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ABSTRACT

This paper concerns the optimal mass–to–stiffness ratio design of class–2 tensegrity towers. For different loading
scenarios, the procedure seeks the topology and geometry of the structure that yields an optimal design satisfying
common constraints. The domain of feasible tensegrity geometries is defined by imposing tensegrity equilibrium
conditions on both unloaded and loaded structure. Remaining constraints include strength constraints for all
elements of the structure and buckling constraints for bars. The symmetry of the design is imposed by restricting
the domain of geometric variables and element parameters. The static response of the structure is computed
by using a nonlinear large displacement model. The problem is cast in the form of a nonlinear program. The
influence of material parameters on the optimal shape of the structure is investigated.
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1. INTRODUCTION

A tensegrity structure is a prestressable stable truss-like system. Unlike regular trusses, tensegrities involve string
elements that are capable of transmitting loads in one direction only. Admissible connections between elements
are ball joints. External loads can only act at the joints so that no torque can be applied on the elements.
Increased interest in tensegrity structures is a result of their favorable properties. All elements of the structure
are loaded axially only. This type of load can be more efficiently carried than bending loads.

Tensegrity structures enable the integration of several functions within a same element, [1]. String elements,
that are load carrying members, can also serv the control function, [2]. The choice of materials and element
geometry can be specialized for axial loads, and split further in materials optimized for compressive and tensile
stresses and strains.

Tensegrity technology thus far is characterized by the existence of successful dynamic models, e.g. [3] and
control strategies, e.g [2], [4–9]. A significant amount of research has been invested in different tensegrity
form-finding and rigidity problems that can both be characterized as static problems associated with tensegrity
structures, [10, 11], [12], [13], [14], [15]. Lightweight space controllable structures are the target applications for
tensegrity structures. Hence, lacking a systematic way for their optimal design becomes more significant.

This work is motivated by structural optimization problems already addressed by several authors. Opti-
mization of topology of structures has been studied for a long time, [16], [17]. Several approaches for numerical
optimization are known [18–22], with recent approaches being free material modelling [23] and optimization of
trusses [24, 25]. In order to accommodate specifics of tensegrity structures our formulation includes tensegrity
existence conditions that parameterize prestressed equilibrium of the structure. Practical reasons require incor-
porating constraints that preserve structural integrity by preventing different modes of failure of its elements.
In contrast to optimization of trusses starting from a fully populated grid in [25], the maximum set of allowed
geometries of the structure is not predefined in our formulation, since nodal positions are actually design vari-
ables. This paper also concerns the influence of different material parameters on the optimal topology with the
focus on class–2 tensegrity towers.

The paper is outlined as follows. In Section 2 the parameterization of structure equilibria and its static
response are formulated. Then, optimization variables and constraints are identified and defined. In Section 3,
the formulation of the optimization problem is given in a form of a nonlinear program, along with the Jacobian of
the nonlinear constraints. The class–2 tensegrity tower example follows in Section 4. A discussion and conclusions
are given in Section 5 and Section 6.
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Figure 1. Class–2 tensegrity tower and geometry of its n–bar one–stage module

2. FORMULATION OF THE PROBLEM

The objective of this analysis is to design a class–two tensegrity tower that has for the given mass of the material
available has the maximum stiffness. The total volume vtotal can be used to fix the mass under the assumption
that all elements are composed of the same material.

The tower depicted in Figure 1 represents a modular structure. For certain loading conditions, like for
example symmetric compression or torsion with respect to the axis of symmetry of the tower, the stiffness of
the overall structure can be modeled as a serial connection of the elastic substructures– the modules. Hence,
the analysis of the related properties of the whole structure will be performed on its module whose geometry
is depicted in Figure 1. The results obtained apply to tensegrity towers of arbitrary size as long as the loading
conditions remain equivalent. The problem formulation will be given in a way that can accommodate a broader
class of problems than the class–two tower module analysis. Specific that pertain to this particular example will
be given in the context of the more general problem.

