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Abstract

A tensegrity structure is a special truss structure in a stable equilibrium, with selected
members designated for only tension loading, and the members in tension form a continuous
network of cables separated by a set of compressive members. This paper develops an explicit
analytical model of the nonlinear dynamics of a large class of tensegrity structures, constructed
of rigid rods connected by a continuous network of elastic cables. The kinematics are
described by positions and velocities of the ends of the rigid rods, hence, the use of angular
velocities of each rod is avoided. The model yields an analytical expression for accelerations of
all rods, making the model efficient for simulation, since the update and inversion of a
nonlinear mass matrix is not required. The model is intended for shape control and design of
deployable structures. Indeed, the explicit analytical expressions are provided herein for the
study of stable equilibria and controllability, but the control issues are not treated in this
paper. © 2001 The Franklin Institute. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The history of structural design can be divided into four eras classified by design
objectives: in the prehistoric era which produced such structures as Stonehenge, the
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objective was simply to oppose gravity, to take the static loads. The classical era,
considered the dynamic response and placed design constraints on the eigenvectors as
well as eigenvalues. In the modern era, design constraints could be so demanding that
the dynamic response objectives require feedback control. In this era the control
discipline followed the classical structure design, where the structure and control
disciplines were ingredients in a multidisciplinary system design, but no interdisci-
plinary tools were developed to integrate the design of the structure and the control.
Hence, in this modern era, the dynamics of the structure and control were not
cooperating to the fullest extent possible. The post-modern era of structural systems
is identified by attempts to unify the structure and control design to a common
objective.

The ultimate performance capability of many new products and systems cannot be
achieved until mathematical tools exist that can extract that full measure of
cooperation possible between the dynamics of all components (structural compo-
nents, controls, sensors, actuators, etc.) This requires new research. Control theory
describes how the design of one component (the controller) should be influenced by
the (given) dynamics of all other components. However, in systems design, where
more than one component remains to be designed, there is inadequate theory to
suggest how the dynamics of two or more components should influence each other at
the design stage. In the future, controlled structures will not be conceived merely as
multidisciplinary design steps, where a plate, beam or shell is first designed, followed
by the addition of control actuation. Rather, controlled structures will be conceived
as an interdisciplinary process in which both material architecture and feedback
information architecture will be jointly determined. New paradigms for material and
structure design might be found to help unify the disciplines. Such a search motivates
this work. Preliminary work on the integration of structure and control design
appears in [1-3].

Bendsoe and others [4—7] optimize structures by beginning with a solid brick and
deleting finite elements until minimal mass or other objective functions are
extremized. But, a very important factor in determining performance is the
paradigm used for structure design. This paper describes the dynamics of a
structural system composed of axially loaded compression members and tendon
members that easily allow the unification of structure and control functions. Sensing
and actuating functions can sense or control the tension or the length of tension
members. Under the assumption that the axial loads are much smaller than the
buckling loads, we treat the rods as rigid bodies. Since all members experience only
axial loads the mathematical model is more accurate than models of systems with
members in bending. This unidirectional loading of members is a distinct advantage
of our paradigm, since this climinates many nonlinearities that plague other
controlled structural concepts: hysterisis, friction, deadzones, backlash.

It has been known since the middle of the 20th century that continua cannot
explain the strength of materials. While science can now observe at the nanoscale, to
witness the architecture of materials preferred by nature, we cannot yet design
or manufacture man-made materials that duplicate the incredible structural
efficiencies of natural systems. Nature’s strongest fiber, the spider fiber, arranges
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simple non-toxic materials (amino acids) into a microstructure that contains a
continuous network of members in tension (amorphous strains) and a discontinuous
set of members in compression (the f-pleated sheets in Fig. 1 [8,9]).

This class of structure, with a continuous network of tension members and
discontinuous network of compression members, will be called a Class 1 tensegrity
structure. The important lessons learned from the tensegrity structure of the spider
fiber is that:

(1) Structural members never reverse their role. The compressive members never
take tension, and of course, tension members never take compression.
(i) The compressive members do not touch (there are no joints in the structure).
(ii1) The tensile strength is largely determined by the local topology of tension and
compressive members.

Another example from nature, with important lessons for our new paradigms is
the carbon nanotube often called the Fullerene (or Buckytube), which is a derivative
of the Buckyball. Imagine a 1-atom thick sheet of a graphene, which has hexagonal
holes, due to the arrangements of material at the atomic level (see Fig.2). Now
imagine that the flat sheet is closed into a tube by choosing an axis about which the
sheet is closed to form a tube. A specific set of rules must define this closure which
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Fig. 1. Nature’s strongest fiber: the spider fiber [9].
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(n.m) = (10,5)

Fig. 2. Buckytubes [27].

takes the sheet to a tube, and the electrical and mechanical properties of the resulting
tube depends on the rules of closure (axis of wrap, relative to the local hexagonal
topology) [27]. Smalley won the Nobel Prize in 1996 for these insights into the
Fullerenes. The spider fiber and the Fullerene provide motivation to construct man-
made materials whose overall mechanical, thermal, and electrical properties can be
predetermined by choice of the local topology and the rules of closure which
generate the three-dimensional structure from a given local topology. By combining
these motivations from Fullerenes with the tensegrity architecture of the spider fiber,
this paper will derive the static and dynamic models of a shell class of tensegrity
structures. Future papers will exploit the control advantages of such structures. The
existing literature on tensegrity deals mainly with statics [10-22], with some
elementary work on the dynamics in [23-25].

2. Tensegrity definitions

Kenneth Snelson built the first tensegrity structure in 1948 (Fig.3) and
Buckminster Fuller coined the word ‘“tensegrity”. For 50 years tensegrity has
existed as an art form with some architectural appeal, but the engineering use has
been hampered by the lack of models for the dynamics. In fact, the engineering use of
tensegrity has been doubted by the inventor himself, Kenneth Snelson, “As I see it,
this type of structure, at least in its purest form, is not likely to prove highly efficient
or utilitarian,” [letter to R. Motro, International Journal of Space Structures]. This
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Fig. 3. Needle Tower of Kenneth Snelson, Class 1 tensegrity. Krueller-Mueller Museum, Otterlo,
Netherlands.

statement might partially explain why no one bothered to develop math models to
convert the artform into an engineering practice. We seek to use science to prove the
artist wrong, that his invention is indeed more valuable than the artistic scope that he
ascribed to it. Mathematical models are essential design tools to make engineered
products. This paper provides a dynamical model of a class of tensegrity structures
that is appropriate for space structures.

This paper derives the nonlinear equations of motion for space structures that can
be deployed or held to precise shape by feedback control, although control is beyond
the scope of this paper. For engineering purposes, more precise definitions of
tensegrity are needed.

One can imagine a truss as a structure whose compressive members are all
connected with ball joints so that no torques can be transmitted. Of course, tension
members connected to compressive members do not transmit torques, so that our
truss is composed of members experiencing no moments. The following definitions
are useful.

Definition 2.1. A given configuration of a structure is in a stable equilibrium if, in the
absence of external forces, an arbitrarily small initial deformation returns to the

given configuration.

Definition 2.2. A tensegrity structure is a stable system of axially loaded-members.
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Definition 2.3. A stable structure is said to be a ““Class 1’ tensegrity structure if the
members in tension form a continuous network, and the members in compression
form a discontinuous set of members.

Definition 2.4. A stable structure is said to be a “Class 2” tensegrity structure if the
members in tension form a continuous set of members, and there are at most two
members in compression connected to each node.

Fig. 4 illustrates a Class 1 and a Class 2 tensegrity structure.

Consider the topology of structural members given in Fig. 5, where thick lines
indicate rigid rods which take compressive loads and the thin lines represent tendons.
This is a Class 1 tensegrity structure.

Definition 2.5. Let the topology of Fig. 5 describe a 3-dimensional structure by
connecting points 4 to 4, Bto B, C to C,...,I to I. This constitutes a “Class 1
Tensegrity Shell” if there exists a set of tensions in all tendons 7,5, (¢ =1 — 10, =
1 — n, y=1— m) such that the structure is in a stable equilibrium.

2.1. A typical element

The axial members in Fig. 5 illustrate only the pattern of member connections, and
not the actual loaded configuration. The purpose of this section is two-fold: (i) to
define a typical ‘“‘element” which can be repeated to generate all elements, (ii) to
define rules of closure that will generate a ““shell” type of structure.

Consider the members which make the typical ij element where i =1,2,...,n
indexes the element to the left, and j = 1,2, ..., m indexes the element up the page in
Fig. 5. We will describe the axial elements by vectors. That is, the vectors describing
the jj element, are t;, to;, . . ., tio; and ry;, ry;, where, within the Jj element, t,; is a
vector whose tail is fixed at the specified end of tendon number o, and the head of the
vector is fixed at the other end of tendon number o as shown in Fig. 6 where o =
1,2,...,10. The ij element has two compressive members which we will call “rods”,
shaded in Fig. 6. Within the ij element the vector ry; lies along the rod ry; and the
vector ry; lies along the rod ry;. The first goal of this paper is to derive the equations
of motion for the dynamics of the two rods in the ij element. The second goal is to
write the dynamics for the entire system composed of nm elements.

L

Class 1 Class 2

Fig. 4. Class 1 and Class 2 tensegrity structures.
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Fig. 5. Topology of an (8,4) Class 1 tensegrity shell.

Figs. 5 and 7 illustrate these closure rules for the case (n,m)=(8,4) and
(n,m) = (3, 1).

Lemma. Consider the structure of Fig. 5 with elements defined by Fig. 6. A Class 2
tensegrity shell is formed by adding constraints such that for all i = 1,2, ... n, and for
m>j>1,

—tyj + tg; =0,

ty; + tz; =0,

ts; +te; =0,

t7; + tg; = 0. (2.1)

This closes nodes ny; and ny(iyy(j+1) to a single node, and closes nodes ny;_yy; and
N4i( j—1 to a single node (with ball joints). The nodes are closed outside the rod, so that
all tension elements are on the exterior of the tensegrity structure and the rods are in
the interior.

The point here is that a Class 2 shell can be obtained as a special case of the Class 1
shell, by imposing constraints (2.1). To create a tensegrity structure, not all tendons



262

R.E. Skelton et al. | Journal of the Franklin Institute 338 (2001) 255-320
L hgg) Higey

i1y
Ty By

f

B
it 1)

DyGanygen

ot
t \\ 10-1

By
1
" AN
iy S %
P \w Mgty fsgny
3 "‘I
‘l
iil3(1-l)]
i
\
i
1
| fogiory
i ;
1 /
\ /
L. \ | .’"'
e 1 i /
241 \ ; :
e i o Asangn
0 foin t -
| By 106-1-1) A oy
1 IR
v o |
t,; tendon vector - ¥
r,q bar vector HEh L
n,;: nodal point

{e}™

base

Fig. 6. A typical ij element.
in Fig. 5 are necessary. The following definition eliminates tendons ty; and
tl(),'j (i=1—>n, ]:1—>m)

Definition 2.6. Consider the shell of Figs. 5 and 6, which may be Class 1 or Class 2
depending on whether constraints (2.1) are applied. In the absence of dotted tendons
(labelled t9 and ty9), this is called a Primal Tensegrity Shell. When all tendons ¢, 19
are present in Fig. 5, it is called simply Class 1 or Class 2 tensegrity shell.

