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ABSTRACT

This paper concerns open-loop control laws for reconfiguration of tensegrity towers. By postulating the control
strategy as an equilibrium tracking control, very little control energy is required. Several different reconfiguration
scenarios are possible for different string connectivity schemes. This includes unit radius control, twist angle
control and truncation parameter control. All these control laws allow a nonuniform distribution of the control
parameters among units. By defining a wave–like reference signal and injecting it in the open–loop control law,
we demonstrate the concept of self–propelled tensegrity structure that are capable of locomotion.
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1. INTRODUCTION

Tensegrity structures are prestressable truss-like systems that involve string elements as tensile members. Intro-
duced a half century ago, the dominant themes of early publications were characterization of static equilibria and
rigidity properties, e.g. [1, 2], [3], [4], [5]. These two research areas naturally established themselves as the main
focus of the research attention because of the presence of the strings in a tensegrity. Tensegrities are believed to
be a promising technology for shape controllable structures, because large shape changes can be accomplished by
controlling rest lengths of the strings. Available materials to manufacture strings are lighter and stronger than
those for compressive elements, so that utilizing them in a structure can reduce mass and enable lightweight
designs.

The strings are elements with a nonlinear character of the force-strain relation. This complicates any form of
syntheses of a tensegrity structure, either static or dynamic. This partially explains why the success of dynamic
modelling of tensegrity structures, e.g. [6], has not been followed with an equivalent success in control design.
Several results on control of tensegrity structures are available, [7–12]. The control algorithm for reconfiguration
of tensegrity plates proposed in [13] and generalized for the whole class of modular tensegrity structures in [14]
provides a solution for the tracking control problem associated with the tensegrity reconfiguration. Moreover,
this result is based on slowly varying nonlinear control concept for tracking equilibrium manifold, and enabled
solutions for the whole class of modular tensegrity structures independently of their size and shape. Here we
investigate further possibilities of this concept and its application on the class of tensegrity towers in which bar
elements touch each other (class–2 tensegrity).

The rest of the paper is outlined as follows. In the Section 2. we characterize equilibrium of tensegrity
structures. Section 3. concerns specifics of the equilibrium analysis of modular tensegrity structures with a
detailed equilibrium analysis of the module used to built the tensegrity towers. A solution for the reconfiguration
control is given in Section 4. followed with examples in Section 5.

2. TENSEGRITY EQUILIBRIUM CONDITIONS AND CONSTITUTIVE EQUATION

Definition 2.1. The nodes νk, k = 1, . . . , nn of a tensegrity structure, are the points where bars and strings
of the structure connect. A nodal vector pk ∈ R

3 represents the position of the node νk. The sets of all nodes of
a tensegrity structure and associated nodal vectors are denoted N and P respectively.

Definition 2.2. An element ei = {[νk, νj ], zi}, k 6= j, i = 1, . . . , ne, of a tensegrity structure is either a bar
or a string that connects the two nodes νk and νj of the tensegrity. The pair [νk, νj ] is an ordered pair, and zi

identifies the element type. For the tensegrity structure with the element set E, zi is defined as follows,

zi =

{

1, ei ∈ Es,

−1, ei ∈ Eb,
(1)



where Es ∈ E and Eb ∈ E are the subsets of the string and bar elements of the tensegrity structure.

Definition 2.3. An element vector gi ∈ R
3 is a vector along the length of an element ei = {[νk, νj ], zi}. It

emanates from the first node νk and terminates at the second node νj of the element, i.e.,

gi = pj − pk.

It is obvious that magnitude of an element vector gi is equal to its length ‖gi‖, which is denoted by li.

Definition 2.4. The element force vector fji ∈ R
3 represents the contribution of the internal force of the element

ei, to the balance of the forces at the node νj and it can be written as,

fji = cjiλigi, fi = λi‖gi‖ = λili, (2)

where element force coefficient λi is a scalar.

Obviously scalars cji in (2) that are defined as typical elements of the matrix C(E) ∈ R
nn×ne , have one of

the three possible values, cji = ±1 or cji = 0.