Let the set N of nn nodes of a tensegrity structure be given, and let the node νj ∈ N be located at the position
defined by the nodal vector pj ∈ R

3. Denote the set of all nodal vectors P. Let the set E of ne elements of
the structure be given, and let Es and Eb denote its partitions in the sets of ns strings and nb bars respectively.
The scalar zi in the definition of the element ei = {[νj , νk], zi} ∈ E that connects the nodes νj and νk of the
tensegrity, identifies the type of the element so that,

zi =

{

1, ei ∈ Es,
−1, ei ∈ Eb.

(1)

2.1. Tensegrity equilibrium

If the element vector gi ∈ R
3 of the element ei = {[νj , νk], zi} is defined as,

gi = pj − pk, ‖gi‖2 = li,

then, the element force vector fji ∈ R
3 that represents the contribution of the internal force of the element ei,

to the balance of the forces at the node νj can be written as,

fji = cjiλigi, fi = λi‖gi‖ = λili, (2)



where element force coefficient λi is a scalar. Scalars cji in (2) that are defined as typical elements of the matrix
C(E) ∈ R

nn×ne , have one of the three possible values, cji = ±1 or cji = 0.

Let R
n
m denote the vector space of vectors x that have the following structure:

x ∈ R
n
m ⇒ xT =

[

xT
1 xT

2 . . . xT
n

]

, xi ∈ R
m, R

m = R
m
1 (3)

Vector of nodal vectors p ∈ R
nn

3 , vector of element vectors g(E,p) ∈ R
ne

3 , vector of force coefficients λ ∈ R
ne

and vector z ∈ R
ne are formed by collecting all node vectors pi, element vectors gi, force coefficients λi and all

individual element type identifiers,

p =











p1

p2

...
pnn











, g =











g1

g2

...
gne











, λ =











λ1

λ2

...
λne











, z =











z1

z2

...
zne











.

Define the linear operator ·̃ acting on the vector x ∈ R
n
m is defined as follows,

x̃ := blockdiag{x1, . . . ,xi, . . . ,xn} ∈ R
mn×n, xi ∈ R

m.

Define the linear operator (̂·) acting on the vector x ∈ R
n by,

x̂ := x̃ ⊗ I3 ∈ R
3n×3n. (4)

Let the member-node incidence matrix of the oriented graph associated with E be denoted M(E) ∈ R
ne×nn

and let M ∈ R
3ne×3nn be defined as M = M ⊗I3. The typical element mij of the matrix M is mij = 1 or mij −1

if the element ei terminates at or emanates from the node νj , otherwise mij = 0. Let the ns string elements in
Es be numbered first. Then, vector g and matrix M are related and partitioned as follows,

g(p) =

[

gs(p)
gb(p)

]

= Mp, M =

[

ST

BT

]

, S ∈ R3nn×3ns .

One can show that matrices M(E) and C(E) = C(E) ⊗ I3 are related as follows,

M =

[

ST

BT

]

, C =
[

−S B
]

. (5)

Throughout the text it will be assumed that the string elements of the tensegrity structure are numbered first
so that the vectors (·) ∈ R

ne

m of all different properties associated with the elements of the structure can be
partitioned as,

(·)(p) =

[

(·)s(p)
(·)b(p)

]

, (·)s ∈ R
ns

m , (·) ∈ R
nb

m . (6)

Let the vectors f e
j (p) ∈ R

3 and fe
j (p) ∈ R

3 represent respectively the collection of all the external force
vectors and constraint forces acting at the node νj in the given configuration p,

fe =











fe
1

fe
2
...

fe
nn











, f c =











f c
1

f c
2
...

f c
nn











. (7)

Then, the equilibrium conditions for the structure with properly loaded strings in the configuration p can be
written as,

Cλ̂(p)Mp + fe(p) + f c(p) = 0, (8)

λi(p) ≥ 0, ei ∈ Es. (9)



2.1.1. Linear elastic material model

The relationship between the force coefficient variables λ(p) and actual structure parameters depends on the
strain–stress relationship for the material used to build elastic elements of the structure. The force coefficients
λ(p) at any equilibrium configuration p can be computed from Hooke’s law for linear elastic materials. Define
volumes vi, rest lengths l0i

and Young’s modulus yi, of cylindrical elements and collect them in the corresponding
vectors l0 ∈ R

ne , v ∈ R
ne and y ∈ R

ne ,

l0 =











l01

l02

...
l0ne











=

[

l0s

l0b

]

, v =











v1

v2

...
vne











=

[

vs

vb

]

, y =











y1

y2

...
ynn











=

[

ys

yb

]

.

