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ABSTRACT

For a new class of tendon-driven robotic systems that is generalized to include tensegrity structures, this paper
focuses on a method to jointly optimize the control law and the structural complexity for a given point-to-
point maneuvering task. By fixing external geometry, the number of identical stages within the domain is
varied until a minimal mass design is achieved. For the deployment phase, a new method is introduced which
determines the tendon force inputs from a set of admissible, non-saturating inputs, that will reconfigure each
kinematically invertible unit along its own path in minimum time. The approach utilizes the existence conditions
and solution of a linear algebra problem that describe how the set of admissible tendon forces is mapped onto
the set of path-dependent torques. Since this mapping is not one-to-one, free parameters in the control law
always exist. An infinity-norm minimization with respect to these free parameters is responsible for saturation
avoidance. In addition to the required time to deploy, the expended control energy during the post-movement
phase is also minimized with respect to the total number of stages. Conditions under which these independent
minimizations yield the same robot illustrate the importance of considering control/structure interaction within
this new robotics paradigm.

1. INTRODUCTION

Robotic automation of repetitive assembly processes continues to gain more acceptance as an effective means
to reduce labor costs and increase productivity in many manufacturing industries. This is especially true in
pick-and-place applications where the objective is to move from one position to another quickly and accurately.
As a result of driving the trajectories faster and faster, the inertial dynamics of typical robots become too
large to be ignored, and therefore must be compensated by a feedback controller. Assuming that a sufficiently
accurate plant model is available, the standard approach to this control problem is to implement a feedback-
linearizing computed-torque controller for the reconfiguration phase [1–3], followed by a linear controller for
the post-movement phase. Theoretically, this approach allows arbitrarily large configuration changes within the
robot’s workspace to occur quickly. As a practical matter, however, reconfiguration in near-zero time is not
possible since the inertial forces to be carried by the actuators would have excessive magnitude causing actuator
saturation. One way to circumvent this problem is to make the robot lose weight. For instance, a lighter design
is possible by placing the heavy actuators at the base of the manipulator where a pulley-tendon system transmits
torque remotely [4], Fig. (1a,b). Unfortunately, tendon compliance makes it difficult to transmit torque with
sufficient bandwidth [5]. One approach that circumvents this problem is to design a mechanism that reduces
tendon usage [6]. Alternatively, bandwidth can also be recovered by reducing system mass [7]. For instance, the
tensegrity systems in Fig. (1c–h) can be designed with exceptionally low system mass and superior saturation
avoidance capability since large bending moments normally present in the links get absorbed in the tendon
network [8]. The work herein suggests that tensegrity concepts will revolutionize the manner in which tendon-
driven systems are designed, controlled and utilized. We believe this will become especially true in environments
where agile maneuvering and delicate object handling require a “soft” touch.

In the sections that follow, we address the following questions: Given a set of admissible tendon forces, how
should the control law be designed? For a given robot, which tendon network sustains more torque? What is its
minimum-time trajectory along a prescribed path? How can feedback be used to keep it on track? Lastly, can
the control law and structure be jointly optimized for a given point-to-point maneuvering task?
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Figure 1. Proposed tensegrity robot evolution

2. ADMISSIBLE TENDON FORCES

A necessary condition for a tendon-driven robotic system is that all tendons be taut and unbroken. When this
condition holds, we say that the tendon actuation system is in a state of unsaturation as follows.

Definition 1. An m-tendon actuation system is said to be unsaturated if t ∈ A where

A := {t ∈ Rm : 0 < ti < fyi, }

and ti is the tension in the ith tendon, and fyi is the yield force (max allowable tension) for the ith tendon. A
system that is not unsaturated, is saturated. Set A is the set of admissible tendon forces.

