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In this paper we consider the convection-diffusion problem of a passive scalar in Lagrangian
coordinates, i.e., in a coordinate system fixed on fluid particles. Both the convection-diffusion partial
differential equation and the Langevin equation are expressed in Lagrangian coordinates and are
shown to be equivalent for uniform, isotropic diffusion. The Lagrangian diffusivity is proportional
to the square of the relative change of surface area and is related to the Eulerian diffusivity through
the deformation gradient tensor. Associated with the initial value problem, we relate the Eulerian to
the Lagrangian effective diffusivities �net spreading�, validate the relation for the case of linear flow
fields, and infer a relation for general flow fields. Associated with the boundary value problem, if the
scalar transport problem possesses a time-independent solution in Lagrangian coordinates and the
boundary conditions are prescribed on a material surface/interface, then the net mass transport is
proportional to the diffusion coefficient. This can be also shown to be true for large Péclet number
and time-periodic flow fields, i.e., closed pathlines. This agrees with results for heat transfer at high
Péclet numbers across closed streamlines. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2717185�

I. INTRODUCTION

Molecular diffusion is a fundamental physical process
that must be properly accounted for in the analysis of engi-
neering and natural flows. When a substance is present in a
moving fluid, it will be transported by the fluid �convection�.
If molecular diffusion is present, molecules of the substance
can move in and out of fluid particles and their location will
differ from that of the fluid particles due to random/
Brownian motion. For example, dye and smoke are often
used as flow tracers and are assumed to “mark” the fluid
particles. However, due to molecular diffusion, this marking
may be transferred to different fluid particles over time and
thus the flow tracing becomes questionable.1 The flux asso-
ciated with molecular diffusion is generally assumed to be
proportional to the substance concentration gradient and the
constant of proportionality is identified as the mass diffusiv-
ity, D. Incorporating this basic assumption �gradient trans-
port� to a conservation law in the Eulerian frame leads to the
governing equation where the convection and diffusion terms
are distinctly identified, i.e., the convection-diffusion equa-
tion. The latter simplifies mathematically to the Laplacian for
the case of isotropic uniform diffusion. Similar arguments
hold for heat transfer.

Einstein2 was able to obtain the diffusion equation con-
sidering the probability density function �pdf� for the posi-
tion of a Brownian particle. This was later identified as the

first term in the Kramers-Moyal expansion of the Chapman-
Kolmogorov equation, which is the principal way in which
the Fokker-Planck equation enters into physics. Langevin,3

considering the dynamics of an individual particle and its
interaction with nearby particles, formulated the process in
an “infinitely more simple” manner by introducing a stochas-
tic force in the ordinary differential equation governing the
position of an individual particle. This force is the aggregate
interaction force of the particle with other nearby particles.
Concerning the initial value problem, i.e., a particle
convected/diffusing in an infinite field, the equivalence be-
tween the two approaches can be demonstrated through the
use of Ito’s calculus.4 Their equivalence ceases when bound-
ary conditions are present.

In this study, we are interested in characterizing
convective-diffusive passive scalar �e.g., substance concen-
tration� transport and finding relations that characterize the
net spreading or, more “mathematically,” the covariance ma-
trix of the position of a “random” �Brownian� particle. It is
important to note that the diffusivity tensor D identifies the
local rate of spreading,5 whereas we are interested in the
effective diffusivity, or dispersivity, which characterizes the
macroscopic spreading. A common objective of relevant
analyses has been to develop expressions for a dispersion
coefficient that accounts for the effect of convection, as re-
viewed by Isichenco.6 In general, the term “effective diffu-
sivity” is associated with the initial value problem and is
related to the mean-square displacement of a Brownian par-
ticle. When referring to the Dirichlet boundary value prob-
lem, particle statistics are not applicable, and the term effec-
tive diffusivity is used to characterize the net mass transport.
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In the following sections we briefly review the various
analyses present in the literature that lead to an effective
diffusivity. For the sake of clarity, we have classified the
approaches in terms of the mathematical formulation of the
problem. Which approach is preferable will depend on the
formulation of the specific problem, however, results ob-
tained through different methods should be consistent. For
example, for the case of linear flow fields �Sec. IV A 1�, the
effective diffusivities obtained through the Lagrangian and
Eulerian formulations, though not equal, can be related
through the deformation gradient tensor.

A. Eulerian coordinates

1. Initial value problems

Foister and Van de Ven7 consider the Eulerian initial
value problem through both the convective diffusion equa-
tion for the time-dependent probability density function and
the Langevin equations, and demonstrate the equivalence of
the two approaches for the case of linear flow fields.

2. Boundary value problems

In contrast to the initial value problem, the presence of
boundaries and discontinuities leads to boundary layers that
must be considered and matched to the bulk �homogeneous�
solution.8 Referring to the Eulerian convection-diffusion
equation, the series expansion of the velocity field about the
location of the interface suggests that convection, has a pro-
found effect on the structure of the boundary layer and, con-
sequently, on the net mass transport. The net mass transport
is of O�Pe−1/2� in the case of convection-dominated
diffusion,9 and of O�Pe−1/3� in the case of shear flow,10–12

where Pe is the Péclet number which is the ratio of diffusion
to convection time scales.