The remainder of this paper focuses on the general Class 1 shell of Figs. 5 and 6.

2.2. Rules of closure for the shell class

Each tendon exerts a positive force away from a node and f,p, is the force exerted
by tendon t,g, and f,; denotes the force vector acting on the node n,;. All f,; forces
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611 Q“

™

Fig. 7. Class 1 shell: (n,m) = (3,1).

are positive in the direction of the arrows in Fig. 6, where w,; is the external applied
force at node n,;;, o =1,2,3,4. At the base, the rules of closure, from Figs. 5 and 6,
are

to;) = —ty;, = 1u2u'~'7n7 (22)

teio =0, (23)

tooo = —ton1, (2.4)

toor = toy1 = —ty, (25)

0 = tio—1y0 = tsio = trio = tyi_1y0, 1=1,2,...,n. (2.6)
At the top, the closure rules are

tioim = 7t7il717 (27)

ti0om = —tom = —t7um, (28)

t2i(m+1) =0, (29)

0 = tiipni1) = toigmi1) = Bt me)

=t men) = Bt mr1)- (2.10)

At the closure of the circumference (where i = 1):

too; = ton,  teo(j—1) = ten(j-1), tro(j=1) = tam(j-1) (2.11)

tso; = tsn,  tr; = tuy,  tioo(j—1) = tion(j-1)- (2.12)

From Figs. 5 and 6, when j = 1, then
0 =15 ,-1) = fr-1)(j=1) = Fsicj—1) = Froa—1) -1 (2.13)
and for j = m where, in Figs. 5 and 6,

0 =1y = Foigme1) = B30 0me1) = F1g1) 0mr1) - (2.14)
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Nodes ny1j, n3,j, na1j for j = 1,2,...,m are involved in the longitudinal “zipper” that
closes the structure in circumference. The forces at these nodes are written explicitly

to illustrate the closure rules.

In Section 4, the rod dynamics will be expressed in terms of sums and differences
of the nodal forces, so the forces acting on each node is presented in the following
form, convenient for later use. The definitions of the matrices B; are found in

Appendix E.
The forces acting on the nodes can be written in vector form:

f = B¢ + Bf" + Wow,

where
fd
f, ffi f} Wi
2
f= ;M= ] = ow= !
fm fg1 f21 Wi
WO = BlockDiagl- -+ W1, Wy, -],
—Bg B, 0o - 0- —Bl B, 0
Bs By . . 0 By
d _ _ 0 __
B® = 0 B5 0 | B =
: . Bs B, : : :
_0 ... 0 Bs B | _0 |
and
e
f3
fy Wi
fs fe W2
0 __ d _ =
ij
f8 W4 U
fo
_flo_l-j

(2.15)

B,
B,

Now that we have an expression for the forces, let us write the dynamics.
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3. Dynamics of a 2 rod element

Any discussion of rigid-body dynamics should properly begin with some decision
on how the motion of each body is to be described. A common way to describe rigid-
body orientation is to use three successive angular rotations to define the orientation
of three mutually orthogonal axes fixed in the body. The measure numbers of the
angular velocity of the body may then be expressed in terms of these angles and their
time derivatives.

This approach must be reconsidered when the body of interest is idealized as a rod.
The reason is that the concept of “body fixed axes” becomes ambiguous. Two
different sets of axes with a common axis along the rod can be considered equally
“body fixed” in the sense that all mass particles of the rod have zero velocity in both
sets. This remains true even if relative rotation is allowed along the common axis.
The angular velocity of the rod is also ill defined since the component of angular
velocity along the rod axis is arbitrary. For these reasons, we are motivated to seek a
kinematical description which avoids introducing ““body fixed” reference frames and
angular velocity. This objective may be accomplished by describing the configuration
of the system in terms of vectors which locate only the end points of the rods. In this
case, no angles are used.

We will use the following notational conventions. Lower case, bold faced symbols
with an underline will indicate vector quantities with magnitude and direction in
three-dimensional space. These are the usual vector quantities we are familiar with
from elementary dynamics. The same bold face symbols without an underline will
indicate a matrix whose elements are scalars. Sometimes we will also need to
introduce matrices whose elements are vectors. These quantities will be indicated
with an upper case symbol that is both bold faced and underlined.

As an example of this notation, a position vector p. can be expressed as

Pil
p.=[e & e]|pa|=Ep;
Pi3
In this expression, p; is a column matrix whose elements are the measure numbers of
P, for the mutually orthAogonal inertial unit vectors e, e,, e;. Similarly, we may
represent a force vector f; as
fi = Efr .

Matrix notation will be used in most of the development to follow.

We now consider a single rod as shown in Fig. 8 with nodal forces f , and fz
applied to the ends of the rod.

The following theorem will be fundamental to our development:

Theorem 3.1. Given a rigid rod of constant mass m and constant length L, the
governing equations may be described as

i + Kq = Hf, (3.1)
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Fig. 8. A single rigid rod.

where
= G| _ P +p>
q; P> — P 7
rs | ¢ | 0
_ f; +f 205 0 0
f= Al Az , H=— 3~2 , K= —2-T, ’
| f1—1f> mio 20 0 L qq0s

The notation ¥ denotes the skew symmetric matrix formed from the elements of r:

0 —r3 r ri
r=| r; 0 —-rnl|, r=1|n
—ry N 0 r3

and the square of this matrix is

2 2 . "

—Ir5; =13 riry rrs

P = I —r% — r% s
rar rarp —I‘% — V%

The matrix elements ry, r2, r3, q;, q,, q3, etc. are to be interpreted as the
measure numbers of the corresponding vectors for an orthogonal set of inertially
fixed unit vectors e, e,, e;. Thus, using the convention introduced earlier,

r=FEr, q=EKq, ctc.

The proof of Theorem 3.1 is given in Appendix A. This theorem will provide the
basis of our dynamic model for the shell class of tensegrity structures.
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Now consider the dynamics of the 2-rod element of the Class 1 tensegrity shell in
Fig. 5. Here, we assume the lengths of the rods are constant. From Theorem 3.1 and
Appendix A, the motion equations for the jj unit can be described as follows. For
rod 1,

miyj; ..
2] qi;

= flij + fz,‘j,

muji . P P
6‘1 (Cb(/ X ng/) =y X (f2y — f1y),

quj : ‘hzj + Q- ihzj =0,

3.2
Q2 " b2 = L%ij ) ()
and for rod 2,
myjj .. P ;
=iy =y + g,
}’n2 . F £
5 (@ X Gay) = uy x (Fay — F3),
Auj - Qi 9y - Ay = 0,
(3.3)

_ 72
Qajj " Qa5 = LZ[/"

where the mass of the rod aij is m,; and ||r,;|| = L,;. As before, we refer everything
to a common inertial reference frame (E). Hence,

q11i q21i q31ij qa1ij
4 = = 4
Q= [ 912 |» Yo = | 9225 |» U35 = | 9325 |»  Qaij= | 942 |>
q13ij q23ij q33ij q43ij
T

2ol T T T
45 = | Q> % 9350 Y4y

and the force vectors appear in the form

5 I; 0 5 I; 0 H 0
1ij
H;; = 3 . , Hyi= 3 , H;= ,
v my 0 L—Zq%lj Y ny;j 0 L—zqilj v [0 HQU]
Lij 2ij

£+t
P fnf—fzz/

f3; + f4;

fyy — fay

Using Theorem 3.1, the dynamics for the i/ unit can be expressed as follows:

a4y + 9, = Hyfy,
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where
QyZ[Qlij 01, Q= ) ,2.0. 1, in':[O ,.0. ],
0 Qy 0 L q},jngfls ! 0 injz ‘l4T;jq4ijI3
A=[af @A G W O]
The shell system dynamics are given by
q+ K,q = Hf, (3.4)
where f is defined in (2.15) and
A= [af1 he G s G U]

Kr = BZOCkDiag[Qlla' .. 7Qn179127 cee 797727 e ‘791}717 ceey Qnm]v
H= BlockDiag[H“, e 7Hr117H127 ce ,an, .. ~;H1m> e ,Hnm].

4. Choice of independent variables and coordinate transformations

The tendon vectors f,;, are needed to express the forces. Hence, the
dynamical model will be completed by expressing the tendon forces, f, in terms
of variables q. From Figs. 6 and 9, it follows that vectors p; and p; can be

NONCN N

Fig. 9. Choice of independent variables.
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described by
i i1 j j-1
Pi =P +Z Tkl —Z tik1 +Z tmﬁ-z tsic — Iy, (4.1)
=1 =1 = =

pij = Pij + T + tsjj — L. (4.2)

To describe the geometry, we choose the independent vectors {ry;, r»;, ts;, for
i=1,2,...,n j=12,...,m}and {p,|, tiy, fori=1,2,..., n,j=1,2,...,m, and
i<n when j = 1}.