3. CONTROL PROBLEM STATEMENT

Given a desired reference trajectory, qd, for a tendon-driven rigid-body system modelled as

M(q)q̈ + V (q, q̇)q̇ + g(q) = G(q)t

(q ∈ Rn, t ∈ A ⊂ Rm, M is square), we seek to answer the question: Does there exist admissible tendon forces t
to yield the following closed loop system?

z̈ +Kv ż +Kpz +Kiv = 0
z = q − qd = v̇

Yes, if and only if there exists t ∈ A to solve

Gt =M(q̈d −Kv ż −Kpz −Kiν) + V q̇ + g = τ . (1)

There exists a t ∈ Rm solving (1) iff GLτ = 0 where GLG = 0 and GLG
T
L � 0. If t ∈ Rm exists to solve (1),

then all solutions are given by

t = G+τ +GRη (2)

where GGR = 0 and GT
RGR � 0.

It is important to recognize two facts. First, the dimension of the nullspace of G is ρ(G) = m − rank(G).
Hence, η contains ρ(G) free parameters that have neither been characterized nor optimized by the robotics
community [9–12]. Second, even if a solution t ∈ Rm exists there is no guarantee that there exists a choice for η
such that t ∈ A. An approach that resolves these facts is the main contribution of this paper and [12].
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4. HOW SHOULD FREE PARAMETERS BE OPTIMIZED?

In order to understand how to optimize the free parameters η, a more suitable saturation definition is helpful. To-
ward this end, we define D = diag

[
2/fy1 2/fy2 · · · 2/fym

]
, e = [ 1 · · · 1 ]T and t = [ t1 · · · tm ]T

and establish a series of equivalent statements as follows. (A proof of the theorem 1 is given in [12].)

Theorem 1. The following statements are equivalent:

(i) The m-tendon actuation system is unsaturated.

(ii) There exists a δ < 1 such that ‖Dt− e‖∞ ≤ δ.

(iii) t+ d ∈ A if ‖d‖∞ < (1− δ)mini fyi/2.

Corollary 1. If the tendons are uniform, i.e. fyi = fy for i = 1:m, then
D−1e = (fy/2)e =: td and the following statements are equivalent:

(i) The m-tendon actuation system is unsaturated.

(ii) γ := fy/2− ‖t− td‖∞ > 0

(iii) t+ d ∈ A if and only if ‖d‖∞ < γ

In order to keep a tendon actuation system in a state of unsaturation that is robust to perturbations, d, we look
to part (iii) of the corollary to motivate the following robust control objective.

Robust control objective: Maximize saturation margin, γ, w.r.t. free parameters in real-time [12].

An equivalent objective follows immediately from part (ii) of the corollary: Minimize tendon force deviation
from td (50%-yield) w.r.t. free parameters in real-time,

η∗∞ := argmin
η

‖t(η)− td‖∞
= argmin

θ,η
θ s.t. θ ≥ 0, −θe ≤ G⊥η +G+τ − td ≤ θe

where t(η) is defined by (2) with the G⊥ notation replacing GR hereafter. Notice the min-max minimizer, η∗∞,
requires a real-time linear program solution. Alternatively, the least-squares minimizer, η∗2, can be expressed
analytically, and computed independent of the controller as follows

η∗2 := argmin
η

‖t(η)− td‖2 = argminη ‖G⊥η +G+τ − td‖2 = G⊥T td

where G⊥G⊥T td is the orthonormal projection of td onto null(G). The tradeoff is that η∗2 is slightly less effective
than η∗∞ for saturation avoidance. In both cases, however, if the applied loading, τ , is sufficiently large, then the
axial force in at least one tendon will no longer be admissible, i.e. t(η∗p) �∈ A for p = 2,∞. This problem can
be circumvented by increasing tendon strength, fy, until t(η∗p) ∈ A. Alternatively, the free parameters can be
chosen so as to minimize the maximum tendon force subject to a tautness constraint, t > 0. That is,

η†∞ := argmin
η

‖t(η)‖∞ s.t. ti ≥ t > 0 ∀i

= argmin
t,η

t s.t. t ≥ t > 0, te ≤ G⊥η +G+τ ≤ te

η†2 := argmin
η

‖t(η)‖2 s.t. ti ≥ t > 0 ∀i

= argmin
η

ηT η s.t. te ≤ G⊥η +G+τ

Notice the constrained least-squares minimizer, η†2, requires a quadratic program, but has only one inequality
constraint per tendon. In contrast, the constrained min-max minimizer, η†∞, requires a linear program, but
must satisfy two inequality constraints per tendon plus one more. When computation time is not an issue, the
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constrained minimizers work best in ultralite applications such as delicate-object handling where minimum force
control is desired to give the robot a “soft touch”.

