically. For a given q, the null space of A is computed from the singular value decomposition
of A.36,37 Any singular value of A smaller than 1.0 × 10–10 was assumed to be zero and the null
vector t0 belonging to the null space of A was then computed. The null vector was then checked
against the requirement of all strings in tension. The values of α, δ, and h that satisfy (17.129)

FIGURE 17.44 Top view and elevation of a two-stage 3-bar SVD tensegrity.

A t( ) , , : .q q stable equilibriumstringst                 0 0_= >0 0
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yield a tensegrity structure. In this section, the existence conditions are explored for a two-stage
3-bar SVD-type tensegrity, as shown in Figure 17.44, and are discussed below.

All of the possible configurations resulting in the self-stressed equilibrium conditions for a two-
stage 3-bar SVD-type tensegrity are shown in Figure 17.45. While obtaining Figure 17.45, the
length of the bars was assumed to be 0.40 m and Lt, as shown in Figure 17.44, was taken to be 0.20 m.

Figure 17.45 shows that out of various possible combinations of α–δ–h, there exists only a small
domain of α–δ–h satisfying the existence condition for the two-stage 3-bar SVD-type tensegrity
studied here. It is interesting to explore the factors defining the boundaries of the domain of α–δ–h.
For this, the relation between α and h, δ and h, and also the range of α and δ satisfying the existence
condition for the two-stage 3-bar SVD-type tensegrity are shown in Figures 17.45(b), (c), and (d).
Figure 17.45(b) shows that when α = 30°, there exists a unique value of overlap equal to 50% of
the stage height. Note that α = 0° results in a perfect hexagonal cylinder. For any value of α other
than 0°, multiple values of overlap exist that satisfies the existence condition. These overlap values
for any given value of α depend on δ, as shown in Figure 17.45(c). It is also observed in
Figure 17.45(b) and (c) that a larger value of negative α results in a large value of overlap and a

FIGURE 17.45 Existence conditions for a two-stage tensegrity. Relations between (a) α, δ, and the overlap, (b)
α and overlap, (c) δ and overlap, and (d) δ and α giving static equilibria.

8596Ch17Frame  Page 366  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



larger value of positive α results in a smaller value of overlap. Note that a large value of negative
α means a “fat” or “beer-barrel” type structure, whereas larger values of positive α give an
“hourglass” type of structure. It can be shown that a fat or beer-barrel type structure has greater
compressive stiffness than an hourglass type structure. Therefore, a tensegrity beam made of larger
values of negative α can be expected to have greater compressive strength.

Figure 17.45(d) shows that for any value of δ, the maximum values of positive or negative α are
governed by overlap. The maximum value of positive α is limited by the overlap becoming 0% of
the stage height, whereas the maximum value of negative α is limited by the overlap becoming
100% of the stage height. A larger value of negative α is expected to give greater vertical stiffness.
Figure 17.45(d) shows that large negative α is possible when δ is small. However, as seen in
Figure 17.45(d), there is a limit to the maximum value of negative α and to the minimum δ that
would satisfy the existence conditions of the two-stage 3-bar SVD-type tensegrity. To understand
this limit of the values of α and δ, the distribution of the internal pretensioning forces in each of
the members is plotted as a function of α and δ, and shown in Figures 17.46 and 17.47.

FIGURE 17.45 (Continued)
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Figure 17.46 shows the member forces as a function of α with δ = 35°, whereas Figure 17.47
shows the member forces as a function of δ with α = –5°. Both of the figures are obtained for K =
1/9, and the prestressing force in the strings is equal to the force due to a maximum prestrain in
the strings ε0 = 0.05% applied to the string which experiences maximum prestressing force. It is
seen in both of the figures that for large negative α, the prestressing force in the saddle strings and
the diagonal strings decreases with an increase in the negative α. Finally, for α below certain values,
the prestressing forces in the saddle and diagonal strings become small enough to violate the
definition of existence of tensegrity (i.e., all strings in tension and all bars in compression).

A similar trend is noted in the case of the vertical strings also. As seen in Figure 17.47, the force in
the vertical strings decreases with a decrease in δ for small δ. Finally, for δ below certain values, the
prestressing forces in the vertical strings become small enough to violate the definition of the existence
of tensegrity. This explains the lower limits of the angles α and δ satisfying the tensegrity conditions.