Another elementary boundary value problem is the
steady-state heat conduction through a material with multiple
constituents in which the thermal diffusivity varies periodi-
cally in space. Obtaining a mathematical solution that in-
cludes such variations can be very difficult. A simpler alter-
native is to develop equations that effectively smooth out the
substructure variations and replace the heterogeneous diffu-
sivity with an “effective” diffusivity that is homogeneous at
large scales, i.e., a homogeneous solution. A naive approach
is to define the classical average �arithmetic mean� of the
heterogeneous diffusivity as the “homogeneous effective”
diffusivity, however, the relation between the two diffusivi-
ties is elusive. As shown in Hinch,13 the effective diffusivity
for the one-dimensional heat diffusion with space-dependent
diffusivity, is the harmonic average �harmonic mean� of the
heterogeneous diffusivity.

3. Initial value problems with multiple length scales

A special class of problems are initial value problems
with two length scales: the “long” length scale and the
“short” length scale.

In the case of flow through a domain with spatially pe-
riodic structure, a domain decomposition technique, the
theory of moments, introduced by Taylor14 and developed by
Aris,15 Horn,16 and Brenner,17 is effective and widely used in

diffusion problems in porous media. The formulation can
address boundary value problems with Neumann boundary
conditions specifying the normal derivative of the function
on a surface being zero �no flux, impermeable�. Because of
the impermeable walls, a �Brownian� particle cannot escape
from the domain, hence particle statistics �mean, variance�
are applicable. In this technique, the average interstitial ve-
locity and the effective dispersivity tensor can be obtained by
taking spatial moments of the convection-diffusion equation
governing the probability density function of a Brownian
particle.

Another technique to obtain the effective diffusivity is to
treat the problem by multiple scales analysis in time and
space considering an initially slowly varying scalar field.18

The effect of eddies and boundary layers is incorporated
through the multiple scales in space without explicitly iden-
tifying boundary conditions. The solvability condition of the
second-order problem leads to an expression for the effective
diffusivity.

B. Lagrangian coordinates

In Lagrangian �fluid particle� coordinates, if the flow is
time periodic the time average of the resulting diffusivity
tensor, which is related to the velocity gradient tensor, was
referred to as the effective Lagrangian diffusivity.20 If the
scalar field has a time-independent solution then the net mass
transport, associated with the boundary value problem, is
proportional19 to the diffusion coefficient D, or more pre-
cisely to the inverse of the Péclet number �1/Pe�. The ap-
proach requires that fluid particles return to their original
position after one period �i.e., closed pathlines�, the Péclet
number is large, and the Dirichlet boundary conditions are
prescribed on a material surface/interface. An example satis-
fying the above conditions is mass transport across the inter-
face of a spherical bubble undergoing volume oscillations in
an incompressible liquid.21,22

A propagating wave is another example of a mass trans-
fer problem with a dynamic interface. In general, the treat-
ment of the diffusion problem associated with a dynamic
interface would lead to a nonlinear, nonorthogonal transfor-
mation between Eulerian and Lagrangian coordinates. How-
ever, when pathlines coincide with streamlines, i.e., the ve-
locity field can be expressed by a time-independent
streamfunction ��� and velocity potential ��� , a variance of
the von Mises transformation leads to a conformal transfor-
mation between the �x ,y� and �� ,�� variables.23 This was
exploited by Witting24 and Szeri25 to consider the effect of
capillary waves on the enhancement of transport across a
wavy interface. In all these examples, the effective diffusiv-
ity is proportional to the diffusion coefficient �D�. This
agrees with results for heat transfer at high Péclet numbers
across closed streamlines.26 The closed streamline pattern in-
hibits the coupling between convection and diffusion; hence,
heat/mass can only escape by diffusing slowly across closed
streamlines �stream surfaces� on the large scale.
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C. Scope and outline

The objective of the present analysis is to obtain results
for the diffusivity and effective diffusivity in Lagrangian co-
ordinates, first considered by Press and Rybicki.20 We con-
sider both the initial value problem and the boundary value
problem. For the latter, the main results are presented in Sec.
IV B 1. For the former, we address both the convection-
diffusion equation for the time-dependent probability density
function and the Langevin equation, and demonstrate their
equivalence �Sec. II B�. We explicitly determine the effective
Lagrangian diffusivity for the case of linear flow fields and
we show how the Lagrangian results are related to the Eule-
rian results and, in particular, to the results obtained by Fois-
ter and Van de Ven7 �Sec. IV A 1�. The advantage of the
Lagrangian formulation is that the effect of convection is
incorporated in the Lagrangian diffusion through the defor-
mation gradient tensor; hence, we are able to infer an effec-
tive diffusivity for general flow fields �Sec. IV A 2�.

