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Abstract
The interactions of two equal co-rotating vortices under the influence of both
viscosity and uniform background shear are investigated using two-dimen-
sional numerical simulations. A range of values of the shear strength para-
meter, ζ ω= −S /0 0, and initial aspect ratio, a b/0 0, are considered for two values
of circulation Reynolds number Γ ν=ΓRe /0 . The primary effect of viscosity
is to increase the core size a(t) in time while the primary effect of shear is to
vary the separation distance b(t) in time. For sufficiently separated vortices, the
motion of the vortices is well-described by a point vortex model with linear
shear. The present simulations show that for a viscous symmetric vortex pair
there are two distinct flow regimes, merger and separation, with the boundaries
separating these regimes well-predicted by the point vortex model and largely
independent of ΓRe over the range tested. Results also indicate that the onset of
merging occurs when a t b t( )/ ( ) attains the critical value a b( / )cr found for vortex
pairs without shear.

(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex pair interactions are fundamental processes in many complex flows of practical and
scientific interest, such as aircraft wakes and two-dimensional turbulence. Understanding
these interactions is therefore essential to understanding the more complicated flows. For
example, it is known that two co-rotating vortices will merge to form a larger compound
vortex if the aspect ratio (core size/separation distance), a b/ , exceeds a critical value, a b( / )cr.
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Thus, vortex merging has been considered to be a key process in the inverse energy cascade
of two-dimensional turbulence (Benzi et al 1987). However, a turbulent flow consists of a
field of vortices and other structures, differing in size and strength, and the influence of these
factors on the vortex merging process and turbulence dynamics is not well understood.

A great deal of research has been devoted to the study of the simplest vortex pair
configuration: two equal co-rotating vortices, i.e., a symmetric vortex pair. Much of this
research has focused on inviscid flow (e.g., Dritschel and Waugh 1992, Overman and
Zabusky 1982, Saffman and Szeto 1980), while other studies have considered flows with
viscosity (e.g., Brandt and Nomura 2007, Cerretelli and Williamson 2003, Melander
et al 1988, Meunier et al 2002). If the vortices are sufficiently separated, their basic behavior
is similar to that of two point vortices which rotate about each other. However, for finite-area
vortices, the induced strain field will deform and tilt the vortices. The critical aspect ratio can
be related to the relative strength of the induced strain rate to the vortex strength; a key factor
for the physical mechanism of the onset of merger (Brandt and Nomura 2010). The presence
of viscosity ensures that a given pair will achieve the critical aspect ratio given sufficient time
to diffusively spread, producing merger in initially well-separated vortices. Increasing the
effect of viscosity causes this process to occur more rapidly on a convective timescale, but the
merging criterion remains relatively unchanged (Le Dizès and Verga 2002).

The majority of previous studies have considered a single vortex pair, with no external
influences. In order to consider vortex merging in a turbulent flow, the influence of neigh-
boring and remote vortices must be considered. A few studies have been carried out which
approximate this influence as a simple background shear in which the pair interacts (Maze
et al 2004, Perrot and Carton 2010, Trieling et al 2010). To date these studies have all
considered inviscid vortex pairs.

The work of Trieling et al (2010) is of particular relevance as they studied the case of two
equal finite-area Gaussian vortices in linear shear. Using contour dynamics simulations, they
identified four possible interaction regimes: merger, periodic motion, separation without
elongation, and separation with elongation; depending on the sign and strength of the
background shear relative to the vorticity of the vortices. The basic motion of the vortices, and
in particular, the delineation between separative and periodic regimes was found to be well-
described by the point vortex model of Kimura and Hasimoto (1985). Conditions for the
merging regime were determined by considering the shear-induced variations of the
separation distance, b, and using known a b( / )cr values for no-shear flow (see section 2).
Though some ambiguities remained, the value of a b( / )cr for the no-shear case was found to
provide a reasonably effective criterion for vortices in shear as well.

The previous research has considered separately the effects of viscosity and linear shear
on symmetric vortex interactions, but to date their combined effect has not been considered.
The current research investigates vortex pair interactions with both effects present by
investigating the possible regimes of interaction through a series of numerical simulations for
a range of initial parameters.