How effective is η∗∞ at saturation avoidance? For a given torque loading, τ , and robot geometry, q, the
percent saturation, S, can be computed as a function of the free parameters, η, as

S(η) := (2/fy)‖G⊥(q)η +G+(q)τ − td‖∞ (3)

In the example below, we illustrate how effective η∗∞ is at saturation avoidance in the presence of torque loading
and a variable structure geometry.

Example. In Fig. (2) we are given two tendon actuation systems for a single link manipulator. The

Figure 2. Benchmark comparison.

coupling matrices that map t ∈ R2 into τ ∈ R1 are given by G1 = r[ 1 −1 ] for systems 1 and G2 =
a[ −c−1/2

1 e sin θ c
−1/2
2 e sin θ ] for system 2, where c1 = 1+ e2 + 2e cos θ, c2 = c1 − 4e cos θ and e = b/a. We let

a =
√
3/2, b = 1/2, r = 1/10, and plot in Fig. (3) the level curves of percent saturation, S(η∗p), where η

∗
p is a

function of τ and θ. Fig. (3b,c) shows the least-squares minimizer is slightly inferior to the minmax minimizer
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Figure 3. Level curves of percent saturation, S(η∗
p), as a function of torque and geometry, τ and θ. (a) system 1 with

p = ∞, (b) system 2 with p = ∞, (c) system 2 with p = 2.

for saturation avoidance. Fig. (3a,b) shows that system two is guaranteed to sustain greater torque than system
one. The apparent leverage advantage of system two extends to most tensegrity systems [12]. Increasing the
sustainable torque means point-to-point maneuvering can occur in less time.

5. MIN-TIME CONTROL OF MULTI-CELL MULTI-PATH (MCMP) SYSTEMS

In [12], we posed the question: What admissible tendon force inputs will move a kinematically-invertable plant
from point A to point B along a prescribed path in minimum time? In this section, we consider MCMP
systems—a class of robotic tensegrity structures that are not kinematically-invertable, but can be partitioned
into independent kinematically-invertible units, or “cells”. In MCMP, every link in the robot belongs to one and
only one cell, and each cell’s configuration can be assigned independently of the other cells’ configurations.

Problem Statement: For a given MCMP system, what admissible tendon force inputs will simultaneously recon-
figure each cell along its own path in minimum time?

As before, the solution is broken down into four tasks: First, is path-construction. Second, convert the free dy-
namics to path-following dynamics. Third, substitute path-following dynamics into tendon saturation constraint
to get a path-acceleration constraint. Fourth, construct the minimum-time solution by maximizing path velocity
at each point on path [13].
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Path-construction. For the MCMP class of robotic tensegrity structures each cell’s tip-to-tip configuration
vector can be written as an explicit function of its joint angles, q, or the distance along the path, s, as follows

r(q) :=




r1(q1)
r2(q2)
...

rm(qm)


 =




r̃1(s)
r̃2(s)
...

r̃m(s)


 =: r̃(s) (4)

It is easy to determine r(q) from the forward kinematics. To illustrate how r̃(s) can be constructed, consider as
an example the definition of a differentiable tubular surface of radius γ(s) around curve α(s) [14],

x(s, v) = α(s) + γ(s) [n cos v + b sin v] , s ∈ I, v ∈ [0, 2π]
n = α′′(s)/|α′′(s)|
b = α′(s)× n

where α : I → R3 is any differentiable curve with nonzero slope and curvature everywhere parameterized
by arclength s. n and b are the normal and binormal vectors of α, respectively. As we shall see, this tube
parameterization can be used to define deployment paths for each stage or for the multi-stage tensegrity system
as a whole. For a tensegrity structure with m bars per stage, and n stages, we expand equation (4) as

ri(qi) :=




ri1(qi1)
ri2(qi2)