Let R
n
m denote the vector space of vectors x that have the following structure:

x ∈ R
n
m ⇒ x =









x1

x2

.

xn









, xi ∈ R
m, R

m = R
m
1 (3)

Vector of nodal vectors p ∈ R
nn

3 , vector of element vectors g(E, P) ∈ R
ne

3 , vector of force densities λ ∈ R
ne

and vector z ∈ R
ne are formed by collecting all node vectors pi, element vectors gi, force densities λi and all

individual element type identifiers,

p =









p1

p2

.

pnn









, g =









g1

g2

.

gne









, λ =









λ1

λ2

.

λne









z =









z1

z2

.

zne









. (4)

Let the member-node incidence matrix of the oriented graph associated with E be denoted M(E) ∈ R
ne×nn and

let M ∈ R
3ne×3nn be defined as M = M ⊗ I3. The typical element mij of the matrix M is mij = 1 or mij = −1

if the element ei terminates at or emanates from the node νj , otherwise mij = 0. Let the ns string elements in
Es be numbered first. Then, vector g and matrix M can be partitioned as follows,

g =

[

gs

gb

]

= Mp, M =

[

ST

BT

]

, S ∈ R
3nn×3ns .

One can show that equilibrium conditions for the prestressed structure with properly loaded strings, and matrix
C = C ⊗ I3 can be defined and written as,

Cg̃λ = 0, ‖λ‖ > 0, λi ≥ 0, ei ∈ Es, (5)

C =
[

−S B
]

, g = Mp =

[

ST

BT

]

p, (6)

if the linear operator ·̃ acting on the vector x ∈ R
n
m is defined as follows,

x̃ := blockdiag{x1 . . . ,xi, . . . xn} ∈ R
mn×n, xi ∈ R

m.

Let the tensegrity structure Γ defined by the triple Γ = {E, P,λ} admit element and nodal symmetry I(x) as
defined in [15], so that all its elements and nodes can be grouped respectively in nec and nnc element and node
equivalence classes. Assume that elements in the same equivalency class are constrained to share common force
densities. Then, the full vector of force densities λ can be expressed as a linear mapping from the reduced set of



the independent force density variables λ ∈ Rnec , by defining matrix Q ∈ Rne×nec . As it is shown in [15], this
assumption does not additionally restrict the domain of the feasible geometry variables defining an equilibrium
structure. The size of the problem can be reduced further by keeping only the set of independent equations in (5).
This can be accomplished by multiplying the equality in (5) from the left with a sparse matrix D ∈ R

3nnc×3nn .
The structure of the matrices Q and D corresponding to the symmetric problem is given in [15]. If a change of
geometry variables is defined so that p = p(α,β,γ, . . .), and the shape constrains in the form ϕ(α,β,γ, . . .) = 0
included in the problem, the symmetric tensegrity form-finding problem becomes,

DCg̃Qλ = 0, C =
[

−S B
]

,

p = p(α,β,γ, . . .), p = Rp, g = Mp =

[

ST

BT

]

p,

ϕ(α,β,γ, . . .) = 0,

‖λ‖ > 0, λi ≥ 0, ei ∈ Es.

(7)

A more detailed explanation of tensegrity constitutive equations (5-6) and their form for symmetric structures
(7) is given in [15].

3. CLASS–2 TENSEGRITY TOWERS AS COMPOSITION OF TENSEGRITY
STRUCTURES

As shown in [14] the solution of the tensegrity constitutive equations for modular tensegrity structures can
be greatly simplified by exploiting their particular structured form that arises from the specific way that the
elements of a modular structure are connected and from the associated nodal symmetry. Since the class–2
tensegrity towers belong to the category of modular tensegrity structures, the composition rules defined in [14]
will be implemented to simplify their equilibrium analysis. The main result associated with modular tensegrity
structures is given in the next section in Theorem 3.4. For the proof of the Theorem consult [14].

Definition 3.1. Node νr of the structure Γ is said to be attached to element ei = {[νj , νk], zi} if element ei

is replaced in the structure definition with elements eq = {[νj , νr], zi} and es = {[νr, νk], zi}. This will formally
be written as [eq, es] = νr@ei.

Definition 3.2. Node νr of structure Γ is said to be attached to node νj if node νr is replaced by node νj

in the definition of all elements incident with node νr. This will formally be written as νr ← νj.