Figures 17.46 and 17.47 show very remarkable changes in the load-sharing mechanism between
the members with an increase in positive α and with an increase in δ. It is seen in Figure 17.46
that as α is gradually changed from a negative value toward a positive one, the prestressing force
in the saddle strings increases, whereas the prestressing force in the vertical strings decreases. These
trends continue up to α = 0°, when the prestressing force in both the diagonal strings and the saddle
strings is equal and that in the vertical strings is small. For α < 0°, the force in the diagonal strings
is always greater than that in the saddle strings. However, for α > 0°, the force in the diagonal
strings decreases and is always less than the force in the saddle strings. The force in the vertical
strings is the greatest of all strings.

FIGURE 17.46 Prestressing force in the members as a function of α.

FIGURE 17.47 Prestressing force in the members as a function of δ.
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Figure 17.45 showing all the possible configurations of a two-stage tensegrity can be quite useful
in designing a deployable tensegrity beam made of many stages. The deployment of a beam with
many stages can be achieved by deploying two stages at a time.

The existence conditions for a regular hexagonal cylinder (beam) made of two stages for which
one of the end triangles is assumed to be rotated by an angle β about its mean position, as shown
in Figure 17.48, is studied next. The mean position of the triangle is defined as the configuration
when β = 0 and all of the nodal points of the bars line up in a straight line to form a regular hexagon,
as shown in Figure 17.48. As is seen in Figure 17.49, it is possible to rotate the top triangle merely
by satisfying the equilibrium conditions for the two-stage tensegrity. It is also seen that the top
triangle can be rotated merely by changing the overlap between the two stages. This information
can be quite useful in designing a Stewart platform-type structure.

17.4.3 Load-Deflection Curves and Axial Stiffness as a Function of the 
Geometrical Parameters

The load deflection characteristics of a two-stage 3-bar SVD-type tensegrity are studied next and
the corresponding stiffness properties are investigated.

FIGURE 17.48 Rotation of the top triangle with respect to the bottom triangle for a two-stage cylindrical hexagonal
3-bar SVD tensegrity. (a) Top view when β = 0, (b) top view with β, and (c) elevation.

FIGURE 17.49 Existence conditions for a cylindrical two-stage 3-bars SVD tensegrity with respect to the rotation
angle of the top triangle (anticlockwise β is positive).
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Figure 17.50 depicts the load-deflection curves and the axial stiffness as functions of prestress,
drawn for the case of a two-stage 3-bar SVD-type tensegrity subjected to axial loading. The axial
stiffness is defined as the external force acting on the structure divided by the axial deformation
of the structure. In another words, the stiffness considered here is the “secant stiffness.”

Figure 17.50 shows that the tensegrity under axial loading behaves like a nonlinear spring and
the nonlinear properties depend much on the prestress. The nonlinearity is more prominent when
prestress is low and when the displacements are small. It is seen that the axial stiffnesses computed
for both compressive and tensile loadings almost equal to each other for this particular case of a
two-stage 3-bar SVD-type tensegrity. It is also seen that the axial stiffness is affected greatly by
the prestress when the external forces are small (i.e., when the displacements are small), and
prestress has an important role in increasing the stiffness of the tensegrity in the region of a small
external load. However, as the external forces increase, the effect of the prestress becomes negligible.

The characteristics of the axial stiffness of the tensegrity as a function of the geometrical parameters
(i.e., α, δ) are next plotted in Figure 17.51. The effect of the prestress on the axial stiffness is also
shown in Figure 17.51. In obtaining the Figure 17.51, vertical loads were applied at the top nodes of
the two-stage tensegrity. The load was gradually increased until at least one of the strings exceeded its
elastic limit. As the compressive stiffness and the tensile stiffness were observed to be nearly equal to
each other in the present example, only the compressive stiffness as a function of the geometrical
parameters is plotted in Figure 17.51. The change in the shape of the tensegrity structure from a fat
profile to an hourglass-like profile with the change in α is also shown in Figure 17.51(b).

The following conclusions can be drawn from Figure 17.51:

1. Figure 17.52(a) suggests that the axial stiffness increases with a decrease in the angle of
declination δ (measured from the vertical axis).