In section 2, the modified point vortex analysis of Kimura and Hasimoto (1985) and
Trieling et al (2010) is reviewed. In section 3, the setup and numerical method of the
simulations are described. In section 4 results of the simulations are presented. These results
are analyzed and the relevance of point vortex results to the viscous flow is demonstrated.
Finally, section 5 summarizes the findings and conclusions.
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2. Modified point vortex model

The motion of two point vortices in linear shear is described by the following equations
(Kimura and Hasimoto 1985):
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are the coordinates of the ith vortex, Γi is the circulation of the ith vortex,
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2 is the squared separation distance between the vortices, and

=S U yd /d is the uniform background shear. Considering symmetric vortices (Γ Γ Γ= =1 2 )
and following the methods of Kimura and Hasimoto (1985), these equations can be integrated
to find trajectories that are either closed or open, depending on the relative sign and strength
of the shear and vortices. A nondimensional shear strength parameter, μ Γ= S b /0

2 , can be
considered (Trieling et al 2010) with a critical value determined from results of Kimura and
Hasimoto (1985) to be,
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where e is the base of the natural logarithm and = −b x x( )0 2 1 when − =y y 0
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Trajectories for initially horizontally-aligned vortices with various μ values are shown in
figure 1. In the case of no shear (μ = 0), the trajectory is a circle corresponding to periodic
motion. When the shear is favorable (μ < 0), the motion is always periodic since μ μ< <0

cr
.

The corresponding trajectories in figure 1 indicate that the vortex separation, initially b0 when
horizontally-aligned, reduces to a minimum as they revolve to become vertically aligned.
When the shear is adverse (μ > 0), the motion may be either separative or periodic. For
weakly adverse shear ( μ μ< <0

cr
), the motion is periodic but vortex separation instead

increases to a maximum when they become vertically aligned. The case of μ μ=
cr
gives the

critical separatrix for stationary flow; the vortices revolve to be vertically aligned and then
remain in that position indefinitely. For strongly adverse shear (μ μ>

cr
), the vortices instead

follow open trajectories and their separation increases indefinitely.
The point vortex model has been found to effectively describe the motion of sufficiently

separated finite-area vortices in the inviscid limit (Benzi et al 1987). Modifications to
explicitly incorporate finite-area vortex parameters were made by Trieling et al (2010). By
substituting Γ π ω= a0

2
0 (where a0 is the vortex radius and ω0 is the peak vorticity) for

circulation in the point vortex solution, the critical value of the ratio of shear to peak vorticity
is found in terms of the initial aspect ratio a b/ :0 0
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Thus, the value of ω( )S /
cr0 depends solely on the initial aspect ratio (a b/0 0). For a given

a b/0 0, separative motion will occur if ωS / 0 exceeds the corresponding value of ωS( / )cr0 .
Results in Trieling et al (2010) from contour dynamics calculations demonstrate that (6)
effectively distinguishes the separative and periodic regimes for finite-area vortices.

In flows without background shear, finite-area vortices will merge if their separation
distance is less than the critical value, i.e., <b a b a/ ( / )cr0 . In flows with shear, and when the
motion is not separative, this may be expected to hold true. As indicated by the point vortex
model, the primary effect of shear is to vary b(t) along the trajectory in the periodic regime.
By considering b a( / )cr for the no-shear case, a simple merging criterion was formulated by
Trieling et al (2010): merger will occur if the vortex separation distance is always less than
the critical separation distance. This is a stricter condition than observed for the case of
favorable shear, in which merger was found to occur if the minimum separation distance is
less than the critical separation.

The point vortex model and finite-area results will be considered in our analysis of the
case of viscous flow. The numerical simulations of these flows are described in the
next section.