Node attachment operation νr ← νj should not be confused with the node placement pr = pj . While the
former operation removes node νr from the set N, and consequently pr from the set P, the later operation only
place node νr at the position of the node νj so that both these overlapping nodes continue to exist.

Definition 3.3. Superposition of two overlapping elements ei = {[νj , νk], zi} and eq = {[νj , νk], zi} or
eq = {[νk, νj ], zi} of structure Γ is the operation in which element eq is deleted from the set E. This will formally
be written as eq ← ei.

The following theorem concerns the composition of equilibrium structures and the main property associated
with the result of this composition.

Theorem 3.4. Let the tensegrity structure Γ = {E, P,λ} be defined from the two equilibrium tensegrity structures
Γ1 = {E1, P1,λ1} and Γ2 = {E2, P2,λ2} by attaching some nodes of structure Γ1 to elements or nodes of structure
Γ2, and by attaching some nodes of structure Γ2 to elements or nodes of structure Γ1, so that all of the following
conditions are satisfied:

(i) If node νr is attached to node νj then the nodal vectors satisfy pr = pj.

(ii) If node νr is attached to element ei = {[νj , νk], zi}, so that [eq, es] = νr@ei, then the nodal vector pr

satisfies
pr = pj + a(pk − pj), for 0 < a < 1 (8)



and force densities λp and λq of elements ep and eq satisfy,

λh =
λi‖gi‖2
‖gh‖2

=
fi

lh
, h = q, s. (9)

(iv) If overlapping elements ei with force density λi and ej with force density λj are generated, and replaced by
their superposition ej ← ei, the force density of the remaining element is λj + λi, i.e.,

λi ← λj + λi.

Then, structure Γ is an equilibrium structure and it is said to be the composition of the two component

structures Γ1 and Γ2.

An nm stage class–2 tensegrity tower can be regarded as a composition of nm component structures. The
case where one-stage shell–class structures defined in [6] serve as component structures will be analyzed here.
The only constraint for nm of these equilibrium tensegrity structure to be compatible for composition by stacking
them up to build a tower is that the radii of the top and bottom of the two adjacent structures are the same, so
that the top nodes of one structure can be attached to the bottom nodes of the adjacent structure. See Figure
1. Then, for the given collection of nm compatible equilibrium tensegrity modules, Theorem 3.4 guaranties
that the series of nm − 1 compositions of these nm component structures, yields an class–2 tensegrity tower in
equilibrium. In the view of Theorem 3.4 we start equilibrium analysis of the tower by analyzing the equilibrium
of its components.

Figure 1. Composition of tower modules

3.1. Geometry and equilibrium of one–stage shell–class tensegrity module

For the n-bar shell–class tensegrity in the configuration that admits n-fold rotational symmetry Cn about z-axis
as the nodal symmetry, nodal positions can be expressed in terms of geometry parameters lb, r, α, t that are
defined in [15] and depicted in Figure 2., and the constant matrix R that reflects symmetry of the structure.
As suggested in [15], nodal vector of the structure, p ∈ R

2n
3 , can be related to these parameters in the following

compact form,

p = Rp, p = p̄(n, lb, r, α, t) =

[

p1(n, lb, r,α, t)
p2n(n, lb, r, α, t)

]

. (10)
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Figure 2. One–stage shell-class module geometry and connectivity

Define matrix R of the rotation about z axis,

R(x) =





cos x sin x 0
− sin x cosx 0

0 0 1



 . (11)

Then, nodal parametrization (10) takes the following form,

p1 =
[

r 0 0
]T

, p3 = R( 2π
n

)p1, p2n−1 = R−1( 2π
n

)p1,

p2n = R(α)
[

tr 0 h
]T

, p2 = R( 2π
n

)p2n, p2n−2 = R−1( 2π
n

)p2n,
(12)

where, the height h of the structure is computed as,

h =

√

l2b − r2 − r2t2 + 2r2t cos(
2π

n
+ α). (13)

The requirement that the height h of the structure be a positive real number yields the following definition
of the feasible set for the geometry variables,

0 < r <
lb

1 + t2 − 2t cos( 2π
n

+ α)
, 0 < t, 0 < lb. (14)