2. Figure 17.51(b) suggests that the axial stiffness increases with an increase in the negative
angle α. Negative α means a fat or beer-barrel-type structure whereas a positive α means
an hourglass-type structure, as shown in Figure 17.51(b). Thus, a fat tensegrity performs
better than an hourglass-type tensegrity subjected to compressive loading.

3. Figure 17.51(c) suggests that prestress has an important role in increasing the stiffness of
the tensegrity in the region of small external loading. However, as the external forces are
increased, the effect of the prestress becomes almost negligible.

FIGURE 17.50 Load deflection curve and axial stiffness of a two-stage 3-bar SVD tensegrity subjected to axial
loading.

(a) (b)
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17.4.4 Load-Deflection Curves and Bending Stiffness as a Function of the 
Geometrical Parameters

The bending characteristics of the two-stage 3-bar SVD tensegrity are presented in this section.
The force is applied along the x-direction and then along the y-direction, as shown in Figure 17.52.
The force is gradually applied until at least one of the strings exceeds its elastic limit.

The load deflection curves for the load applied in the lateral are plotted in Figure 17.52 as a
function of the prestress. It was observed that as the load is gradually increased, one of the vertical
strings goes slack and takes no load. Therefore, two distinct regions can be clearly identified in
Figure 17.52. The first region is the one where none of the strings is slack, whereas the second
region, marked by the sudden change in the slope of the load deflection curves, is the one in which
at least one string is slack. It is seen in Figure 17.52 that in contrast to the response of the tensegrity
subjected to the vertical axial loading, the bending response of the tensegrity is almost linear in
the region of tensegrity without slack strings, whereas it is slightly nonlinear in the region of
tensegrity with slack strings. The nonlinearity depends on the prestressing force. It is observed that
the prestress plays an important role in delaying the onset of the slack strings.

The characteristics of the bending stiffness of the tensegrity as a function of the geometrical
parameters (i.e., α, δ) are plotted next in Figures 17.53 and 17.54. Figure 17.53 is plotted for lateral
force applied in the x-direction, whereas Figure 17.54 is plotted for lateral force applied in the
y-direction. The effect of the prestress on the bending stiffness is also shown in Figures 17.53 and
17.54. The following conclusions about the bending characteristics of the two-stage 3-bar tensegrity
could be drawn from Figures 17.53 and 17.54:

1. It is seen that the bending stiffness of the tensegrity with no slack strings is almost equal in
both the x- and y-directions. However, the bending stiffness of the tensegrity with slack
string is greater along the y-direction than along the x-direction.

2. The bending stiffness of a tensegrity is constant and is maximum for any given values of α, δ,
and prestress when none of the strings are slack. However, as soon as at least one string goes

FIGURE 17.51 Axial stiffness of a two-stage 3-bar SVD tensegrity for different α, δ, and pretension.

(a) (b) (c)
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slack (marked by sudden drop in the stiffness curves in Figures 17.53 and 17.54), the stiffness
becomes a nonlinear function of the external loading and decreases monotonically with the
increase in the external loading. As seen in Figures 17.53 and 17.54, the onset of strings becoming
slack, and hence the range of constant bending stiffness, is a function of α, δ, and prestress.

3. Figures 17.53(a) and 17.54(a) suggest that the bending stiffness of a tensegrity with no slack
strings increases with the increase in the angle of declination δ (measured from the vertical
axis). The bending stiffness of a tensegrity with a slack string, in general, increases with
increase in δ. However, as seen in Figure 17.53(a), a certain δ exists beyond which the
bending stiffness of a tensegrity with slack string decreases with an increase in δ. Hence,
tensegrity structures have an optimal internal geometry with respect to the bending stiffness
and other mechanical properties.

4. Figures 17.53(b) and 17.54(b) suggest that the bending stiffness increases with the increase
in the negative angle α. As negative α means a fat or beer-barrel-type structure whereas a
positive α means an hourglass-type structure, a fat tensegrity performs better than an hour-
glass-type tensegrity subjected to lateral loading.

5. Figures 17.53(a,b) and 17.54(a,b) indicate that both α and δ play a very interesting and
important role in not only affecting the magnitude of stiffness, but also the onset of slackening
of the strings (robustness to external disturbances). A large value of negative α and a large
value of δ (in general) delay the onset of slackening of the strings, thereby increasing the
range of constant bending stiffness. However, a certain δ exists for which the onset of the
slack strings is maximum.

