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ABSTRACT

Tensegrity deployment is considered herein as a tracking control problem. Therefore, the required
trajectories should be feasible for a given structure. For tensegrity structures, this means that in ev-
ery desired configuration, the structure has to satisfy tensegrity conditions, which require strings to be
in tension, and the structure to be stable. To define an open-loop deployment control law, geometry
parameterization of those configurations and corresponding rest lengths of string elements guarantee-
ing equilibrium are defined first. By slowly varying desired geometry, an open-loop string rest length
control is defined. This makes the structure track trajectories defined by the time dependent geometry
parameters. Deployment of plates made of stable symmetric shell class tensegrity units is given as an
example.
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1 INTRODUCTION

A tensegrity structure is a prestressable stable dynamical truss-like system made of axially
loaded bar and string elements. Only admissible connections between the elements are ball
joints. String elements of a tensegrity structure are modeled as elements capable of transmit-
ting tension load only. Unlike regular trusses, tensegrities allow a smaller set of admissible
topologies than the set of topologies that yield mechanisms. Defining a set of topologies that
do not have mechanisms is a main tensegrity design issue.

Tensegrity structures as an art form were first introduced in 1948 by Keneth Snelson [1].
R.B. Fuller [2] was the first one to recognize their engineering values. Over the course of past
50 years, tensegrity structures were analyzed mostly in a descriptive meaner. All the designs
were usually obtained by ingenuity of their authors. Pelegrino [3, 4], Motro [5], Hanaor [6],
were among the first to recognize the importance of developing systematic design techniques
to solve statics problems for the tensegrity structures. The work of Skelton and Sultan [7–11]
introduced the concept of controlled tensegrity structures.
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2 SOME PRELIMINARY NOTIONS

Based on element connectivity property and level of symmetry in a designed tensegrity struc-
ture, all design concepts can be divided in the following three categories:

� Stable unit tensegrity design. This concept assumes that the tensegrity structure is built
of units which themselves are stable tensegrities.

� Unstable unit tensegrity design. This approach involves a quasi-periodic connectivity
scheme. Tensegrity designs are characterized by periodicity in the way the elements
are connected, but this pattern is usually violated on the boundaries of the structure, by
adding extra elements, to stabilize the whole structure.

� General tensegrity design. This concept allows all the elements comprising a tensegrity
to be connected in an arbitrary way.

Since the first two concepts are special cases of the general tensegrity design problem, its
formulation is given first. Once a maximum set of allowed element connections of a tensegrity
structure and its associated oriented graph have been adopted, corresponding connectivity
information are written in a form of member-node incidence matrix, M 2 R 3ne�3nn , where
ne;nn are number of elements and nodes respectively. Matrix M is a sparse block matrix
whose i; j block is I3 or �I3 if the element i ends at or emanates from the j th node, otherwise
it is 03. Element force ti of a prestressed element i of a tensegrity structure can be expressed
as a product of an element vector gi, and a scaling factors λi, called a force coefficient. Vector
g 2 R3ne , formed by stacking up all the element vectors g i, is a linear mapping of a nodal
position vector, p 2 R3nn ,

g =

�
gs

gb

�
= Mp; M =

�
�ST

BT

�
; S 2 R3nn�3ns :

If a structure admits symmetry Φ, then elements in nge groups of equivalent elements in the
structure, share the same forces. This enables a full vector of force coefficients λ 2 R ne ,
formed by stacking up force coefficients λ i, to be expressed as a linear mapping Q 2 Rne�neg

of a set of independent force coefficients λ. Q is defined as an element-group of equivalent
elements, incidence matrix. Structural symmetry also allows reduction of number of force
balance equations, since for equivalent nodes, they are related through the same symmetry of
the structure. This reduction can be accomplished by multiplying the full set of force balance
equations for each of nodes by a matrix D 2 R3ngn�3nn , where ngn is number of groups of the
equivalent nodes. D is defined as a group of equivalent nodes-node, incidence matrix of a
proper size. Node position symmetry enables parametrization of the full vector p to reduce
number of variables appearing in the problem, which is done by writing p = p(α;β;γ; : : :),
where α;β;γ; : : : are geometry parameters defining shape of a structure. To define desired
shape of a tensegrity structure, shape constrains ϕ(α;β;γ; : : :) = 0 are added. Finally, a general
tensegrity design problem in design variables α;β;γ; : : : ;λ can be written as,

DCg̃Qλ = 0; λ� 0; i 2 Is; C =

�
S B

�
;

p = p(α;β;γ; : : :); g =

�
�ST

BT

�
p;

ϕ(α;β;γ; : : :) = 0

(1.1)
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Figure 1 Connection of two tensegrity units

where Is is a set of indices of string elements. Linear operator �̃ is defined as:

R3n ! R3n�n; x̃ = blockdiagfxig; x =

2
664

x1

x2

:

xn

3
775 ; xi =

2
4 xi1

:

xi3

3
5 : (1.2)

This paper deals with stable unit tensegrities. It is much easier to design and analyze such a
structure. Tensegrity designs of this class are obtained without directly having to solve the
global equations (1.1).