In Sec. II, we present the Eulerian and Lagrangian for-
mulations of the transport equations. In Secs. III and IV, the
Lagrangian diffusivity and the effective diffusivity are pre-
sented, respectively, and compared. Conclusions are given in
Sec. V.

II. ANALYSIS

The physical problem we consider is that of a moving
fluid �carrier substance� in which there is a dilute suspension
of spherical colloidal particles �contaminant substance�.
Thus, the suspended particles are larger than the molecules
of the carrier fluid but sufficiently small to exhibit Brownian
motion. An example is dust or smoke in air. The carrier fluid
flow is incompressible. We consider fluid particles to be ma-
terial elements which can carry and exchange the colloidal
particles.

A. Transport in Eulerian coordinates

The transport equation describing the convection and
diffusion of a passive scalar, f , is27

� f

�t
+ u�x,t� · �f = � · D · �f , �1�

where D is the molecular diffusivity tensor which is symmet-
ric. We assume that the vector field u is solenoidal �i.e., the
flow field is incompressible � ·u =0�. In index notation, the
equation takes the form

� f

�t
+ ui�x,t�

� f

�xi =
�

�xi�Dij � f

�xj� , �2�

in Cartesian coordinates.
In the context of Brownian motion, f represents the

probability density function of the location of a colloidal
particle. Given that the position of the particle is known at
the initial time, i.e., the particle is at the origin x =0, the
stochastic process has an initial condition

f�t = 0� = ��x�

�where ��x� represents the Dirac function� and the homoge-
neous boundary condition

f�x → �� = 0.

This formulation is identified as the initial value problem and
there is no time-independent asymptotic solution associated
with this problem.

If explicit boundary conditions are defined over the
boundaries, this is identified as a boundary value problem,
and one would expect a time-independent steady-state solu-
tion, as the diffusivity tensor is time independent.

1. Langevin equation

The initial value problem is equivalent to an Ito stochas-
tic differential equation �SDE�, known as the Langevin
equation.4 The high friction limit �diffusion limit� of the
Langevin equation is as follows:28

dx = u�x,t�dt + B · dW , �3�

where u�x , t� represents the underlying �carrier� fluid veloc-
ity, W are independent Wiener processes, and the matrix B is
related to the diffusivity tensor through

B = �2D�1/2.

It is important to point out that the Langevin equation �3� and
the diffusion equation �1� might not be equivalent for any
arbitrary tensor D�x , t�, unless the advective velocity is
modified by a drift term equal to the divergence of the dif-
fusivity tensor.29 This is beyond the scope of this work,
where we are mostly interested in uniform, isotropic diffu-
sion, i.e., D =DI, where D is the diffusion coefficient and I
the identity matrix.

B. Transport in Lagrangian coordinates

The problem can be recast in Lagrangian �carrier fluid�
coordinates

� = ��x, t̃ � or �i = �i�x1,x2,x3, t̃ �

as follows:27 We let x1�� , t� , x2�� , t� , x3�� , t� be the location
at time t of a fluid particle that was located at ��1 ,�2 ,�3� at
time t=0. Hence, the coordinates ��1 ,�2 ,�3� identify a fluid
particle. The governing equations for �x1 ,x2 ,x3� are

u�x1,x2,x3,t� =
dx

dt
= � �x

dt̃
��1,�2,�3,t�� , �4�

with initial conditions �t=0�, x =�. In order to distinguish
between time in Eulerian and Lagrangian coordinates a tilde
has been used, i.e., t̃. Integration of �4� gives the path of a
fluid particle. Alternatively, note that ��y ,s� identifies the
particle passing through the point y in space, at time t=s; for
example, ��0 ,0� t�s� identifies the particles that pass from
the origin within the time-frame 0� t�s.

The convection-diffusion equations �1� and �2� in La-
grangian coordinates take the form20,27,30
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�5�

where Dlab
kl denotes the components of the diffusivity tensor

in Cartesian coordinates �orthonormal laboratory basis�
while the term Dkl �in underbrace� is the contravariant com-
ponent of the diffusivity tensor. Note that the convection
term has been absorbed in view of the identity

�

� t̃
=

�

�t
+ u · �x,

i.e., the contravariant component of the diffusivity tensor, the
“Lagrangian diffusivity,” incorporates the effect of convec-
tion.

The diffusion equation can be written in vector notation
employing the deformation gradient tensor F �Ref. 31�

F = ��x =
�x

��

and that the contravariant components of a tensor can be
obtained through32 the transformation Dij =F−1DlabF

−T,

� f

� t̃
= �� · 	F−1 · D · F−T
 · ��f , �6�

where the superscript �−T� denotes inverse transpose.
In the case of uniform, isotropic diffusion �D =DI in the

Cartesian system�, the right-hand side �RHS� of Eqs. �5� and
�6� simplifies to

� f

� t̃
= D

�

��i�gij � f

�� j� � D�� · C−1 · ��f , �7�

where gij is the contravariant metric tensor. The tensor C−1 is
the inverse of the Green �Cauchy-Green� tensor C, which is
related to the deformation gradient tensor F through C
=FT ·F �Refs. 31 and 33�.