FIGURE 17.52 Load deflection curve of a two-stage 3-bar SVD tensegrity subjected to lateral loading, (a) loading
along x-direction, and (b) loading along y-direction.

(a) (b)
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6. Figures 17.53(c) and 17.54(c) suggest that prestress does not affect the bending stiffness of
a tensegrity with no slack strings. However, prestress has an important role in delaying the
onset of slack strings and thus increasing the range of constant bending stiffness.

17.4.5 Summary of 3-Bar SVD Tensegrity Properties

The following conclusions could be drawn from the present study on the statics of a two-stage
3-bar SVD-type tensegrities.

1. The tensegrity structure exhibits unique equilibrium characteristics. The self-stressed equi-
librium condition exists only on a small subset of geometrical parameter values. This con-
dition guarantees that the tensegrity is prestressable and that none of the strings is slack.

2. The stiffness (the axial and the bending) is a function of the geometrical parameters, the
prestress, and the externally applied load. However, the effect of the geometrical parameters
on the stiffness is greater than the effect of the prestress. The external force, on the other
hand, does not affect the bending stiffness of a tensegrity with no slack strings, whereas it
does affect the axial stiffness. The axial stiffness shows a greater nonlinear behavior even

FIGURE 17.53 Bending stiffness of a two-stage 3-bar SVD tensegrity for different α, δ, and pretension. L-bar
for all cases = 0.4 in.

(a) (b) (c)
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up to the point when none of the strings are slack. The axial stiffness increases with an
increase in the external loading, whereas the bending stiffness remains constant until at least
one of the strings go slack, after which the bending stiffness decreases with an increase in
the external loading.

3. Both the axial and the bending stiffness increase by making α more negative. That is, both
the axial and the bending stiffness are higher for a beer-barrel-type tensegrity. The stiffness
is small for an hourglass-type tensegrity.

4. The axial stiffness increases with a decrease in the vertical angle, whereas the bending
stiffness increases with an increase in the vertical angle. This implies that the less the angle
that the bars make with the line of action of the external force, the stiffer is the tensegrity.

5. Both the geometrical parameters α and δ, and prestress play an important role in delaying
the onset of slack strings. A more negative α, a more positive δ, and prestress, all delay the
onset of slack strings, as more external forces are applied. Thus, both α and δ also work as
a hidden prestress. However, there lies a δ beyond which an increase in δ hastens the onset
of slack strings, as more external force is applied.

FIGURE 17.54 Bending stiffness of a two-stage 3-bar SVD tensegrity for different α, δ, and pretension.

(a) (b) (c)
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17.5 Concluding Remarks

Tensegrity structures present a remarkable blend of geometry and mechanics. Out of various
available combinations of geometrical parameters, only a small subset exists that guarantees the
existence of the tensegrity. The choice of these parameters dictates the mechanical properties of
the structure. The choice of the geometrical parameters has a great influence on the stiffness.
Pretension serves the important role of maintaining stiffness until a string goes slack. The geomet-
rical parameters not only affect the magnitude of the stiffness either with or without slack strings,
but also affect the onset of slack strings. We now list the major findings of this chapter.

17.5.1 Pretension vs. Stiffness Principle

This principle states that increased pretension increases robustness to uncertain disturbances. More
precisely, for all situations we have seen (except for the C4T2):

When a load is applied to a tensegrity structure, the stiffness does not decrease as the loading
force increases unless a string goes slack. 

The effect of the pretension on the stiffness of a tensegrity without slack strings is almost negligible.
The bending stiffness of a tensegrity without slack strings is not affected appreciably by prestress.

17.5.2 Small Control Energy Principle

The second principle is that the shape of the structure can be changed with very little control energy.
This is because shape changes are achieved by changing the equilibrium of the structure. In this
case, control energy is not required to hold the new shape. This is in contrast to the control of
classical structures, where shape changes required control energy to work against the old equilibrium.

17.5.3 Mass vs. Strength

This chapter also considered the issue of strength vs. mass of tensegrity structures. We found planar
examples to be very informative. We considered two types of strength: the size of bending forces
and the size of compressive forces required to break the object. We studied the ratio of bending
strength to mass and compression strength to mass. We compared this for two planar structures,
one the C2T4 unit and the other a C4T1 unit, to a solid rectangular bar of the same mass.