Then the force coefficients can be computed as,

λi(p) =
fi(p)

li(p)
= zi

yivi

li(p)l20i

(li(p) − l0i
), (10)

so that (9) can be rewritten in the equivalent form,

−(li(p) − l0i
) ≤ 0, ei ∈ Es. (11)

2.2. Equilibrium conditions in absence of external forces

The equilibrium condition in (8), with no external load, f e(p) = 0, becomes

Cλ̂(p)Mp + f c(p) = 0, (12)

−(li(p) − l0i
) ≤ 0 ei ∈ Es, (13)

where λ(p) is given by (10).

2.3. Large displacement static response - loaded equilibrium conditions

Once the external force f e is applied upon the structure in equilibrium configuration p, it deformes to a new
equilibrium configuration, p + u. The vector of nodal displacements u ∈ R

nn

3 ,

uT =
[

uT
1 uT

2 . . . uT
nn

]

,

can be computed without any assumptions on the size of the displacement uj ∈ R
3 of the node νj . Equation

(10) defines the equilibrium force coefficient vector λ(p + u) in any equilibrium configuration p + u and this
relationship holds true independently on the magnitude of u. Hence, nodal displacements u of the loaded
structure can be computed directly from the structure equilibrium conditions in the configuration p+u, instead
of the linearization method that involves the computation of the structure stiffness matrix. From (8), substituting
(9) with (11), equilibrium conditions for the configuration p + u become,

Cλ̂(p + u)M(p + u) + f e(p + u) + f c(p + u) = 0, (14)

−(li(p + u) − l0i
) ≤ 0 ei ∈ Es, (15)

where λ(p + u) is given by (10). The constraint in (15) guaranties that the string elements are not compressed
in this new equilibrium.

The relationship between the nodal displacements u and the external forces f e in (14) is nonlinear although the
elements of the structure are linear elastic. The nonlinear structure model in (14) parameterizes all equilibrium
configurations of the structure under the external force f e, regardless of them being unique. It can be seen that
the non-uniqueness of the equilibrium geometry, p + u resulting from global buckling or other nonlinear effects
is also accommodated by this model.



2.4. Defining the optimization objective and identifying the tensegrity structure
parameters

2.4.1. Optimization objectives

One can define different criteria to measure structure stiffness. The work done by the external forces, f e, to
deform the structure from configuration p to p + u, is one possible measure. The inner product, 1

2 f
eT u, is

an approximation of the work done and will be called approximate compliance since it is computed from the
nonlinear structure model (14). Computed values of the approximate compliance, 1

2 f
eT u, are generally lower

than the compliance, 1
2 f

eT ul, if the nodal displacements, ul, were computed from the linearized structure model.
This is due to the nonlinear stiffening effect.

If the approximate compliance is the measure of the stiffness, only the nodal displacements of the nodes at
which the external forces act are penalized. An elliptical norm uT Qu, Q � 0 can be used as the stiffness measure
to penalize other nodal displacements.

2.4.2. Design variables

From (8)-(9), (14)-(15) and (10) it is clear that for the tensegrity structure with connectivity E the parameters
that define its static response u are the nodal vector p, element rest lengths l0 ∈ R

ne , and element volumes
v ∈ R

ne . These three structure parameters will be variables in the optimization problem. The domains of their
feasible values are l0 > 0 and v ≥ 0. Note that the presence of the element ei in the set E defines allowable
element connections in the structure, but that the volume vi > 0 is the actual indicator of the presence of the
element in the structure. For the structure comprised of the elements built of the same material, the constraint
that fixes its total mass can be written as

∑

vi = vtotal.