1. Langevin equation

The results of the previous section �Eq. �5�� raise the
issue of expressing the Langevin equation �3� in Lagrangian
coordinates. We proceed by considering a differential dis-
placement,

dxi�� j,t� =
�xi

�� j d� j +
�xi

�t
dt , �8�

where the first term on the RHS represents the displacement
associated with a change in fluid particle and the second term
represents the displacement associated with a change in time.
In view of Eq. �4� and the Langevin equation �3�, �8� can be
further manipulated to

dxi�� j,t� =
�xi

�� j d� j + ui dt = ui dt + Bj
i dWj .

The equation leads to the Langevin equation in Lagrangian
coordinates

d�i =
�� j

�xi Bk
i dWk. �9�

A physical interpretation of this equation can be obtained as
follows, referring to Fig. 1. Consider two fluid particles, �1

and �2. At time t1 the Brownian particle xb takes a step �x
equal to B ·dW. The small displacement vector �x can be
expressed as

�x = x��2� − x��1� = x�� + ��� − x��� = F · �� ,

which leads to the vector form of Eq. �9�,

d� = F−1 · B · dW . �10�

The Langevin equation in Lagrangian coordinates can be
identified as the convected derivative27 of the Lagrangian
coordinate. This is identically zero for the case that there is
no diffusion.

For isotropic, uniform diffusion the equivalence between
�9� and �5� can be obtained as follows. The SDE �9� is
equivalent to the Fokker-Planck equation,34

� f

� t̃
=

B2

2
�gijf�,ij ,

where the subscript ,ij denotes covariant differentiation �co-
variant differentiation reduces to the partial derivative in
Cartesian coordinates�. In view of the identity g,i

ij =0, the
above equation simplifies to

� f

� t̃
= D�gijf ,i�,j

and finally to27

� f

� t̃
= D

�

��i�gij � f

�� j� .

Similar to the Eulerian formulation, the equivalence between
the two formulations, Fokker-Planck and Langevin, is lim-
ited to the initial value problem.

Furthermore, in the Lagrangian coordinate frame, the
spatial variability of the diffusivity tensor, manifested

FIG. 1. A Brownian particle �thin line� jumping across fluid particles �thick
lines�.
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through the contravariant metric gij, might suggest a drift
velocity29 in the Langevin equations �9� and �10�. However,
as mentioned in the proof earlier, the covariant divergence of
the metric tensor gij is equal to zero, i.e., � ·C−1=g,i

ij =0.

III. LAGRANGIAN DIFFUSIVITY

In view of the diffusion equation in Lagrangian coordi-
nates �6�, it is tempting to identify the tensor DL

=F−1 ·D ·F−T as the Lagrangian diffusivity tensor.20 To reveal
the physical significance of the tensor, consider the case of
uniform isotropic diffusion, where the term simplifies to the
contravariant metric tensor �see Eqs. �7��, which is the in-
verse of the Green or Cauchy-Green tensor. Physically this
tensor gives the square of the relative change of an element
of surface area,31

n̂� · C−1 · n̂� =
dS · dS

dS� · dS�
,

where dS� is the initial area of a surface element �un-

deformed state� and n̂� the normal to the interface in the
un-deformed state.

In the context of finite deformation theory the
Cauchy-Green33 tensor C is related to the Green-Lagrange
strain tensor E through

E = 1
2 �C − I� .

Hence, for small deformations, the inverse of the Cauchy-
Green tensor C−1 is related to the infinitesimal strain tensor �
through

C−1 � I − 2� .

A. Scalar flux in Lagrangian coordinates

The mass flux across an element of a surface area is
given by

d�m

dt
= D � f · dS , �11�

where dS is associated with an element of the surface/
interface. In Lagrangian coordinates, and in view of incom-
pressibility, this can be expressed as32

d�m

dt
= D

� f

�� j g
j · ni�g

i dS� = Dgij � f

�� j ni� dS�.

Hence, in agreement with the diffusion equation �5�, the ap-
pearance of the factor gij suggests that the rate of mass trans-
port from an element of a material interface is related to the
square of the relative change of the surface area. More pre-
cisely, if a material interface is a scalar isosurface then the
following simplifications are applicable, �f /�� j =�nj�, be-
cause the normal vector points in the contravariant direction.
For this simple case, the mass flux is given by

d �m/�S�

dt
= D�ni�g

ijnj� = D��n̂� · C−1 · n̂�� , �12�

where the term in parentheses is precisely the definition of
the relative local area change squared.

In Fig. 2, we illustrate through a simple argument the
relation of the mass transport through a material interface to
the relative change of its area. An initial volume element
with dimensions h� , �� , w� expands to the new dimensions
h , � , w. The expansion is fast enough such that diffusive
mass transfer has no time to occur. The ratio between the
mass transport rates is equal to

ṁ

ṁ�
=

�h �C
w

��h��C
w�

=
�hw�

��h�w
= �w�

w
�2

,

where �hw=��h�w� as a result of incompressibility. The
quantity w� /w=�h /��h� is the relative change in surface
area.