We find:

• Reasonably constructed C2T4 units are stronger in bending than a rectangular bar, but they
are weaker under compression.

• The C2T4 has worse strength under compression than a solid rectangular bar.

• The simple analysis we did indicates that C4T2 and C4T1 structures with reasonably chosen
proportions have larger compression strength-to-mass ratios than a solid bar.

• On the other hand, a C4T1, while strong (not easily broken), need not be an extremely stiff
structure.

• C4T2 and C4T1 structures can be designed for minimal mass subjected to a constraint on
both strength and stiffness.

It is possible to amplify the effects stated above by the use of self-similar constructions:

• A 2D Tensegrity Beam. After analyzing a C2T4 tensegrity unit, we lay n of them side by
side to form a beam. In principle, we find that one can build beams with arbitrarily great
bending strength. In practice, this requires more study. However, the favorable bending
properties found for C2T4 bode well for tensegrity beams.

8596Ch17Frame  Page 375  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



• A 2D Tensegrity Column. We take the C4T2 structure and replace each bar with a smaller C4T1
structure, then we replace each bar of this new structure by a yet smaller C4T1 structure. In
principle, such a self-similar construction can be repeated to any level. Assuming that the strings
do not fail and have significantly less mass than the bars, we find that we have a class of tensegrity
structures with unlimited compression strength-to-mass ratio. Further issues of robustness to
lateral and bending forces have to be investigated to ensure practicality of such structures.

The total mass including string and bars (while preserving strength) can be minimized by a finite
numer of self-similar iterations, and the number of iterations to achieve minimal mass is usually
quite small (less that 10). This provides an optimization of tensegrity structures that is analytically
resolved and is much easier and less complex than optimization of classical structures. We empha-
size that the implications of overlapping of the bars were not seriously studied.

For a special range of geometry, the stiffness-to-mass ratio increases with self-similar iterations.
For the remaining range of geometry the stiffness-to-mass ratio decreases with self-similar itera-
tions. For a very specific choice of geometry, the stiffness-to-mass ratio remains constant with self-
similar iterations.

Self-similar steps can preserve strength while reducing mass, but cannot preserve stiffness while
reducing mass. Hence, a desired stiffness bound and reconciliation of overlapping bars will dictate
the optimal number of iterations.

17.5.4 A Challenge for the Future

In the future, the grand challenge with tensegrity structures is to find ways to choose material and
geometry so that the thermal, electrical, and mechanical properties are specified. The tensegrity
structure paradigm is very promising for the integration of these disciplines with control, where
either strings or bars can be controlled.
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Appendix 17.A    Nonlinear Analysis of Planar Tensegrity

17.A.1 Equations of Static Equilibrium

17.A.1.1 Static Equilibrium under External Forces

A planar tensegrity under external forces is shown in Figure 17.A.1, where Fi are the external forces
and ti represent the internal forces in the members of the tensegrity units. Note that t represents
the net force in the members which includes the pretension and the force induced by the external
forces. The sign convention adopted herein is also shown in Figure 17.A.1, where tki represents the
member force t acting at the i-th node of the member k. We assume that i < j and tki = –tkj. With
this convention, we write the force equilibrium equations for the planar tensegrity.

The equilibrium of forces in the x-direction acting on the joints yields the following equations

 (17.A.1)

t t t F
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Similarly, the equilibrium of forces in the y-direction acting on the joints yields the following
equations

 (17.A.2)

In the above equations, cos δxk represents the direction cosine of member k taken from the x-axis,
whereas cos δyk represents the direction cosine of member k taken from the y-axis.

The above equations can be rearranged in the following matrix form:

At = f,  (17.A.3)

where t is a vector of forces in the members and is given by tT = [t1 t2 t3 t4 t5 t6], matrix A (of size
8 × 6) is the equilibrium matrix, and f is a vector of nodal forces. For convenience, we arrange t
such that the forces in the bars appear at the top of the vector, i.e.,

tT = [tbars tstrings] = [t5 t6 t1 t2 t3 t4].  (17.A.4)

Matrix A and vector f are given by

 (17.A.5)

In the above equation, matrices Hx and Hy are diagonal matrices containing the direction cosines
of each member taken from the x-axis or y-axis, respectively, i.e., Hxii = cos δxi and Hyii = cos δyi.