2.4.3. Symmetry treatment

The domain of the variables in the problem has to be reduced to account for the symmetry requirements in the
design. With the structure parameters identified so far, there can be associated two classes of symmetry. The
first symmetry is the nodal symmetry. It can be shown that the nodal symmetry constraint can be cast in the
following linear form,

p = Rp, (16)

where the matrix R depends on the particular nodal symmetry and is defined in [14]. Obviously, the nodal
symmetry constraint represents a reduction in the number of independent geometry variables from p ∈ R

nn

3

to p ∈ R
nc

3 , where the vector p is the nodal vector of the subset of nodes N ∈ N. The second symmetry is
the symmetry of the sets of parameters l0 and v associated with the elements of the structure. It can also be
regarded as a reduction of the number of variables and cast in the linear form,

l0 = El0, v = Ev, E ∈ R
ne×n

e , l0,v ∈ R
n

e , (17)

where the sparse matrix E relates the vector of different typical elements with the full vector of the variables.
It is possible to define and impose other symmetries of the structure. Symmetry of the external force and nodal
displacements are two examples. These additional symmetries will not be exploited in the problem formulation
because they are not independent from each other, and if not defined consistently with other constraints they
can render an infeasible problem.

2.5. Shape constraints and boundary conditions

2.5.1. Shape constraints

A desired shape of the structure before external forces f e have been applied on it, can be specified by defining
the form of the general shape constraint ϕ(p) = 0. To ensure that the tensegrity structure can be supported at
the desired locations and that the external load acting at specified locations can be attached to it, the tensegrity
structure in the configuration p = Rp has to satisfy the shape constraints in the linear form,

Pp = pc, (18)



where P and pc are a given matrix and vector.

The element length constraint also belongs to the category of geometry constraints.

li(p) > lmini
, li(p + u) > lmini

(19)

One of the reasons for constraining the minimal length of the elements is the limited ability to manufacture
structures with elements that are too short. This constraint also guarantees that the Jacobian of the constraints
is well defined since it involves inverses of element lengths.

2.5.2. Boundary conditions treatment

The only constraint on structure displacements u that will be considered here is the consequence of attaching
the nodes of the structure to linear supports. In that case, the admissible nodal displacements must satisfy the
following linear constraint,

Cuu = 0, (20)

where the structure of the constraint matrix Cu ∈ R
nc×3nn depends on the type of the supports that structure

is attached to. It can be shown that the constraint forces, f c(p), in any configuration p, are the vectors in the
left range space of the matrix Cu. Hence, f c(p) can be written as,

f c(p) = CT
u λc(p), (21)

for some choice of the Lagrange multipliers λc ∈ R
nc . Assume that only nc independent boundary conditions

are defined so that matrix Cu has a full row rank. Let the singular value decomposition of the matrix Cu be
given as,

Cu = UΣV T = U
[

Σ1 0
]

[

V T
1

V T
2

]

= UΣ1V
T
1 , CT

u = V1Σ1U
T

UUT = UT U = I, V V T = V T V = I.

An equivalent formulation of the equilibrium conditions in (14) and (8) can be obtained by using (21) in these
equations and multiplying them from the left with the orthonormal full rank matrix V T yielding

[

V T
1

V T
2

]

(Cλ̂(p)M(p) + f e(p)) +

[

Σ1U
T

0

]

λc(p) = 0. (22)

It is clear from (22) that the solution of the problem can be split into two parts. Lagrange multipliers λc do not
appear as the variable in the first set of equations,

V T
2 (Cλ̂(p)M(p) + f e(p)) = 0, (23)

whereas the second set of equations,

V T
1 (Cλ̂(p)M(p) + f e(p)) + Σ1U

T λc(p) = 0, (24)

gives the solution for the Lagrange multipliers λc and the constraint forces f c,

λc(p) = −UΣ−1
1 V T

1 (Cλ̂(p)M(p) + f e(p)),

f c(p) = CT
u λc(p) = −CT

u UΣ−1
1 V T

1 (Cλ̂(p)M(p) + f e(p)).

