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The merging of a pair of symmetric, horizontally oriented vortices in unstratified and
stably stratified viscous fluid is investigated. Two-dimensional numerical simulations
are performed for a range of flow conditions. The merging process is resolved into
four phases of development and key underlying physics are identified. In particular,
the deformation of the vortices, explained in terms of the interaction of vorticity
gradient, ∇ω, and rate of strain, S, leads to a tilt in ω contours in the vicinity of the
center of rotation (a hyperbolic point). In the diffusive/deformation phase, diffusion
of the vortices establishes the interaction between ∇ω and mutually induced S. During
the convective/deformation phase, induced flow by filaments and, in stratified flow,
baroclinically generated vorticity (BV), advects the vortices thereby modifying S,
which, in general, may enhance or hinder the development of the tilt. The tilting
and diffusion of ω near the center hyperbolic point causes ω from the core region to
enter the exchange band where it is entrained. In the convective/entrainment phase,
the vortex cores are thereby eroded and ultimately entrained into the exchange band,
whose induced flow becomes dominant and transforms the flow into a single vortex.
The critical aspect ratio, associated with the start of the convective/entrainment
phase, is found to be the same for both the unstratified and stratified flows. In the
final diffusive/axisymmetrization phase, the flow evolves towards axisymmetry by
diffusion. In general, the effects of stratification depend on the ratio of the diffusive
time scale (growth of cores) to the turnover time (establishment of BV), i.e. the
Reynolds number. A crossover Reynolds number is found, above which convective
merging is accelerated with respect to unstratified flow and below which it is delayed.

1. Introduction
The merging of two co-rotating vortices has drawn much attention due to its

fundamental and practical significance in engineering and environmental flows. It
is an elementary vortex interaction which plays a significant role in the transfer
of energy and enstrophy across scales in transitional flows and two- and three-
dimensional turbulence. It may also occur in the near-field wake of an aircraft, just
downstream from the wing tip and outboard edge flap, thereby forming the primary
wake vortices (Brandt & Iversen 1977; Rossow 1977). Such vortices have long lifetimes
and can be hazardous to following aircraft. Atmospheric conditions such as stable
density stratification can influence the dynamics of the vortices.

In an unstratified fluid, a pair of (symmetric) vortices of equal circulation, Γ ,
and equal core size, a, separated by a distance, b, will rotate about each other
due to the mutually induced velocity. If the aspect ratio a/b exceeds some critical
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(a) (b)

Figure 1. Streamlines in co-rotating frame with (a) vorticity contours superimposed and (b)
shading indicating flow region analysis based on velocity gradient tensor (dark grey, cores;
light grey, exchange band; white, outer-recirculation region, i.e. filaments), for ReΓ = 5000,
Fr = ∞ at t∗

c = 1.88.

value, (a/b)cr , vortex merger results. Much of the previous work on symmetric
vortex merger has focused on the determination of (a/b)cr (Rossow 1977; Saffman
& Szeto 1980; Overman & Zabusky 1982; Griffiths & Hopfinger 1987; Meunier
et al. 2002). Using contour dynamics of uniform vortices, Saffman & Szeto (1980)
and Overman & Zabusky (1982) find a critical separation distance, above which
equilibrium configurations of non-circular vortices can exist, and below which the
vortices are unstable and merge. A linear stability analysis of such equilibrium
configurations is performed by Dritschel (1985) which associates the instability with
boundary deformation. In general, experimental measurements (viscous, non-uniform
vortices) of (a/b)cr have varied due to difficulties of measurement and inconsistent
definitions of acr and bcr . Meunier et al. (2002) present a method for determining acr

from experimental data by considering the critical condition as the transition from a
purely viscous regime to a convective regime.

The physical mechanism associated with merger was considered by Melander,
Zabusky & McWilliams (1988). They examine the flow in a co-rotating reference
frame which reveals the differential motion and associated flow structure. This is
illustrated in figure 1(a), which shows the principal streamlines (separatrices) defining
three distinct regions in the flow. The inner core regions consist of closed streamlines
encircling each individual vorticity maximum and correspond to the primary vortices.
The exchange band consists of closed streamlines encompassing both inner core
regions, and corresponds to fluid circulating (exchanged) between the two vortices.
The two outer recirculation regions consist of fluid which circulates in the opposite
sense (in the co-rotating frame) to that of the cores and exchange band. Melander et al.
(1988) explain the occurrence of merger in terms of the vorticity distribution relative
to the separatrices. In particular, when vorticity enters the outer-recirculation regions,
differential rotation causes the formation of filaments, which breaks the elliptical
symmetry of the flow. This modifies the orientation of the vorticity contours with
respect to the streamlines and leads to merger through an inviscid axisymmetrization
process. The process of axisymmetrization was studied in detail for an isolated
elliptical vortex by Melander, McWilliams & Zabusky (1987). They indicate that
both filaments and gradient intensification in the core contribute to asymmetric vor-
ticity; the filaments, however, being the dominant contributor. A subsequent study by
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Dritschel (1998) shows that non-axisymmetry may persist indefinitely in an inviscid
flow, suggesting that it is the presence of diffusion which promotes axisymmetrization.
Although the importance of the exchange band was noted, Melander et al. (1988)
indicate that merger is driven by filament formation.

More recently, Cerretelli & Williamson (2003) have considered these ideas further,
and demonstrate that merger is due to the antisymmetric part of the vorticity field,
which is also considered to be primarily associated with the filaments. They suggest
that vorticity enters the outer-recirculation region through viscous or turbulent
diffusion, thereby initiating filament formation. Meunier (2001) explains the role
of the filaments and accompanying reduction in b in terms of conservation of angular
momentum. A simple model is developed and although the initial reduction in b is
well predicted, it does not predict the dominant motion of the vortices, suggesting that
some other mechanism is present (Meunier, Le Dizes & Leweke 2005). Velasco Fuentes
(2005) finds that filamentation does not always lead to merger and, in the case of steep
vorticity profiles, merger begins before filamentation takes place. The stability analysis
by Dritschel (1985) also precludes the requirement of filamentation for convective
merger. Huang (2005) analyses the flow in terms of Lagrangian flow structures
and shows that the ‘sheetlike structure’ emanating from the opposite vortex, which
includes both filament and exchange band fluid, is responsible for the induced merging
velocity. The formation of these structures is attributed to a tilt of the major axes
of the vortices and the connecting line between the vortex centroids. How the tilt
is established was not explained. Brandt & Nomura (2006) determine the relative
contribution of each of the flow regions and show that the exchange band vorticity is
the dominant contributor to the reduction in b. The associated physics are described
in terms of the interaction of vorticity gradient, ∇ω, and rate of strain, S, near the
center of rotation, through which the tilt in the vorticity contours is established.
This leads to the entrainment of core fluid into the exchange band, which ultimately
transforms into a single vortex. Details of the analysis, which yield a generalized
description of merger, are presented in this study.

The effects of stable density stratification on vortex pair dynamics have been
considered in a number of studies. The merging of vertically oriented co-rotating
vortices have been considered in the context of geophysical flows. Two-layer fluid
systems (Griffiths & Hopfinger 1987) and three-dimensional flows (Dritschel 2002;
von Hardenberg et al. 2000) have been studied. Results show that increasing the
vertical aspect ratio, a/H (where H is the half-height used to indicate the level
of stratification) reduces the critical distance for merger. Regarding horizontally
oriented vortices, studies of stably stratified shear layers suggest that stratification
acts to suppress pairing and merging of Kelvin–Helmholtz billows. A numerical
study by Patnaik, Sherman & Corcos (1976) indicates that strong stratification
hinders the growth of billows. Laboratory experiments by Koop & Browand (1979)
show that the average number of vortex pairings that occur for a fixed Reynolds
number decreases for increasing levels of stratification. Schowalter, Van Atta &
Lasheras (1994) conclude that stratification both enhances and weakens the vortex
cores; baroclinically generated opposite-signed vorticity weakens vortex cores, while
baroclinically generated same-signed vorticity strengthens them. Pawlak & Armi
(1998, 2000) report that the shear layer is significantly altered by the presence of
stratification and may in some cases cause the vortex cores to be shed from Kelvin–
Helmholtz billows. Although the effects of stable stratification have been considered
for the case of horizontally oriented counter-rotating vortex pairs (see Nomura et al.
2006 for a review), no previous studies have considered the case of a horizontally
oriented co-rotating vortex pair in a stably stratified fluid.
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Figure 2. Coordinate system and initial conditions for co-rotating vortex pair and uniform
stable stratification: (a) initial symmetric vortices with equal circulation strength, Γo, and
centres separated by a distance, bo; (b) background linear density profile ρ(z).