...
rin(qin)


 =




r̃i1(s)
r̃i2(s)
...

r̃in(s)


 =: r̃i(s)

where i=1:m. Now it is possible to compute all tip-to-tip configuration vectors for each cell as a function of a
single parameter that keeps the tips on the surface as follows

r̃ij(s) = x(sj , vi)− x(sj−1, vi)

where i=1:m and j=1:n. Hence, the robot designer is free to choose both the curve and radius of the tubular
surface. For instance, suppose we are interested in a point-to-point maneuver where the tips of each cell are
prescribed to stay on a tubular surface centered about a helix whose curve, normal and binormal vectors are:

α(sj) =


 a cos(sj/c)− a

a sin(sj/c)
bsj/c


 , n(sj) =


 − cos(sj/c)

− sin(sj/c)
0


 , b(sj) =


 (b/c) sin(sj/c)
(b/c) cos(sj/c)

a/c




where sj = s j
n and vi = 2iπ

m . The deployed configuration of the robot is pictured in Fig. (4).

Path-following dynamics. Differentiating (4) w.r.t. time twice yields rq q̇ = r̃sṡ and rq q̈ + ṙq q̇ = r̃ss̈ + r̃ssṡ
2

where rq = ∂r/∂q is the Jacobian,

rq =




∂r1
∂q1

. . .
∂rm

∂qm


 , ṙq =




∂
∂t

∂r1
∂q1

. . .
∂
∂t

∂rm

∂qm


 , r̃s =




∂r̃1
∂s
...

∂r̃m

∂s


 , r̃ss =




∂2r̃1
∂s2

...
∂2r̃m

∂s2




Notice that our choice of local coordinates for each cell yields a block diagonal Jacobian. In contrast, if we had
defined r and r̃ with respect to a fixed reference frame, the Jacobian would be block lower triangular. We now
can compute q = q(s), q̇ = q̇(s, ṡ), q̈ = q̈(s, ṡ, s̈). Hence, the free dynamics, M(q)q̈ + h(q, q̇) = τ can now be
converted to the path-following dynamics:

τ(s, ṡ, s̈) = u(s)s̈+ v(s, ṡ)
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Figure 4. Deployed tubular tensegrity structure.

where u(s) :=M(q)r−1
q r̃s and v(s, ṡ) :=M(q)r−1

q (r̃ssṡ2 − ṙq q̇) + h(q, q̇).

Path-acceleration constraint. Recall the linear algebra problem: τ(s, ṡ, s̈) = G(s)t whose solution t = G+τ+
G⊥η exists iff [I −GG+]τ = 0. Assuming solution exists (which is true automatically when G is full row rank),
substitute it into the tendon saturation constraint of theorem 1, ‖Dt−e‖∞ ≤ δ, to get −δ ≤ ai(s, ṡ, η)+s̈ci(s) ≤ δ
for i = 1 to m, where a = DG⊥η+DG+v−e and c = DG+u. Rearrangement yields path-acceleration constraint,

f(s, ṡ, η) ≤ s̈ ≤ g(s, ṡ, η)

where f(s, ṡ, η) = maxi ((−sign(ci)δ − ai)/ci) and g(s, ṡ, η) = mini ((sign(ci)δ − ai)/ci).

Minimum-time solution. The minimum-time solution is obtained by choosing the acceleration s̈ to make the
velocity ṡ as large as possible at every point s without violating f(s, ṡ, η) ≤ g(s, ṡ, η). This follows by minimizing
the cost,

J =
∫ T

0

dt =
∫ B

A

1
ṡ(s)

ds

In [13], it was shown that J is minimized if and only if s̈ always takes either its largest or its smallest admissible
value. In summary, it is easy to show the following.

