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ABSTRACT
This paper presents a new algorithm for the design of

linear controllers with special constraints imposed on the
control gain matrix. This so called SLC (Structured Lin-
ear Control) problem can be formulated with linear ma-
trix inequalities (LMI’s) with a nonconvex equality con-
straint. This class of prolems includes fixed order out-
put feedback control, multi-objective controller design,
decentralized controller design, joint plant and controller
design, and other interesting control problems.

Our approach includes two main contributions. One
is that many design specifications such asH∞ perfor-
mance, generalizedH2 performance includingH2 perfor-
mance,̀ ∞ performance, and upper covariance bounding
controllers are described by a similar matrix inequality. A
new matrix variable is introduced to give more freedom
to design the controller. Indeed this new variable helps to
find the optimal fixed-order output feedback controller.

The second contribution uses a linearization algo-
rithm to search for a solution to the nonconvex SLC
problems. This has the effect of adding a certain poten-
tial function to the nonconvex constraints to make them
convex. Although the constraints are added to make
functions convex, those modified matrix inequalities will
not bring significant conservatism because they will ulti-
mately go to zero, guaranteeing the feasibility of the orig-

∗Address all correspondence to this author.

inal nonconvex problem. Numerical examples demon-
strate the performance of the proposed algorithms and
provide a comparison with some of the existing methods.

1 Introduction
Control problems are usually formulated as opti-

mization problems. Unfortunately, most of them are not
convex [1], and a few of them can be formulated as lin-
ear matrix inequalities (LMI’s). In this case, powerful
algorithms can be used to find the optimal solution [2,3].
There are two main approaches to solve a linear control
problem. One is the change of variable technique [4, 13]
and the other is to use the elimination lemma [1]. In-
deed, the book [1] was written to show that more than
twenty different control problems can be treated as the
same linear algebra problem. In the LMI framework,
one can solve several linear control problems in the form
minK f(T(ζ)), wheref(·) is some suitably defined ob-
jective function andT(ζ) is the transfer function from
a given input to a given output of interest. Notice that
there is no constraint on the control variableK for this
problem. For this problem, one can find a solution ef-
ficiently with the use of any LMI solver. However the
problem becomes difficult when one adds some structural
constraints onK. A typical example is a decentralized
control problem or a fixed-order output feedback control
problem. In this case, the problem can be formulated as
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minK∈Φ f(T(ζ)) [14]. Any linear control problem with
structure imposed on the controller parameterK will be
called the “Structured Linear Control (SLC)” The SLC
problem involves a large class of problems such as de-
centralized control, fixed-order output feedback, linear
model reduction or linear filtering, the simultaneous de-
sign of plant and controller , norm bounds on the control
gain matrix, and multi-objective control problems.

There are many attempts to solve the SOF( Static
Output Feedback ) problem, which is known to be NP-
hard [1, 5–7, 9–11, 16, 17]. Most algorithms try to obtain
a stable controller rather than find an optimal controller.
This is one of the important SLC problems. General
multi-objective control problems are also important and
remain open to this date. Indeed, this problem can be for-
mulated as a SLC problem, since this problem is equiv-
alent to finding multiple controllers for multiple plants
where we restrict all controllers to be identical. For the
full-order output feedback case, it has been proposed to
specify the closed-loop objectives in terms of a common
Lyapunov function which can be efficiently solved by
convex programming methods [4]. It is well known that
this solution is very conservative. An extended approach
has been proposed to relax the constraint on the Lyapunov
matrix [12]. This idea has several advantages over the
“Lyapunov shaping paradigm” [4]: the Lyapunov matrix
is not involved in any product with the system matrices.
However, they impose another constraint on newly intro-
duced variablesG1 = · · · = GN = G to ensure that the
controllers considered in each inequality be the same. It
seems that this constraint is inevitable for the “lineariz-
ing change of variable technique” used in [4, 12]. These
two approaches can not be applicable to the “fixed-order
multi-objective controller synthesis problem”.

Recently, a convexifying algorithm has been pro-
posed [14, 15] with interesting features. This algorithm
solves convexified matrix inequalities iteratively. These
convexified problems can be easily obtained by adding
convexifying potential functions to the original noncon-
vex matrix inequalities at each iteration. Although the
convexifying potential function, which is positive semi-
definite, is added, those convexified matrix inequalities
will not bring significant conservatism because they will
go to zero by resetting the convexifying potential func-
tion to zero at each iteration. Due to the lack of convex-
ity, only local convergence can be guaranteed. However,
this algorithm is easily implemented and can be used to
improve available suboptimal solutions. Moreover, this
algorithm is so general that it can be applicable to almost
all SLC problems.