This section writes the relationship between the q variables and the string and rod
vectors t,g, and rg;. From Figs. 5 and 6, the position vectors from the origin of the
reference frame, E, to the nodal points, p;;, P, P3j;» and py;, can be described as
follows:

P = Py

Poj = Pij + Tijjs

Py = Pijs

Py = Py + T2y (4.3)
We define

AN

Q1 = P2 + P1j = 2p; + X1
= _

425 =P2jj — P1jj = T1ij»

A ~
Q3 =Paj + P3y = 2p15 + T2y,

qqj = Pajj — P3j = T245- (4.4)
Then,
q L L 0 07[p 2 L 0 0 P
sl |- L 0 0fip| |0 Iz 0 0] |n
Y=l Tlo o 1 onllp| |0 0 2 L |p
q4 i 0 0 713 I3 P4 i 0 0 0 I3 i | %) i
(4.5)

In shape control, we will later be interested in the p vector to describe all nodal points
of the structure. This relation is

p="Pq, P = BlockDiag|...,Py,...,Py,..],



270

0 0 I, I
0 0 -I; I

L -1, 0
1L L 0
200 0 1

0 0 I,

0
0

-

I;

R.E. Skelton et al. | Journal of the Franklin Institute 338 (2001) 255-320

(4.6)

The equations of motion will be written in the q coordinates. Substitution of (4.1)
and (4.2) into (4.4) yields the relationship between q and the independent variables

ts, ty, ry, ry as follows:

r i i—1 J i1 ]
q; =2|pn + Z T — Z tik + Z t + Z tsic
L k=1 k=1 k=2 =1 ]

q2ij = rlij;

[ i i—1 J J 1
QG; =2|pn+ Z Figl — Z tia + Z tii + Z tsik
L k=1 k=1 k=2 =1

qq;; = T2y

To put (4.7) in a matrix form, define these matrices:

Iy
| ot
l[/: 2 forj:2,3,...,
' ts;j
tijj
for i=2,...,n
and
1=[{,5,,....11 1, .. 1L
2I; Is 0 0
0 I 0 0
A = ,
2I; 2I; —I3 213
0 0 I; 0
-I; 0 0 2I;
I3 0 0 0
C =
0 -I; 2I; 25

m

2yt

)

P
I
) 111 = )
11
tsi1
T
71};11""’l;£m] )
=2I; Iz
0 I
B= ’
=21 2I;5
0 0
2I; 215
0 0
D =
2I; 213
0 0

— Iy,

— Iy,

tii-11

Il

I =

0
0
_I3
I;

=R

i1

tsi1

0
0

203 |’
0

S oo o
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I
0
E =
)
0
0 0
0 0
J:
0 0
0 0

204
0
204
0

213

213

0 0 2; 20, 0 20
00 . [0 0 00
0 ol 2I; 2I; 0 2L’
0 0 0 0 0 0
214 20y 205 0 204
0 0 0 0 0
0 | G= 2, 23 0 20
0 0 0 0 0

Then (4.7) can be written simply

(4.8)

where the 12nm x 12nm matrix Q is composed of the 12 x 12 matrices A-H as

q=Ql,
follows:
[Q11
Qy
Q= |Qu
Qy
Qy
[A
D
D
Qu =

D
_D

Qxn

Q3
Qs
Qs

<> I > B - &

0
Qxn . :
Qn Qp 0
Qyn Qxn Qn
0
E B
L0
E E B

n x n blocks of 12 x 12 matrices,
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F 0 -« - - 0
D G
D E G : .
Q= 121 x 12n matrix,
D E E L
Do : . .0
_D E E E E G_

Qy = BlockDiayg]|...,C,...,C],

Qs, = BlockDiayg]...,J,... ],

where each Q;; is 121 x 12n and there are m row blocks and m column blocks in Q.
Appendix B provides an explicit expression for the inverse matrix Q, which will be
needed later to express the tendon forces in terms of q.

Eq. (4.8) provides the relationship between the selected generalized co-
ordinates and an independent set of the tendon and rod vectors forming L
All remaining tendon vectors may be written as a linear combination of 1. This
relation will now be established. The following equations are written by inspection of
Figs. 5-7 where

tint = Pp1 + T — Py

(4.10)
and fori=1,2,...,n, j=1,2,...,m we have,
tj = py — (Pi(jo1) +T2igjn) G > 1),
ty; = f’(iq)j — Py
taj = —t3y + 1y = Py + Ty — Py
teij = Py — Py +12)  (J<m),
tr; = Py — P+ (J<m),
ts; = py + X1 — py = —T1j — tsij + Ty,
to; = p(iv1y; — (P +T17)s
tioj = P(ir1y + Na6i1) — Py (4.11)

For j =1 we replace ty; with

ti1 = pit — P11
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For j = m we replace tg; and ty; with
toim = i’(iJrl)m + D (it 1)m — (i)im + r2i'71)7

trim = i)im - (ﬁ(iJrl)m + l‘2(1'+1)m)-

where pojépn/-, ﬁojéi)n/, and i +n = i. Eq. (4.11) has the matrix form,

t 0 0 -1; L 00 0 0
t; 00 0 0 00 I 0
t 00 0 0 p 00 -1, 0
azl|ts I KU A I B +00 0 0
A S 00 0 0 p 00 0 0
ts 00 0 0 |lnl,, 00 0 0
to 00 0 0 00 0 0
[tof, [0 0 0 0 00 0 0
[, 0 0 0 ] [0 0 0 o]
-5 0 0 0 0 0 0 0
L I 0 0 p 0 0 0 0|[p
0 0 -1, -Ll||n 0 0 0 0]]|n
1o o L 0 ) 1o 0 0 o p
L L -L 0 |ln], [0 00 0|[n
-5 -I; 0 0 L 0 0 0
0 0 -I; 0 (0 0 I I
[0 0 0 0]
0 0 0 0
0 00 O0|[p
IL 00 0]r
+ R :
-1, 0 0 Of]|p
0 00 0f(r (i+1)(j+1)
0 0 0 0
0 0 0 0]

I

>

(i=1)

273



R.E. Skelton et al. | Journal of the Franklin Institute 338 (2001) 255-320

274

1

Ss <

e —

o o o o o

o

c o <o .I_.O

o

° o -

o o

o o) o) p—

T

1

S <

e ——

c o o S o
o

0.|~..j.I,A o o

o o <o )

S o <o I

ol en <t 0 O\

A A ]

0

I

1

1

(o]

S

e — |
1
e o o o o
S 9 o o o
) R
e o o o o
1

l_l

T

S

1

(o]

t]

e — |
1

o
.I__0000000
(sl

.I_.O o o o
e o o o o
) o o o
1
1
o e © o =2
- - T

o oo S 9
oo o S 9
c o < )
c o o -
+ =
1
QU
e — |
o
c o < )
o
o o <o O.I_.
o
S o 9 4.0
— —_
— —_ [ <

(4.12)



R.E. Skelton et al. | Journal of the Franklin Institute 338 (2001) 255-320

Eq. (4.5) yields

p Iy -l 0 0
r 0 I 0 0
p o o0 I |V
Bl 0 0 0 L
Hence, (4.12) and (4.13) yield
[t ] (0 0 -3 -1 (00 0o o
t; 00 0 0 00 I, -I
ts 00 0 0 0 0 -1, I
ao | te 110 0 0 0 110 0 0 0
=1l T2lo00 0 o [%T3lo 0 0 o
ts 00 0 O 00 0 0
to 00 0 0 00 0 0
[tof, [00 0 0 00 0 o0
[ - 0 0 | [0 0 0 0]
-, L 0 0 0 0 0 0
L L 0 0 0 0 0 0
110 0 - -1 10 0 0 o
300 0 1 -|Y%T2l0 o0 o oYW
L L -I; L 0 0 0 0
-5 -I; 0 0 L -I; 0 0
0 0 I3 I 0 0 I I
[0 o0 o0 o]
0 0 0 0
0 0 0 0
1| L - 0 0
T3 T T ) R GRIRIE
0 0 0 0
0 0 0 0
0 0 0 0
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qii-1))
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Also, from (4.10) and (4.12)

p p
r r
i =[-Ts, 0, 0, 0]| | +[L, L, 0 o] |,
p P
ndy 24,
ti = [_%137 %137 07 0}‘]11 + [%137 %137 0’ O]qnl
= Eeq;; + E7q,,
q
91 3x12 3x12
:[EG, 0, ey 0, Eﬂ R EGGRX s E7ERX s
q,1
tlnl == Roql = [R()v 0](1, RO S R3X12n' (415)

With the obvious definitions of the 24 x 12 matrices E;, E,, E3, Eq4, E4, E;, Es,
equations in (4.14) are written in the form, where qy; = q,,1, (1) = 4y

th = Exq 1y + Esq; + E4‘l([+1)1 + Esqi 1),

6 = Exy 1) + B2y + Eaty + Eationy + s o),

tin = E]q[(m—l) + Ezq(i—l)m + E3qim + E4q([+l)m' (416)
Now from (4.14) and (4.15), define
I TR T . SRS L) IR T U 1) ISR o L
= [tcli;rlv t(liTv t(ziTv c th]T
to get
ld _ Rq, Re R(24nm+3)><12nm’ qe [R12nm7 ld c R(24nm+3)’ (417)
TRy 0 - - i 07
R Rp
Ry Ry Rp
. . 24nx12n 3x12n
R = 0 Ry Ry, Rp . : s Rg,'ER x , RoeR s
R21 R“ K . 0
. Rp
L 0 0 Ry Ryj
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[E; E, 0 E, | [0 Es 0 0
E, E; E, 0 0 E;s
R = 0 B B K Ry, =
E; E; E; 0 0
0 T Ky 0 . Es
_E4 0 --- 0 E E3_ _Es 0O --- --- 0 0_
Rijipry =0 if k>1, Ry =0 if k>1,
Ry = BlockDiag[---, E,, Ei,---], EeR*? i=1-5,
Ry=[Es, 0, ---, 0, E;], Ec=4[-1;, I3, 0, 0],

E; =1L, I, 0, 0]

R,; and Ry, have the same structure as Ry, except E4 is replaced by E, and Eg,
respectively. Eq. (4.17) will be needed to express the tendon forces in terms of q.
Egs. (4.8) and (4.17) yield the dependent vectors (t1,1, to, t3, t4, ts, t7, to, tjo) in
terms of the independent vectors (ts, t;, r;, r) Therefore,

1Y = RQL (4.18)
5. Tendon forces
Let the tendon forces be described by
t ..
£ = F—2. (5.1)
S ]

For tensegrity structures with some slack strings, the magnitude of the force F,; can
be zero, for taut strings F,; > 0. Since tendons cannot compress, [7; cannot be
negative. Hence, the magnitude of the force is

Fuij = k(| tug]| — Lagy), (5.2)
where
oo & 0 if Ly > ||t
T Ky >0 Ly <ty
Lujp = = + L3, >0, (5.3)

where Lgi, > 0 is the rest length of tendon ¢,; before any control is applied, and the
control is u,;, the change in the rest length. The control shortens or lengthens the
tendon, so u,; can be positive or negative, but Lgij > 0. So u,; must obey constraint
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(5.3), and
Uiy < L3; > 0. (5.4)

Note that for t,; and for « =2, 3, 4, 6, 7, 8, 9, 10 the vectors t,; appear in
the vector 14 related to q from Eq. (4.7) by I = Rq, and for « = 5, 1 the vectors tyif
appear in the vector 1 related to q from Eq. (4.8), by 1 = Q" !q. Let Ryij denote the
selected row of R associated with t,; for oij=1nl and for
o=2,3,4,6,7 8, 9, 10. Let #,; also denote the selected row of Q! when
o =15, 1. Then,

ty = R, Ay € R, (5.5)

It * = 4" 2 Riq. (5.6)

if

From (5.1) and (5.5),

fﬂj = 7K‘1ij (q)q + bocij(q)uotija

where
Ko () = ko (LS (0" 0 R0iq) 7 = 1) Ry, Koy € R, (5.7)
b.;i(q) ékai;‘(ch%zlj%aifqu/ze@aij% b,; € R (5.8)
Hence,

i fz,'j ! i Kz,'j | _bz,'j 1T Uzjj |
£ K3 bs;; Usjj
fa4; Ky bajj Uaij

f?/ _ foi _ K q+ beij Ugij
' f2;; K7 b7;j U7
fs;j Ksjj bg;; Ug;j

fo; Kojj bo;j ugij

L Fo | | Koy | i bioj | | 107 |

or
d d d. d
fi = —Kya + Pyu; (59)
and
0= fsy | _ | Koo |y Psi O | ]us
flij K],‘j 0 b],’j Uyjj
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or
0 0 0.0
fl.j = —Kl.jq + Pl.juij.