Theorem 2. The path-following minimum time solution subject to t ∈ A is obtained by switching between max-
imum acceleration, s̈ = g(s, ṡ, η∗∞), and maximum deceleration s̈ = f(s, ṡ, η∗∞) where η

∗
∞ = arg minη ‖A(s)η +

b(s, ṡ) + s̈c(s)‖∞ and A = DG⊥, b = DG+v − e, c = DG+u.

Corollary 2. The path-following minimum time solution subject to t ∈ A and minη ‖Dt(η) − e‖2 is obtained
by switching between s̈ = g(s, ṡ, η∗2) and s̈ = f(s, ṡ, η∗2) where η

∗
2 = G⊥T (s)D−1e.

The remaining task is to determine when to switch between f and g. Techniques for locating switching
points are described in [13,15] and applied to an example in [12]. The minimum time solution yields the desired
open-loop trajectory, qd. Feedback can be used to reduce the tracking error, z = q − qd, as discussed next.

6. PATH-TRACKING CONTROL WITH MODEL UNCERTAINTY
COMPENSATION

For the uncertain plant, M(q)q̈ + V (q, q̇)q̇ + g(q) + dw = Gt̂, we computed t̂ = Ĝ
⊥
η + Ĝ

+
τ̂ + ur in [12] as the

feedback law where ur is a robust control input to be designed, dw is an external disturbance and we assume
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G = G(q). Three sources of parametric uncertainty are considered here, namely, the standard error, τ̃ = τ − τ̂ ,
that occurs in all robotic systems, and two tensegrity-based errors,

G̃
+

= G+ − Ĝ
+

psuedoinverse error

G̃
⊥

= G⊥ − Ĝ
⊥

nullspace error

Assuming q is measured exactly and G is full row rank, the closed loop system becomes M(q)q̈ + V (q, q̇)q̇ +
g(q) + dt = τ +Gur, where the total disturbance is dt = dw +GG̃

+
τ +GG̃

⊥
η +GĜ

+
τ̃ .

Lyapunov design. Given time-optimal reference trajectories how do we stay on path using feedback? This
can be solved by using a Lyapunov function: V1 = 1

2r
TM(q)r where r = Λz + ż. Then we choose nominal input

as τ = −Y (·)φ−Krr with error τ̃ = −Y (·)φ̃. The robust input, ur = kdĜ
+
sgn(r) can be implemented without

error since we assume the state is known exactly. The psuedoinverse error is bounded as −ḡI ≤ GG̃
+ ≤ ḡI,

where 0 ≤ ḡ ≤ 1. In [12], we show the time-derivative of the Lyapunov function becomes negative semi-definite,
i.e. V̇1 ≤ −rTKrr, if the robust control gain is sufficiently large and negative compared to external disturbances
and those introduced by the tensegrity paradigm, That is, kd < 0, and

|kd| ≥ ||dw +GG̃
+
τ +GG̃

⊥
η +GĜ

+
τ̃ ||∞

(1− ḡ)
(5)

If this gain requirement holds, then V̇1 ≤ 0 and a La Salle’s argument given in [3] can be used to show that
the tracking errors are asymptotically stable. The gain requirement on |kd| can be reduced with the adaptive
inertial-related control [3]. Finite-bandwidth robust control is possible by replacing the sign function with a
saturation function in ur [16]. For standard non-tensegrity robots, (5) reduces to |kd| ≥ ||dw + τ̃ ||∞.

7. TERMINAL-CONFIGURATION CONTROL WITH SENSOR/ACTUATOR NOISE
COMPENSATION

Since linear controllability can be achieved with fewer actuators than nonlinear controllability, the robot designer
can program actuators to switch from full actuation mode to a partial actuation mode, once the robot becomes
sufficiently close to the final destination of its prescribed path. Once the unnecessary redundant actuators are
“locked-up and turn-off”, a significant amount of control energy savings is also possible. In contrast to the
tracking control problem where robustness to feedback linearization errors is critical, in the regulation problem,
robustness to sensor/actuator noise is investigated.