The main objective of this paper is to present the op-
timal controller for SLC problems using a linearization
method. Using linear algebra, we present new system
performance analysis conditions. The new performance

analysis conditions have several advantages over the orig-
inal performance analysis conditions. First of all, many
design specifications such as generalH2 performance in-
cludingH2 performance,H∞ performance,̀ ∞ perfor-
mance, and the upper covariance bounding controllers
can be written in a very similar matrix inequality. We
introduce a new matrix variableZ for several system per-
formance analysis conditions. As a result, we have more
freedom to find the optimal controller. Indeed, this new
variable helps to find the optimal fixed-order output feed-
back controller.

The paper is organized as follows. Section 2 defines
a framework for SLC problems and describes the new
system performance analysis conditions. We derive the
important class of a matrix inequality which introduces
a new matrix variable. Based on this new system per-
formance specifications, a new linearization algorithm is
proposed in section 3. Two numerical examples illustrate
the performance of the proposed algorithms as compared
with the existing results in section 4 and then draw the
conclusion.

2 System Performance Analysis
For synthesis purposes, we consider the following

discrete time linear system.

P







xp(k + 1) = Apxp(k) + Bpu(k) + Dpw(k)
z(k) = Czxp(k) + Bzu(k) + Dzw(k)
y(k) = Cyxp(k) + Dyw(k)

(1)

wherex ∈ <np is the plant state,z ∈ <nz is the con-
trolled output, andy ∈ <ny is the measured output. We
assume that all matrices have suitable dimensions. Our
goal is to compute an output-feedback controller

K

{

xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(2)

wherexc ∈ <
nc is the controller state andu ∈ <nu

is the control input, that meets various specifications on
the closed-loop behavior. By assembling the plantP and
the controllerK defined as above, we have the compact
closed-loop system

[

x(k + 1)
z(k)

]

=

[

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

] [

x(k)
w(k)

]

(3)

where the controller parameterK and the closed loop
statesx are

K
4
=

[

Dc Cc

Bc Ac

]

; x
4
=

[

xp

xc

]
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and the closed loop matrices

Acl(K)
4
= A+ BKC ; Bcl(K)

4
= Dp + BKDy

Ccl(K)
4
= Cz + BzKC ; Dcl(K)

4
= Dz + BzKDy

are all affine mappings on the variableK and all matrices
given by

A
4
=

[

Ap 0

0 0nc

]

, B
4
=

[

Bp 0

0 Inc

]

, C
4
=

[

Cy 0

0 Inc

]

Bz
4
=

[

Bz 0
]

, Dp
4
=

[

Dp

0

]

Cz
4
=

[

Cz 0
]

Dy
4
=

[

Dy

0

]

Dz
4
= Dz

(4)

are constant matrices that depend on the only plant prop-
erties.

The multi-objective control problem is defined as the
problem of determining a controller that meets several
closed-loop design specifications at the same time. We
assume that these design specifications are formulated
with respect to closed loop transfer functions of the form

Ti(ζ)
4
= LiT(ζ)Ri where the matricesLi,Ri select the

appropriate input/output channels or channel combina-
tions. From the dynamic matrices of system (1), a state-
space realization of the closed loop systemTi(ζ) is ob-
tained by defining new matrices as following

(Dp)i
4
= DpRi (Dy)i

4
= DyRi (Dz)i

4
= LiDzRi

(Bz)i
4
= LiBz (Cz)i

4
= LiCz

in the closed-loop matrices (3). In this form, closed-loop
system performance and robustness may be ensured by
constraining the generalH2 andH∞ norms of the trans-

fer functions associated to the pairs of signalswi
4
= Riw

andzi
4
= Liz.

2.1 General H Control Synthesis
The purpose of this section is to define quantitative

measures of system performance and to provide (com-
putable) characterizations of the performance measures.
System gains for the discrete-time system (3) can be de-
fined as follows [1].

Energy-to-Peak Gain :Υep
4
= sup‖w‖

`2
≤1 ‖z‖`∞ .

Energy-to-Energy Gain :Υee
4
= sup‖w‖`2

≤1 ‖z‖`2 .