2.6. Strength constraints

All elements of a tensegrity structure must be constrained from yielding in order to preserve structure integrity
in both unloaded configuration p and loaded configuration p + u. These constraints can be defined from the
Hooke’s law for the axially loaded elements as,

εi(p)yi = zi
li(p) − l0i

l0i

yi ≤ σi,

εi(p + u)yi = zi
li(p + u) − l0i

l0i

yi ≤ σi,



where σi is the yield stress of the element ei. An equivalent form of these constraints is,

zi(li(p) − l0i
)yi − σil0i

≤ 0,

zi(li(p + u) − l0i
)yi − σil0i

≤ 0.

Since bar elements are allowed to be under tension, additional constraints must be defined to account for this
fact,

yi(li(p) − l0i
) − l0i

σ ≤ 0, ei ∈ Eb, (25)

yi(li(p + u) − l0i
) − l0i

σ ≤ 0, ei ∈ Eb. (26)

2.7. Buckling constraints

Since bar elements are the only elements that may be compressed, a buckling constraint is applied only to bars.
The maximum magnitude, fmaxi

, of the compressive force, fi, that the bars can be loaded with, is defined by
Euler’s formula,

fi ≤ fmaxi
=

π2yiImini

l20i

, (27)

where Imini
is the minimal moment of inertia of the cross section of the element. Assuming that all bars have a

round cross section with radius ri, Iimin
is defined as,

Imini
=

πr4
i

4
.

Then, using

r2
i =

vi

πl0i

,

Iimin
can be computed as,

Iimin
=

v2
i

4πl20i

. (28)

From (2),(10) and (28) after manipulating (27), the bar buckling constraint can be rewritten as,

−l20(li(p) − l0i
) −

π

4
vi ≤ 0, ei ∈ Eb.

The buckling constraint must be satisfied in both unloaded configuration p and loaded configuration p + u, so
that it is finally written as,

−l20(li(p) − l0i
) −

π

4
vi ≤ 0, ei ∈ Eb, (29)

−l20(li(p + u) − l0i
) −

π

4
vi ≤ 0, ei ∈ Eb. (30)

3. NONLINEAR PROGRAM FORMULATION

Keeping strength and buckling constraint in the problem for zero volume elements may produce conservative
results. Hence, these constraints for a zero volume element ei should be relaxed by multiplying them with the
element volume vi. The optimal mass–to–stiffness ratio optimization problem for the tensegrity structure of the
connectivity E, made of the material {y, σ}, loaded with external force f e, and defined shape and displacement



constraints is written as,

Given data C(E),M(E), z,y, f e,Cu, V2,P,pc,R, E, σ, vtotal, l0min, lmin, l̄min

min
p,l

0
,v,u

feT u

subject to

linear constraints : Pp = pc,

−l0 + l0min ≤ 0,

−v ≤ 0,
[

1 1 1 . 1
]

v − vtotal = 0,

Cuu = 0,

nonlinear constraints : ϕ(p) = 0,

V T
2 Cλ̂(p)Mp = 0,

V T
2 Cλ̂(p + u)M(p + u) + V T

2 fe = 0,

−ṽs(ls(p) − l0s) ≤ 0,

−ṽs(ls(p + u) − l0s) ≤ 0,

−l(p) + lmin ≤ 0,

−l(p + u) + l̄min ≤ 0,

ṽ(z̃ỹ(l(p) − l0) − σ̃l0) ≤ 0,

ṽb(ỹb(lb(p) − l0b
) − σ̃bl0b

) ≤ 0,

ṽ(z̃ỹ(l(p + u) − l0) − σ̃l0) ≤ 0,

ṽb(ỹb(lb(p + u) − l0b
) − σ̃bl0b

) ≤ 0,

−ṽb(̃l
2
0b

(lb(p) − l0b
) −

π

4
vb) ≤ 0,

−ṽb(̃l
2
0b

(lb(p + u) − l0b
) −

π

4
vb) ≤ 0,

where : p = Rp, li(p) = ‖gi(p)‖2, g(p) = Mp,

l0 = El0, v = Ev,

λi(p) =
ziyivi

li(p)l20i

(li(p) − l0i
).

3.1. Jacobian of the nonlinear constraints

The jacobian of the nonlinear constraints is given in the following matrix,where the operator x̄ denotes x̄ =
x(p + u).