3.1.1. Equilibrium of a one–stage shell–class tensegrity module

Note that (12) parameterizes all configurations that admit the given nodal symmetry, whether or not (7) is
satisfied. One must solve (7) to find the subset of these symmetric configurations that yield equilibrium tensegrity
structures. Due to the element symmetry, corresponding constitutive equations (7) reduce to the balance of the



forces equations at only two representative nodes ν1 and ν2n if elements in the same equivalency class share the
same force densities. Element vectors of the elements appearing in the force balance equations for nodes ν1 and
ν2n are computed as,

g1 = p1 − p2, g2 = p3 − p1, g3 = p1 − p2n−1, g4 = R(−m
2π

n
)p2n − p1,

g5 = p2 − p2n, g6 = p2n − p2n−2, g7 = p2n −R(q
2π

n
)p3,

g8 = R(−q
2π

n
)p2n−2 − p1, g9 = p2n−1 − p2n, g10 = p2n −R(m

2π

n
)p1.

The set of equations defining equilibrium configuration of the module becomes,

g1λ1 + g2λ2 − g3λ3 + g4λ4 + g8λ8 = 0,

−g4λ4 + g5λ5 − g6λ6 − g7λ7 − g9λ9 − g10λ10 = 0,

λi ≥ 0.

Element symmetry of the structure allows further reduction of the number of force density variables,

λ9 = λ1, λ3 = λ2, λ6 = λ5, λ8 = λ7, λ10 = λ4, (15)

so that the equilibrium conditions reduce to,

g1λ1 + g2λ2 − g3λ2 + g4λ4 + g8λ7 = 0,

−g4λ4 + g5λ4 − g6λ5 − g7λ7 − g9λ1 − g10λ4 = 0,

λi ≥ 0.

This can be written in the more compact form,

DCg̃Qλ = 0, (16)

λ =
[

λ1 λ2 λ4 λ5 λ7

]T
, (17)

λi ≥ 0, (18)

if one defines matrices D,C, g̃, Q corresponding to the problem and cast the problem in the standard form (7).
Then, λ that solves (16) is computed as a vector in the null space of DCg̃Q. Since the basis Λ of the null space
of DCg̃Q is one dimensional, solution λ is unique up to the scaling with a positive constant, and is given by:

λ1 ≥ 0, (19)

λ2 = λ1

t csc2(π
n
) sin( (m+1)π

n
) sin( (q+2)π

n
)

2 cos( (m+q+1)π
n

− α)
, (20)

λ5 = λ1

csc2(π
n
) sin( (m+1)π

n
) sin( (q+2)π

n
)

2t cos( (m+q+1)π
n

− α)
, (21)

m− q 6= 1, (22)

λ4 = λ1

cos( qπ

n
− α) sin( (q+2)π

n
)

cos( (m+q+1)π
n

− α) sin( (q−m+1)π
n

)
, (23)

λ7 = −λ1

cos( (1−m)π
n

+ α) sin( (1+m)π
n

)

sin( (q−m+1)π
n

) cos( (m+q+1)π
n

− α)
(24)

m− q = 1, (25)

λ4 = λ1, (26)

λ7 = 0, (27)



which can be written in the corresponding more compact form,

λ = Λλ1, Λ = Λ(n, α, t,m, q). (28)

The connectivity for which m − q = 1 corresponds to the case where the strings, e4 and e10, overlap, so that
they can be substituted with a single string.

For the given number of bars n, and the string connectivity parameters m and q, permissible α can be
computed from the condition that,

λi ≥ 0. (29)

Solving,
λ7 = 0, (30)

for α, gives the values of α where λ7 changes the sign,

α =
π

2
+ (m− 1)

π

n
. (31)

Solving,
λ4 = 0, (32)

for α, the values of α where λ4 switches the sign are obtained,

α =
π

2
+

qπ

n
. (33)

Finally, admissible α is defined as,

α = min{π
2 + qπ

n
, π

2 + (m− 1)π
n
}, (34)

α = max{π
2 + qπ

n
, π

2 + (m− 1)π
n
}, (35)

α ∈ [α, α] . (36)

The results obtained from the equilibrium analysis of the module will be summarized in the following theorem.