The objective of the present study is to investigate the merging process of a
pair of horizontal co-rotating vortices, with and without stable stratification in the
ambient fluid. Two-dimensional numerical simulations are performed for a range of
flow conditions. We note that the stratified flows considered here are associated with
relatively weak stratification, which effectively introduces a disturbance to the merging
process. By determining its effects, we obtain further insight and understanding of
the fundamental physics of vortex interaction and merging. Results of the study
provide details of the induced flow and S fields. The deformation of the vortices is
described in terms of the interaction of ∇ω and S. The effects of Reynolds number and
Froude number (stratification level) are considered. A new generalized description of
the merging process is developed which allows for a more explicit determination of
the critical aspect ratio and assists in accounting for the effects of stratification. The
critical aspect ratio is evaluated and found to be the same in both the unstratified
and stratified flows.

The numerical simulations and flow parameters are described in § 2. Results are
presented in § 3. The general development of the unstratified and stratified flows is
first examined (§ 3.1), and the physical mechanisms of vortex merger in unstratified
flow are then analyzed (§ 3.2). This provides a framework with which to study the
effects of stratification on the merger process. Analysis of the stratified flow is carried
out (§ 3.3 and § 3.4); a generalized description of the merging process is then developed
and the effects of Reynolds number are considered (§ 3.5). A summary is given in § 4.

2. Numerical simulations
Two-dimensional numerical simulations of a co-rotating vortex pair in an initially

uniform stably stratified fluid are performed for this study. Figure 2 shows the initial
flow geometry and coordinate system. Here, the spatial coordinates, x, z, correspond
to the transverse and vertical directions, respectively. The governing equations with
the Boussinesq approximation are:

∇ · v = 0 (2.1)

∂v

∂t
+ v · ∇v = − 1

ρo

∇p + ν∇2v + ρ ′ g (2.2)

∂ρ

∂t
+ v · ∇ρ = κ∇2ρ (2.3)
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where ρo is a constant reference density, ν is the kinematic viscosity, g = (0, −g) is
the gravitational acceleration, and κ is the thermal diffusivity. In the above equations,
v =(u, w) is the instantaneous velocity, p is the deviation of the pressure from its
hydrostatic value and ρ ′ is the deviation of the density from the background density,
i.e. the instantaneous density is ρ = ρo + ρ(z) + ρ ′(x, z, t), where ρ(z) corresponds to
the imposed uniform stable stratification, dρ/dz (figure 2b).

The initial base flow consists of the superposition of two Lamb-Oseen (Gaussian)
co-rotating (anti-clockwise) vortices, which is representative of the initial vortices in
Meunier & Leweke (2001). The corresponding vorticity distribution is given by

ω(x, z, to) = Ωo exp

(
−((x − x1)

2 + (z − z1)
2)

a2
o

)
+Ωo exp

(
−((x − x2)

2 + (z − z2)
2)

a2
o

)
,

(2.4)
where Ωo = Γo/πa2

o is the peak vorticity, ao is the initial vortex radius and (x1, z1) and
(x2, z2) are the initial coordinates of the two vortex centroids. The geometry of the
vortex pair is specified by the dipole aspect ratio, ao/bo, where bo = |x2 − x1| is the
initial vortex separation distance (figure 2a). Here, ao is based on the vorticity second
moment,

∫
r2ω dA/

∫
ω dA, where r is the radial distance from a vortex centroid, ω

is vorticity, and the integral is performed over a single vortex. In the simulations
presented, we consider a fixed initial aspect ratio of ao/bo =0.157.

The relevant nondimensional parameters are now defined. The characteristic length
scales of the flow are bo and ao. The velocity scale is the initial (rotational) velocity of
the vortices, Wo = Γo/2πbo, where Γo is the initial vortex circulation. The stratification
is characterized by the buoyancy frequency, N , where N2 = −(g/ρo)dρ/dz. A
convective time scale of the flow is the rotational period, tc = 2π2bo

2/Γo. A viscous
time scale is defined as tv = a2

o/4ν. The buoyancy time scale is ts = π/N , which is the
buoyancy period. The circulation Reynolds number used here is given by

ReΓ =
2πWobo

ν
=

Γo

ν
=

8π2

(ao/bo)2
tv

tc
. (2.5)

The Froude number is defined as

Fr =
Γo

2πb2
oN

=
ts

tc
. (2.6)

The Prandtl number is Pr = ν/κ .
The range of Reynolds number considered, 2000 � ReΓ � 5000, is comparable to

laboratory experiments (Meunier & Leweke 2001). The Froude numbers considered
are Fr = 2, 3 and 5, which cover a range of conditions corresponding to relatively
strong (Fr = 2) moderate (Fr = 3) and weak (Fr = 5) stratification. In general, however,
stratification is not a dominating effect in the flows considered (Fr > 1), and vortex
merger will result. In flows with lower Fr , stratification will hinder fluid motion
and/or result in significant internal waves. Such flows are beyond the scope of this
study. The case of Fr = ∞ corresponding to an unstratified flow is also considered.
The Prandtl number in the simulations is Pr = 1.0.

The numerical solution procedure is based on a second order finite difference
scheme with second order Adams-Bashforth time integration (Gerz, Schumann &
Elghobashi 1989). In these two-dimensional calculations, the computational domain
has dimensions of Lx = Lz =24bo, and employs 20482 grid points. This allows
approximately 27 grid points across the core of each vortex (i.e. 2ao). Resolution
tests using 54 grid points across the core showed minimal differences in computed
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quantities (e.g. the integrated quantity, a, differed by a maximum of 0.4 %) thereby
indicating a resolution-independent solution. Domain size independence was also
examined. In these simulations, the periodic boundary conditions used are, in general,
inconsistent with the nonzero circulation of this flow. Rather than attempting to
negate the circulation by introducing an unphysical background flow, such as done in
Melander et al. (1987), we consider a sufficiently large domain to minimize the effect
of neighboring vortices and far-field flow interaction. Domain size tests compared
both integrated (e.g. a) and local (e.g. strain rate, vorticity) quantities for a range
of Lx = Lz = L domain sizes and showed maximum differences of 0.01 % between
L =12bo and L =24bo results. In addition, the induced flow from neighboring vortices
was computed and found to be negligible.

3. Results
In the majority of the results presented, time is nondimensionalized by tc (reference

rotation period).

3.1. General flow development

Figures 3 and 4 show time sequences of vorticity contours illustrating the basic
development of unstratified (Fr = ∞) and stratified (Fr = 3) flows, respectively, at
ReΓ = 5000. In both flows, due to the mutually induced velocity, the two vortices
rotate about each other in the anti-clockwise direction. Before merging is initiated,
the rate of rotation is nearly equal to that of a two-point vortex system, Γ/πb2.
The unstratified flow (figure 3) develops as observed in previous studies. At early
times (figure 3a–e, tc

∗ � 1.31), the vortices grow due to viscous diffusion. They also
adjust to the induced strain field, which results in an elliptic deformation of the
cores. Later in time (figure 3f –h, t∗

c � 1.45), more significant deformation is observed,
particularly at the lowest vorticity contour levels. At the outer locations of the vortex
pair, filamentation occurs, and in the vicinity of the center of rotation, a tilt in the
vorticity contours develops. The major axes of the vortices are tilted with respect to
the connecting line of the vortices; subsequently, the vortex centers are rapidly drawn
towards and around each other (figure 3i–k, t∗

c � 1.97). The rate of rotation of the
vortex pair increases due to conservation of angular momentum. The inward spiral
motion leaves the filaments wrapped around the vortex centers (figure 3l). At late
times (not shown), the overall flow consists of essentially a single structure within
which the two vorticity maxima revolve. In time, the two maxima eventually disappear
by viscous diffusion. A single vortex is established.

In the stratified flow (figure 4), as the vortex pair rotates, it stirs the stably stratified
ambient fluid. After approximately half a revolution, opposite-signed vorticity appears
at the periphery of the outer-recirculation regions (figure 4c, tc

∗ = 0.78). This is due
to baroclinic torque generation, as will be discussed in § 3.3. There is a slight decrease
in the rate of rotation of the vortex pair. Later in time (figure 4d , t∗

c = 1.07), both
opposite-signed vorticity and same-signed vorticity occur just outside and within the
outer-recirculation regions. Filamentation and tilting of the primary vortices and
the motion of the vortices towards each other all occur earlier in time (figure 4e,
t∗
c = 1.31). At late times (figure 4g–i, t∗

c � 1.69), the structure of the vorticity field
is more complex and consists of alternating-signed vorticity patches and filaments.
Some reduction in the vertical scale of the flow is also observed.