Physically, the effect of a dynamic interface on the dif-
fusion process is twofold: an increase/decrease of the surface
area and a steepening/smoothing of the concentration gradi-
ent. The latter is a consequence of the movement of fluid
particles that are close to the interface in order to satisfy
incompressibility �volume conservation�, i.e., particles move
closer to an expanding interface resulting in steeper concen-
tration gradients; the opposite holds for a contracting inter-
face.

B. The Lagrangian covariance tensor Š� ·�T
‹

The Eulerian pdf f�x , t� and the Lagrangian pdf ��� , t�
are related through ��� , t��Ff�x , t� �Refs. 35 and 36�,
hence they are equivalent in view of incompressibility, i.e.,
��� , t�� f�x�� , t� , t�. Furthermore, without loss of generality
we can assume that the reference particle is at the origin of
the coordinate system, hence its mean ���= �x�=0. Conse-

FIG. 2. A simple model that demonstrates the physical interpretation of the
convection-enhanced diffusion process. The inner surface is at uniform con-
centration Ci and the outer surface at a uniform concentration Co. The sur-
face expands rapidly such that diffusion has no time to occur. This would
lead to a steeper concentration gradient which, along with the increase of the
surface area ��h /��h��, would lead to a twofold increase of mass transfer
rates.
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quently, the second moment tensor, covariance tensor, corre-
lation tensor, and mean-square displacement tensor can be
used interchangeably.

The diffusion tensor D gives the local rate of the mean-
square displacement at the point occupied by the particle,5

i.e.,

D =
1

2

d

dt
�x · xT� = lim

f�x,t�→��x�

1

2

d

dt
� x · xTf�x,t�dx .

Similarly, the Lagrangian diffusivity tensor can be defined as

DL =
1

2

d

dt
�� · �T� = lim

f��,t�→����

1

2

d

dt
� � · �T���,t�d� .

The mean-squared Lagrangian displacement tensor, �� ·�T�,
can be obtained, employing the Ito rules,4 to Eq. �10�,

d�� · �T� = B2�F−1 · F−T�dt , �13�

where angle brackets denote ensemble average. When there
is no motion the deformation gradient tensor F =I and above
expression simplifies to the classical result �� ·�T�= �x ·xT�
=B2tI =2DtI. We can also “claim” that a physical interpreta-
tion to the equation of the mean-square displacement �Eqs.
�13� and �19�� is that it is related to the net mass transport
across a material isosurface �Eq. �12��.

A differential equation for C−1=F−1 ·F−T can be obtained
through the matrix differential equation relating F with the
velocity gradient tensor �u �Refs. 30 and 33�,

dF

dt
= �u · F , �14�

with the initial condition F�t=0�=I. Using the properties of
the inverse and transpose of matrix differential equations we
obtain

dC−1

dt
= − 2F−1 · S · F−T,

where S is the rate of deformation tensor defined as

S =
1

2
��u + �uT� .

IV. EFFECTIVE DIFFUSIVITY

The classical result by Einstein states that the second
moment of the position of a Brownian particle, �x2�, is re-
lated to the diffusion coefficient through4 �x2�=2Dt. When
there is no mean displacement for the particle, the mean-
squared displacement tensor �x ·xT� identifies the dispersion
of the Brownian particle through diffusive-convective cou-
pling and its time derivative

D* = lim
t→�

1

2

d

dt
�x · xT� = lim

t→�

1

2

d

dt
� x · xTf�x,t�dx

is termed the dispersivity17,37 and can be identified as an
effective diffusion coefficient. In a similar manner the effec-
tive Lagrangian diffusivity can be defined,

DL* = lim
t→�

1

2

d

dt
�� · �T� = lim

t→�

1
2

d

dt
� � · �T���,t�d� .

Clearly, the definition of the effective diffusivities does not
allow the presence of general boundary conditions as the
particle under consideration must remain in the domain.
However, no flux �impermeable� boundary conditions are al-
lowed as they do not invalidate the above definitions.

A. Lagrangian versus Eulerian effective diffusivities

As mentioned earlier, in view of incompressibility, the
Lagrangian and Eulerian pdfs are equivalent. However, what
would be more significant is to relate the spatial moments
between the two coordinate systems. In order to proceed we
take some particular point as the origin of the coordinate
system �identifying a fluid particle� and relate the two coor-
dinate systems using a Taylor series38 about the origin
�� =0�,

x��,t� = x�t� + F�t� · � + 1
2�T · �F�t� · � + h.o.t. �15�

Higher-order terms can be omitted in the series expansion as
they would contribute higher-order moments in the ensemble
average of �x ·xT� �moments higher than the second would be
small as we can assume that displacements would have a
Gaussian distribution�. In addition, we anticipate that �
would be proportional to �D �Eq. �10��, hence for small dif-
fusivity �D� higher-order moments are insignificant as they
are proportional to higher powers of D. Using the above
expansion �Eq. �15��, in the next section we compare the
Lagrangian and Eulerian effective diffusivities for linear
shear fields.