FIGURE 17.A.1 Forces acting on a planar tensegrity and the sign convention used.
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Similar to the arrangement of t, Hx and Hy are also arranged such that the direction cosines of bars
appear at the top of Hx and Hy whereas the direction cosines of strings appear at the bottom of Hx

and Hy. Vectors fx and fy are the nodal forces acting on the nodes along x- and y-axes, respectively.
Matrix C is a 6 × 4 (number of members × number of nodes) matrix. The k-th row of matrix C
contains –1 (for i-th node of the k-th member), +1 (for j-th node of the k-th member) and 0. Matrix
C for the present case is given as

 (17.A.6)

It should be noted here that matrix A is a nonlinear function of the geometry of the tensegrity unit, the
nonlinearity being induced by the matrices Hx and Hy containing the direction cosines of the members.

17.A.2 Solution of the Nonlinear Equation of Static Equilibrium

Because the equilibrium equation given in (17.A.3) is nonlinear and also A (of size 8 × 6) is not
a square matrix, we solve the problem in the following way.

Let  be the member forces induced by the external force f, then from (17.A.3)

 (17.A.7)

where e is the deformation from the initial prestressed condition of each member, and from Hooke’s
law  = Ke, where K is a diagonal matrix of size 6 × 6, with Kii = (EA)i/Li. (EA)i and Li are the
axial rigidity and the length of the i-th member. Note that A expressed above is composed of both
the original A0 and the change in A0 caused by the external forces f.

A = A0 + Ã  (17.A.8)

where Ã is the change in A0 caused by the external forces f.
The nonlinear equation given above can be linearized in the neighborhood of an equilibrium. In

the neighborhood of the equilibrium, we have the linearized relationship,

 (17.A.9)

Let the external force f be gradually increased in small increments (fk = fk-1 + ∆f at the k-th step),
and the equilibrium of the planar tensegrity be satisfied for each incremental force, then (17.A.7)
can be written as

A(uk)KA (uk)T uk = fk – A(uk)t0  (17.A.10)

The standard Newton–Raphson method can now be used to evaluate uk of (17.A.10) for each
incremental load step ∆∆∆∆fk. The external force is gradually applied until it reaches its specific value
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and uk is evaluated at every load step. Matrix A, which is now a nonlinear function of u, is updated
during each load step.

To compute the external force that would be required to buckle the bars in the tensegrity unit,
we must estimate the force being transferred to the bars. The estimation of the compressive force
in the bars following full nonlinear analysis can be done numerically. However, in the following
we seek to find an analytical expression for the compressive force in the bars. For this we adopt a
linear and small displacement theory. Thus, the results that follow are valid only for small displace-
ment and small deformation.
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Appendix 17.B    Linear Analysis of Planar Tensegrity

17.B.1 EI of the Tensegrity Unit with Slack Top String

17.B.1.1 Forces in the Members

A tensegrity with a slack top string does not have prestress. As mentioned earlier, we adopt the
small displacement assumptions, which imply that the change in the angle δ due to the external
forces is negligible. Therefore, in the following, we assume that δ remains constant. The member
forces in this case are obtained as

 (17.B.1)

The strain energy in each of the members is computed as

 (17.B.2)

The total strain energy is then obtained as

 (17.B.3)

where K is defined as

 (17.B.4)
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Thus, large values of K mean that the strings are stiffer than the bars, whereas small values of K
mean that the bars are stiffer than the strings. K → 0 means bars are rigid.

17.B.1.2 External Work and Displacement

External work W is given by

 (17.B.5)

where u is the displacement as shown in Figure 17.11.
Equating the total strain energy given by (17.B.3) to the work done by the external forces given

by (17.B.5), and then solving for u yields

 (17.B.6)

17.B.1.3 Effective EI

Because EI = Mρ, we have

 (17.B.7)

Substitution of  from (17.B.6) into (17.B.7) yields

 (17.B.8)

Substituting L0 = Lbar cos δ in (17.B.7) and (17.B.8) yields the following expressions for the
equivalent bending rigidity of the planar section in terms of the length of the bars Lbar,

 (17.B.9)
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Appendix 17.C    Derivation of Stiffness of the C4T1i Structure

17.C.1 Derivation of Stiffness Equation

For a C4T1i structure under the buckling load F, the compressive load of bar in the i-th iteration is