In previous studies (Melander et al. 1988; Meunier 2001; Cerretelli & Williamson
2003), vortex merging in a viscous unstratified fluid is considered to occur in three
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(a) t*c = 0.26

(d) t*c = 1.07

(g) t*c = 1.69

( j) t*c = 2.05

(b) t*c = 0.55 (c) t*c = 0.78

( f ) t*c = 1.45

(i) t*c = 1.97

(l ) t*c = 2.16

(e) t*c = 1.31

(h) t*c = 1.78

(k) t*c = 2.12

Figure 3. Line plots of vorticity contours for ReΓ = 5000, Fr = ∞.

phases: the first diffusive phase, the convective phase, and the second diffusive phase;
the phases designated by the behaviour of the separation distance, b(t), and the core
size, a(t). Time development of b∗ = b/bo and a∗2 = a2/bo

2 are given in figure 5. Note
that the core size in figure 5(b), aω, is defined in terms of the second moment of
vorticity, and that in figure 5(c), aθ , in terms of the radial location of maximum
azimuthal velocity (averaged over azimuthal coordinate). At t∗

c = 0, aθ = 1.12 aω, as
expected for a Lamb-Oseen vortex. We note that aθ will assist in the analysis of
stratified flow.

During the first diffusive phase in the unstratified flow, b(t) remains relatively
constant (figure 5a) while a(t) grows by viscous diffusion (figure 5b, c). The
development of both a2

ω(t) and a2
θ (t) is linear and essentially follows the behavior

of a single vortex,

a2 = c2νt + ao
2 (3.1)

or, in non-dimensional form,

a∗2 = c2 2π2

ReΓ

t∗
c + ao

∗2. (3.2)
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(a) t*c = 0.26

(d) t*c = 1.07 (e) t*c  = 1.31

(g) t*c = 1.69

(b) t*c = 0.55 (c) t*c = 0.78

( f ) t*c = 1.45

(i) t*c = 1.97(h) t*c = 1.78

Figure 4. Vorticity contours (solid line, ω > 0; dashed line, ω < 0) superimposed on density
field (shading) for ReΓ = 5000, Fr = 3.

The growth rate constants for a2
ω(t) and a2

θ (t) are determined to be cω = 2.11 and
cθ = 2.17, respectively. We note that for a Lamb-Oseen vortex, cω = 2.0 and cθ = 2.24
(Saffman 1992). The end of the diffusive phase is typically marked by the deviation
of a2(t) from its linear growth (transition from a diffusive- to convective-dominated
process). This occurs for both a2

ω(t) and a2
θ (t) at t∗

c ∼ 1.7 (figure 5b, c, Fr = ∞), which
corresponds to a critical core size of (aω/bo)cr ∼ 0.23, comparable to values reported
by Meunier et al. (2002). The critical aspect ratio will be further considered in § 3.5.
The convective phase corresponds to the predominant reduction in b∗(t). Note that
in the latter part of this phase, b∗(t) exhibits a rapid and nearly linear decrease. The
convective phase terminates when b reaches approximately 0.20bo − 0.25bo, at which
point the inward velocities at the centroids are nearly zero. The second diffusive phase
is characterized by a slow reduction in b∗(t) (not shown) as the two ω maxima diffuse
into one. Beyond this time, development of a2(t) (for single merged vortex) eventually
returns to linear growth by diffusion (Cerretelli & Williamson 2003).
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Figure 5. Time development of (a) separation distance, b∗(t) = b(t)/bo, (b) core size evaluated
by second moment, a2

ω(t)/b2
o , (c) core size evaluated by maximum azimuthal velocity, a2

θ (t)/b
2
o .

The dashed line in (b), which corresponds to (3.3) where c′ = cθ/1.12 = 1.94. Symbols: �,
Fr = ∞; �, Fr = 3; �, Fr = 2.
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In the stratified flows (figure 5a; Fr = 2, 3), a slight increase in b∗ is initiated at
approximately t∗ = 0.5 (see § 3.4), followed by an earlier decrease as compared with
the Fr = ∞ flow. The rate of increase and initial decrease in b∗(t) is greater with
increased stratification (Fr =2). In both stratified flows, the rapid linear decrease in
b∗(t) exhibits nearly the same slope as that of the unstratified flow. Overall, convective
effects and merger, as indicated by b∗(t), occur earlier in the stratified flows. From
figure 5(b), we see that the initial development of a2

ω(t) is linear. However, since a2
ω

is evaluated by integration of ω, which includes generated vorticity (figure 4), it does
not solely describe the growth by viscous diffusion during this time. In contrast,
the quantity a2

θ (t) in figure 5(c) does not have this ambiguity and is used here to
indicate the core growth in stratified flow. From figure 5(c), we observe that a2

θ (t)
grows linearly and with the same growth rate as that in unstratified flow, as expected
since they have the same ReΓ . Note that the dashed line in figure 5(b) corresponds to

a2 =
( cθ

1.12

)2

νt + ao
2 = c′2νt + ao

2, (3.3)

where c′ = 1.94 based on the above results and (ao/bo) = 0.157 (ao based on aω). This
allows us to evaluate an effective a2 for stratified flows that is consistent with the
defined ao (to be used in § 3.5). As also observed in figure 5(c), a2

θ (t) indicates deviation
from linear behavior earlier in the stratified flows, and it occurs at approximately
the same time, t∗

c ∼ 1.25, for both Fr = 3 and Fr = 2. From the results in figure 5, we
find that b∗(t) and a∗(t) show convective effects initiating at different times. Thus, the
evaluation of a critical aspect ratio and the demarcation of the first diffusive phase and
convective phase are unclear. These issues will be considered in the following sections
and resolved in § 3.5. As in the unstratified flow, the convective phase terminates when
b reaches approximately 0.2bo, and the second diffusive phase allows for the final
reduction in b∗(t) (see figure 17).

3.2. Vortex merging: unstratified flow

The basic physical mechanisms of the merging process are now considered. Following
Brandt & Nomura (2006), we examine the induced flow of each of the distinct
flow regions in the co-rotating frame of reference. The regions are identified in the
simulation results as follows. The inner-recirculation region (cores and exchange band)
and outer-recirculation (filaments) region are distinguished by the sign of ω in the
co-rotating frame. The cores and exchange band are distinguished by considering the
second invariant of the velocity gradient tensor (co-rotating frame), II = (ω2/2−S2)/2
(Nomura & Post 1998). Thus, II > 0 corresponds to rotation-dominated regions, which
effectively characterizes the cores, and II < 0 corresponds to strain-dominated regions,
which characterizes the exchange band. We note that in two-dimensional flow, II > 0
is equivalent to the λ2 criterion for vortex identification of Jeong & Hussain (1995).
Figure 1(b) illustrates the three defined regions used in the analysis sampling. Although
the identification scheme is unable to isolate the exchange band strictly, it is the strain-
dominated regions that have particular dynamic significance and the sample effectively
reveals key aspects of the flow development. The sampling method is effective through
most of the convective phase of the flow. Beyond this, a fundamental transformation
of the flow structure occurs and the identification procedure is terminated, since the
rotation rate can no longer be accurately evaluated. With the flow regions identified,
the velocity field induced by each region is computed using the Biot–Savart law.
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Figure 6 shows the contribution of the flow regions to the change in b∗(t), ∆b∗
region(t).

This is determined by evaluating the inward velocity induced at the vortex centroids
by each region and integrating it in time. The contribution of the filaments (figure 6b,
Fr = ∞), which begins at t∗

c ∼ 1, corresponds to the initial, slow decrease in b∗(t).
The contribution of the exchange band (figure 6c), which begins at t∗

c ∼ 1.7, is
associated with the predominant and rapid decrease in b∗(t) during the latter part
of the convective phase. We note that the contribution of the inner cores (not
shown) oscillates about zero through the diffusive phase (Brandt & Nomura 2006).
In the flow considered here, just after t∗

c ∼ 1.7, the cores contribute to an increase
in b∗(t).

Figure 7 shows the induced flow fields of each of the regions in the vicinity of
the center of rotation (a hyperbolic point) at two times (t∗

c = 1.69, 1.97). At t∗
c = 1.69

(figure 7a–c), the velocities induced by the cores are still dominant; those of the
filaments are at least an order of magnitude less due to the relatively low ω in this
region. However, an inward component of the velocities between the cores is detected
in the filament-induced flow field (figure 7b), consistent with the results in figure 6(b).
From figure 7(a), we observe a tilt in the lowest-level ω contours and the associated
misalignment of ω with the streamlines (the actual streamlines are close to those
of the core-induced velocities at this time). The exchange-band-induced velocity field
(figure 7c) corresponds to weak circulatory motion between the two cores. At t∗

c = 1.97
(figure 7d–f ), the ω contours show vorticity from the core regions entrained into the
exchange band. The velocities induced by the exchange band (figure 7f ) thereby
become significant with magnitudes comparable to those induced by the cores and
correspond to predominantly rotational motion about the center of the vortex pair.
In time, as more of the core vorticity is entrained into the exchange band, this induced
flow strengthens and eventually dominates the flow.