1. Diffusion in linear shear fields

Two-dimensional linear shear fields can be expressed7 as

uT = �ux,uy� = �Gy,�Gx� ,

where G is the shear rate and the parameter � may range
from −1 to +1. The velocity gradient tensor is the constant
matrix

�u = � 0 G

�G 0
�

and the deformation gradient tensor, F, can be obtained by
employing the �matrix� differential �Eq. �14��

F = e�ut.

Hence, the contravariant metric tensor, gij, can be expressed
in terms of the velocity gradient tensor,

gij = F−1 · �F−1�T = e−��u�t · e−��uT�t, �16�

which is independent of �.
When we substitute the result for the metric tensor �Eq.

�16�� in the covariance �Eq. �13�� we obtain the final result
for the mean-squared displacement tensor in Lagrangian
coordinates
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�� · �T� = 2D� e−��u�t · e−��uT�tdt .

In particular, for the three special cases by Foister et al.7 we
obtain

• Pure rotation ��=−1�

�� · �T� = �2Dt 0

0 2Dt
�;

• Simple shear ��=0�

�� · �T� = �2Dt�1 + 1
3 �Gt�2� − DGt2

− DGt2 2Dt
�;

• Pure elongation ��=1�

�� · �T� =�
D

G
sinh�2Gt�

D

G
�1 − cosh�2Gt��

D

G
�1 − cosh�2Gt��

D

G
sinh�2Gt� � .

We should point out that since the deformation gradient
tensor depends only on time, there is no clear distinction
between the Lagrangian diffusivity and effective Lagrangian
diffusivity. The important point is, however, that, unlike Eu-
lerian coordinates, in Lagrangian coordinates the effective
diffusivity is identified explicitly. A physical explanation of
the effect of convection on the mean-square displacement �in
Lagrangian coordinates� of a Brownian particle can be pro-
vided using the arguments of Sec. III A. When a Brownian
particle takes a step along the “compressing” direction, it
would end up further away due to the crowding up of the
fluid particles in this direction. The contrary holds in the
“stretching” direction.

The agreement between these results and the results ob-
tained by Foister et al.7 �Eulerian coordinates� can be veri-
fied through the use of Eq. �17�. For the linear shear fields
considered, �F =0, along with its higher derivatives, and an
exact expression, can be obtained for the covariance tensor in
Eulerian coordinates in terms of the Lagrangian covariance
matrix

�x · xT� = ��x�t� + F�t� · �� · �xT�t� + �T · FT�t���

= F�t� · �� · �T� · FT�t� . �17�

The last expression is obtained through the simplifications
x�t�=0 and ���=0 and justifies the equivalence between the
Lagrangian effective diffusivity �present results� and the Eu-
lerian effective diffusivity obtained by Foister and Van De
Ven.7

2. Turbulent flow fields

For the case of no diffusion, i.e., D=0, the solution for �
obtained from Eq. �9� is the trivial solution � =0, hence, its
moments are identically equal to zero. If, however, the ve-
locity field is turbulent, i.e., the velocity u is a non-delta-
correlated, stationary, random variable, the equations relating

the Eulerian and Lagrangian coordinates �4� should be inter-
preted in the Stratonovitch sense,4 and the mean-square dis-
placement is obtained through

x · xT = x�t� · xT�t� ,

where the overbar denotes an average over the turbulent
ensemble39 and characterizes turbulent dispersion.40 In view
of the expression above and Eq. �17�, it is tempting to infer
that the two dominant terms characterizing the turbulent sca-
lar transport are

�x · xT� � x�t� · xT�t� + F�t� · �� · �T� · FT�t� + h.o.t.,

where �� ·�T� is given in Eq. �13�. One can assume that the
Brownian motion and the macroscopic motion are statisti-
cally uncorrelated.39

B. Effective Lagrangian diffusivity at large Péclet and
time-periodic flow fields

The Péclet number Pe= l2 / �tcD� is the ratio of diffusion
to convection time scales, where l and tc are the characteris-
tic length and time scales, respectively. In Sec. IV A 1, it was
shown that for the homogeneous initial value problem asso-
ciated with linear shear fields, both the effective Lagrangian
and Eulerian diffusivities are proportional to the diffusivity
D �more precisely inversely proportional to the Péclet num-
ber�.

In what follows, we will present asymptotic results for
the effective diffusivity at large Péclet for both the initial and
boundary value problem. We will restrict our analysis to the
convection-diffusion process associated with time-periodic
flow fields, i.e., fluid particles with closed trajectories.

1. Convection-diffusion equation

In the limit of small diffusion, i.e., large Péclet number,
and time-periodic flow field the diffusion problem can be
addressed using multiple scales in time.13,22 We expect that
convection will dominate the process, hence a fluid particle
will retain its scalar property while diffusion will evolve in
the slow time scale 	= t̃ /Pe. The elimination of secular be-
havior in the first-order problem leads to an average equation
governing the zeroth-order problem,

� f0

�t
=

1

Pe

�

��i�gij��,t�
� f0

�� j� , �18�

where the overbar denotes time average, which requires that
fluid particles return to their original position after one pe-
riod. Press and Rybicki20 argue that, in general, the analysis
is valid provided the motion of the fluid has no mean com-
ponent of secular drift.