Pulse-to-Energy Gain :

Υie
4
= supw(k)=w0δ(k) , ‖w0‖≤1 ‖z‖`2 .

whereδ(·) is the Kronecker delta :δ(k) = 0 for all k 6= 0.
and‖A‖ is the spectral norm of a matrixA. These system
gains are characterized in terms of algebraic conditions.
The following matrix inequalities will be discussed.

X > Acl(K)XAT
cl(K) + Bcl(K)BT

cl(K)
Υ > Ccl(K)XCT

cl(K) + Dcl(K)DT
cl(K)

}

(5)

Y > AT
cl(K)YAcl(K) + BT

cl(K)Bcl(K)
Υ > CT

cl(K)YCcl(K) + DT
cl(K)Dcl(K)

}

(6)

[

X Z
ZT Υ

]

>

[

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

] [

X 0

0 I

] [

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

]T

(7)
[

Y Z
ZT Υ

]

>

[

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

]T [

Y 0

0 I

] [

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

]

(8)

Note that (5) describes an upper bound to the observabil-
ity GramianX and (6) describes an upper bound to the
controllability GramianY. The following results are use-
ful to compute system gains.Twz(ζ) denotes the transfer
function from the inputw to the outputz.

Lemma 1. [1] Let a positive scalarγ be given and con-
sider the discrete-time system (3). Suppose the system is
asymptotically stable. Then the following statements are
true.

(i) Υep < γ iff there exist matricesX > 0 andΥ >
0 such thatγI > Υ and (5) holds.

(ii) Υie < γ iff there exist matricesX andΥ such
thatγI > Υ and (6) holds

(iii) ΥH2

4
= ‖Twz(ζ)‖H2

=
∥

∥

∥
Ccl(K) (ζI−Acl(K))

−1
Bcl(K) + Dcl(K)

∥

∥

∥

2
< γ

iff there exist matricesK, Z, X , and Υ such that
trace[Υ] < γ2 and either (5) or (6) hold.

(iv) Υee
4
= ‖Twz(ζ)‖H∞

=
∥

∥

∥
Ccl(K) (ζI−Acl(K))

−1
Bcl(K) + Dcl(K)

∥

∥

∥

∞
< γ iff

there exist matricesK, X , andΥ such thatγ2I > Υ and
either (7) holds withZ = 0 or (8) holds withZ = 0.

(v) ΥH2∞
< γ iff there exist matricesK, X andΥ

such thattrace[Υ] < γ2 and either (7) withZ = 0 holds
or (8) holds withZ = 0.

One can add more system performance criteria such as
positive realness, but we do not consider those here for
brevity. The statement (iii) characterizes theH2 control
problem and the statement (iv) characterizes theH∞ con-
trol problem. Thus, we shall also use another notation

ΥH∞

4
= Υee. The statement (i) is often called by general

H2 control problem [4]. Notice that we introduce the new
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design specificationsΥH2∞
which is given by the state-

ment (v) in Lemma 1. This measure is closely related to
H2 andH∞ measures and can be interpreted by a uncon-
trained mixedH2/H∞ problem. In this sense, we label
all problems defined in Lemma 1 bygeneralH problem.
Note that all inequalities given in Lemma 1 have similar
forms which can be parametrized by the matrix inequal-
ity (Θ + ΓKΛ)R (Θ + ΓKΛ)T < Q. The following
lemma is important to derive alternative analysis condi-
tions.

Lemma 2. [1] Let a matrix B and symmetric positive
definite matricesA,C,Q andR be given. Then the fol-
lowing statements are equivalent.

(i) Q−A > 0 andR−C > 0.
(ii) There exists a matrixZ such that

[

Q Z

ZT R

]

>

[

A B

BT C

]

. (9)

Suppose the above statements hold. Then all matricesZ

satisfying (9) are given by

Z = B + (Q−A)
1

2 L (R−C)
1

2

whereL is an arbitrary matrix such that‖L‖ < 1.

Using Lemma 2, we can rewrite Lemma 1 as follow-
ing compact form.

Theorem 1. Consider the system (3). Suppose the sys-
tem is asymptotically stable and a positive scalarγ is
given. Then the following statements are true.