The overall merging process is now considered. As discussed earlier, the model of
Meunier et al. (2005) considers the effect of the filaments, and although it predicts
quite well the initial gradual reduction of b∗(t), it fails to predict the final rapid
reduction. However, as shown in figure 6, the dominant reduction in b∗(t) is due
to the exchange band. This is the missing mechanism in the model. The process is
initiated when core vorticity enters the exchange band through a tilt in ω contours
near the center hyperbolic point (figure 7a). Vorticity is advected away from its source
core and into the exchange band; the inner cores are thereby stripped and eroded
(figure 7d). At some point, the cores themselves are entrained. This corresponds to the
rapid linear decrease in b∗(t) associated with the induced flow by the exchange band
(figure 6c). We therefore consider the convective phase to consist of two components:
(i) induced motion of filaments advecting the two vortices towards each other, and
(ii) core erosion and entrainment by the exchange band, the latter transforming the
structure of the flow to essentially a single vortex.

In order to understand the deformation of the vortices, and, in particular, how the
tilt in ω contours develops, we first consider the structure and behavior of the rate
of strain, S. Since this is a two-dimensional incompressible flow, the two principal
eigenvalues of S are equal in magnitude and opposite in sign, and the corresponding
eigenvectors are easily computed. As indicated in Brandt & Nomura (2006), early in
the first diffusive phase, the strain rate field is characteristic of two separate vortices,
i.e. a band of high strain surrounds each of the cores, and the associated eigenvectors
are oriented 45◦ from the radial direction. During this phase, as viscous diffusion
increases the core size, the strain bands correspondingly spread outward. The strain
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Figure 6. Contribution of flow regions to separation distance development, ∆b∗
region (t),

for ReΓ = 5000, Fr = ∞, 3, 2: (a) opposite-signed baroclinically generated vorticity (OSBV),
(b) same-signed baroclinically generated vorticity (SSBV) and filaments, (c) exchange band.
Symbols: �, Fr = ∞; �, Fr = 3; �, Fr = 2.
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(a) (d )

(b) (e)

(c) ( f )

Inner cores

Filaments

Exchange band

Figure 7. Vorticity contours (thin solid lines) superimposed with vectors showing the induced
velocity field of the indicated flow regions for ReΓ = 5000, Fr = ∞ at (a)–(c) tc

∗ = 1.69, (d)–(f )
tc

∗ = 1.97. The heavy solid line represents the induced flow streamline which passes through
the centre hyperbolic point. (NB: Inner core and exchange band vector lengths are scaled the
same; filament vectors are enhanced an order of magnitude for visibility.)
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Figure 8. Time development of the local strain rate, Si , at the centre of rotation normalized by
the external strain rates (3.4): (a) Seo = Srθ (b/2, 0), (b) Srθ (b/2, t) for Fr = ∞, 3, 2, ReΓ = 5000.
Symbols: �, Fr = ∞; �, Fr = 3; �, Fr = 2.

bands interact and result in a locally enhanced region of strain in the vicinity of the
center of rotation (see figure 11a–c).

Figure 8a, b shows the time development of the nondimensionalized local (principal)
strain rate evaluated at the center of rotation. As a reference value, we consider the
external strain at a given location, defined as the strain rate induced by one vortex if
the other vortex was not present. The strain field for a Lamb-Oseen vortex (Saffman
1992) is given by

Srθ (r, t) =
Γo

2π

[
− 1

r2
+

(
1

a2
+

1

r2

)
exp

(
− r2

a2

)]
. (3.4)
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Figure 9. Time development of the angle between extensional strain eigenvector and vortex
connecting line at the centre of rotation for ReΓ = 5000, F r = ∞, 3, 2. Symbols: �, Fr = ∞; �,
Fr = 3; �, Fr = 2.

At t = 0 (large b/a and b = bo), the external strain value at the center of rotation
(r = b/2) is Srθ (r, 0) = 4 Γo/(2πbo

2). The strain values plotted in figure 8(a) are
nondimensionalized by the constant value, Srθ (r, 0) = Seo, and in figure 8(b) by the
time-varying external strain, Srθ (r, t), which accounts for both b(t) and a(t). Results
indicate that the local strain rate for unstratified flow increases linearly during the
diffusive phase. Initially the value is approximately twice the external strain, indicating
that the contributions from each of the vortices are nearly additive. The main increase
during the convective phase is due to the reduction in b(t). This plays a significant
role in the merging process in both the unstratified and stratified flows. We note
that although Srθ (r, t) describes the overall behavior quite well for some time, the
scaled strain in figure 8(b) does exhibit a slow increase until t∗

c ∼ 1.7, at which time it
decreases and deviates from Srθ (r, t) significantly. This corresponds to the start of the
exchange band process.

The interaction of the vortices will also influence the directionality in S, which will
in turn affect subsequent vortex deformation (3.5). Figure 9 shows the angle between
the extensional strain eigenvector and the vortex connecting line at the center of
rotation, i.e. the relative orientation of the extensional strain with respect to the vortex
pair. At early times in unstratified flow, the angle remains approximately 45◦ due to
the relatively weak interaction between the vortices. At approximately t∗

c ∼ 1.0, the
angle begins to decrease. At t∗

c ∼ 1.7, the angle is reduced to approximately 43◦. At
this time, the exchange band process is initiated (figure 6c). Close inspection of the
induced flow fields (figure 7a–c), and in particular the streamlines passing through the
center hyperbolic point indicating local extensional straining, demonstrates that the
exchange band is responsible for the reduction in this angle. Note that the induced
flow by the filaments tends to increase this angle (figure 7b). At t∗

c ∼ 2.1, the angle
reaches approximately 40◦, beyond which it then rapidly increases. This indicates
a substantial change in the flow, i.e. core entrainment, which corresponds to the
time b∗(t) begins its rapid and nearly linear descent (figure 5a). The reduction in
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Figure 10. Time development of 〈P 〉 = − 〈∇ωT S∇ω〉, averaged over domain,
for ReΓ = 5000, Fr = ∞.

strain orientation is associated with the development of the tilt in ω contours (see
figure 11a–c). We will consider this angle as an indicator of the tilt, which results
from a dynamic interaction between vorticity and strain.

In a two-dimensional flow, the interaction of ω and S is understood in terms of
the vorticity gradient, ∇ω, which may undergo reorientation and amplification by S.
It is directly related to the behavior of vorticity contours since −∇ω/|∇ω| is the local
normal vector of an isovorticity contour line. The equation for |∇ω|2 in unstratified
flow is

D1
2
|∇ω|2

Dt
= |∇ω|2

D ln |∇ω|
Dt

= −∇ωT S ∇ω + ν∇ωT ∇2∇ω. (3.5)

The two terms on the right-hand side represent gradient amplification and diffusion,
respectively. Here, we define two quantities associated with the production term:
P = −∇ωT S ∇ω and Ps = −(∇ωT S ∇ω)/|∇ω|2 (Ps obtained by dividing (3.5) by |∇ω|2),
whose sign indicates the relative orientation of ∇ω with the principal strain axes
and, in the case of Ps , the magnitude indicates the strain in the direction of ∇ω.
Thus, P, Ps > 0 correspond to ∇ω orienting towards the direction of the compressive
strain, i.e. there is gradient amplification by compressive straining. Figure 10 shows
the time development of the area-averaged production term, 〈P 〉, which indicates a
global mean rate of deformation of the vorticity field. Prior to merging, the behavior
of 〈P 〉 is consistent with the elliptic deformation of the vortices as characterized by
computed eccentricities (not shown). As discussed in Le Dizes & Verga (2002), beyond
the initial flow adjustment and prior to the merging threshold, the vortices relax to
a mean state in which they deform at a steady rate. This mean state corresponds to
the small and nearly constant value exhibited by 〈P 〉 during this time (figure 10).
A net positive value of 〈P 〉 is exhibited, indicating the significance of the gradient
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amplification process. Beyond the diffusive phase, there is a significant increase in
〈P 〉, indicating deviation from the mean state and accelerated deformation.

In general, the local behavior of P will depend on the relative significance of rotation
and strain. In rotation-dominated regions (II > 0), P oscillates between positive and
negative values. Physically, ∇ω rotates and alternates between amplification and
damping, a condition which results in elliptic instability (Protas, Babiano & Kevlahan
1999). We expect the dynamic effect of P on ∇ω to be most significant in strong
strain-dominated regions (II < 0), i.e. the exchange band region, and in particular in
the vicinity of the center of rotation, where there is an enhancement of strain. In
these regions, S is dynamically active and significantly alters ∇ω.