3. Setup and numerical simulations

Figure 2 shows the vortex pair initial condition: two like-signed Gaussian vortices of peak
vorticity ω0 and radius a0 with an initial separation b0 in a background shear flow of strength
S. These are used to define several parameters which characterize the flow. The initial aspect
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Figure 1. Point vortex trajectories of initially horizontally-aligned vortices ( = =y y 0
1 2

)
for various initial shear strengths, computed by integrating equations (1)–(4) after
substituting ξ = −x x2 1 and η = −y y

2 1
. The contours correspond to: (a) favorable

shear μ <( 0), (b) no shear μ =( 0), (c) weakly adverse shear μ μ< <(0 )
cr
, (d) critical

separatrix μ μ=( )
cr
, (e) strongly adverse shear μ μ>( )

cr
.



ratio is a b/0 0, where a is defined based on the second moment of vorticity (Meunier

et al 2002). The circulation Reynolds number is Γ ν=ΓRe /0 , where Γ π ω= a0 0
2

0. Here, the

shear strength parameter, ζ0, is defined as the ratio of the vorticity of the background shear to
the characteristic vorticity of the vortices,

ζ
ω
ω ω

= = −S
. (7)S

v
0

0

Thus, shear is considered to be favorable when ζ > 00 and adverse when ζ < 00 .
Two-dimensional numerical simulations of the viscous vortex pair are performed using a

combination of finite difference and pseudospectral approximations on a uniform staggered
grid. The computational domain is periodic except in the shear direction where shear-periodic
boundary conditions are employed. Details of the boundary conditions and numerical solution
procedure are given in Gerz et al (1989).

Resolution tests found that using10242 grid points, giving about 13 points across a vortex
core (2a0), was sufficient to capture the characteristic behavior of the vortex pair in the range
of Reynolds numbers considered. In order to avoid unrealistic effects of neighboring vortices
due to the periodic boundary condition, the size of the vortex pair is kept small relative to the
domain size. An initial separation distance relative to the domain size =b L/ 1/240 was found
to be sufficient to minimize boundary effects. For further details of the numerical aspects, see
Brandt and Nomura (2007).

4. Results and analysis

Figure 3 shows the time development of representative vortex pairs ( =a b/ 0.1570 0 ,
=ΓRe 5000) for a range of ζ ω= −S /0 0 values. Results are given in terms of a convective

timescale (based on period of revolution for two point vortices with no

shear), * π Γ= ( )t t b/ 2 /0
2

0 .

Early in time ( * ≲t 1) and when the vortices do not significantly interact, their motion can
be described qualitatively by the point vortex model. The vortices rotate about each other in
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Figure 2. Flow initial condition, including Gaussian vortices of peak vorticity ω0 and
radius a0 with initial separation b0 in a uniform background shear of =S U yd /d . The
case shown corresponds to ζ ω ω ω= = − >S/ / 0S v0 0 , i.e. favorable shear.



closed trajectories for favorable and weakly adverse shear (figures 3(a)–(c)) and separate for
strong adverse shear (figures 3(d), (e)). Later in time, the vortices moving in closed trajec-
tories eventually merge into a single vortex (figures 3(a)–(c)). For stronger adverse shear
(figure 3(d), ζ = −0.00930 ), the vortices continue to move apart but are observed to retain
their coherence (at least for the duration of these simulations), i.e., there is separation without
elongation. For very strong adverse shear (figure 3(e), ζ = −0.100 ), the vortices are stretched
out into filaments by the shear, i.e., there is separation with elongation. The observed
interaction regimes are summarized in table 1.

Figure 4 shows the corresponding time development of the vortex separation, b(t).
Initially, the behavior of b(t) is consistent with the point vortex trajectories (figure 1) and
decreases/increases periodically for favorable/weakly adverse shear (ζ = ±0.00450 ). For
strong adverse shear (ζ = −0.00930 ), the vortices exhibit separative trajectories and b(t)
increases monotonically and indefinitely. Later in time, the periodic motion breaks down and
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Figure 3. Vorticity contour plots showing time evolution of flows ( =a b/ 0.1570 0 ,
=ΓRe 5000) for different ζ ω= −S /0 0: (a) ζ = 0.00450 , (b) ζ = 00 , (c) ζ = −0.00450 ,

(d) ζ = −0.00930 , (e) ζ = −0.100 . For (a) and (b), the color red corresponds to the peak
(negative) vorticity of the ζ = 0.00450 case and blue indicates lower-level (i.e. less
negative) vorticity. For (c), (d) and (e), the color blue corresponds to the peak (positive)
vorticity of the ζ = −0.00450 case and red indicates lower-level (positive) vorticity.



we observe a rapid decrease in b(t) corresponding to merger. The onset of merger is seen to
occur earlier/later in favorable/weakly adverse shear with respect to the corresponding flow
with no shear.