J=



































































δϕ(p)/δp 0 0 0

V T

2
C

ˆλM−V T

2
Cg̃ỹṽl̃

−1

0
l̃−3g̃T CT V T

2
Cg̃z̃ỹṽ(−2̃l−3

0
+l̃

−2

0
l̃−1) V T

2
Cg̃z̃ỹl̃

−2

0
l̃−1 (̃l−l̃0) 0

V T

2
C

ˆ̄
λM−V T

2
C ˜̄gỹṽl̃

−1

0

˜̄l−3 ˜̄gT CT V T

2
C˜̄gz̃ỹṽ(−2̃l−3

0
+l̃

−2

0

˜̄l−1) V T

2
C˜̄gz̃ỹl̃

−2

0

˜̄l−1 (̃̄l−l̃0) V T

2
C

ˆ̄
λM−V T

2
C ˜̄gỹṽl̃

−1

0

˜̄l−3 ˜̄gT CT

ṽs l̃
−1

s
g̃T

s
ST ṽs −(̃ls−l̃0s

) 0

ṽs
˜̄l−1

s
˜̄gT

s
ST ṽs −(̃̄ls−l̃0s

) ṽs
˜̄l
−1

s
˜̄gT

s
ST

−l̃−1g̃T M 0 0 0

−
˜̄l−1 ˜̄gT M 0 0 −

˜̄l−1 ˜̄gT M

z̃ṽỹl̃−1g̃T M −z̃ỹṽ−σ̃ṽ z̃ỹ(̃l−l̃0)−l̃0σ̃ 0

ṽbỹb l̃
−1

b
g̃T

b
BT ỹbṽb−σ̃bṽb ỹb (̃lb−l̃0b

)−l̃0b
σ̃b 0

z̃ṽỹ˜̄l−1 ˜̄gT M −z̃ỹṽ−σ̃ṽ z̃ỹ(̃̄l−l̃0)−l̃0σ̃ z̃ṽỹ˜̄l−1 ˜̄gT M

ṽbỹb
˜̄l−1

b
˜̄gT

b
BT ỹbṽb−σ̃bṽb ỹb (̃̄lb−l̃0b

)−l̃0b
σ̃b ṽbỹb

˜̄l−1

b
˜̄gT

b
BT

−ṽb l̃
2

0b
l̃
−1

b
g̃T

b
BT (3̃l2

0b
−2̃l0b

l̃b)ṽb −l̃2
0b

(̃lb−l̃0b
)−π

2
ṽb 0

−ṽb l̃
2

0b

˜̄l−1

b
˜̄gT

b
BT (3̃l2

0b
−2̃l0b

˜̄lb)ṽb −l̃2
0b
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4. OPTIMIZATION OF THE TOWER MODULE

The solutions for the problems given here are obtained using the SNOPT 6.1 [26] software package for sparse
nonlinear optimization. The package uses the sequential quadratic programming (SQP) method. All constraint
Jacobians and objective gradients were made available during the execution of the code in its sparse mode.

4.1. Compressive load case

We investigate the optimal topology of the three–bar module under a unit vertical compressive load applied
to each of the top nodes of the module. The formulation of the constraints in the module optimization must
accommodate structure symmetry, support conditions, and position of the nodes at which the load is applied.
Due to the module symmetry, only the positions of the nodes at p1 and p2 serve as the variables in the problem.
The position of the node at p2 is eliminated as the variable in order to guarantee that the external load can be
attached to the structure at the desired location p2. The height, h, and radius, r, of the cylindrical module are
constrained to the given fixed numbers yielding the linear and the quadratic constraint in the variable p1,

[

0 0 1
]

(p2 − p1) = h, pT
1





1 0 0
0 1 0
0 0 0



p1 = r2. (31)

The nodal displacement constraint is defined to reflect the fact that the bottom nodes of the module are at-
tached to the fixed supports. An equivalent formulation of the yield strength constraint may be obtained by