Figure 11 shows S (vectors) and Ps (light gray scale, Ps > 0; dark gray scale, Ps < 0)
superimposed on vorticity contours at the central region of the vortex pair at three
times. Each vortex exhibits the quadrupole structure of P associated with elliptic
vortices (Kimura & Herring 2001). As discussed in Kimura and Herring, in positive
Ps (compressive straining) regions ω isocontours are squeezed together, while at the
same time they are extended in the orthogonal direction due to flow incompressibility.
The opposite is true for negative Ps regions. This is seen in figure 11(e) where, in the
vicinity of the center (hyperbolic point) and above it, ω contours in Ps > 0 regions
extend to the left, while ω contours in Ps < 0 regions contract to the left. This results
in the observed tilting of the upper vortex to the left and a corresponding tilting of
the lower vortex to the right, which thereby tilts the vortices with respect to their
connecting line (Brandt & Nomura 2006). This also results in the central region to be
dominated by Ps > 0, i.e. gradient amplification. The tilting effect also occurs in the
vicinity of the outer hyperbolic points where filamentation initiates (not shown). In
their study of isolated elliptic vortices, Kimura & Herring (2001) show that P plays
a significant role in the filamentation process. In regions of P > 0, vorticity gradient
amplification was found to occur prior to filament ejection. This is also observed in
the present case of two co-rotating vortices.

As discussed by Le Dizes & Verga (2002), prior to merging, the vorticity and
streamfunction exhibit a distinct functional relation, suggesting that the flow in the
rotating frame is nearly a stationary solution to the Euler equation. However, in
time and near the merging threshold, the relation between ω and the streamfunction
deviates at the hyperbolic points where |ω| is low (see their figure 14). At the central
hyperbolic point, they find an accumulation of vorticity and a Reynolds number
dependence which they suggest is due to complex advection–diffusion processes. Based
on our results, we conclude that the tilt of the vortices and associated diffusion, which
is enhanced by gradient amplification (Ps > 0 at center), results in this accumulation
and the observed misalignment of ω contours with respect to the streamlines in
these regions (e.g. figure 7a). Since the streamlines are separatrices, this causes
vorticity to enter a different flow region in the co-rotating frame and be advected
away.

In order to examine further the development of the tilt, we define the central
region of the flow by a box in the co-rotating frame with a width of 0.25bo (along the
connecting line of the vortices) and a height of 0.08bo. The box dimensions are chosen
to capture the primary misalignment in ω contours. Figure 12 shows 〈P 〉 averaged
over the central region which is predominantly positive and exhibits a significant
increase beyond t∗

c � 0.5. This increase corresponds directly to the extension of Ps > 0
regions and the positive feedback nature of gradient amplification by compressive
straining. Since the production term, ∇ωT S ∇ω, depends on both the magnitudes
and relative orientation of ∇ω and S, we now isolate the directional component.
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(a) t*c =   1.31 (d ) t*c =   1.31

(e) t*c =   1.69

(f ) t*c =   1.97

(b) t*c = 1.69

(c) t*c = 1.97

Figure 11. Close-up of vorticity contours with (a)–(c) superimposed principal extensional
strain (vectors indicating magnitude of eigenvalue and direction of eigenvector), (d)–(f ) grey
shading corresponding to |∇ω|2 production term, Ps = −(∇ωT S∇ω)/|∇ω|2 (light grey scale,
Ps > 0; dark grey scale, Ps < 0), for ReΓ = 5000, Fr = ∞.
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Figure 12. Time development of 〈P 〉 = −〈∇ωT S ∇ω〉 in the central region for ReΓ = 5000.
Symbols: �, Fr = ∞; �, Fr = 3; �, Fr = 2.
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Figure 13. Time development of the angle between ∇ω and compressive strain, α, in the
central region for ReΓ = 5000, Fr = ∞, 3, 2. Symbols: �, Fr = ∞; �, Fr = 3; �, Fr = 2.

Figure 13 shows the average angle between ∇ω and the compressive strain eigenvector
in the central region. Beyond the initial adjustment period in the unstratified flow, the
average angle is ∼ 40◦, which is near the 45◦ associated with a passive strain field, i.e.
controlled by the primary vortex. Beyond a time t∗

c ∼ 1, the angle decreases towards
zero, indicating that the strain has become active in influencing the vorticity field
by amplifying and reorienting ∇ω. This corresponds to the development of the tilt
(figure 9). As observed in these figures, significant differences occur in the stratified
flows. These will be explained in § 3.4.
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In summary, we present the following description of the merging process, which
we consider to consist of four phases. During the diffusive/deformation phase, b∗(t)
remains constant and the vortices grow by diffusion. The induced strain field of each
of the vortices correspondingly spreads by diffusion and also develops through their
mutual interaction. In the strain-dominated regions of the flow, and in particular
in the vicinity of the center hyperbolic point where the mutual interaction of strain
is strongest, S becomes dynamically active and influences the vorticity field through
amplification and reorientation of ∇ω. This establishes a tilt in ω contours with respect
to the vortex connecting line which, together with diffusion, results in a misalignment
of ω with respect to the streamlines. At the outer regions of the exchange band (near
outer hyperbolic points), this causes ω to enter the outer-recirculation region and
filamentation to occur. The associated vorticity acts to advect the vortices towards
each other but does not drive the merger to completion. We consider this as the
convective/deformation phase since the (slow) reduction in b∗(t) enhances the induced
strain at the vortices and central region. In the vicinity of the center hyperbolic point,
this misalignment allows inner core ω to enter the exchange band and be advected
away from its source core. This is the start of the convective/entrainment phase, which
is associated with a rapid reduction in b∗(t). The inner cores are thereby stripped and
eroded. The circulation of the exchange band increases at the expense of that of the
inner cores, which become increasingly weak. At some point, the cores themselves
are entrained. The resulting fluid motion becomes rotation-dominated, and what is
essentially a single vortex is established. The last phase, diffusive/axisymmetrization
phase, is characterized by the final slow reduction in b∗(t) as the two ω maxima diffuse
and the flow evolves towards axisymmetry.

As will be discussed in the following sections, this new description of merger, which
resolves the convective phase into the two distinct processes, assists in accounting for
the effects of stratification and allows for a more explicit determination of the critical
aspect ratio.

3.3. Baroclinic torque generation

We first consider the basic physics of the stratified flow. As observed in figure 4,
additional vorticity develops in the flow. As the vortex pair rotates, it stirs the stably
stratified ambient fluid and establishes horizontal density gradients, ∂ρ ′/∂x, which
generates vorticity through baroclinic torque, as described by the last term in the
vorticity equation for two-dimensional flow,

∂ω

∂t
+ (v · ∇)ω = ν∇2ω − 1

ρo

∇ρ ′ × gk. (3.6)

Plots are presented showing vorticity contours superimposed on the associated
baroclinic torque (figure 14) for Fr = 3 at the same times given in figure 4.

As indicated in figure 4, after approximately a quarter-rotation and then another
half-rotation beyond (figure 4a–c, t∗

c = 0.26 − 0.78), the vortex pair establishes
significant ∂ρ ′/∂x at its periphery, thereby resulting in negative baroclinic torque
on the left and right sides of the pair (figure 14a–c). As indicated at the later
time (figures 4c, 14c; t∗

c =0.78), this results in opposite-signed baroclinically generated
vorticity, OSBV, which forms at the boundary of the outer-recirculation regions. After
three-quarters rotation (t∗

c = 0.78), we also observe significant ∂ρ ′/∂x at the periphery
of the primary cores due to fluid that is entrained into the outer recirculation
regions (figures 4). The presence of this entrained fluid leads to a layer of same-
signed baroclinically generated vorticity, SSBV, just inside the previous OSBV after the
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(a) t*c = 0:26 (b) t*c = 0:55

(e) t*c = 1.31

(h) t*c = 1.78

(c) t*c = 0:78

(f ) t*c = 1.45

(i) t*c = 1.97

(d) t*c = 1.07

(g) t*c = 1.69

    

Figure 14. Vorticity contours (lines) superimposed on baroclinic torque, −∇ρ ′ × gk/ρo (dark
shading, positive; light shading, negative), for ReΓ = 5000, Fr = 3.

completion of one full revolution (figures 4d , 14d; t∗
c = 1.07). The SSBV is extended

as the vortex pair continues its rotation, thereby establishing same-signed ω, filament-
like structures (figures 4e, 14e; t∗

c = 1.31). Note that filamentation of primary ω is
also occuring. This is observed in the vorticity contours in figures 4f, g and 14f, g,
in which ω from the primary cores is entering into the outer-recirculation region. At
later times, continued stirring of ρ results in successive generation of ∂ρ ′/∂x, resulting
in layers of alternate-signed baroclinic torque (figure 14i, t∗

c =1.97).