Linear control problem statement. Minimize the control energy in the presence of sensor and actuator noise
subject to an output covariance bound. That is, for the linearized plant,

ẋ = Ax+Buu+Bww

z = Czx

y = Cyx+ v

in the presence of actuator noise w, and sensor noise v, we determine Ac, Bc, Cc for the dynamic controller,

ẋc = Acxc +Bcy

u = Ccxc

that minimize limt→∞E(uTu) subject to limt→∞E(zzT ) < Ω. It is assumed that w and v are zero-mean white
noise processes with intensities W and V , respectively. This optimization problem is convex and can be written
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as a standard Linear Matrix Inequality (LMI) [17]:

min
U,K,X,Y

tr(U) s.t.

CzXCz < Ω,


 U K 0

KT X I
0 I Y


 > 0

[
AX +XAT +BuK +KTBT

u Bw

BT
w −W−1

]
< 0,

[
Y A+ATY − CT

y V
−1Cy Y Bw

BT
wY −W−1

]
< 0

The controller becomes Ac = A + BuCc − BcCy − Y −1Φ(I −XY )−1, Bc = Y −1CT
y and Cc = K(X − Y −1)−1

where Φ = Y A+ATY + Y BBTY + CT
y V

−1Cy.

The plant matrices, A, Bu and Bw, can easily be computed from the linearized model derived in the next
section. In the last section, this controller is computed for a sequence of simple tensegrity robots to study the
relationship between structural complexity and control effort.

8. TENSEGRITY MODEL

In [12], dynamic models of the formM(q)q̈+V (q, q̇)q̇+g(q) = H(q)f were developed for a class of tendon-driven
robots that includes tensegrity structures. In this section, we give a concise summary of the results.

Figure 5. (a) Free-link. (b) Serial-link.

Serial-link model. The geometry of a serial-link rigid-body system with b bars (links) is shown in Fig.
(5b) for the two-bar case. Its n degrees of freedom are organized as q = [ qT1 qT2 . . . qTb ]T ∈ Rn where
qi = [ θi φi ]T . The position of the ith bar’s tip, pi, is expressed as pi = po +

∑i
k=1 akβk where βi =

[ cθicφi sθicφi −sφi ]T , c(·) = cos(·), s(·) = sin(·), ai is the length of the ith bar. To construct the mass matrix
we define (3×n) matrices, Ψi(q) = [ J1 J2 · · · J i Oni ] and Ψci(q) = [ J1 J2 · · · J i−1 Jci Oni ],
which consist of Jacobians, J i = ai∂βi/∂qi and Jci = aci∂βi/∂qi and a matrix of zeros with n − 2i columns,
Oni, where aci as the distance from node to center of mass. M ∈ Rn×n, H ∈ Rn×3b and g ∈ Rn become

M(q) = I(q) +
b∑

i=1

miΨT
ci(q)Ψci(q), H(q) =

[
ΨT

1 ΨT
2 · · · ΨT

b

]
, g(q) =

b∑
i=1

ΨT
cifgi

where I = diag
[ I1 I2 · · · Ib

] ∈ Rn×n, consists of inertial blocks, Ii = diag
[

mi

12 (aicφi)2 mi

12 a
2
i

]
.

Nodal forces, f = [ fT
1 fT

2 · · · fT
b ]T , in cartesian space, f i ∈ R3, are induced by the tendon actuation

system. If we denote the mass and coriolis/centripetal matrices elementwise as M = [µkj ] and V = [ζkj ], then
V (q, q̇) can be completely determined from M(q) by using the following Christoffel parameters [2],

ζkj =
1
2

n∑
i=1

(
∂µkj

∂qi
+

∂µki

∂qj
− ∂µij

∂qk

)
q̇i (6)

Free-link model. For tensegrity structures designed with inertially-isolated rigid bars as depicted in Fig. (5a),
a single bar has five degrees of freedom–three translations of its mass center, pc1 ∈ R3, and two Euler angles,
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q1 ∈ R2. Matrices M ∈ R5×5, H ∈ R5×6 and g ∈ R5 are shown below. Use (6) again to get V (q, q̇) from M(q).