Now substitute (5.9) and (5.10) into

[ f101 | K ] Py
d d d
fy Ki, Py,
_ d d
fl = B =—| K |q+
d d
L fn] J L Knl J L
= —K{q + P!
d d d
fi, K, Py,
d d d
d 5, K% P,
d d
fnZ Kn2
Hence, in general,
d _ d d d
fi = —Kiq+ Py,
or by defining
d Bd
Kj P
K4 P
kKi=| | p=|’
d d
KI?? PIH
¢ = —Kdq + Pu’.
Likewise for f?/. forces (5.10),
0
fi K(l)] P(])l
Colel s P,
fi = L

0
fnl

0
Knl

nl
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(5.10)

= —Kjq; + Pju.

(5.11)



0 _
f; =

0 = —

Substituting
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0 0 0
£ K, P, ul,
0 0 0
b Ky . P u;
= - q 9
0 0 0 0
fnj Knj Pnj u"j
0 0.0
—Kjq+ Pjuj,
Kq + P%u’.

(5.11) and (5.12) into (E.21) yields

f = —(B'K? + B’K")q + BP%u? + B"Pu” 4 W'w,

which is written simply as

f = —Kq + Bu + W'w

by defining,

K =BIK¢ + B°K’,

B = [B'P¢, B"P],

Bde _

[B;P{ B 0 - 0
BsP{ B¢P} B,P{

0 BsP¢ BPS

BsP{ - - 0
- B,P¢
. 0 0 BsP! , BgP! |

281

(5.12)

(5.13)

(5.14)
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B/P) B,PS 0 - 0
0 B,P) B,P)
0p0 . . .
BP =1 . BPY .0 |

B, P’

m

0 0 B,P

m d

B;K¢ + B;K¢ + B,KS + B,K$
B;sK{ + B¢KS + B4K¢ + B;K) + B,K$
BsK{ + BgK¢ + B4K{ + B/KJ + BK])
K = B'K¢ + BK = BsKS + BoK§ + B4KS + B/Kj + BoKS || (5.15)

BsK¢ , +BeK® | +BsKS +BKY | +BK°
BsKY | + B¢K¢ + B/K’,

m

il ] il
uj ug
ug ug
ud ud
u= “% . u= “% . (5.16)
uj uj
u) u)
us uS
u) u)
Lu) ] u), ]

In vector u in (5.16), uy,; appears twice (for notational convenience uj,; appears in
u¢ and in u?). From the rules of closure, to;; = —t1;1 and t7i, = —tigim, i =1,2,...,n,
but ti;1, t7im, to1, tiam all appear in (5.16). Hence, the rules of closure leave only
n(10m —2) tendons in the structure, but (5.16) contains 10nm + 1 tendons. To
eliminate the redundant variables in (5.16) define u = Tu, where u is the independent
set u € R~ and a € R'"*! is given by (5.16). We choose to keep t7;, in u and
delete tg;, by setting tjp;, = —t7:,. We choose to keep ty;; and delete ty;; by setting
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toii = —ty;1, i =1,2,...,n This requires new definitions of certain subvectors as
follows in (5.19), (5.20). The vector u is now defined in (5.16). We have reduced the u
vector by 2n + 1 scalars to u. The T matrix is formed by the following blocks,

0 0 0 01 0
T, S
T, S
Iy
Ig
T,
T:
T,
I
I,
I
I
€ RUOw+1)x(n(10m-2)) (5.17)
where
Is 06><1
Tl _ 01)(6 0 G R8X7,
016
I; 8x7
Ty = € R™
? <0 000 —10 0> ’
(5.18)
0652 8x2
S = R®*~.
o —1]°€
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There are n blocks labelled T, n(m — 2) blocks labelled Is (for m<2 no Ig blocks
needed, see Appendix D), n blocks labelled T,, nm blocks labelled I, blocks, and n
blocks labelled S.

The uf block becomes

_ﬁd - Uznl
(111 Usnl
u
21 Ugn
d o | pd . 7x1 . .
W= WG| a = ue | R i=1,2,3,...n, j=1. (5.19)
: U7nl
nd Ugni
_unl i
L Ul0n1 |
The ug, block becomes
_ﬁd - Unm
1m Uspm
nd
u
2m Udpm
~d A ﬁd ~d 7x1 . P
u, = |Wm |, a5, = |uewm | €R™, i=1,2,3,....n, j=m. (5.20)
UTnm
~d Ugnm
_unm_
L UY9nm |

The u‘li block is the ﬁ‘li block with the first element uy,; removed, since it is included in
w,. From (3.1) and (5.14)

q+ (K.(q) +K,(q))q = B(q)u + D(q)w, (5.21)

where

The nodal points of the structure are located by the vector p. Suppose that a
selected set of nodal points are chosen as outputs of interest. Then

y, = Cp = CPyq, (5.22)
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where P is defined by (4.6). The length of tendon vector t,; = %,;q is given from
(5.6). Therefore, the output vector y, describing all tendon lengths, is

2
Yi= | VYuij |5 Yuj = (‘lT—%;j'@ﬂiq)l/ :

Another output of interest might be tension, so from (5.2) and (5.6)

Y= | Foij | Fuj = Koip(Yoiy — L)

The static equilibria can be studied from the equations

K,(q)qg = B(q)u + D(q)w, y,= CPq. (5.23)

Of course, one way to generate equilibria is by simulation from arbitrary initial
conditions and record the steady-state value of q. The exhaustive definitive study of
the stable equilibria follows in a separate paper [26].

Damping strategies for controlled tensegrity structures is a subject of further
research. The example case given in Appendix D was coded in Matlab and
simulated. Artificial critical damping was included in the simulation below. The
simulation does not include external disturbances or control inputs. All nodes of the
structure were placed symmetrically around the surface of a cylinder, as seen in
Fig. 10. Spring constants and natural rest lengths were specified equally for all

Initial Conditions - Perpspective View Initial Canditians - Top View

4 \_‘-(\ s

2 // TR

o \ P
S

d i

na

-10 -8 -6 —4 -2 0 2 4 & [ 1C

Fig. 10. Initial conditions with nodal points on cylinder surface.
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Steady State Equilibrium - Perspestive View Steady State Eguillbrium - Top View

Fig. 11. Steady-state equilibrium.

Tendon Dynamics

of 11,17,19, 10, (Diagonal Strings)

14,18, (Sacdle Strings)

Tendon Length

12,16, (Base, Top Strings)

0 5 10 15 20 25 30 35 40 a5 50
time

Fig. 12. Tendon dynamics.

tendons in the structure. One would expect the structure to collapse in on itself with
this given initial condition. A plot of steady-state equilibrium is given in Fig. 11 and
string lengths in Fig. 12.

6. Conclusion

This paper develops the exact nonlinear equations for a Class 1 tensegrity shell,
having nm rigid rods and n(10m — 2) tendons, subject to the assumption that the
tendons are linear-elastic, the rods are rigid rods of constant length. The equations
are described in terms of 6nm degrees of freedom, and the accelerations are given
explicitly. Hence, no inversion of the mass matrix is required. For large systems this
greatly improves accuracy of simulations.
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Tensegrity systems of four classes are characterized by these models. Class 2
includes rods that are in contact at nodal points, with a ball joint, transmitting no
torques. In Class 1, the rods do not touch and a stable equilibrium must be achieved
by pretension in the tendons. The Primal Shell Class contains the minimum number
of tendons (8nm) for which stability is possible.

Tensegrity structures offer some potential advantages over classical structural
systems composed of continua (such as columns, beams, plates, and shells): the
overall structure can bend but all elements of the structure experience only axial
loads, so no member bending, the absence of bending in the members promises more
precise models (and hopefully more precise control). Prestress allows members to be
uni-directionally loaded, meaning that no member experiences reversal in the
direction of the load carried by the member. This eliminates a host of nonlinear
problems known to create difficulties in control (hysterisis, deadzones, friction).
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Appendix A. Proof of Theorem 3.1

Refer to Fig. 8 and define
9 =P, TP 4 =P, P

using the vectors P, and P, which locate the end points of the rod. The rod mass
center is located by the vector,

P, =394, (A1)
Hence, the translation equation of motion for the mass center of the rod is
. om., PO
mp, =54, = (f; +1,), (A2)

where a dot over a vector is a time derivative with respect to the inertial reference
frame. A vector p locating a mass element, dm, along the centerline of the rod
(Fig. 13) is

(A.3)

X
p=p +r(@,—p) =39+ (P -2, O<p<l, p=7

and the velocity of the mass dm, v, is
v=p=34,+ (-, (A4)

The angular momentum for the rod about the mass center, h, is

b= [ @-p)xpdm (A3)
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Fig. 13. A rigid bar of the length L and mass m.

where the mass dm can be described using dx = L dp as
dm = (%) (Ldp) = mdp.

Hence, (A.2) can be re-written as follows:
Lu/ol@gg X b(m dp),

where (A.1) and (A.3) yield

P—p = (=24,
(A.4)~(A.8) yield

N 1 1. AVRW
he =m | (P38 30 T (P —5)4dr

The applied torque about the mass center, t., is

% :%ﬂz x (f — ).

Then, substituting h, and 7, from (A.9) into Euler’s equations, we obtain

h, =1z,

(A.6)

(A7)
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or

h, = 12( x4, +4, ¥ 4,)
m .. 1 p A
= ﬁﬂz xq, = Eﬂz x (£, — 1))
Hence, (A.2) and (A.10) yield the motion equations for the rod:
m. ..
54 = f, +1,

m . ~ ~
g(ﬂz X ﬂz) =q, X £, —1)).

289

(A.10)

(A.11)

We have assumed that the rod length L is constant. Hence, the following constraints

for q, hold:
99, = L2’
d ) . )
a(ﬂz ﬂz) =4q,°9,*+49,"4, :2ﬂ2 4, =0,
d

E(ﬂz 4,)=4,°4,+4,°4,=0
Collecting (A.11) and the constraint equations we have
m. .
Egl =f, +1,,
m
6(q qu)_qz (f _fl)
ﬂz 'ﬂ2+ﬂ2 'ﬂz =0,
4, 9= L.
We now develop the matrix version of (A.12). Recall that

q, = Eq,, ii = Ef;.