The effect of viscosity on flow development is investigated by performing simulations at
=ΓRe 1000 ( =a b/ 0.1570 0 ). The results are included in table 1. The same interaction regimes

occur: merging for favorable and weakly adverse shear, and separative for strongly adverse
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Figure 4. Normalized b(t) for =ΓRe 5000, =a b/ 0.1570 0 . +: ζ = 0.00450 , □: ζ = 00 ,
◯: ζ = −0.00450 , ×: ζ = −0.00930 .

Figure 5. Normalized b(t) for =ΓRe 1000, =a b/ 0.1570 0 . +: ζ = 0.00450 , □: ζ = 00 ,
◯: ζ = −0.00450 , ×: ζ = −0.00930 .

Table 1. Outcome of interaction for vortex pairs of various initial ζ ω= −S /0 0 and
=a b/ 0.1570 0 for =ΓRe 5000 and =ΓRe 1000

ζ0 Outcome, =ΓRe 5000 Outcome, =ΓRe 1000

0.0045 Merger Merger
0 Merger Merger
−0.0045 Merger Merger
−0.0092 Merger Merger
−0.0093 Separation without elongation Separation without elongation
−0.10 Separation with elongation Separation with elongation



shear. The corresponding b(t) behavior is shown in figure 5 where it is apparent that the lower
Reynolds number accelerates establishment of the merging process.

The modified point vortex model in section 2 indicates that for finite-area inviscid
vortices with a specified a b/0 0, sufficiently strong adverse shear, i.e., ζ ζ< < 0cr0 0, , will result

in separative motion. To test this criterion for viscous vortices, additional simulations are
performed with different initial aspect ratios a b/0 0. Equation (6) was used to predict the value
of ζ cr0, for a given a b/0 0. For each a b/0 0 considered, a series of simulations varying ζ0 was

performed until a pair was found to bracket the boundary between merging and separation
regimes. An empirical estimate for ζ cr0, was then obtained using the midpoint of the two

bracketing ζ0 values. The results are presented in table 2. The findings affirm the expectation:
the value of ζ cr0, between separation and merging varies with a b/0 0, and in fact these values

correspond quite well with the predictions based on the point vortex model.
The above results indicate that in viscous flow, for the range of ΓRe considered and for

the duration of the simulations, there are two distinct flow regimes: merger and separation
(without or with elongation), and the boundary of the regimes is described well by the
modified point vortex model in (6). This may be expected if we consider that, in the case of
inviscid flow, the vortex pair evolves with constant μ μ=

0
(constant Γ) and therefore μ μ>

cr0

in (5) still distinguishes the separation regime for finite-area vortices. In the case of viscous
flow, this criterion (and therefore, ζ ζ< < 0cr0 0, ) may also remain valid for indicating

separative motion, since Γ (and therefore μ) remains nearly constant until any significant
interaction occurs (maximum computed deviation of Γ0 before the onset of merger
was 5.25%).

In inviscid flow, if μ μ<
cr
, periodic motion will prevail if the aspect ratio a b/ remains

below the critical value for merger. In viscous flow, for μ μ<
cr

(ζ ζ> cr0 0, ), then if

<a b a b/ ( / )cr the vortices follow trajectories similar to the point vortex periodic regime for
some duration of time. However, a primary effect of viscosity is that the cores will diffuse and
grow in time. If the vortices are sufficiently separated, the viscous growth of the cores may be
described by

ν= +a t a t( ) 4 . (8)2
0
2

Eventually this growth causes >a t b t a b( )/ ( ) ( / )cr, resulting in merger. Stationary or
continued periodic flow regimes are therefore not expected for finite ΓRe . However, the early
phase of development may be considered a quasi-periodic phase whose duration depends on

ΓRe (as indicated in figures 4 and 5). This is consistent with the initial quasi-steady phase of
development in the no-shear flow, during which b(t) remains nearly constant while a(t) grows
by diffusion (Brandt and Nomura 2007).
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Table 2. Critical ζ ω= −S /0 0 delineating separation and merger regimes for various
a b/0 0, from point vortex model predictions and empirical results.