 (17.C.1)

Similarly, the tension of strings in the i-th iteration is

 (17.C.2)

So, the buckling load F can be written in terms of any one of the compressive bar loads or tension
of strings in i-th iteration

 (17.C.3)

From the geometry of the structure,

 (17.C.4)

Equation (17.C.3) can be simplified to

 (17.C.5)

From this,

 (17.C.6)

This means the force-to-length ratio of every compressive or tensile members is the same. It is
assumed that all the bars and strings have constant stiffness and, hence, are linear. With this
assumption,
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Taking the infinitesimal of all the length quantities yields

and hence,

 (17.C.9)

From the geometry of the structure,

 (17.C.10)

Taking the infinitesimal of (17.C.10), noting that Li is length of bars, yields

 (17.C.11)

Combining the (17.C.11) with (17.C.9) yields

 (17.C.12)

From (17.C.5), it is natural to choose F in terms of the tension in the first iteration, i.e.,

The derivative of F w.r.t. L0 yields

 (17.C.13)

With (17.C.12), the stiffness of C4T1i will be
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17.C.2 Some Mathematical Relations in Buckling Design

In the strength-preserving design, the C4T1i system is designed to buckle at the same load as the
original bar C4T10. The angles δj, where j = 1, 2, …, i–1, i are free variables to be specified to fix
the geometry. Therefore, it is important to find out all the lengths and ratio quantities in terms of
these angles.

17.C.2.1 Length of Structure and Strings

From the geometry of the structure, it can be shown that

 (17.C.15)

17.C.2.2 Computing the Stiffness Ratio of Strings, 

Consider the ratio

From (17.109)

With (17.C.2) and (17.C.15), the ratio can be simplified to

From this,

 (17.C.16)

In particular, if Etj = Et and σtj = σt, then

 (17.C.17)
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So, in the strength-preserving design, if the same material is used, then all strings have the same
stiffness.

17.C.2.3 Computing the Stiffness Ratio of String to Bar

The stiffness of bar and strings are defined by

where E is the Young’s modulus, A is the cross-section area, and L is the length of bar or strings
at the buckling load. With this definition and (17.C.16),

From (17.106), (17.109), and (17.C.15),

Substitute F from (17.66) into the above equation to obtain

 (17.C.18)

For some materials of bars and strings, (17.C.18) reduces to

 (17.C.19)

17.C.2.4 Computing the Rest Length-to-Length Ratio of Strings, Ltj0/Ltj

The tension in the strings is given by

k

k
j i itj

bi

where  = −1 2 3 1, , ,..., ,

k
EA

L
= ,

k

k

k

k

k

k

E

E

E r

L

L

E r

E

E L L

L

r
r

tj

bi

tj

ti

ti

bi

tj ti

ti tj

ti ti

ti

i

i

tj ti

i tj ti i

i

i
ti

i

= =

=







σ
σ

π
π

σ
σ

2

2

2

2
21
.

k

k

E

E

t l

L

E

E

F

L

E

E
l

tj

bi

tj ti

i tj

i

ti

i

i i

tj ti

i tj

i

ti s
i

s i i

i

p
i

p

=













=




























= =

σ
σ πσ δ

σ
σ

δ
πσ δ δ δ

4

2

2

2
2 1

2

2

2

1
2

0

1

2

1

1

2

0

sin

sin

cos sin cosΠ Π
22 .

k

k

E

l

E

E
tj

bi

tj

tj i
s

s

i

=










=
∏π

σ
δ

2

0
2

0

1

1
2

16
2cos .

k

k

E

l
tj

bi

tj

tj
s

s

i

=










=
∏π

σ
δ

2

0
2

1

1
2

16
2cos .

8596Ch17Frame  Page 385  Friday, November 9, 2001  6:33 PM

© 2002 by CRC Press LLC



From (17.109),

So,

 (17.C.20)

17.C.2.5 Computing the Rest Length to Length Ratio of Bars, Li0 /Li

From (17.C.6),

Hence,

leading to

 (17.C.21)

Using (17.C.20) and (17.C.21) reduces to

 (17.C.22)

17.C.2.6 Computing the String Stiffness, kt1

Recall that the string stiffness is given by

Using (17.66), (17.108), and (17.109) yields
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 (17.C.23)
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