3.4. Vortex merging: stratified flow

As indicated in figure 5(a), merging is completed earlier in stratified flows, although
b∗(t) exhibits a more complex development. The contributions to the change in b∗ of
each of the flow regions are shown in figure 6. Here, the outer-recirculation region is
subdivided into two regions: (a) OSBV and (b) filaments and SSBV (i.e. same-signed
ω is considered together).
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The OSBV (figure 6a) causes the vortices initially to move apart after half a
rotation (t∗

c ∼ 0.5). After t∗
c ∼ 0.78, the vortices then move together until t∗

c ∼ 1.45,
approximately half a revolution later, at which time they begin to move apart again.
As observed in figures 4 and 14, OSBV forms arches at the lower left and upper right
peripheral regions that are nearly stationary as the vortex pair rotates. The resulting
spatial distribution causes the induced motion to vary with the rotation as described.
Beyond the first complete revolution, the behavior is more complex as additional
layers of OSBV are formed (figures 14, 6; t∗

c > 1.45). With increased stratification
(Fr = 2), the magnitudes of OSBV are greater, thereby increasing the amplitude of
the corresponding induced velocity and contribution to b∗(t). However, the frequency
of the contribution is unchanged since baroclinic torque depends on the rotation of
the vortex pair.

The SSBV, together with the filaments (figure 6b), contributes to a decrease in b∗.
The induced motion of same-signed ω in the outer-recirculation region is initiated at
nearly the same time (t∗

c ∼ 1) in both the stratified and unstratified flows. However, the
presence of the additional vorticity, i.e. the SSBV, enhances the motion and thereby the
rate of decrease in b∗(t), the effect being stronger with increased stratification (Fr = 2).
The exchange band contribution (figure 6c) occurs earlier in time in the stratified
flows. From the vorticity contour plots for Fr = ∞ and Fr = 3 flows (figures 3d ,
4d; t∗

c =1.07), we see that a slight tilt in the lowest-level ω contour near the origin
appears at an early time in both flows. At the subsequent time (figures 3e, 4e;
t∗
c = 1.31), the tilt is diminished in the unstratified flow while it is maintained in the
stratified flow. This causes the exchange band process to proceed earlier in time. From
figure 6(c), we see that while the exchange band process in stratified flows initiates
earlier than in unstratified flow, the slope of the rapid decrease is not significantly
altered by stratification, indicating that the same physics is associated with this
process, i.e. core entrainment is not significantly influenced by stratification in the
considered flows.

Figure 15 shows the induced flow fields of the OSBV and the filaments and SSBV
for the Fr = 3 flow. The OSBV-induced flow (figure 15a–c) resembles that of the
filaments, but exhibits a cyclic behavior with respect to its direction, consistent with
the results in figure 6(a). As the plotted streamlines indicate, this influences both the
magnitude and the relative orientation of the strain rate in the vicinity of the center
of rotation. The flow induced by the filaments and SSBV combined (figure 15d–f ) is
similar to that of only filaments in unstratified flow (figure 7b, e). The induced flow
by the exchange band (not shown) is similar to that of unstratified flow (figure 7c, f ).
Note that although the tilt in ω contours is established earlier in time (t∗

c = 1.31), a
reduction in the tilt is observed at a later time (t∗

c = 1.45) in this flow. This is also
indicated by the strain orientation in figure 9.

The development of the tilt in the ω contours is now considered. The equation for
|∇ω|2 in stratified flow is

D1
2
|∇ω|2

Dt
= −∇ωT S ∇ω + ν∇ωT ∇2∇ω +

1

ρo

∇ωT ∇(∇ρ ′ × g), (3.7)

in which there is an additional term associated with the gradient of baroclinic torque.
However, in the central region of the flow, it is not expected to be significant in
comparison with P , and evaluation of this term confirms this. Figure 16 shows the
Ps field for the Fr = 3 flow. At t∗

c = 1.31 (figure 16a), we observe the same basic
features as in the unstratified flow (figure 11); however, higher values of Ps > 0 are
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(a) (d)

(b) (e)

(c) (f )

OSBV Filament/SSBV

Figure 15. Vorticity contours (thin solid lines) superimposed with vectors of the induced
velocity field of OSBV (on the left) and Filament/SSBV (on the right) for ReΓ = 5000, Fr = 3
at (a), (d) tc

∗ =1.31, (b), (e) tc
∗ = 1.45, (c), (f ) tc

∗ =1.69. The heavy solid line represents
the induced flow streamline which passes through the centre hyperbolic point. (NB: The
filament/SSBV vector lengths are on the same order of magnitude as in figure 7. The OSBV
vectors are enhanced an order of magnitude for visibility.)
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(a) t*c = 1.31

(b) t*c = 1.45

Figure 16. Vorticity contours with grey shading corresponding to |∇ω|2 production term,
Ps = − (∇ωT S∇ω)/|∇ω|2 (light grey scale, Ps > 0; dark grey scale, Ps < 0), for ReΓ = 5000,
Fr = 3, (a) tc

∗ = 1.31, (b) tc
∗ = 1.45.

observed, consistent with the establishment of the tilt at this earlier time. At t∗
c = b1.45

(figure 16b), there is an enhancement of regions of Ps < 0 in the central region
associated with the reduction in the tilt. The time development of 〈P 〉 for the central
region is given in figure 12. In the stratified flows, a slight decrease to negative values
is observed at t∗

c ∼ 0.5 followed by an increase to predominantly positive values for
t∗
c > 0.75. For t∗

c > 1, the rate of increase in 〈P 〉 is greater than that of the unstratified
flow. This results in the earlier development of the tilt and subsequent exchange band
process. Note that there is a marked difference between the two stratified cases. In
the Fr = 3 flow, 〈P 〉 exhibits a sharp dip, while in the Fr = 2 flow, 〈P 〉 continues to
increase. The reduction in 〈P 〉 for Fr =3 corresponds with the observed reduction in
tilt (figure 16b; t∗

c = 1.45). Beyond t∗
c ∼ 1.5, 〈P 〉 resumes its rapid increase.
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The behaviour of 〈P 〉 is explained by considering both the magnitude and
orientation of S. Time development of the local strain rate at the center of rotation
is shown in figure 8(a) and indicates a reduction in magnitude during 0.5 < t∗

c < 0.78,
followed by an increase until t∗

c ∼ 1.5. Prior to core entrainment, the induced strain
is directly related to changes in the separation distance and generally follows (3.4)
as indicated by figure 8(b). As the vortices move away from each other due to the
OSBV (0.5 < t∗

c < 0.78), the strain at the center of rotation is reduced, and as they
move towards each other (0.78 � t∗

c � 1.35), the strain is increased; the effect of
OSBV on 〈P 〉 is cyclic. Beyond t∗

c ∼ 1.35 the OSBV has less of an effect, particularly
in the Fr = 2 flow. This may be attributed to the greater extent of OSBV surrounding
the vortex pair, which results in some effective cancellation of the associated flow.
Since the SSBV acts only to reduce b∗(t), SSBV enhances the strain, thereby resulting
in higher strain in the stratified flows than that of the unstratified flow for t∗

c > 1.1
(figure 8a). Thus, the effect of SSBV is to promote 〈P 〉. In the Fr = 2 flow, the strain
magnitude continues to increase due to the OSBV, SSBV and exchange band induced
flows until it exhibits a sharp drop due to core entrainment, which occurs earlier
in time. In the Fr = 3 flow, while the SSBV enhances the strain, its induced radial
velocity is much smaller than in the Fr = 2 flow and the OSBV counteracts this effect.
The reduction in b∗(t) is thereby delayed during 1.35 � t∗

c � 1.55. Beyond this, the
strain magnitude levels off before it drops as core entrainment occurs (figure 8a).
This does not, however, fully explain the observed reduction in tilt at t∗

c ∼ 1.45 in the
Fr = 3 flow.