M(q) =
[
m1I 0
0 I1(q1)

]
, H(q) =

[
I I

−JT
c1 JT

c1

]
, g(q) =

[
I
0

]
fg1

Global model. Multiple copies of the serial-link and/or free-link model can be combined to create the global
model of the entire robot structure. For instance, if we distinguish two non-contacting free-link models with
subscript 1 and 2, the combined model becomes M(q)q̈ + V (q, q̇)q̇ + g(q) = H(q)f where M = diag[M1,M2],
V = diag[V 1, V 2], H = diag[H1,H2] and q = [qT1 , q

T
2 ]

T and f = [fT
1 , f

T
2 ]

T . Given an m-tendon network, the
tendon orientation vectors, ?, are defined in terms of the nodal points, p, as ? = Cp. Examples that illustrate
how to build this network are given in [12]. The direction cosine matrix becomes D = diag[d1, d2, . . . , dm], where
di = ?i(?Ti ?i)

−1/2. The principle of virtual work yields f = CTDt, where t ∈ Rm is the vector of tendon forces.
If we define G := HCTD, the rigid-body and tendon-actuation systems can be joined to yield the global model,

M(q)q̈ + V (q, q̇)q̇ + g(q) = G(q)t

Linearized model. In linear control modes such as precision regulation, it is advantageous to work with a
linearized model. If we assume the tendon forces obey Hooke’s Law, t = S(?(q)−u) where S is a diagonal matrix
of spring constants, ?(q) is the stretched tendon length and u is the unstretched tendon length, then linearizing
the global model about the static operating point, (q̄, ū) yields

M̃ ¨̃q + D̃ ˙̃q + K̃q̃ = B̃ũ (7)

where ũ = u− ū, q̃ = q − q̄, ˙̃q = q̇, ¨̃q = q̈, M̃ =M(q̄), D̃ = 0, B̃ = −G(q̄)S and the stiffness matrix becomes

K̃ =
∂g(q)
∂q

∣∣∣∣
q̄
−G(q̄)S

∂?(q)
∂q

∣∣∣∣
q̄
−

nu∑
k=1

∂G(q)S(:, k)
∂q

∣∣∣∣
q̄
(?k(q̄)− ūk)

9. OPTIMIZING STRUCTURE/CONTROL USING SELF-SIMILAR APPROACH

It is possible to reduce system mass by introducing more stages to the tensegrity structure, while keeping the total
length constant. However, adding additional stages (and thus additional noisy actuators) potentially increases
the noise effect which can compromise tracking precision. Hence, the optimal number of stages can be viewed
as a tradeoff between maximizing precision and minimizing system mass. The simple example of figure (6b)
illustrates the design process to determine the optimal number of stages of a tensegrity robot.

Figure 6. Stage replication subject to a fixed external geometry

Self-similar concept and minimum mass. The self-similar concept can be used to answer the question,
“How many stages will lead to a minimum mass, while sustaining a specified level of pretension?”. In this
problem, the limiting factor in mass minimization comes from the buckling of the bars, and the failure of the
tendons. The bars and tendon diameters are chosen such that all structural members fail simultaneously, for the
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prescribed pretension level (tension F in the horizontal tendons). The buckling load of a cylindrical tube with
outer radius, r, and inner radius, ri = βr, is expressed by:

Fbuckling =
π3Er4

4L2
b

(1− β4) (8)

where E is the material Young’s modulus, r is the cross section radius and Lb is the length of the bar. Regarding
the tendons, the maximum tensile load is given by:

Fyield = σyS (9)

where σy is the yield stress of the tendon, and S its cross sectional area. Using (8) and (9) together with a simple
derivation of the forces in every member of the structure, one can compute the total mass (yielding general
failure for pretension F ), as a function of the number of stages n: Mtotal =Mbars +Mtendons where

Mbars =
4ρb
n

√
F (1− β2)