Empirical ζ cr0,

a b/0 0 Predicted ζ cr0, =ΓRe 5000 =ΓRe 1000

0.105 −0.0041 −0.0040 ± 0.0001 −0.0040 ± 0.0001
0.157 −0.0091 −0.0092 ± 0.00004 −0.00926 ± 0.00009
0.235 −0.020 −0.020 ± 0.002 −0.020 ± 0.002



The onset of merger is identified as the time at which the vortices begin to significantly
interact (transition from a diffusive-dominated to convective-dominated process), and this is

effectively indicated by the deviation of a t( )2 from its linear viscous growth (equation (8))

(see e.g. Brandt and Nomura 2007). This time is denoted here as * *=t tcr and values deter-

mined from the simulations (from computed a t( )2 ) are shown in table 3. The results indicate

that in favorable shear (ζ > 0), * *< ζ=t tcr cr, 0, and in adverse shear (ζ < 0), * *> ζ=t tcr cr, 0, indi-

cating merger onset occurring earlier and later, respectively, than the time of merger onset

observed in the no-shear case ( *
ζ=tcr, 0). At =ΓRe 1000, the vortices spread more rapidly

relative to their advection and therefore the onset of merging occurs more quickly on the
advective timescale than for =ΓRe 5000, otherwise the results are similar (table 3). We note
that for these lower Reynolds number simulations, the vortices begin to interact very quickly

on the *t scale and so determination of the value of *tcr becomes difficult.
The time development of the vortex pair aspect ratio, a t b t( )/ ( ), is shown in figure 4 for
=ΓRe 5000. For a pair of initially Gaussian vortices in viscous fluid with no shear, the onset

of merger is found to occur at = ±a b( / ) 0.235 0.006cr (Brandt and Nomura 2007), which is

indicated by the dashed line in figure 6. Evaluating a t b t( )/ ( ) for * *=t tcr from table 3 gives
a b( / )cr values of 0.230, 0.231, and 0.235 for ζ = 0.00450 , 0, and −0.0045 respectively, for

=ΓRe 5000. These results are in agreement with the reported a b( / )cr range.
Since favorable shear acts to periodically reduce b(t), this will increase a b/ values

thereby promoting merger. Even in the inviscid case, Trieling et al (2010) found that
favorable shear could induce merger even when <a b a b/ ( / )cr0 0 . In contrast, weakly adverse
shear (ζ ζ< < 0cr0, 0 ) acts to periodically increase b(t) which will tend to reduce a b/ values

and thereby impede merger. When viscosity is present, a(t) grows in time, so when both shear
and viscous effects are present a t b t( )/ ( ) increases but does not necessarily do so mono-
tonically. The oscillatory behavior of a t b t( )/ ( ) may mean that the time of attaining a b( / )cr

does not necessarily correspond to the start of merging, though no case was observed of
=a t b t a b( )/ ( ) ( / )cr being attained and then the vortices failing to merge.
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Figure 6. Aspect ratio a t b t( )/ ( ) as a function of convective time *t for =ΓRe 5000. +:
ζ = 0.00450 , □: ζ = 00 ,◯: ζ = −0.00450 . Dashed line corresponds to =a b( / ) 0.235cr .
Note that a(t) is computed from simulation results using the azimuthal average of the
radial location of maximum azimuthal velocity, then dividing by 1.12 to obtain an
estimate for the second moment of vorticity (Brandt and Nomura 2007).



For the =ΓRe 1000 results, evaluating a t b t( )/ ( ) at the *tcr values from table 3 gives
=a b( / )cr 0.238, 0.233, and 0.229 for ζ = 0.00450 , 0, and −0.0045 respectively. These values

are also in agreement with the merging criterion found for vortex pairs without shear.