As indicated earlier, the induced flows (figure 15) also influence the orientation
of S. As shown in figure 9, the orientation angle of the extensional strain at the
center of rotation begins to decrease from 45◦ at approximately t∗

c ∼ 1 and does so
at a greater rate in the stratified flows than in the unstratified flow. Examination
of figure 15(a)–(c) indicates that the induced flow of the OSBV rotates with respect
to the vortex connecting line and thus has a cyclic influence on the strain rate
orientation. In the Fr = 3 flow, for 1.0 � t∗

c � 1.35, the induced flow enhances the
reduction in the strain orientation angle, while for 1.35 � t∗

c � 1.55 it opposes the
reduction. This explains the observed increase in the angle at t∗

c ∼ 1.45 (figure 15b, e).
The reduction in 〈P 〉 during this time (figure 12b, e) and corresponding reduction
in the tilt is associated with a reduced alignment between ∇ω and the compressive
strain (figure 13). However, beyond this time, the angle resumes its decrease until
core entrainment occurs, at which point the strain angle sharply diverges as the flow
becomes vorticity-dominated. In both stratified flows, the rotation of the strain axes is
such as to generally promote the alignment of the compressive strain and ∇ω, thereby
increasing P and enhancing the gradient amplification process. As illustrated by this
process, the interaction of ∇ω and S is complex. While local S interacts directly with
∇ω, through both its magnitude and relative orientation, both local and nonlocal ω

will feed back on S.
In summary, we describe vortex merging in the stratified flows in terms of the

four phases of development presented in § 3.2. This is illustrated in figure 17. The
diffusive/deformation phase begins as in unstratified flow; however, it is interrupted
by an earlier convective/deformation phase due to baroclinically generated vorticity.
Essentially, the OSBV and SSBV play a similar role to that of the filaments, i.e. the
induced flow advects the vortices, thereby modifying S, which in general may hinder
or enhance the gradient amplification process. In the flows considered, the combined
effects of the enhanced magnitude and change in orientation of S by OSBV and SSBV
leads to a more rapid development of the tilt in ω contours and subsequent exchange
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Figure 17. Diagram illustrating four phases of merging process with respect to the
development of b∗(t) for ReΓ = 5000, Fr = 2 (t∗

DD = 0.49, t∗
CD = 1.32, t∗

E = 1.46, t∗
CE = 1.62).

band process. In general, the effects of both OSBV and SSBV depend on the rotation
of the vortex-pair and are cyclic. Thus, their implication on the merging process will
depend on the relative time and stage of flow development that they appear. This
issue will be considered in the following section. Once the core entrainment process
is initiated, the convective/entrainment phase proceeds as in the unstratified flow.

3.5. Flow development and the effect of ReΓ

We have developed a description of the vortex-merging process in both unstratified
and stratified flows in terms of four phases of development (figure 17) based on results
for ReΓ =5000. We now further develop this description by more explicitly defining
and delimiting the phases. In particular, we consider the determination of the critical
aspect ratio. We also generalize the description for stratified flows by considering the
effect of ReΓ .

During the diffusive/deformation phase (t∗
c < t∗

DD
), a2

θ (t) grows linearly by diffusion
while b(t) remains constant. As indicated in figure 5(b), the growth of a2(t)
is well described by (3.3) and the average growth rate for all our simulations,
2000 � ReΓ � 5000 and Fr = ∞, 5, 3, 2, is c′ = 1.94 ± 0.05. Physically, as the vorticity
distribution spreads by diffusion, the induced strain field of each of the vortices
correspondingly spreads and develops through their mutual interaction. The vortices
adjust to the induced strain, which results in deformation of the vorticity field. Thus,
the interaction of ∇ω and S is established by diffusion. This is indicated in figure 18,
which shows the development of 〈P 〉 plotted against time scaled by the diffusive time



Physics of vortex merger and effects of ambient stable stratification 439

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

5000

10000

15000

t*υ

�P�

 

 

Figure 18. Time development of 〈P 〉 = −〈∇ωT S∇ω〉 over central region for Fr = ∞ flows.
Symbols: �, ReΓ = 2000; �, ReΓ = 3000; �, ReΓ =4000; ∗, ReΓ = 5000.

scale, t∗
v ,

t∗
v =

t

tv
=

tc

tv

t

tc
=

8π2

(ao/bo)2ReΓ

t∗
c , (3.8)

for the unstratified flows at different ReΓ . The diffusion rate of ω and S is higher for
lower ReΓ and the initial interaction is established earlier. Beyond the initial rapid
adjustment from initial conditions, the behavior of 〈P 〉 generally scales well with t∗

v

until t∗
v ∼ 1.1 (figure 18). Beyond this time, convective effects become important and

the higher ReΓ flows exhibit a greater rate of increase in 〈P 〉.
During the convective/deformation phase (t∗

DD
� t∗

c < t∗
CD

), a2
θ (t) continues to grow

linearly and b(t) changes by advection. In unstratified flow, the change in b∗(t) is
due to filamentation. The induced flow by the filaments causes a relatively slow
reduction in b∗(t) and thus (a/bo)cr will vary only slightly with ReΓ . At the end of
the convective/deformation phase, t∗

c = t∗
CD

, and a2
θ (t) deviates from linear growth at

(a/bo)cr ∼ 0.23 (e.g. figure 5c) which we find to be nearly independent of ReΓ . In
stratified flow, OSBV and SSBV, together with the filaments, cause b∗(t) to vary more
significantly during the convective/deformation phase. The induced flow from OSBV
and SSBV may advect the vortices, either away from or towards each other, thereby
modifying S and hindering or enhancing, respectively, the development of the tilt in
ω contours. In the stratified flows presented in § 3.4, a greater rate of decrease in b∗(t)
leads to an earlier start of the exchange band process. However, in general, the effects
of OSBV and SSBV may also separate the vortices, i.e. the merger process may, to
some extent, be reversed. We therefore distinguish this convective process explicitly
by this phase.

During the convective/entrainment phase (t∗
CD

� t∗
c < t∗

CE
), a2

θ (t) no longer grows
linearly (the ω field is significantly altered) and b(t) significantly decreases as the
vortex cores are eroded and entrained into the exchange band. In contrast to
the convective/deformation processes, we consider erosion and entrainment to be
irreversible. We now define the critical state of the flow to be the start of the
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Figure 19. Critical aspect ratio, (a/b)crit according to equation (3.3), versus ReΓ for different
Fr . Dashed line represents the mean value, (a/b)crit ∼ 0.235. Symbols: �, Fr = ∞; ∗, Fr =5;
�, Fr = 3; �, Fr = 2.

exchange band process, beyond which there is no reversal and merging will occur.
The corresponding time, t∗

CD
, is marked by the initiation of the contribution to b∗(t)

from the exchange band, ∆b∗
E

(figure 6c). This is also comparable to the time a2
θ (t)

deviates from linear growth. The critical state is therefore characterized by the aspect
ratio (a/b) at t∗

c = t∗
CD

for which the corresponding values of a(t) and b(t) are thereby
determined. In the stratified flows, an effective a is determined from (3.3) at t∗

c = t∗
CD

.
For all flows considered, 2000 � ReΓ � 5000 and Fr = ∞, 5, 3, 2, (a/b)cr = 0.235±0.006
(figure 19). This is in agreement with the values (a/b)cr = 0.24 ± 0.01 reported by
Meunier et al. (2002) for unstratified flow.

As discussed earlier, the latter portion of the convective/entrainment phase is
clearly marked by the rapid, nearly linear decrease in b∗(t) due to the exchange band
contribution, ∆b∗

E
(e.g. figure 6c). We consider a time, t∗

E
, as the effective start of core

entrainment and defined by extending the linear portion of ∆b∗
E

to where it intersects
with ∆b∗

E
= 0. A plot of ∆b∗

E
versus t∗

c − t∗
E

(figure 20) thereby overlays the exchange
band process for the different ReΓ and Fr flows. For all flows, the process proceeds at
nearly the same rate. We therefore consider the core entrainment process, t∗

E
< t∗

c < t∗
CE

(figure 17), to be independent of ReΓ and Fr .
The merging time is therefore controlled by the processes prior to t∗

E
, which depend

on ReΓ , Fr , and the initial aspect ratio. Thus, for the ao/bo considered, t∗
E
= t∗

E
(ReΓ , F r).