Here, we should clearly distinguish between the bound-
ary value problem and the initial value problem. Associated
with the boundary value problem, in view of the fact that the
coefficients are not time dependent, there is a time-
independent solution for f0 provided that the Dirichlet
boundary conditions are compatible with the Lagrangian for-
mulation, i.e., the boundary conditions should be prescribed
on a material interface. Based on this formulation, we can
conclude that the net mass flux is proportional to Pe−1, a
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result in agreement with other studies dealing with convec-
tive transport at high Péclet numbers both across closed
pathlines21,22 and streamlines.26 The rationale here is that the
transport process is diffusion controlled because the closed
pathline pattern inhibits the coupling between convection
and diffusion; the mass escapes by diffusing slowly across
closed pathlines �material surfaces�.

Regarding the initial value problem the effective diffu-
sivity may not be proportional to Pe−1 except of course if the
Lagrangian diffusivity is a function only of time.20 This is
clarified further in the next section.

2. Langevin equation

The initial value problem is the fundamental solution of
the diffusion equation for an impulse at time t=0. Because
the formulation of this problem is equivalent to the Langevin
equation �3�, the mean-square displacement can be also ob-
tained through

d�� · �T�
dt

= B2�F−1 · �F−1�T� � 2D�gij��,t�� . �19�

The requirement of closed pathlines implies that the tensor
gij is periodic in time. In the limit of small diffusion, i.e.,
D�1, the associated average system is41

d��i� j�
dt

= 2D�gij��,t�� , �20�

which renders the RHS of the equation independent of time
giving, locally, the average square relative increase/decrease
of the surface area. If gij�� , t� is independent of � clearly the
effective diffusivity is proportional to the diffusivity20 �D�.
This agrees with the averaged form of the Lagrangian
convection-diffusion equation �18� and the conclusions of
the previous section.

V. CONCLUSIONS

We have examined the general problem of convection
diffusion of a passive scalar in Lagrangian coordinates, i.e.,
in a coordinate system defined with respect to fluid particles.
We have also developed a description of Brownian motion of
spherical colloidal particles in Lagrangian coordinates for the
case of dilute suspensions. More precisely, we have obtained
the “diffusion limit,” high-friction limit, of the Langevin de-
scription of the diffusion process in Lagrangian coordinates
and show that this is equivalent to the passive scalar trans-
port equation in Lagrangian coordinates. The resulting diffu-
sivity tensor is defined as the Lagrangian diffusivity which,
for uniform, isotropic diffusion is proportional to the contra-
variant metric tensor. This tensor gives the square of the
relative change of an element of surface area �inverse of
Green tensor� and characterizes the mass transport rate
across an isoscalar material surface/interface. The two diffu-
sivity tensors, Eulerian and Lagrangian, are related through
the deformation gradient tensor.

We have distinguished the physical meaning between the
Lagrangian diffusivity and the effective Lagrangian diffusiv-
ity. Similar to diffusion in Eulerian coordinates, the former
identifies the local rate of spreading whereas the latter char-

acterizes the macroscopic spreading. In general, when deal-
ing with the initial value problem, the effective diffusivity is
obtained through the statistics of a Brownian particle
whereas when referring to the Dirichlet boundary value
problem, the effective diffusivity characterizes the net mass
transport.

Associated with the initial value problem, we determine
that the effective diffusivities in Eulerian and Lagrangian
coordinate systems can be related through the deformation
gradient tensor to a first approximation. We validate this for
the case of linear flow fields and infer a relation for turbulent
flow fields. In general, the effective diffusivity associated
with the initial value problem is not proportional to the dif-
fusion coefficient except, for example, for the case of linear
flow fields. The results can be justified using both the
convection-diffusion equation and the Langevin equation.

Associated with the boundary value problem, if the sca-
lar transport problem possesses a time-independent solution
in Lagrangian coordinates, then the net mass transport is pro-
portional to the diffusion coefficient. For large Péclet number
and time-periodic flow fields, i.e., fluid particles return to
their original position �closed pathlines�, we formulate an
equivalent, autonomous problem in Lagrangian coordinates
through multiple-scales analysis. Hence, the net mass flux
across a material surface is proportional to the diffusion co-
efficient because there is a time-independent solution associ-
ated with the averaged convection-diffusion equation. How-
ever, the boundary conditions should be consistent with the
Lagrangian formulation, i.e., they should be prescribed on a
material surface/interface.

ACKNOWLEDGMENTS

This work was initially supported by the Rheology
Group of the University of Twente, by the European Re-
search Consortium in Informatics and Mathematics �ERCIM
fellowship Grant No. 2002–06�, and by the Swiss National
Foundation �Research Project No. PAER2–101107�. The
work was partially funded by the Frederick Research Center.