Figure 2. Initial (left) vs. optimal (right) geometry of the structure for one choice of the material parameters when the
strength constrains for the loaded configuration are not imposed

dividing it with the Young’s modulus y. Hence, material yield stress, σ, is substituted in the problem with the
material strength–to–elasticity ratio, σ/y, (yield strain), that modifies the direction of the constraint Jacobian.
Increasing the value of the σ/y ratio effectively makes the yield stress constraint less restrictive compared to
other constraints. Smaller values of this parameter correspond to rubber–like materials that can undergo large
elastic deformation, whereas the large ratio, σ/y, pertains to more traditional, metal–like engineering materials.
This problem was solved for several different choices of the material parameters y and σ/y in order to investigate
their influence on the optimal topology while keeping the applied load constant. In order to make these results
comparable to the stiffness optimization methods that do not take strength constraints into account, a separate



problem is solved where the strength constraints of the loaded structure were relaxed. These constraints for the
unloaded structure remained imposed in order to limit otherwise unbounded stiffening effect of the prestress.
The presence of this effect can be verified by inspecting the stiffness matrix of a prestressed structure given
in [14]. Optimal values of the resulting module twist angle, α, for different choices of material parameters and
different active strength constraints are given in Figure 3.
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Figure 3. Optimal twist angle of the three–bar unit vs. material parameters: left: without imposing strength and buckling
constraints for the loaded configuration; right: with strength and buckling constraints for the loaded configuration

5. DISCUSSION

The results shown in Figure 3 indicate that α = 60o is the optimal twist angle of the three–bar module for most
materials when the strength constraints of the loaded structure are applied and that it is very insensitive to the
material parameters variation. This angle lies in the middle of the feasible range for the three–bar module as
shown in [27].

In the case when strength constraints of the loaded structure are relaxed, this angle converges to 30o as the
material strength–to–stiffness ratio increases. It may seem to be a paradox that this angle converges to the value
at which, the linearized stiffness matrix of a structure exhibits rank deficiency if the structure is not prestressed,
indicating a presence of an infinitesimal mechanism mode. Our results clearly show that the configuration
that would normally be inferior for structures of metal–like materials, are superior for structures of rubber–like
materials which can be attributed to a different relative contribution of the prestress to the structure stiffness.
In the sequel we try to rationalize this claim.

By inspecting the stiffness matrix of a prestressed structure given in [14] one can show that increasing prestress
in a structure increases its stiffness. It can also be realized that the sensitivity of the condition number of the
stiffness matrix to this change increases as the material strength–to–elasticity ratio increases. This leads to the
conclusion that significant stiffening of a structure due to the prestress may be expected only if the structure is
of a material with a relatively high strength–to–elasticity ratio. Most biological materials belong to this category
which may explain a noticeable sensitivity of the cytoskeleton stiffness to prestress change as several researchers
verified, e.g. [28].

As it is well known some geometric configurations yield superior stiffness properties. Our results indicate that
there also exist configurations that enable larger impact of the prestress which in some materials predominantly
contributes to the structure stiffness. These results indicate those configurations for the the three–bar tower
module.



6. CONCLUSIONS

The increased interest in tensegrity structures requires addressing problems of their structural optimization.
Unlike methods that concern finding feasible tensegrity geometries only, this paper proposes a systematic pro-
cedure for designing optimal tensegrity structures. Including additional common constraints was an important
step toward deriving more advance tensegrity design tools. The choice for the design variables and the way that
the constraints are formulated clearly display their interconnections and suggests efficient ways of scaling the
constraints to improve efficiency of the numerical optimization algorithms.

One of the novelties introduced in this paper is the utilization of optimization methods for solving nonlinear
static response problems associated with large nodal displacements. In addition to a higher accuracy in predicting
a static response of a structure, this method enables efficient solutions of the problems in structures that have
ill-conditioned or even singular stiffness matrices at no additional cost. It also indirectly incorporates global
buckling as a possible mode of the deformation of the structure.

There is no guarantee that the results shown here represent global optimal solutions because of the non-
convex nature of the optimization problem. In some instances, repeated solutions increased confidence to draw
several general conclusions. This paper demonstrates that,

• optimization of tensegrity topology and geometry, cast in the form of the nonlinear program, is effectively
solvable, and

• if the problem is feasible, the optimization approach is an appropriate design tool that guarantees a
monotonic stiffness improvement compared to the initial design.
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