Figure 21 shows t∗
E

versus ReΓ for various Fr . In unstratified flow, a linear dependence
is exhibited, consistent with results of Meunier et al. (2002), and is due to the
predominance of diffusion prior to the exchange band process which is the dominant
convective process. For the stratified flows, we see that there is a crossover Reynolds
number (ReΓ ∼ 2500), above which convective merging is accelerated with respect to
the unstratified flow at that ReΓ , and below which merging is delayed. In stratified
flow, convective effects (in the convective/deformation phase) become more significant
due to the OSBV and SSBV. Since they arise due to the stirring of the density field
by the co-rotating vortices, they have a timescale corresponding to the rotation,
tc = 2π2bo

2/Γo, i.e. the turnover time. The effects of OSBV and SSBV will therefore
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Figure 21. Effect of ReΓ and stratification on merging time, t∗
E . Symbols: �, Fr = ∞;

�, Fr = 3; �, Fr = 2.

depend on the extent to which diffusion has developed the ω and S fields by the time
OSBV/SSBV are generated. That is, for a given initial aspect ratio, the merging time
in stratified flow will depend on the ratio of the diffusive time scale to the turnover
time, and hence ReΓ (3.8). From results of the unstratified flows, for ReΓ = 5000,
t∗
E
= 2.02, and for ReΓ = 2000, t∗

E
= 1.05. Thus, the ReΓ = 5000 flow rotates more than

one revolution while the ReΓ =2000 flow just reaches one revolution prior to core
entrainment. We may therefore expect their behaviors to differ with stratification.
Results in figure 21 indicate that stratification accelerates merging for ReΓ = 5000
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Figure 22. Contribution of flow regions to separation distance development, ∆b∗(t), for
ReΓ =2000. Symbols: �, Fr = ∞; �, Fr = 3; �, Fr = 2.

and delays merging for ReΓ = 2000. In general, the ReΓ dependency will be cyclic.
The effects of OSBV and SSBV will also, of course, depend on their strength, and
hence, Fr . Additionally, in the present study, we have considered only ao/bo =0.157.
In general, the crossover Reynolds number will vary with aspect ratio. As indicated
by (3.8), the diffusion time will increase with smaller ao/bo. Additional simulation
results (not shown) indicate a lower crossover Reynolds number for smaller ao/bo.

We now examine the ReΓ = 2000 flow in which stratification delays merging.
Figure 22(a) shows b∗(t) for Fr = ∞, 3 and 2 and clearly indicates greater delay
with increased stratification. Figure 22b–d shows the contribution of each flow region
to b∗(t). We observe that the OSBV (figure 22b) again acts to move the vortices
apart during 0.5 � t∗

c � 0.8, as in the ReΓ = 5000 flow (figure 6). However, since
this occurs near the end of the convective/deformation phase in this flow, the OSBV
counteracts the initiation of convective/entrainment. Note that the amplitude of the
OSBV contribution is reduced in comparison with that of ReΓ = 5000 due to the
increased diffusion of ∇ρ ′ (recall Pr = 1). In addition, since the core entrainment
phase begins at approximately one full revolution, there is little SSBV generated
(figure 22c) to assist in the merging process. Figure 23 indicates that 〈P 〉 is generally
reduced with increasing stratification. As the OSBV moves the vortices apart during
0.5 < t∗

c < 0.8, the magnitude of the strain decreases as it does in the ReΓ = 5000.
This affects and controls the behavior of 〈P 〉 (figure 23). Since 〈P 〉 is reduced in the
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Figure 23. Time development of 〈P 〉 = −〈∇ωT S∇ω〉, averaged over central region, for
ReΓ =2000, Fr = ∞. Symbols: �, Fr = ∞; �, Fr = 3; �, Fr =2.

stratified flows, the tilting of ω contours is delayed. The core entrainment process
therefore initiates later in time (figure 22d).

The final phase of the merging process is the diffusive/axisymmetrization phase
(t∗

c > t∗
CE

), during which b(t) is reduced to zero and a2(t) eventually returns to linear
growth for the single vortex. As stated earlier, this phase begins when b reaches
approximately 0.20bo − 0.25bo, at the end of the convective/entrainment phase at
which point the inward velocities at the centroids are nearly zero. Although two ω

maxima are still detected, inspection of the general flow structure shows that it is
rotation-dominated and essentially consists of a single vortex. Thus, we consider this
final phase, as a diffusion process in which the flow evolves towards axisymmetry.
Details of this process which generally extends beyond the time at which b∗(t) reaches
zero, are beyond the scope of this work.

4. Summary
The merging of a pair of symmetric, horizontally oriented vortices in a viscous fluid

with and without stable stratification has been investigated using two-dimensional
numerical simulations. The flow conditions considered consist of a fixed initial aspect
ratio ao/bo =0.157, a range of circulation Reynolds numbers 2000 � ReΓ � 5000,
and a range of stratification levels given by Froude numbers, Fr = ∞, 5, 3, 2. All
of these flows are dominated by convection and diffusion, not by stratification
(Fr > 1), and merging always occurs. The stratification essentially introduces a
disturbance to the merging process. By determining its effects, we have obtained
further insight and understanding of the fundamental physics of merging. We have
also developed a generalized description of the merging process which consists of
four phases: diffusive/deformation, convective/deformation, convective/entrainment,
and diffusive/axisymmetrization. The phases are clearly defined and summarized in
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§ 3.5. This new description of merger, which resolves the convective effects into two
distinct processes, assists in accounting for the effects of stratification and allows for
a more explicit determination of the critical aspect ratio.

Analysis of unstratified flow elucidates the key physical mechanisms of convective
vortex merger. In particular, the deformation of the vortices is explained in terms
of the interaction of vorticity gradient, ∇ω, and rate of strain, S. During the
diffusive/deformation phase, the vortices grow by diffusion. The induced strain of each
of the vortices correspondingly spreads by diffusion and also develops through their
mutual interaction. The interaction of ∇ω and S is therefore established by diffusion. In
the strain-dominated regions of the flow, and in particular in the vicinity of the center
of rotation where the mutual interaction of strain is strongest, S becomes dynamically
active and influences the vorticity field through amplification and reorientation of
∇ω, which produces a tilt in ω contours. The tilting and diffusion of ω leads to a
misalignment of ω with respect to the streamlines. At the outer regions of the exchange
band (near outer hyperbolic points), this causes ω to enter the outer-recirculation
region and filamentation to occur. During the convective/deformation phase, the
induced flow by the filaments acts to advect the vortices towards each other but does
not drive the merger to completion. The reduction in separation distance enhances
the strain at the central region. Here (near center hyperbolic point), the misalignment
between ω and streamlines causes inner core ω to enter the exchange band and be
advected away from its source core. This is the start of the convective/entrainment
phase which is associated with a rapid decrease in the separation distance. The inner
cores are thereby eroded, and at some point are themselves entrained. This is the
predominant mechanism in convective merger. The circulation of the exchange band
increases at the expense of that of the inner cores. The resulting fluid motion becomes
rotation-dominated and transforms into what is essentially a single vortex at the end
of the phase. The final diffusive/axisymmetrization phase is characterized by the slow
diffusion of the two ω maxima and evolution towards axisymmetry.

With stably stratified ambient fluid, as the vortex pair rotates, it stirs the density
field and generates both opposite-signed and same-signed vorticity through baroclinic
torque. As in the unstratified flow, the interaction of ∇ω and S is established by
diffusion. The merging process in stratified flow therefore depends on the ratio of
the diffusive time scale (growth of cores, establishment of ∇ω and S interaction)
to the turnover time (establishment of baroclinically generated vorticity, BV), i.e.
the Reynolds number. A crossover Reynolds number (ReΓ ∼ 2500 for this initial
aspect ratio) is found, above which convective merging is accelerated with respect
to unstratified flow and below which merging is delayed. In general, the effect of the
BV is similar to that of the filaments. The induced flow field will advect the vortices,
either towards or away from each other, and this will modify the strain rate field, both
in magnitude and direction. We distinguish this convective process by defining the
convective/deformation phase, which may initiate while diffusion remains significant.
Depending on the relative timescales, and stage of evolution (also initial aspect
ratio), it may either enhance or hinder the ∇ω amplification process. The strength of
the BV depends on the level of stratification, as characterized by the Froude number.
Therefore, initiation of the exchange band process and the convective/entrainment
phase depends on both ReΓ and Fr . Once initiated, the core entrainment process is
relatively unaffected by either viscosity or level of stratification.

For both unstratified and stratified flows, we define the critical state of the flow to
be the start of the convective/entrainment phase, beyond which there is no reversal
and merging will occur. This is also approximately the time a2(t) deviates from linear
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growth. However, since b(t) may change significantly, the critical aspect ratio must be
determined by a(t)/b(t) at the time the exchange band process initiates. For all flows
considered, 2000 � ReΓ � 5000 and Fr = ∞, 5, 3, 2, (a/b)cr = 0.235 ± 0.006, where the
core size is effectively based on the second moment of vorticity. This is in agreement
with values previously determined for unstratified viscous flows (Meunier et al. 2002).

The results presented in this study apply to pairs of symmetric (equal) co-rotating
Gaussian vortices at moderate ReΓ . Further studies should consider unequal vortices,
other vorticity distributions, and higher Reynolds numbers. Vortex pairs in these flows
may behave quite differently (Dritschel & Waugh 1992). The present study provides
fundamental insight into vortex interaction and the merging process. It also provides
a framework with which these flows may be analyzed.
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Scientists) foundation.
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