(A.12)

Also note that ET-E = 3 x 3 identity. After some manipulation, (A.12) can be

written as
m ~ ~
—q, =f +f
3 q; 1+ 17,
m._ . N A
g‘lz‘h =qy(f, — 1)),
quz = —(lng,
ngz =%

Introduce scaled force vectors by dividing the applied forces by m and mL

2 A A ~ 6
f f =(f; - 1) —.
g = +f)= - (fy Z)mLZ

(A.13)
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Then, (A.13) can be re-written as
q =g,
04, = flz(—gsz),
(lg"iz = —‘llg‘.lz,
qQq, = L% (A.14)

Solving for q, requires,
ol [0 ] [a
@7 |[-ade] [0

Lemma. For any vector q, such that q'q = L,

TP .
q q
q| |q"

g,[°. (A.15)

= L’1;.

Proof.

0 -g9

0 ¢ -9 q ‘ 0 ‘
3 —q1

-3 0 g @ = L1
—q2  q 0

@2 - 0 g
q1 q2 q3

Since the coefficient of q, in (A.15) has linearly independent columns by virtue of the
lemma, the unique solution for ¢, is

~ + ~
i, = q 0 %
Sy —qlq, 0

where the pseudoinverse is uniquely given by

a4 qTr. L | AT
q _ q> q q _ 2 q;
q Q| |4 4 Q

It is easily verified that the existence condition for q, in (A.15) is satisfied since

(- [8l8) (8- [8]ee)

Hence, (A.16) yields

g2L2> 7 (A.16)

.. 44 >
q = —7q2+q2g2. (A.17)
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Bringing the first equation of (A.14) together with (A.17) leads to

. [0 0

(I1+

. .T-
@] |o "2#13

|

q,
q

L
1o g

|

Recalling the definition of g; and g, we obtain

ER I

.|+

| 42 | _0 I
where we clarify

1) B £, +f,

_ﬁ] B -1 .

Eq. (A.19) is identical to (3.1), so this completes the proof of Theorem 3.1.

q
.T.
9,9 I, l‘h

=1

0

3

2% |

g
g |

f,
f>

(A.18)

(A.19)

O

Example 1. In this example we derive the dynamics of a single rod, as shown in Fig. 13.

Pt +pai q1
qQ =P +tp= = ;
D12 +p» q12
P21 —pu q21
9Q=pP—P = = .
P2 — P12 q»
The generalized forces are now defined as
2 .. 2 [ fi1 + S
g =—(f+f)=— )
m m| fio + f2
From (A.16),
g [0 0 0 0 -‘ q11
qio| 0.0 ‘20 S 0 q12
421 0 0 —L'Izq” 0 q21
g2 0 0 0 _‘QIL#; 422

6 (fz—fl): 6 f2| _ﬁl .
mL? mL?*| fo — fia
[1 0 0 0 'l
0 1 0 0
n X 8|
{0 0 g5 —61216122J 2
0 0 —gaugxn ‘]%1

Example 2. Using the formulation developed in Sections 3—5 we derive the dynamics

of a planar tensegrity. The rules of closure become

tS = _t4)
tg = tl;
t; = —ty,

te = —t3.
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We define the independent vectors 1° and 1¢:

P t
r
P=|"], =g
I
t
ts :
The nodal forces are
fi +1, (f3—f2+W1)+(f5—f1+W2)
o f, -1, B (f37f2+W1)7(f57f1+W2)
fy+1, (1 + 12+ w3) + (—f3 — 5 +wy)
fi—1, (f1 +1f2+w3) — (—f3 —f5 + wy)
We can write
i 12 712 *12 Iz IZ IZ
_ —I 1 —I I I, -1
P 2 (40 n 2 2 2 | g n 2 2
-1 1, L -I, 0 0
L I I, I I, 0 0
where
f, "
w
=], =[] w=|"
W3
f3
Wy

Or, with the obvious definitions for BO, Bd, and Wy, in matrix notation:

f = Bt + B9 + W,w.

The nodal vectors are defined as follows:

P =0,
p=p+r,
P; =0,
py=p+r
and
p=p+r+ts—n.
We define

qQ=p,+p =2p+r1,

0
0
I
I,

0

0

I
_ 12

w,

(A.20)
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A

Q=P =P =TI,

q3ép4+p3 =2p+ry=2(p+r +1t5) =12,
A

qs=Pg4 —P3 = I2.

The relation between q and p can be written as follows:

[ ] L L 0 077[p
|| |- L 0 0f|p,
gl T lo 0o b n||p
las1 L O 0 -L L][ps
and
7 2L L 0 07[p
P A S Ll o) (A.21)
a4 2, 2L, -L 2L | |n
Lq4 L0 0 I, 0 ]1[¢s

We can now write the dependent variables 1¢ in terms of independent variables 1°.
From (4.10) and (4.11):

ti=p+r—(p+r +ts—r),
tb=p—(p+r +ts—r1).
By inspection of Fig. 14, (4.10) and (4.11) reduce to

tp =1 —ts,
th=-r+r —ts,
t3 =1+ t5 (A.22)

Fig. 14. A planar tensegrity.
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or,

ld_

Hence,
1
We can
fd
or
fd
and
fO
or

0 =
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t 0 0 L I P
r
=10 -L L -L||'
I
ts 0L 0 1,
ts
pP 12 —12 0 0 q;

n| 110 2,b 0 0 ||q
n| 20 0 0 2L|]|q;

I, L -IL b,
L -L -L LL|q=Rq
-L L L D

now write out the tendon forces as follows:

f, K b uj

b =—1Ky q+ b, 125}

f3 K3 b3 us
= —Kq+ P’

= [f5] = —[Ks]q + [bs][us]

_K()q 4 P(]u()

using the same definitions for K and b as found in (5.7) and (5.8), simply removing

the ij element indices. Substitution into (A.20) yields
f = B’(—K’q + P°u’) + BY(—K%q + Pu?)

With the matrices derived in this section, we can express the dynamics in the form of (3.4)

—(B°K” + B'K")q + (B°P°u’ + BP%u?).

q+ (K, +K,)q = Bu+ Dw,

Krzgla

K, = HK,
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where
| ) 0 0
b 0 L32 (1% 0 0
H= Hl = )
m| 0 0 I, 0
0 0 0 Li% (ﬁ
0 0 0 0
K -0 - 0 Ll‘zngzlz 0 0 7
0 0 0 0
0 0 0 L7%qIqh

K=BK’ + B’K’,

B = [B'PY B'P']
and

qa1942 —6]4211

o _ | aman |
421422 —6]51 7

—6142;2 %1442]

B =B+ By By =G5 + G

Appendix B. Algebraic inversion of the Q matrix

This appendix will algebraically invert a 5 x 5 block Q matrix. Given Q in the
form:
Q; 0 0 0 0
Qi Qp 0 0 0
Q=1Q1 Q2 Q» 0 0
Q1 Qn Qn Q»n 0
Qy Qn Qn Qn Q»

we define x and y matrices so that
Qx =y, (B.2)

, (B.1)
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where
X i
X2 Y2
Xx=|[(x3|, y=1|y;]. (B.3)
X4 Y4
Xs Ys

Solving (B.2) for x we obtain
x=Qly. (B.4)

Substituting (B.1) and (B.3) into (B.2) and carrying out the matrix operations we
obtain

Qi 1x1 =Yy,

Q2 1X1 + QX2 =y,

Q21 x1 + QX2 + QX3 =ys,

Q21X + Q3x2 + QX3 + QX4 =¥y,

Quix1 + QX2 + QX3 + QX4 + QX5 = ys. (B.5)

Solving this system of equations for x will give us the desired Q' matrix. Solving
each equation for x we have

X) = Q1_11Y1>

X2 = Q) (—Qu X1 + ¥2),

X3 = Q) (—Qux; — QX2 +y3),

X4 = Q5 (—Qax1 — QX2 — QX3 +Yy),

X5 = szl (—Qax1 — QX2 — Qx5 — Q3Xa +1ys). (B.6)
Elimination of x on the right-hand side of (B.6) by substitution yields

x; = Anyy,

X2 = Aoy + Ay,

X3 = Az1y; + A2y, + Aszys,

X4 = Aq1y; + Ay, + Aazys + Auyy,

Xs = As1y; + A2y, + Aszys + Asayy + Assys. (B.7)
Or, in matrix form,
A 0 0 0 0
Ay Apn O 0 0
Q'=|Ay A A;3; 0 0 |, (B.8)
Ayt A Az Ay O

Asi Asy Asz Asy Ass
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where we have used the notation Aoy column With the following definitions:

A =Q,
Ax = -Q5 QQy = —Qn QAN = —AnQy Ay,
Asi = Q3 QnQy Qi Q1 ~ Q' Qi QY
A4 = —Q2 Q305 Q102 Q21 Q1 +2Q2 Q205 Q1Q; — Q2 Qx Q'
Asi = =3Q5 Q1Q% Q1Q% Q1 Qi +3Q5 Q1,Q5 Q1 Q!
+0Q5' Q1205 Q:2Q5,' Q1,Q5, Qx Qi — Q5 Q2 Qy,
Azz = A33 = A44 = ASS - Q2_21’
A32 = A43 = A54 = *Q2721Q32Q272]7
A = As; = Q3 Q3Q% QnQy — Q5 Q.
Asr = =Q5 Q3,Q5) Q3,Q5 Q3,Q% +2Q% Q2Q5 Q:,Q5 — Q2 Q:Q5, -

Using repeated patterns the inverse may be computed by

using

Only

An
A A
@Az] A32 A22
Q' = O°Ay OAn  Ayn Ay (B.9)

O’Ay O*Ayn OAyn  An Ay
0'Ay O°Ay, @Ay OAyn Ay Ay

0 = (I-A»Qs,),

A =Qy,
Ax = —AnQy Ay,
An = Q3

A = —A»Q3An.

A1, Ax, Az, Asp, and powers of ® need to be calculated to obtain Q! for any

(n,m). The only matrix inversion that needs to be computed to obtain Q! is Qﬂl
and Qz’zl, substantially reducing computer processing time for computer simulations.