(i) Υep < γ iff there exist matricesK, Z,X andΥ

such thatγI > Υ and (7) holds.
(ii) Υie < γ iff there exist matricesZ,X andΥ such

thatγI > Υ and (8) holds.
(iii) ΥH2

< γ iff there exist matricesK,Z,X andΥ

such thattrace[Υ] < γ2 and (7) hold.
(iv) ΥH∞

< γ iff there exist matricesK, X andΥ

such thatγ2I > Υ and (7) hold withZ = 0.
(v) ΥH∞2

< γ iff there exist matricesK, X andΥ

such thattrace[Υ] < γ2 and (7) withZ = 0.

Proof : (7) can be rewritten by

[

X Z
ZT Υ

]

>

[

A B

C D

]

where

[

A B

C D

]

4
=

[

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

] [

X 0

0 I

] [

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

]T

Then the results follows immediately from Lemma 2.

One of the interesting features of Theorem 1 is its
compact form, and the fact that so many performance
specifications have similar forms. Since we used the ob-
servability Gramian form, (7) appears in (i),(iii),(iv), and
(v) in Theorem 1. We can easily see that theH2 norm and
theH∞ norm is closely related. Note thatΥ2∞ has the
same constraints as (iii) except for the constraintZ = 0.
So this measure is constrainedH2 control problem and
H∞ norm is the maximum singular value ofΥ. The most
important contribution in Theorem 1 is the introduction
of new variableZ. This new variable may help to find
the optimal solution, since we enlarge the domain of the
problem. It is well known in a variety of mathematical
problems that enlarging the domain in which the problem
is posed can often simpify the mathematical treatment.
Many nonlinear problems admit solutions by linear tech-
niques by enlaring the domain of the problem.

3 Linearization Algorithm
In the previous section, we have shown how sev-

eral control problems can be written as linear matrix in-
equalities that preserve the affine dependence on the free
variables with the addition of a nonconvex equality con-
straints. Since analytic condition is nonvex matrix in-
equality, we need to develop a new algorithm.

Theorem 2. Let a scalar convex functionalf(X), a ma-
trix functionalJ (X) andH(X) be given and consider
the following nonconvex optimization problem.

min
X∈Ψ

f(X) , Ψ
4
= {X| J (X) +H(X) < 0} (10)

SupposeJ (X) are convex,H(X) are not convex, and
f(X) is a first order differentiable convex function
bounded from below on the setΨ. Then this problem
can be solved (locally) by iterating a sequence of convex
sub-problems if there exists a matrix functionalG(X,Xk)
such that

Xk+1 = arg min
X∈Ψk

f(X) (11)

where

Ψk
4
= {X | J (X) + LIN (H(X),Xk) + G(X,Xk) < 0,

H(X) ≤ G(X,Xk) + LIN (H(X),Xk)}

whereLIN (?,Xk) is the linearization operator of? at
givenXk.
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Proof : First note that every pointXk+1 ∈ Ψk is also
in Ψ sinceJ (X)+H(X) ≤ J (X)+LIN (H(X),Xk)+
G(X,Xk) < 0. As long asXk ∈ Ψk, f(Xk+1) <
f(Xk) holds strictly untilXk+1 = Xk. The fact that
f(X) is bounded from below ensures that this strictly de-
creasing sequence converges to a stationary point.

The convex problem (11) is much simpler than (10)
and there is no need to perform any kind of line search
algorithm. This is a very simple, but powerful idea to
solve a difficult nonconvex problem by relaxing nonlinear
terms.

All matrix inequalities given in the previous sections
are convex except for the term−Y−1. Note that this non-
convex term is always negative definite. One can ask that
“How can we linearize this nonconvex termY−1 at given
Yo > 0?”. Since our variables are matrices, we need to
develop the taylor series expansion for matrix variables.
Following lemma provides the linearization ofY−1.

Lemma 3. The linearization of the matrixY−1 ∈
<n×n about the valueY−1

o is given by

LIN
(

Y−1,Yo

)

= Y−1
o −Y−1

o (Y −Yo)Y
−1
o (12)

where LIN (?,Yo) is the linearization operator of the
function? at givenYo.

Since

−Y−1 − LIN
(

−Y−1,Yo

)

= −Y−1 + Y−1
o − Y−1

o (Y − Yo)Y
−1
o

= −
(

Y−1 − Y−1
o

)

Y
(

Y−1 − Y−1
o

)

≤ 0,

we can set a matrix functionalG(X,Xk) = 0 and the
equality is attained whenY = Yo. Note that this provides
the updating rules. Basically a linearization approach is
to solve a sufficient condition and hence this approach is
conservative. However, this conservatism will be mini-
mized since we shall solve the problem iteratively. Due
to the lack of convexity, only local optimality is guaran-
teed.