Theorem 3.5. The equilibrium force densities given by (19-27), and the set of admissible geometry parameters
defined by (14) and (34-36), represent the complete parameterization of all equilibrium configurations of the
symmetric one-stage tensegrity module with symmetric element forces.

Note that, if the string e4, and the string, e7, are both present in the structure, equilibrium geometry is
not unique. That is, (34-36) defines the range of α that yields an equilibrium tensegrity geometry. In the case
where either of these two different groups of strings is not present in the structure, the equilibrium geometry
becomes unique and it is defined by the corresponding limits of α. It is important to point out that this analysis
concerns only the prestress modes of the structure where elements in the same equivalency class have common
force coefficients. It can be shown that for configurations where twist angle α does not lie on the bounds of the
feasible set (34-36), there exist more than one prestress mode of the structure. For example, it can be shown
that the three–bar structure has three prestress modes, and the four–bar structure has two prestress modes that
are all characterized with asymmetric distribution of force density variables.

4. SLOWLY VARYING NONLINEAR SYSTEMS AND OPEN LOOP–CONTROL

4.1. Parametrization of tensegrity structure nonlinear dynamic model

Several different nonlinear models of tensegrity structure have been devised, e.g. [6]. What is common for all of
them is that rest lengths of elastic elements are parameters of the model. The open loop control strategy that is
postulated to control reconfiguration of equilibrium tensegrity structures is a result of a well known result from
nonlinear control theory.

Proposition 1. Let a parameterized model of a nonlinear system be given in the state space form

dx

dτ
= f(x, δ), x ∈ Rn, (37)



where δ represents the set of parameters defining the model of the system. Let g(δ) satisfying

0 = f(g(δ), δ), (38)

be an exponentially stable equilibrium manifold of the system. If a sufficiently slowly varying function δ = δ(τ)
is defined, then trajectory x(τ) of the system ẋ = f(x, δ(τ)) tracks the equilibrium manifold g(δ(τ)).

For more detailed analysis related to this topic consult [16].

4.2. Equilibrium rest lengths parametrization

For a given equilibrium tensegrity structure Γ = {E, P,Λ}, depending on the material model used to build its
elastic elements, rest lengths l0i

of the elastic elements ei are computed as,

l0i
= l0i

(λi, li, zi, yi, ai, . . .), (39)

where the meaning of the parameters yi, ai, . . . appearing in (39) depends on the material strain–stress relation-
ship. In particular, for the linear elastic material model of elastic elements with the cross section area ai and
Young’s modulus yi, the force–strain relationship given by the Hooke’s law,

fi = λili = zi

yiai

l0i

(li − l0i
),

results that (39) has the following form,

l0i
=

ziliyiai

liλi + ziyiai

, and, if yi →∞,⇒ l0i
→ li. (40)

Note that the lengths li of all elements of the structure Γ depend only on the structure geometry P and connec-
tivity E. In the equilibrium that is defined by the set Ω of feasible geometry and force parameters ,

p = p(α,β,γ, . . .),
λ = Λλ, Λ = Λ(α,β,γ, . . .),

λ,α,β,γ, . . . ∈ Ω,

(41)

the corresponding equilibrium rest lengths are defined as,

l0 = l0(λ, E,α,β,γ, . . . , z,y,a). (42)

Once the material and cross sections have been assigned to all elements of the structure Γ, (42) reduces to,

l0 = l0(λ,α,β,γ, . . .). (43)

Recall that the rest lengths l0 of the elastic members serve as the parameters δ of the nonlinear dynamic model
of the system (37), so that using (43), (37) yields the parameterized structure model,

ẋ = f(x, l0(λ,α,β,γ, . . .)) = f(x,λ,α,β,γ, . . .). (44)

Proposition 1 suggests that the system (44) tracks the equilibrium configuration,

p(τ) = p(α(τ),β(τ),γ(τ), . . .)

if one defines the sufficiently slowly varying functions,

λ(τ),α(τ),β(τ),γ(τ), . . . ∈ Ω,

that define the desired configuration p(τ), and the force densities λ(τ) at every time instance τ . For the tensegrity
structures whose equilibrium has been analyzed in this text, (43) has the following general form,

l0 = l0(λ, n, lb, r,α, t), ri+1 = tiri (45)