Appendix C. General case for (n,m)=(i,1)

As

done in Appendix E, the forces acting on each node is presented,

making special exceptions for the case when (j = m = 1). The exceptions arise for
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(j = m = 1) because one stage now contains both closure rules for the base and the
top of thp structure. In the following synthesis we use f;;; and f;;; from (E.1) and
31, and f4; from (E.4). At the right, where (i=1,j=1):

f111 +f211
~ fi11 — o
fir = |. .
f311 + fan1

| 311 —fan

[ (—fo11 + 300+ fr +fo +wWing) + (Fsi — 1o — fa0 — fsi + worn)
(—f211 4+ f311 + fr 4 f2 +winn) — (Fs10 — £ — fa110 — £z + wanp)
(fs11 — f711 — £301 + fao1 + warr) + (Fs11 — f511 — four + £701 + Wanr)
L (Fs11 — F711 — F301 + fao1 + wai1) — (Fs11 — Fs11 — four + F71 + Wap1)

At the center, where (1<i<n, j=1)
fm + fzil

- f11 — fa1
f3i1 + fan

f3i1 — f4

(Fr—in + Fo—y — f2ir + 300 +wiin) + (=i — fain 4 f5i10 — fgin + wair)
(Fr—nn + Fo—ny — fon + 300 +wiin) — (=i — fain 4 fsi — fgin + woir)
(Fsi1 — f7i1 — 36501 + Fay +wain) + (—Fsi 4+ Foir — foi-1) + F7-1)1 + Wair)
(fsir — f7i1 — F351)1 + Fayr +wair) — (—Fsit + foir — fo(i1y + F-1)1 + Wain)

At the left end of the base in Fig. 5, where (i =n, j=1):

fia1 + fanr
I i.lnl - i‘2nl
anl + f‘4nl

f3,1 — fam

(1=t + f20—1y1 + F3m1 — Four + Wiat) + (—F 110 — a1 + 501 — o1 + Wo)
Frp—1 + a1+ F3010 — f2u1 + Winr) — (=101 — a1 + F551 — fg1 + Waur)
(—f701 + fg1 — f301 + fa11 + Wam) + (—Fsu—1y1 — Fsur + fonr + 7011 + Wan)
(—f701 +f8u1 — 300 + far10 +wan) — (—Fou—1y)1 — 51 + four + F70-1)1 + Wanr)

(C.1)
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I; 0
I 0
0 0
0 0
L L
L I
0 0
L0 0
0 0
0 o
0 I
L0 I3
o N
L -I;
0 0
0 0

=R

f3
f4
fs

fg
fo
fio

=TI
o
w2
SR ]
<

SR ]

Wi
w2
w3
Wy

=T ]

L -1 I;

I3 0 0

Or, in matrix notation, with the implied matrix definitions:

n

I;

=}
=T

=R

=R
=T
S oo o

BY S, + BY £, + B £5, + BY ), + Biafin + Wwiy,

f((ji—l)l

i1

299
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—I; It —I; 0 0 -I; 0 0
-I; I I 0 0 IL 0 0],
+ 3
0o 0 o L -I; I 00
L0 0 0 -I -I; I; 0 0
0 0 0 0 0 0 0 O 0 I;
o0 000000, o],
0 -L I, 0000 0@V |0 of "
10 -I; I, 0 0 0 0 O 0 0
[ I3 L I, 0 O
L I L -I; 0 0
i, o [ {0 o L oL |
0 0 0 I, —I

Or, in matrix form,

fi = ﬁglf?pl)l + B f) + Bglf?iﬂ)l +Bglf(()i—l)1 +B) ) + Wwi, (C3)
I 0 0 0 0O 0 0 0
00 0o 0 00 o0,
br=1, Lo oo o oo
ER €
000 I, -1, 00 0
L L -, 0 0 -1, 0 0
Iz I; Iz 0 0 L 0 0f,
+ f
0O o0 0 L -Iz I 0 0
L0 0 o0 -I; -I; I 0 0
o o0 0O 0 0 0 0 o0 0 I I 0
0 o 0O 0 0 0 0 0 0 I -I; 0
o L L o000 o i+ 0 0 e 1 0 o
10 -I; I, 0 0 0 0 O 0 0 I 0
M1 L L 0 0
+ 103 fr + 103 013 103 103 Lo
Lo 0 0 L -I
Or, in matrix form,

f, = BJ

(n—

d gd
i+ Bif

n

n—1

|+ B, +B81f(<) nt B)

nl*n

1 + l?;lnlflnl + anl-

(C.4)
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Now, assemble (C.2)—(C.4) into the form

f; = B3f{ + B f) + Wywy, (C.5)
where
_ 0
fy; f Wi
fzj - £, 0 fg] Wy
fi=1 | fi= w0 | =11 w=|_ 1
f‘nj fgl an
(Bl B, B 0 - 0 Bj] - .
| B, 0 0
0 B 0 .
. . . . . . . BO]
Bl — : ) : . : S I S R
0 . . . ) 0
| S BY 0
_0 h co A.. B2 L 0 0 B81 B, |
_Blnl Bgl 0 e 0 Bgl B(lil _

W, = BlockDiag[... , W, W,...].
Or, simply, (C.5) has the form (E.21), where

f=f, f9=f = w=w, W=w,

BY = B;, B" = B,.

The next set of necessary exceptions that apply to the model (7, 1) arises in the form
of the R matrix that relates the dependent tendons set to the generalized coordinates
(1Y = Rq). For any (i, 1) case R takes the form following the same procedure as in
(4.12) and (4.13):

Ry

R=|. (C.6)
Ry

)
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where

E;

E,

E;

E;
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E,

The transformation matrix T that is applied to the control inputs takes the following
form. The only exception to (5.17) is that there are no Ig blocks due to the fact that
there are no stages between the boundary conditions at the base and the top of the
structure. The second set of I, blocks are also not needed since m = 1. Hence, the
appropriate T matrix for u = Tu is

T,

I

01 ]

c R(10n+1)><8n

)
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where S is defined by (5.18), and

c RSX(}

S O = O O O O
S O = O O O O O

S O O O O o o =
S O O O O o = O
S O O O O = O O
S O O O = O O O

There are n T) blocks, n S blocks, n I, blocks. The control inputs are now defined as

[wid ] Ul
u’2d1 U3zpnl
W= W, W= | e R, i=1,2,3, 0, j=m=1.
. Uonl
: U7n1
_“;1(11 ] | Usnl |

The next section of the appendix will explicitly show all matrix forms for the specific
example (n,m) = (3,1).

Appendix D. Example case (n, m)=(3,1)

Given the equation for the dynamics of the shell class of tensegrity structures:

4+ (K:(q) + K,(q))q = B(q)u+ D(q)w.

We explicitly write out the matrices that define the problem:
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Qm_
211
4311
4411
qi21 A 0
q=9q; = |qQ | = :22 =QL=|(D B

D E
Q421
9131
q231
q331

| 4431 |

where Qq; is 36 x 36. Futhermore,

Q, 0 0
K@=|0 © 0|,
0 0 Q

which is also a 36 x 36 matrix.

K,(q) = HK = H(B'K? + B'K’) = H, (B;K{ + BKY),

. K3

H, 0 0 By, B B By K¢

. 11

K,=| 0 Hy 0 0 Bj Bj B K¢
B . 21

0 0 Hjy B BS, Bj B K¢

31

0 0
B, 0 0 K,

0 0 0

+ | By By 0 K3,
0 0 0

0 B, B K3,

nl

(36 x 36) = (36 x 36)[(36 x 75)#(75 x 36) + (36 x 18)* (18 x 36)]

P11
I
1
ts11
ti
1S
]
ts21
tio)
I3
31

| ts31 |
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In order to form K¢, R is needed. In order to form K%, Q! is needed. Therefore, we
obtain R as follows:

td Ry
P=1=|""=Rq=|_ :
1 [tﬁi q Ry, q;]
t(1131 Es 0 K
td, E; E E 3“
= =, 21 |»
tg, E, E; E4
P N qs;
5 E;, E» E;

where the matrix dimension is 75 x 36.

B(q) = HBT = H[B‘P¢, B"P’|T

B, B{, Bj B o P 0 0
dpd] _ pd] _ d d d 11
[B P ] - [B3P1] - 0 Bm B11 B21

R d d d
B le Bm Bll

where the dimension are:

(36 x 25) = (36 x 75)* (75 x 25)
B, 0 o07[P o0 0
[B°P’] = [B,P}]= |B), B}, 0 0o P), 0|,
o By ByILo o P
and the dimensions are:

(36 x 6) = (36 x 18)*(18 x 6)

0 0 017

T 0 0 S 0 0

H;, 0 0 0 T, 0 0 S 0
B=| 0 Hy O [[B:P/,BP)J[O0 0 T, 0 0 S
0 0 H;y 0 0 0 L 0 0

0 0 0 0 I, 0

(0 0 0 0 0 I,

and the dimensions are:

(36 x 24) = (36 x 36)# (36 x 31)* (31 x 24)
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The control inputs u,; are defined as

-
upy
1d
Uy
d d d
u u u
u=| =15l =1]3"] @4x1),
u uj u!|
0
Uy
0
L U3 |
where
Unl
U3pnl
Ugn] . .
uf = eR™ =123 j=1.
Ubn1l
U7nl
_u8nl_
Bu € RGO,

The external forces applied to the nodes arise in the product Dw, where

H;, 0 07[wW 0 o0
D(q) =HW’=H[W;]=| 0 H, 0 0 W 0],
0 0 Hy|[0 0 W

with dimensions (36 x 36) = (36 x 36)* (36 x 36)

SO
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Appendix E. Nodal forces

At the base, right end of Fig. 5, where (i=1, j=1):

-fm + 1o
fin — o
far1 + fann
_f311 —tan
(=fo11 + 310+ fr + o +win) + (Fs10 — fri0 — fa0 — fi1 + wanp)
(—f211 +F310 + i+ Four +wint) — (Fs11 — fri0 — fap1 — fgi1 + wanp)
(fs11 — f711 + 1011 — f321 + fao1 +wanr) + (For1 — 511 + fa2 + F112 + wann)
L (fs11 — 701 + fron — f321 + fa21 +w3n1) — (Fern — f511 + 212 + f112 + wany)

At the center of the base, where (1<i<n, j = 1):

fui + fi
. f1i — i
fai1 + fai
f31 — fan
(Fr—on + oy — o + 30+ wiin) + (=i — fai + 500 — f8i1) + wair)
(Fri—on + o — o + 30 +win) — (—Frn — fain +f50 — f0) + wair)
(fsir — f700 + fron — 3001y + fageyr +wan) + (=fsia + foi — Frog-1) + f12 + 2 + wair)
(fsi1 — f700 + fron — 3001y + fagenyr +wan) — (=fsia + foi — frog-1) + f12 + f2i + Wair)