2.1 Equilibrium analysis of superposition of two tensegrities that
are in equilibrium

It can be shown that equations (1.1) have particular structure when corresponding tensegrity
is of the stable unit class. Equilibrium conditions can be divided in decoupled blocks of equa-
tions, so that each of them represent equilibrium condition for each separate unit. Several
definitions and rules will help establish the procedure to do this. These rules provide a tech-
nique for connecting the tensegrity units in a bigger structure whose tensegrity conditions can
easily be computed. This technique will be called structure superposition. Although, for some
readers, these claims may seam obvious, they are useful to define a systematic technique for
the stable unit tensegrity design.

Definition 1 Node i of a structure 1 is said to be an attached node to a structure 2 if:

(i) It is placed on the structure 2 without changing direction of its elements.

(ii) If it is placed on the span of an element j of the structure 2, this element is divided in
two elements connecting the node i to nodes defining the element j.

(iii) Element forces of these new elements are equal to element force of the element j.

Definition 2 An element g, connecting nodes i and j, is said to be a superposition of two
elements k and l, defined by the same nodes i and j, if the overlapping elements k and l are
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Figure 2 Geometry and element forces of the n-bar one stage shell class tensegrity

substituted by the element g, whose force is the sum of forces of the elements k and l. Elements
k and l are called superposed elements.

Definition 3 A structure is said to be a superposition of two structures, if:

(i) n nodes of structure 1 are attached to structure 2 and m nodes of structure 2 are attached
to structure 1.

(ii) If overlapping elements are generated, they are replaced by their superposition.

Structures 1 and 2 are called superposed structures.

The following fact defines the main property of structures formed by superposition of equi-
librium structures. It is given without a proof.

Fact 1 A structure that is a superposition of two equilibrium structures is in equilibrium.

3 TENSEGRITY PLATE DEPLOYMENT

3.1 Equilibrium analysis of a one stage n-bar shell class tensegrity

The geometry of such a structure is depicted in Fig. 2.

Theorem 1 All symmetric one stage n-bar shell class tensegrities are in equilibrium if the
twist angle between the top and bottom polygons is α =

π
2 �

π
n . Force coefficients λv of all the

vertical elements are equal. Force coefficients λh, of horizontal members, are computed as:

λh =
λv

2cosα
(1.3)

where n is number of bars in the unit.

Proof: Due to the symmetry of the structure, it is sufficient to compute balance of the forces
at only one of the nodes. Balance of the forces at z direction is,

fbz� fvz = 0; (1.4)
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which can be expressed in terms of the force coefficients as,

λvbh�λvsh = 0; (1.5)

where λvb and λvs are force coefficients of bars end vertical strings respectively. Rewriting
(1.5),

(λvb �λvs)h = 0; (1.6)

from (1.6) λvb = λvs .
To prove that α =

π
2 �

π
n recall that if λ is a set of the force coefficients of the elements

of the structure then aλ; a > 0 is also a set of the force coefficients satisfying equilibrium.
Then, without lost of generality, a can be chosen such that λ vs = λvb = 1. For this choice of
the force coefficients, ~fv+~fb takes the direction of the horizontal string connecting their ends
opposite from the node 1 as depicted in the Fig.2. ~fh1+~fh2 =�(~fv+~fb) must be satisfied for
equilibrium at the node 1. Due to the symmetry of the forces, ~fh1 +~fh2 takes the direction of
the bisector of the angle β = (n�2)π

n between them, that is an angle between sides of a n-sided

polygon. In order for this direction to match direction of ~fv+~fb, the twist angle α has to be 1
2

of the angle β, α =
1
2(

(n�2)π
n ) =

π
2 �

π
n .

From Fig.2 it is clear that the magnitude of the resulting force of the horizontal strings is:

fr = k~fh1 +~fh2k= 2 fh1 cosα = 2khlh cosα (1.7)

Since the magnitude of the resultant force ~fr need to be the same as the length of the horizontal
string lh,

2λh cosα = 1; (1.8)

and finally,

λh =
1

2cosα
: (1.9)

The computed λh corresponds to the choice λv = 1. For any other choice of λv, λh is computed
as follows:

λh =
λv

2cosα
: (1.10)