Assume that all bar elements are rigid with fixed lengths lb as it is postulated in the model [6]. Then the only
parameters of the desired geometry of the system that can be time dependant are, λ(τ), r(τ),α(τ) and t(τ), so
that the string rest length open-loop control becomes,

l0j
(τ) = l0j

(λ(τ), r(τ),α(τ), t(τ)), ri+1 = tiri, ej ∈ Es. (46)



5. EXAMPLES

5.1. Tower deployment with twist angle and truncation control

The control objective in this example is to deploy the class–2 tensegrity tower composed of four one–stage four–
bar modules with bar lengths lb = 6. To define the deployment control law (46), a monotonically decreasing
function r(τ) on the interval (0, T ) is defined. The desired geometry parameter functions in (46) are defined as
follows,

r(τ) = 3.2− 0.05τ, α(τ) =
π

4
, t = 1, 0 < τ ≤ 10,

r(τ) = 3.2− 0.05τ, α(τ) =
π

4
+ 0.03(10− τ)

π

4
, t = 1, 10 < τ ≤ 25,

r(τ) = 1.95, α(τ) = 1.45
π

4
, t = 1, 25 < τ ≤ 30.

Unlike the geometry parameters that are common for all the modules, force densities λi
1(τ) are not. They are

set to be constant throughout the deployment, so that λ(τ) =
[

λ1
1(τ) λ2

1(τ) λ2
3(τ) λ2

4(τ)
]T

, and

λ(τ) =
[

1 2 2 1
]

, 0 < τ ≤ 30.

For the closed form of the string rest length control consult [17]. Simulation results are depicted in Figure 3.
The ratio between the initial and final height of the tower is approximately 4.5.

Figure 3. Deployment of tensegrity tower

5.2. Self–propelled tensegrity structures – a tensegrity worm

If the tensegrity structure changes its shape in a periodic wave-like mode as a result of an internal shape control,
an interaction of the structure with its surrounding can induce a locomotion. The following is an example of a
self-propelled tensegrity tower, where the envelope of the shape of the structure r(τ, x) represents the longitudinal
wave that propagates with the velocity vw along the length of the structure.

r(τ, x) = r0 +

nk
∑

k=1

Ak cos(2π
x− xw(τ)

wλ

k), (47)

xw(τ) = vwτrel, τrel = mod(τ, T ), vw =
wλ

T
. (48)

The shape of the wave and its frequency content can be defined by selecting the magnitudes Ak of its nk harmonics
and the wave length wλ. Assume that all modules of the tower have the same height h so that the location xi

of the nodes of the modules and the wave length wλ are approximated as,

xi = (i− 1)h, wλ = mh, m ∈ Z. (49)
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Figure 5. Self-propelled tensegrity actuated by applying transversal wave shape control

Then, the continuous function ri(τ) ∈ C1 of the radii of the modules in the tensegrity tower whose shape envelope
represents a transversal wave, and the corresponding feasible truncation ratio ti(τ) of the modules can be written
as,

ri(τ) = r0 +

nk
∑

k=1

Ak cos(2π
(i− 1)− m

T
τrel

m
k),

ti(τ) =
ri+1(τ)

ri(τ)
.

Note that the requirement that ri(τ) is a continuous function guarantees that the string rest length control
function is also continuous and represents a physically realizable control, that does not require infinite power to
achieve.

The locomotion of the tower, generated by the interaction of the tower with its environment, whether it is a
fluid drag or friction from a contact surface, has the opposite direction from the direction of the wave propagation.
The simulation results that are shown in Figure 5. represent the application of this shape control strategy on a
class–2 tensegrity tower that is made by composition of six one-stage tensegrity modules.

6. CONCLUSIONS

This paper demonstrates application of an open-loop control strategy for reconfiguration of class–2 tensegrity
towers. By exploiting modularity of the structure that enables a simplified equilibrium analysis, we provided a
solution for its equilibrium geometry independently of the size of the structure. Based on this result, a string rest
length open–loop control law is defined. This control drives the structure through a sequence of configurations
that remain in close proximity of the equilibrium manifold. Non–uniqueness of the deployment trajectories opens
the possibility for further optimization in the study of optimal structural and control performance. The results
presented here define the optimization domain for the structure.
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