πEL(1 + β2)
(n2H2 + L2)5/4, Mtendons =

2ρsFH2

σyL
n(n− 1/2) + 2ρsLF

σy
(10)

If we assume Mtendons � Mbars, first and second derivative tests of Mbars(n) yields an analytical solution for
the number of stages to use for the minimum mass structure,

min
n

Mbars(n) =⇒ n∗ =
L

H

√
2
3

where n∗ is then rounded to the nearest integer. Figure (7a) shows the evolution of the total mass (in kg) of the
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Figure 7. Self-similar structure concept: (a) evolution of mass with increasing number of stages (b) evolution of control
energy with increasing number of stages

structure of figure (6b) in terms of the number of stages (number of self-similar iterations). For this particular
example, L = 10m, H = 1m, the bars are made of steel (Young’s modulus,2.1 · 1011N/m2; density,7850kg/m3),
the tendons are made of carbon (Young’s modulus, 2.3 ·1011N/m2; density,1750kg/m3; σy = 3.5 108N/m2), and
the structure is designed to support a pretension F = 50N (refer to figure (6) for notations). The mass of the
tendons represents only 0.5% of the total mass for n = 20. In our example, the 8-stage configuration leads to the
minimum mass, whereas the number of stages leading minimal control energy varies with the actuator/sensor
quality, as we discuss below.
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Self-similar concept and minimum control energy. The self-similar concept can be used to answer the
question, “How many stages will lead to a minimum control energy, while sustaining a specified level of preten-
sion?”. As will be discussed shortly, the limiting factor in the control energy minimization is the signal-to-noise
ratio of the control tendons. Previously, we discussed how the mass of the structure can be decreased while
keeping the same static resistance to a constant axial load F (or equivalently keeping the same pretension F ).
In what follows, we add some external random noise disturbance (mean zero, intensity 10N2) acting vertically
on the tip of the structure, and we would like to keep the position of the tip within some admissible range
(10−2m standard deviation). The overall configuration is represented in figure (8). The structure is controlled

external disturbance

max admissible
displacement

actuator
+noise

displacement
sensors+noise

Figure 8. control simulation configuration

by linear-displacement actuators changing the rest length of the top horizontal strings. Displacement sensors
are located at every node. Both sensors and actuators are noisy (actuator noise is given in figure (7b), and
sensor noise intensity is always 10−7m2 for every sensor.) We designed a controller to minimize the control
energy (variance), subject to the constraint: tip displacement has a standard deviation less than 10−2m. This
calculation has been repeated for increasing number of stages. Results are displayed in figure (7b). The three
curves correspond to three different levels of actuator noise. Some general remarks can be formulated from this
example: (i) there exists an optimum number of stages leading to the minimum control energy (ii) less noisy the
actuators lead to more stages (thus actuators) for minimum control energy, (iii) the minimum control energy
decreases when actuator noise decreases. (iv) The 8-stage plant has minimum mass and minimum control energy
when the actuator noise intensity is 2 × 10−7m2. Hence, it is possible to construct tensegrity structures that
are minimum mass and require minimum control energy during precision regulation of the robot in its terminal
configuration.

10. CONCLUSION

This paper describes a feedback linearization control law that uses the parameters in the nullspace of the control
distribution matrix, G, to minimize the norm of the tendon force tracking error, ‖t−td‖, while avoiding saturation
of the control signals. In addition to saturation avoidance, we have shown these free parameters can also be
designed for minimum force control using a constrained infinity norm minimization. Control techniques for point-
to-point maneuvering along a prescribed path in minimum time have also been extended to include the case where
multiple kinematically-invertable units undergo independent reconfigurations. During the post-movement phase
of a point-to-point maneuver, linear control simulations are used to select the number of tensegrity stages and
the actuator precision such that the expended control energy and structural mass are jointly minimized. Future
work will focus on smoothing control laws and jointly optimizing the tendon and rigid-link topologies for specific
applications, such as delicate-object handling and locomotion in constricted environments.
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