1 H. J. Pearson, J. S. Puttock, and J. C. R. Hunt, J. Fluid Mech. 129, 219
�1983�.

2 A. Einstein, Ann. Phys. 17, 549 �1905�.
3 P. Langevin, C. R. Acad. Sci. �Paris� 146, 530 �1908�.
4 C. W. Gardiner, Handbook of Stochastic Methods �Springer, Berlin,
2004�.

5 B. Dünweg, in “Computer simulations of surfaces and interfaces,” Pro-
ceedings of the NATO Advanced Study Institute/Euroconference, Albena,
Bulgaria, September 2002, edited by B. Dünweg, D. P. Landau, and A.
Milchev �Kluwer, Dordrecht, 2003�, pp. 77–92.

6 M. B. Isichenko, Rev. Mod. Phys. 64, 961 �1992�.
7 R. T. Foister and T. G. M. Van De Ven, J. Fluid Mech. 96, 105 �1980�.
8 E. Sanchez-Palencia, in Homogenization Techniques for Composite Me-
dia, Lectures Notes in Physics, Vol. 272, edited by E. Sanchez-Palencia
and A. Zaoui �Springer, Berlin, 1987�, pp. 121–147.

9 M. M. Fyrillas, J. Fluid Mech. 413, 49 �2000�.
10 M. A. Lévêque, Ann. Mines 13, 201 �1928�.
11 G. P. Phillips and Q. J. Mech, Appl. Math. 43, 135 �1990�.
12 H. A. Stone, Phys. Fluids A 1, 1112 �1989�.
13 E. J. Hinch, Perturbation Methods �Cambridge University Press, Cam-

bridge, 1991�.
14 G. I. Taylor, Proc. R. Soc. London, Ser. A 255, 186 �1954�.
15 R. Aris, Proc. R. Soc. London, Ser. A 235, 67 �1956�.
16 F. J. M. Horn, AIChE J. 17, 613 �1971�.
17 H. Brenner, Philos. Trans. R. Soc. London, Ser. A 297, 81 �1980�.

164510-8 M. M. Fyrillas and K. K. Nomura J. Chem. Phys. 126, 164510 �2007�

Downloaded 30 Apr 2007 to 132.239.191.230. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



18 A. Fannjiang and G. Papanicolaou, SIAM J. Appl. Math. 54, 333 �1994�.
19 E. Knobloch and W. J. Merryfield, Astrophys. J. 401, 196 �1992�.
20 W. H. Press and G. B. Rybicki, Astrophys. J. 248, 751 �1981�.
21 A. Eller and H. G. Flynn, J. Acoust. Soc. Am. 37, 493 �1965�.
22 M. M. Fyrillas and A. J. Szeri, J. Fluid Mech. 277, 381 �1994�.
23 J. Choi, D. Margetis, T. M. Squires, and M. Z. Bazant, J. Fluid Mech.

536, 155 �2005�.
24 J. Witting, J. Fluid Mech. 50, 321 �1971�.
25 A. J. Szeri, J. Fluid Mech. 332, 341 �1997�.
26 C. R. Robertson and A. Acrivos, J. Fluid Mech. 40, 685 �1970�.
27 R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics

�Dover, New York, 1989�.
28 K. P. Hadeler, T. Hillen, and F. Lutscher, Math. Models Meth. Appl. Sci.

14, 1561 �2004�.
29 W. Kinzelbach and G. Uffink, in Transport Processes in Porous Media,

edited by J. Bear and M. Y. Corapcioglu �Kluwer, Norwell, MA, 1991�,
pp. 761–787.

30 K. J. Bathe, Finite Element Procedures �Prentice-Hall, Englewood Cliffs,
NJ, 1995�.

31 W. C. Macosko, Rheology: Principles, Measurements and Applications
�VCH, New York, 1994�.

32 R. M. Brannon, Curvilinear Analysis in a Euclidean Space, online lecture
notes �http://www.me.unm.edu/~rmbrann/curvilinear.pdf� �2004�.

33 A. E. Green and W. Zerna, Theoretical Elasticity �Dover, New York,
1992�.

34 H. Risken, The Fokker-Planck Equation: Methods of Solutions and Ap-
plications �Springer, Berlin, 1996�.

35 A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes �McGraw Hill, New York, 2002�.

36 H. Stark and J. W. Woods, Probability, Random Processes and Estima-
tion Theory for Engineers �Prentice-Hall, Englewood Cliffs, NJ, 1986�.

37 G. K. Batchelor, J. Fluid Mech. 74, 1 �1976�.
38 G. Arfken, Mathematical Methods for Physicists �Academic, Boston,

1985�.
39 P. G. Saffman, J. Fluid Mech. 8, 273 �1960�.
40 G. I. Taylor, Proc. London Math. Soc. s2-20, 196 �1922�.
41 J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys-

tems, and Bifurcations of Vector Fields �Springer, New York, 1990�.

164510-9 Diffusion and Brownian motion J. Chem. Phys. 126, 164510 �2007�

Downloaded 30 Apr 2007 to 132.239.191.230. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