For the problem defined in the previous section, we
have only one nonconvex term. In this case, this approach
is the same as so called convexifying algorithm proposed
in [14]. It is deserve to mention that the linearization al-
gorithm is of convexifying algorithm. In ordet to use con-
vexifying algorithm, we need to find a convexifying po-
tential functional. There might exist many candidates for
convexifying potential functional for a given nonconvex
functional and some convexifying potentials may yield
too conservative. Finding a nice convexifying functional

is generally a difficult question. Linearization of noncon-
vex termH(X) may help to find such a convexifying po-
tential function. Now we are ready to develop a new al-
gorithm for .

Algorithm 1. Structured Linear Control

1. Setε > 0 andk = 0.
2. Solve the following convex optimization problem.

Xk+1 = arg min
X ,Z,Υ,K

‖Υ‖

subject to









X Z
ZT Υ

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

(?)T LIN
(

X−1,Xk

)

0

0 I









> 0

whereLIN
(

X−1,Xk

)

is given by (12).
3. If ‖Xk+1 −Xk‖ < ε, go to step 4. Otherwise, set

k← k + 1 and go back to Step 2.

We also summarize the algorithm [14] for the com-
parison purpose. Since the step 1 and 3 are the same as
those in Algorithm 1, we describe the step 2 only.

Algorithm 2. [14]

2. Solve the following convex optimization problem.

Yk+1 = arg min
Υ,K,Y

‖Υ‖

subject to



































LIN
(

Y−1,Yk

)

Acl(K) Bcl(K)
AT

cl(K) Y 0

BT
cl(K) 0 I



 > 0





Υ Ccl(K) Dcl(K)
CT

cl(K) Y 0

DT
cl(K) 0 I



 > 0

whereLIN
(

Y−1,Yk

)

is given by (12).

Note that these two algorithm can also be used for the
optimal fixed order control problem. Algorithm 1 and 2
may find an initial feasible solution. If they failed, we
need to find an initial feasible solution in order to use
those algorithms. Here, we also propose a new feasibility
algorithm for the completeness of the proposed algorithm
using the linearization approach. We describe the step 2
only for brevity.

Algorithm 3. Initialization
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2. Solve the following convex optimization problem.

Xk+1 = arg min
Υ,K,X ,Y,Z

‖Υ‖

subject to







































[

X I

I Y

]

≥ 0

−Υ + Y − LIN
(

X−1,Xk

)

< 0








X Z
ZT Υ

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

(?)T Y 0

0 I









> 0

Feasibility problem is not convex either, since there is the
nonconvex term−X−1. But this nonconvex term is the
same as the previous optimization problem. Hence we
can linearize this term as we explained before.

Notice that the proposed algorithm is very sim-
ilar to the one proposed in [5], which adopts cone-
complementarity linearization algorithm. The new pro-
posed algorithm minimizedtrace[Y+X−1

k XX
−1
k ], while

the cone complementarity linearization algorithm mini-
mizes trace[YXk + XYk + YkX + XkY]. It is clear
that the cone complementarity algorithm linearized at
a matrix pair (Xk,Yk) and our algorithm linearized
only at Xk. Another feature is that we minimized
∥

∥Y − X−1
∥

∥ and cone complementarity algorithm min-
imized ‖XY + YX‖. Clearly we minimized the con-
trollability GramianY and maximized the observability
GramianX . This implies that our algorithm is suitable for
solving the optimalH2 control problem, while the cone-
complementarity algorithm is suitable for solving optimal
H∞ control problem. Because there always exists a pos-
itive scalarγ such thatXY ≤ γI [1]. Note that we can
establish another feasibility algorithm since

XY + YX = (X + Y) (X + Y)−X 2 − Y2

= (X + Y) (X + Y) + X 2
o + Y2

o

− XXo −XoX − YYo − YoY

− (X − Xo) (X − Xo)− (Y − Yo) (Y − Yo)

Hence we can apply the linearization approach by ig-
noring the nonconvex term− (X − Xo) (X − Xo) −
(Y − Yo) (Y − Yo). This approach also linearizes at a
matrix pair(Xo,Yo).