At the left end of the base in Fig. 5, where (i =n, j = 1):

fin + fonr
= fiu — fan
f301 + fan
f301 — fan
(Frg—y1 + 211 + F3ur = f2u1 + Wint) + (—F1a1 — faur + 501 — a1 + wann)
1=yt + Fa—1y1 + F3ur = f2u1 + Wint) — (=F1a1 — faur + 501 — fga1 + wann)
(—f701 +f3u1 + Fro01 — F300 + Fa11 + W3nr) + (—Frop—1)1 — Fsu1 + four + 12 + 200 + Wanr)
(—f7m1 + fgu1 4+ From — 311 4 far1 + W31) — (—Fig

~f10p—1y1 — Fsu1 + four + f1 + f22 + Wanr)

(E.1)
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At the second stage, where (i<i<n, j=2):

f'112 + f212
- fi2 — fon
fo=|. ;
f310 + fa12
f312 — fan

(—fom +f701 — four — F210 + £300 4+ wi2) + (—F112 — far2 + f510 — f312 4 for2 + war2)
(—fom +f701 — four — F210 + £300 4+ Wi12) — (—F112 — far2 + f510 — f312 4 for2 + war2)
)+ (=
)= (=

(—f712 + 312 + fr012 — £320 + fa20 + w312) + (—F510 + f612 — From2 + F113 + F213 + Wai2)
(—f712 + 312 + Fr012 — f320 + fa20 + W312) — (—F512 + f612 — From2 + 113 + F213 + Wai2)

f1,'2 + f2i2
. fin — fan
fsiz + f4i2

f30 — f42

(—fogi—iy1 + Fri-11 — fom1y2 — faio + fai2 + Wii) + (—F120 — fai2 + £50 — 32 + foi0 4+ Wai)
(—fo(i—iyn +Fri-11 — o1y — fair + 30 + Wina) — (—F12 — fai2 + £50 — fzin + fo0 + W)
(—f702 + T2 + Fro2 — T34102 + Fagiena + Wain) + (—Fsi2 + fei — Fiog—1)2 + fiiz + fais + Wana) |
(—f72 +fsi2 + fr02 — £3041)2 + fagany2 + Wan) — (—Fs2 +foia — Fro—1y2 + f1i3 + f2i3 + Wai2)

fino + fa
i‘1;12 - iA‘2112
f‘3112 + f‘4;12

-

n2 =

30 — f4n2

(~fo(u—1)1 +T70—1)1 — Fopu1y2 — F2m2 + Fa3m2 + Win2) +(—F 102 — fan2 + £500 — f30 + Forn + Wa2)

(—fo(u—1)1 +F70—1)1 — Fopu1y2 — F2mz + Fama + Win2) = (—F 102 — a2 + £50 — F0 + Fora + Wap2)
(=72 + f2 + From — F312 + fa12 + Wan2) + (—Fs52 + Fe — Frouo)o + Fuus + Tz + Wama) |
(—f7m2 + f32 + from2 — F312 + fa12 + W32) — (—Fs50 + forr — Fro—1y2 + F13 + F23 + Wa2)

(E.2)

At the typical stage (1<j<m, 1<i<n):
fllj +f21j
_ f1y; — oy
fl‘/: A v ) L
f31; + f41;

f31;, — 415
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(—fon—1) + F7ug—1y — fouj — fa1; + f31; + wiyy) + (11 — 415 + £51; — £s17 + for; + way))
(—feon—1) + Fang—1y — fouj — f21; + F31; + wiyy) — (=11 — 415 + £51; — £s17 + for; + wayj)
(—f71; + 31 + fr01; — 305 + fao7 + w3y) + (—Fs1; +f61; — Fr0 + 111y + F21641) + Wayy)
(—f71; +fs1; + fro1; — 305 + fao7 + w31;) — (—Fs1; +f61; — f10 + 111y + F21041) + Wary)

fll/ + f21/
f11/ f21/
f3l[ + f4t/
(-
(=

f31; f4y
foi-n)g-1) + Fri-1)g-1) = For-1y — Faj + T3 + W) + (—F1y — fay + Fsy — Feyj + Foy + Way)
foi—nyG-1) + 701y -1) — foi—1)y — f2i + Fai7 + wiy) — (=1 — £ai7 + 557 — fig7 + £ + Wayy)
(—f2i + £ + fro5 — £3¢01) + Fagiry + wag) + (s + oy — Fro-1y + Friga) + faige) + way)
(=75 + sy + Fro5 — Faq1) + Lairyy + way) — (=Fsy + fo5 — froi-1); + Frige1) + faigier) + Way)

flnj + fznj
. f1 — foy
f3nj + f4nj
-
(Lo G-1) + Fr00=1)=1) = Fou—1); — Fanj + T3 + Winj) + (—F1j — £anj + 57 — £ + Fory + Wary)
(—fe—1)G-1) + Fr00=1)=1) = Fom—1); — Fanj + T3 + Winj) — (—F1j — £any + 57 — £ + Fory + Wayy)
(—f70j + £ + From — F315 4+ Fa1j + W3) + (—Fs + oy — Fro—1); + Fingie1) + Fanget) + Wan)
(—=f70j + fs0 + From — F315 4+ Fa1j + W3) — (—Fs + oy — Fro—1); + Frugi1y + Fanget) + Wan)
(E.3)

(I<ign, j=m):

fllm + fZlm
£ ?llm - fZlm
f31m + fa1m
f31m — faim
(—fsnin—1) + £700m-1) = F21m + F31m = Foum + Wiam) + (—Fa1m 4 Fs1m — f31m — F11m + fo10 + W)
| (1) + F1un-1) = Fa1m + F30m — o + Wiam) = (=Farm + fs1m — f81m — F11m + fo1m + Waum)
- (=171 + 31 — F32m + La2m + Watm) + (—Fs1m + F1m — Lonm + F7um + Warm)
(=171 + f31m — F32m + La2m + Watm) — (—Fs1m + L61m — Lonm + F70m + Warm)

)

flim + f2im
- flim - f2im
f3[m + f4im

f3im - f41'm
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(—foi-1)m—1) + F26-1y0m—1) = Foi=1ym — F2im + F3im + W) + (—F1im — Faim + i — Fgim + Foim + Wi
(—Fsi—1)m—1) + F26-1y0m—1) = Foi—1ym — F2im + F3im + Wiin) — (—Ftim — Faim + i — Fgim + Foim + Wiy
(—F2im + f8im — F31ym + Fagirym + Waim) + (—Fsim — Lo 1ym + Loim + F26-13m + Waim)

(—f70m + fgim — E3051)m + Fagierym + Waim) — (—Fsim — Fei—1ym + foim + F7-1ym + Waim)

flmn + f2nm
= flmn - f2nm
f3rm1 + f4nm

f}nm - f4m71

(—fou—1yom—1) + F10=1)0m=1) = Fou—1ym — F2um + E30m & W) + (—Fvim — Laum + F5m — E8m + Loum + Wapm)

(—fstn-1)m=1) + F10=1)m=1) = Fon=1ym — F2mm + F3m + Wiam) = (—F1nm — Lamm + Fsm — Fgum + fonm + W)
(=F2mm + Tswm — £31m + £a1m + W) + (=5 + Loum — fs(a—1)m + 0= 1)ym + Wanm) .
(—F70m 4 3w — F30m + a1 4 Wanm) — (—Fsum 4 Fowm — Fou—1ym + £700—1)m + Wam)

(E.4)
]
f3
f4 Wi
f f w
=], &= °1, w=1| "1,
v fi . Y f; w3
y
fg w4ij
fo
Lo
L 00O OO0 00 L L -, 0 0 -1 0 0
f_E00 00000, Ik L0 0 00,
"T10o 000000 0" 0 0 0 I, -I I 0 I|"
00000000 0 0 0 —-I, - It 0 I
"0 0000000 0 0 000000
0 0000000 0 0 00000 0|,
+ f(liz"‘ 5,
L 0000000 0 -I; b 00 0 0 0
-1, 00 0 0 0 0 0 0 -I; b 00 0 0 0
T -l 0 0 I L I 0
. 0 0 I L -1, 0
£ 0 f1, )
Tl oo Mt e L [T o™ Tl 0 o o |™
) 0 -1 0 0 0 I, -

Or, in matrix notation, with the implied matrix definitions:
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fi, =B £y, + B\ f{, + BLfY, + B, f5, + B £}, + B),f),
+ Biaifin + Wwyy, (E.5)
I 0000 0 0 0 - Iz -I 0 0 -I; 0 O
= I3 00 0 0 0 0 Of, -I; Iz L 0 0 L 0 0],
fi= finyt fi
0 0 0 0 0 0 0 I 0O o0 0 L -Iz I 0 I3
0 0 0 0 0 0 0 I 0 0 0 -I; -Iz I 0 I3
0 0 0 0 0 0 0 O o 0 0 0 0 0 00O
0O 000 O0O0O0 O, 0 0 0 0 00 0 0],
+ fi + fliin
I 0 0 0 0 0 0O 0 -I; I5 0 0 0 0 O
L-Is 0 0 0 0 0 0 O 0 -I; 5 0 0 0 0 O
[0 I3 I; -1z 0 0 I; I3 0 0
0 I -I; I 0 0 I; -I; 0 O
- £, £+ £, + w;
0o ol "l o | o L[? o 0 L L |
L0 0 I; 0 0 -Is 0 0 Iz I
Or, in matrix form,
fir = B3 f_ ), + BT + BLIS + B L+ BY £, + B £ + B + Wwy
(E.6)
I5 0 0000 0 0 -1 I3 -Is 0 0 —-I; 0 0
_ I 000 0 0 0 0 13 1 | 0 0 I 0
f = : f(n—l)l + P : ’ fgl
0 0 0 0 0 0 0 I 0 0 0 I; -I; Iz 0 I
0 00 0 0 0 0 I 0 0 0 -I; -y L 0 L
0 0 0 0 0 0 0 07 o o 0 0 0 0 0O
0 00000 0O, 0 o 00 00 0 Of_,
+ fﬂ2 + fll
L 0 0 0 0 0 00O 0 -I; I, 0 0 0 0 O
I35 0 0 0 0 0 0 O] 10 -I; I 0 0 0 0 O
ro Is I; 07 o o —I5
0 I -1 0 0 o0 I
£ ; £0 £0 o,
+ 0 0 (n—1)1 + L 0 nl T 0 1, m T 0 Inl
L0 0 I; 0] 10 I3 0
s Iz 0 O
N L -I; 0 0
0 0 L L™
10 0 I -1

Or, in matrix form,
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fnl :B81f8171)1 +B fdl +B 2f ) +B f?] +B f +B fn] +B]2f112