2

3.2 Tensegrity plate equilibrium and string rest length shape
control law

A class of tensegrity plates can be derived by superposition of one stage shell class tensegrity
units. Fig.3 shows how to superpose units in the cases where three-bar, four-bar and six-bar
units are used. If all the units have common geometry, then the geometry of the formed plate
is defined by parameters of the units and parameter γ= l4

l2
as shown in the Fig.4. Note that the

parameter γ defines the relative position of the units within the palate. In order for two units
to be superposed, it can be shown that for three-bar and four-bar unit plates this parameter
must have fixed values γ = 2�

p
3 and γ = 2�

p
2 respectively. For the six-bar unit plate this

parameter is 0 < γ < 1. In the case that λv > 0 is equal for both of the units, forces satisfying
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Figure 3 Tensegrity plate made connecting three-bar, four-bar and six-bar units.
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Figure 4 Superposition of two n-bar units to build a plate.

equilibrium depicted in Fig. 4 are:

f1 = λvl1; f2 = λhl2 = λv
1

2cosα
l2; f3 = f2;

f4 = 2 f2; n = 4;6; f4 = f2; n = 3
(1.11)

Since geometry of a n-bar unit in stable equilibrium is uniquely defined by two parameters, l b

and r, as shown in Fig. 4, and geometry of a plate that is formed by superposition of the units
by the additional parameter γ, lengths of the elements of a tensegrity plate are computed as
follows:

l1 =

r
l2
b +2r2(cos(α+

2π
n
)� cosα); l2 = 2r sin(

π
n
);

l4 =γl2; l3 = (1� γ)l2; 0 < γ < 1:

(1.12)

Let l02 of the string 2 be defined as a fraction of its total length l2,

l02 = δl2 = δ2r sin(
π
n
); 0 < δ < 1: (1.13)

Let the material of the structure be linear elastic:

fi =
AiEi

l0i

(li� l0i); (1.14)
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and area of cross section and Young’s modulus A i and Ei be the same for all elements. Then
(1.11)-(1.14) and the fact that α =

π
2 �

π
n , give a complete parameterization of the remaining

rest lengths in terms of the free geometry parameters l b;r;γ,

l01 =
r
q

l2
b �4r2 sin(π

n )l02

rl02 +

q
l2
b �4r2 sin(π

n )(2r sin π
n � l02)

;

l03 = (1� γ)l02;

l04 =
2rγl02 sin(π

n )

4r sin( π
n )� l02

; n = 4;6; l04 = γl02 ; n = 3:

(1.15)

Defining sufficiently slowly varying functions of desired geometry parameters change, r =
r(t) and γ= γ(t) in the six-bar unit case, and possibly lb = lb(t), and substituting these function
in (1.13),and (1.15), an open-loop string rest length control law for the tensegrity to track
desired trajectories is defined.

3.3 Simulation results

The open-loop control strategy defined was applied on a full nonlinear model of a six-bar
unit tensegrity plate. Size of the plate was 6�6 units. Deployment shown involved a desired
radius and overlap parameter change functions as follows:

r(t) = 0:2+0:04t; 0 < t < 20;

r(t) = 1; 20 < t < 30
(1.16)

γ(t) = 0:2+0:02t; 0 < t < 20;

γ(t) = 0:6; 20 < t < 30
(1.17)

The pre-stress parameter δ was kept constant. The final unit polygon radius was 1 which yields
a ratio between the areas of the plate in the final and initial configuration of approximately 25.
Simulation results are depicted in Fig.5.

Figure 5 Deployment of a six-bar unit plate.
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Setting up the rest lengths of the strings lying on the top surface of the plate to be a frac-
tion of the rest lengths of the corresponding bottom strings, while keeping the rest length
change law for all other strings unaltered, parabolic like structure is obtained. The ratio

q(t) =
lotop (t)

lobottom (t) between rest lengths of the top and bottom strings is as follows:

q(t) = 1; 0 < t < 20;

q(t) = 1�0:02(t�20); 20 < t < 25;

q(t) = 0:9; 25 < t < 30:

(1.18)

Deployment simulation of the parabolic structure is depicted in Fig.6. Deviation of the nodal
positions from the quadratic parabola shape is shown in Fig.7

Figure 6 Deployment of a parabolic tensegrity structure.

−6 −4 −2 0 2 4 6 8 10
−5

0

5
−1

0

1

2

3

4

5

Figure 7 Nodal position parabolic surface �tting.
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4 CONCLUSIONS

In the preceding analysis a decentralized open-loop control law for stable unit tensegrity shape
control is defined. The introduced controlled strategy can be generalized to any tensegrity
whose stable equilibrium configurations are parametrizeable in terms of geometry parame-
ters. Simple parabolic example shows that tensegrity plates can be successfully used to obtain
different desired curved shapes. This makes stable unit tensegrity plates promising technolo-
gies for deployable space structures. Possible applications are deployable antennae, mirrors
and dome structures. Future work will address these problems in more details.
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