5. Conclusion

The interactions of two equal co-rotating vortices under the influence of both viscosity and
uniform background shear have been investigated using numerical simulations. It is found
that the observed interactions can be classified into two distinct regimes, merger and
separation, depending on the relative significance of the background shear (as characterized
by ζ0) for a given vortex pair (as characterized by ζ0 and a b/0 0).

Early in the flow development when the vortices are sufficiently separated and Γ is
constant, their motion is altered by the shear, as described by the point vortex model, while
their cores grow by viscous diffusion. During this time, the primary effect of shear is to vary
b(t) in time, while the primary effect of viscosity is to increase a(t) in time. If the shear is both
adverse and sufficiently strong, i.e., ζ ζ< < 0cr0 0, , b(t) will increase indefinitely: this is the

separation regime. In this case, if the shear, and thus the corresponding strain rate, is very
strong, the vortices will also begin to elongate. If the shear is only weakly adverse or
favorable, i.e. ζ ζ> cr0 0, , the vortices will revolve along elliptical trajectories with b(t) peri-

odically increasing or decreasing, respectively, as a(t) grows in time until a t b t( )/ ( ) reaches
a b( / )cr and the vortices begin to merge into a single compound vortex: this is the merger
regime. The value of a b( / )cr determined from the simulations is found to be within the range
previously reported for the no-shear case, = ±a b( / ) 0.235 0.006cr , over the range of para-
meters tested. The boundary separating the merger and separation regimes, ζ cr0, , is accurately

predicted by the point vortex model and varies with a b/0 0. Both of these critical values were
found to be largely independent of ΓRe over the range considered. Therefore, for the purpose
of determining whether a co-rotating viscous vortex pair in the presence of background shear
will merge, ζ ζ> a b( / )cr0 0, 0 0 constitutes a sufficient criterion.

Although a study of the long time evolution of the vortex pair is beyond the scope of this
paper, some remarks can be made based on the results presented here. As the vortices diffuse
and spread, their peak vorticity will decrease. In the separation regime, since ζ ω=t S t( ) / ( )
increases in time, it is expected that vortices initially exhibiting separation without elongation
would eventually exhibit elongation if simulations were to run long enough and boundary
effects were to remain inconsequential. Likewise, in the merger regime, the compound vortex
formed by merger would ultimately diffuse until it too would become weak enough to be
deformed by the background strain and elongate.

Fluid Dyn. Res. 46 (2014) 031423 P J R Folz and K K Nomura

10

Table 3. Time to start of merging process *tcr for vortex pairs in the merging ζ0 regime
for =ΓRe 5000 and =ΓRe 1000 and =a b/ 0.1570 0 .

=ΓRe 5000 =ΓRe 1000

ζ0
*tcr

*tcr

0.0045 1.26 0.336
0 1.53 0.373
−0.0045 1.73 0.417



Thus, in contrast with the case of inviscid flow where periodic motion, merger, and
separation with and without elongation constitute distinct regimes determined by initial
conditions (Trieling et al 2010), viscous vortices may evolve in time through these flow
conditions. If sufficiently strong adverse shear is present, the vortices will separate and
thereby limit any mutual interaction. Otherwise, the vortices will develop in a manner similar
to the no-shear flow. Initially, a quasi-steady diffusive phase will occur in which the vortices
revolve in an orbit; the effect of shear is to vary b(t) along the orbit. This is followed by a
convective/merging phase; where favorable/adverse shear promotes/hinders mutual interac-
tion and merger. Finally, another diffusive phase is expected to occur in which the single
vortex may ultimately be deformed and elongated by the background shear.

It is possible that the efficacy of the inviscid/point vortex predictions when viscous
effects are present breaks down at very low Reynolds numbers, when the spreading is so rapid
as to violate the ‘sufficiently separated’ requirement very shortly after the start of the
simulation. In such cases merger may result even when their ζ0 and a b/0 0 might correspond to
the separation regime as indicated by the point vortex criterion. Furthermore, it is known that
interactions of unequal vortices in the absence of shear produce a richer variety of outcome
regimes than do symmetric pairs (e.g. Brandt and Nomura 2010), so the regimes of interaction
of such pairs when shear is present are undoubtedly more complex and nuanced than those
presented here. These topics remain to be addressed in future work.
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