+ Biafin + Wwy, (E.7)
L L -b 0 0 -1, I, 0 0 0 0 00O0O0O
_ {1313130013130d 0 0 0000O0O|,
fi, = i, + 153
0 0 0 I, -1, I, 0 I 0 I, I, 0 00 00
0 0 0 —I; —I; I, 0 -1, 15 00000
T0 000000 0 000 -1, 13 00 07
00000000]d 000 —I; I, 0 0 0
+ fi; + £
IL 000000 0 000 0 0 00O
-, 0 0 0 0 0 0 0 000 0 00O 0
0 0 0 00 0 -1, 0 L L 0 017
00000GO0 I, 0 1 L 0 0
Tlooo0o0o00 o —I o+ —I o}f(‘]ﬁ[o I fis
000 00O 0 I I 0 -1
M L 0 0
L -1, 0 0
o o 1 o1 |™
0 0 I, I

Or, in matrix form,

f1o = BLEY, + B, 19, + BLES + B £, + BLEY, + BY ), + B, ), + Wwys,

nl

(E.8)
000 -1; ;5 000 L L -5 0 0 - I 0
_ 000 -, I, 00 0 L L L 0 0 I L 0f,
=10 00 0 o000 o™ 0 0o 0o 1, -1 1 0o 1|M™
3 33 3
000 0 000 O 0 0 0 - -5 I, 0 I
T0 00000 0 O 00000GO0 -I, 0
+00000000f+000000—130fd.
I 0000 0O0GO|2 (000000 0 -—I|@"
|- 0 0 0 0 0 0 0 00000O0 0 I
0 0 0 00 0 0 0 L -
0 0 0 00000 I L
1o “I; 5 0 0 0 0 of?"*”fr —Is ]f?z
0 -1 I 0 0 0 0 0 |
00 L I 0 0
I K PR e O
0 L [?"Jo 0o 1 L |"
0 -1 0 0 I, —I
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Or, in matrix form,

£ =B

nl

0 ¢0
+ B12f13 + le'z,

0O 0 0 0 0 0 0O 0
_ 0O 0 0 0 0 0 0O 0
fi = fl, +
0 -I; L 0 0 0 0 O 0
0 -I; L 0 0 0 0 O 0
[0 0 0 0 00 -I; O
00000O0O0-I; 0|,
+ f(;’171)2
0000 00 O -I4
10000 0 0 0 Iz
[ 00 000 00 0
0000O0O0OO0O], 0
+ f}ﬂ +
L 00 0 0 0 0 O ™ 0
-1 0 0 0 0 0 0 0 0
I, I
I, -1,
+ Wi2.
0 0 I I3
0 0 I —-I;

Or, in matrix form,

f,o =B, fi, + B;

nl

+ B?lfgz + Ww,,

=R —— T — R ]

=R

_13
_[3

I;
_13

-I; I3
-I; I3
0 0
0 0
L I
L Iz
0 0
0
)+

313

f?i—l)l + B{,f5, + BLIG + Bng?i—l)z + B(zjlf‘(jm)z + B, ),

d d gd Rd ¢d d gd 0
f-1 + Bf 1 + Biof, + Biofs + B,f);

(E.9)
000
000
f?n—l)l
000
000
0 0 -1, I, 0
0 0 L L 0,
L - I 0 I|™
B PO S O T
-
Iz
s o
0 n2
(E.10)
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000 -I;1; 000 I I -5 0 0 -, L

000 —I; 1, 00 0], L L L 0 0 I -I

=10 00 0 000 o™ o 0 0 1 1 1 0
3 3 13

000 0 0 000 0 0 -I; -I; I 0

00 0000 —I; 0 0 0 0 00000

000000 -1 0|, |0 0 020000O0]|,

+ 4+ £

000000 O —-L)” |0 -1, 000TO0O0]|7

000 O OO 0 I 0 -1, I, 0 0 0 0 0

T0 00 0 000 0 | S 0 0

0 0000O0TO0O -I; 1 0 0

+ I 0000000f?</“>+{lz ozf(‘)-’+ 0 I o

-1, 0 0 0 0 0 0 0 I 0 0 -1,

L I 0 0

. I -I; 0 0 .

0 0 Iy Iy | °
0 0 I, —L
Or, in matrix form,
fi, = Bglf;j(j—l) + B(ljZf(lij + Bnggj + Bglfgj + B(li2f(11(j+l) + B(l)lf(l)j
+ BLf ) + Wwy,

000 —-I;1; 000 L L -5 0 0 -1, I
1000 -1, I, 000 L' Lk L 0 0 I, -I
=g 00 0 000 oW 9o o 0o b L L o

3 3 13

000 0 0 O0O0O 0 0 0 -1 -I; I 0

00 0 0 0 0 —I; 0 0 0 0 000 00

000000 I, 0|, 0 0 0000 0O,

+ £+ T

000000 0 —L|“ " |o -5 150000 0f¢@W

0000 00 0 I 0 -I; I, 0 0 0 0 0

"0 0 0 0 0 0 0 0 | SR 0 0

0 0000O0O0O0 A | 0 0

Tl 0000000f?<f“>+ —Ij 0ng+0 I M

I, 00 0 0 0 0 0 L 0 0 I

5, I, 0 0

L -, 0 0

Tlo o |V

_0013713

Or, in matrix form,
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f; :Bglf((ii—l)(/‘—l) JrE(Iizf?jJngzf?i—l)/‘JrB(Zilf((jiJrl)/‘+BC112f?(j+1) +B(1)1f2

+ B\, )+ Wwy, (E.12)
000 —-I; I; 000
~ 000 —-I; I; 000
B =10 00 0 0 0 0 oy
000 O 0 00O
- I, I 0 0 —-I; I 0
. L L L 0 0 I -I 0 "
0 0 0 I, -IL It 0 I;|"
L 0 0 0 —13 —13 13 0 13
00 0 0 0 0 —I; 0 0 0 0 000 00
000000 -, 0|, 0 0 000000,
+ £yt £
000000 0 -I 1o -1; I, 0 0 0 0 Of
(000000 0 I 0 -I; I, 0 0 0 0 0
T0 0 0 0 0 0 0 0 I, -L 0 0
0 00 00O0UO0 O I, I 0 0
+ £+ £+ £
L 00000 00" |13 oY |0 1,|"
I, 0 00 00 0 0 I 0 0 -1,
;s I 0 0
L -I; 0 0
Tlo o 1 1 |™
(0 0 I, —-L
Or, in matrix form,
£y =By £, 1)1y + By, + Biof(, 1) + By f) + Bify ) + B,
+ BLE )+ Ww, (E.13)
L L -k 0 0 - I, 0 0 0 000000
£ — -I; I Iz 0 0 I; -I; 0 f?m'f‘ 0 0 0O 0 0 0 0 O fgm
o 0 o0 I -I; Iz 0 0 0 -I; I; 0 0 0 0 O
o o0 o0 -I; -I; Iz 0 O 0 -I; I; 0 0 0 0 O
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o o o o0 0 0 0
00 0 o 0 0 0
0 0 0 -I; I, 0 O

10 0 0 I, -—-I; 0 O

(L I L I
-I; Iz P L I
oo [T o o

L Iz 0 0 0

Or, in matrix form,

0
0
0
0
0
0

I;
I;

d
fnm +

= — T ]

= — T —— ]

= — T ]

1
1
0
0

=T ]

=T ]

0 ¢0
1y By, + Wwi,

(i+1)m

fin = BY,f5,, + B3, £, + BS, £9 + B,
000 -1, 5 000 0 0 0
000 L5000 oo
71000 0 0 00 0f VDT 19 0 0
000 0 0000 000
L L - 0 0 - I 0 0
B0 T I U S SO o 0
0 0 0 I -5 I, 0 0 0
0 0 0 -I; -1, I, 0 0 0
L L L L 0 0
A & L - 0 0
Tl o Mo + 0 0 L L |
L 0 0 0 I, —I
Or, in matrix notation,
fim = B £ 1)1y + Bof 1y + B L0, + BS £
000 —I; I, 000 00 0
~ 000 151,000/ 00 0
b =10 00 0 0 00 offvenT]g g o
000 0 0000 000
-, L -I; 0 0 -1, I, 0
L L L 0 0 I, -1 0
o 0o 0o L -1, L 0 0
L0 0 -, -I; 5 0 0
[ L L ILb 0 0
1 L L -IL 0 0
* I 0 I LoL |
I 0 0 I, —I

0
0
1
I;

0

0
0
-
I
0
0
_13
I

I

0
0
I;

= — TR}

0
0

I;
0
0
I;
I;

]

[ - -

(i+1)m

=TI}
=TI}

+ B ), + Ww,,, (E.15)

-1
I
0
0

Im

oo o
=T ]
S oo o
= ]
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Or, in matrix notation,

f"m = Bglf?nfl)(mfl) + Bd f?nfl)m + Bd fd + Bglf(ljm + B(l)lfo + Ww.

nm Im*nm nm

Now assemble (E.5)—(E.16) into the form

f) = Bsf{ + B4f§ + Bf) + Bof + Ww,
where
d 0 =
£ f; Wi fy;
=d flnl d fg] fg] sz fz]
1 = d s s = s j = s wj = . y fj =
f1 .
d 0 . f
fn/ fnj wnj f}’lj
B,y BY, BS 0 0 B
0 B 0
B3 = 5
0 [
0o - Lo L By
_Blnl Bgl 0 o 0 Bgl B(lil _

B, = BlockDiag]- - - ,B‘li27 B‘li27 1,

B, = BlockDiagl---,BY,,B,, - - ],

'B?l 0 - - 0
Bj,

Bi=1o "~ "~ |
: B, 0
[0 -+ 0 By B,

W, = BlockDiag[--- ,W,W,--].
Also from (E.5)—(E.16)

f = Bsf{ + Bef$ + Baf§ + Bof + Bof + Wiw,
where

Bs = [0,Bs], B; = BlockDiag|---,B},B},, -],

317

(E.16)

(E.17)

(E.18)
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[0 0 0 BY]

B¢, 0

0 , Bg=
0 -~ 0 BY 0|

Also from (E.5)—(E.16)

[BY, B
d
BnZ
0
0
B, 0

f3 = BsfS + Bef§ + Baf§ + Bof3 + Bof§ + Wiws,

f, = Bif?m_]) + B8f34 + B7f21 + Wiw,,

BY, By, 0 ... 0 BY]
| 0
0

0
0 L. L By
[BS 0 0 B, B, ]

Or, simply, the vector form of (E.17)—~(E.19) is

f = B + B0 + Wow,

where

wo =

fd
f (11 f
d fz 0
: ) f = ) f - b
£ f;j £

m

BlockDiagl-- -, W, Wy, -],

Wi

wm

0O --- 0

0 BY,

(E.19)

(E.20)

(E.21)
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B; By, 0 - 0] B, B, 0 --- 0]

Bs By . . 0 B,
Bi=lg B . .o B=|:
B; B : L B
L0 0 Bs Bg| | 0 0 By
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