4 Illustrative Examples
4.1 Example 1 : Decentralized H2 Optimal

Static Output Feeback Controller
Consider the following discrete-time plant

Ap =









0.8189 0.0863 0.0900 0.0813
0.2524 1.0033 0.0313 0.2004
−0.0545 0.0102 0.7901 −0.2580
−0.1918 −0.1034 0.1602 0.8604









Bp =









0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136
−0.0051 0.0936









, Dp =









0.0953 0 0
0.0145 0 0
0.0862 0 0
−0.0011 0 0









Cy =

[

1 0 0 0
0 0 1 0

]

Dy =

[

0 1 0
0 0 1

]

Cz =





1 0 −1 0
0 0 0 0
0 0 0 0



 , Bz =





0 0
1 0
0 1





which is borrowed from [14]. Our objective is to mini-
mize‖Twz(ζ)‖H2

using two decentralized static output
feedback controllers. Hence the structure of a controller
Dc is diagonal. This is a typical SLC problem. In order
to use initialization algorithm 3, we setX0 = I + RRT

andY0 = X−1
0 , whereR is a random matrix. After using

the initialization Algorithm 3, we have run the algorithm
1 and 2. The precisionε has been set to10−3.

0 5 10 15 20 25
0

1

2

3

4

5

6

 Objective function ||T||
H

2

ALG 1
ALG 2

0 5 10 15 20 25
−4

−3

−2

−1

0

1

 Control Gain Matrix D
c

 iterations

Figure 1. H2 performance of the optimal decentralized static

output feedback controller

Figure 4.1 shows the performance of the decentral-
ized static output feedback controller for both algorithms.
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One can easily see that the behaviors of Algorithm 1 is
better than Algorithm 2.

4.2 Example 2 : Mixed H2/H∞ control
Now let’s consider multi-objective controller. De-

sign of feedback controllers that satisfy bothH2 andH∞

specifications is important because it offers robust stabil-
ity and nominal performance and it is not always possible
to have full access to the state vector. In this problem, we
look for a unique static output feedback controller that
minimizes anH2 performance cost while satisfying some
H∞ constraint. Consider the following simple discrete-
time unstable plant

xp(k + 1) =

[

2 0
1 1

2

]

xp(k) +

[

1
0

]

u(k) +

[

0 0
1 0

]

w(k)

z1(k) =

[

0 1
0 0

]

xp(k) +

[

0
1

]

u(k)

z2(k) =

[

1 1
0 0

]

xp(k) +

[

0
1

]

u(k)

y(k) =
[

1 0
]

xp(k) +
[

0 1
]

w(k)

which is also borrowed from [14]. By calculating
the dynamic output feedback optimalH2 and H∞

controllers, we obtain the following minimum achiev-
able values for these normsmin ‖Twz1

(ζ)‖H2
=

4.0957, min‖Twz2
(ζ)‖H∞

= 6.3409. Our objective is to
design a static output feedback controller that minimizes
‖Twz1

(ζ)‖H2
while keeping‖Twz2

(ζ)‖H∞

below a cer-
tain levelγ. We setγ = 7. We have run Algorithm 1
and 2 after the initialization. The specified precisionε
is 10−4. Figure 4.2 shows the performance of those algo-
rithms. Again we can see that the behavior of Algorithm 1
is better than 2 for this problem. It is quite surprising that
we achieved‖Twz1

(ζ)‖H2
= 4.1196, ‖Twz2

(ζ)‖H∞

<
7. This is just0.5% worse than theH2 optimal dynamic
output feedback controller.

5 Conclusion
We have addressed the SLC (Structured Linear Con-

trol) problem for linear discrete-time systems. New sys-
tem performance conditions have been derived. This
new results introduce the augmented matrix variableZ.
Hence the number of variables of the synthesis condition
is maximized. It turns out that the behavior of new syn-
thesis conditions is better than the original system synthe-
sis.

In the SLC framework, these objectives are charac-
terized as a set of LMI’s with an additional nonconvex
equality constraint. To overcome this nonconvex con-
straint, we adopt a linearization method. At each iter-
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Figure 2. MixedH2/H∞ performance of the optimal static out-

put feedback controller

ation, a certain potential function is added to the non-
convex constraints to enforce them convex. Although
we solved those sufficient conditions iteratively, this ap-
proach will not bring significant conservatism because
they will converge to zero. Local optimality is guaran-
teed. Our approach can be applied to other linear synthe-
sis problems as long as the dependence on the augmented
plant on the synthesis parameters are affine. Two control
design problems have been illustrated and compared with
the existing method numerically.
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