

MAE 2: Introduction to Aerospace Engineering Class Design Project – Balloon-Sat

Purpose / Goals:

First-year aerospace engineering students work in teams to design, build, and fly multi-disciplinary payload experiments on balloon satellites to near-space. Students gain real-world engineering experience developing and assembling sub-systems on space flight critical systems.

Instructors: John B. Kosmatka & Keiko Nomura Fall, 2008

The Mission Plan

ttp://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

4 On-Board Payloads:

- (1) Atmospheric Sensors: measure pressure, temperature, humidity, wind velocity, time, radiation, magnetic field, UVa, and UVb with altitude.
- (2) Solar-Cell Efficiency with Altitude.
- (3) *UCSD Astronauts*: Environmental chambers containing cockroaches, water-bears, and planeria.
- (4) Horizontal and Vertical Cameras: continuous shots every 30 seconds

Figure 1. Typical BalloonSat configuration.

Twenty-Two Students in Six Sub-Teams

-

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Project Advisor: John Kosmatka

TA's: Andrew Cavender and Zach Lovering

Launch Integrators: Strato-Star

Flight-Day Field Assistant: Joel Kosmatka

Sponsor: California Space Grant (Tehseen Lazzouni)

ity of California, San Diego		
Team	Student	
Atmospheric Sensors	Farah Ahmed	
	David Hernandez-Ibarra	
	Peter Reed	
	Drew Tobias	
Solar Cell Evaluation	David Gross	
	Pranay Sangani	
	Josiah White	
UCSD Astronauts	Ty Lee	
	Ryotaro Shimizu	
	Kimberly Tomasino	
Onboard Camera	Joseph Dillon	
	Sarah Lohman	
	Ronald Jeter	
Structure and Test	Benjamin Bancroft	
	Casey Barrett	
	Denise Choi	
	Randall Hughes	
	Hyung Jin O	
Mission Control	Owen Eigenbrot	
	Mitchell Nihonyanagi	
	Christopher Schmidt	
	Kwok Yuen	

Project Construction

-

Fall, 2008

Project Construction

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Payload Bay Heaters

Standard atmosphere models show linear cooling to (-70 oF) at stratosphere edge, then constant temperature (-70 oF) isothermal layer, followed by linear heating above 82,000 feet.

<u>Payload heaters</u> are required to warm sensors, cameras, and some astronaut capsules. Options:

- Chemical (disposable vs reusable)
- Electronic (long-lead development)

Air-activated seven hours of heating at 135 - 156 oF. (REI). Unknown Performance in space (no air, vaccuum).

Reusable 130-degree heating in 15 seconds. One hour. Reuse by boiling in water for six minutes (REI). UCSD tests show no leakage in space vaccuum.

Atmospheric Sensors and Solar Cell Efficiency

+

- Temperature
- Pressure and Humidity
- Wind Velocity
- Time

- Radiation (Geiger Counter)
- Solar Cell Evaluation

UCSD Astronauts

ttp://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Cockroaches & Planaria & Water-Bears

environment	earth	near-space
Altitude (feet)	0	85,000
Temperature (oF)	90	-40
Pressure (psi)	14.7	0.334
Radiation	low	high

On-Board Cameras

*

- Continuous Photo Shoot at 30-second intervals
- Installed reusable chemical hand-warmers to heat camera bodies

Launch Day (12/06/2008)

Pre-Launch (Set-Up)

*

Pre-Launch (Final Assembly)

Plaster City, California

Pre-Launch (Balloon Fill)

-

Plaster City, California

Pre-Launch (Tracking Station Set-Up)

-

Plaster City, California

Launch (11:50 AM)

+

Side View

Bottom View

Plaster City, California

Flight (11:50:30 AM)

space.ucsd.equ/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

Bottom View

Plaster City, California

Flight (11:51:00 AM)

-

Side View

Bottom View

Plaster City, California

Flight (11:51:30 AM)

ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

Bottom View

Plaster City, California

Flight (11:52:00 AM)

Side View

Bottom View

Flight (11:52:30 AM)

ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

Bottom View

Flight (12:00:00 Noon)

-

Side View

Bottom View

Flight (12:15:00 PM)

Side View

Bottom View

Flight (12:30:00 PM)

Side View

Bottom View

Flight (12:35:00 PM)

ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego **Side View Bottom View**

Flight (12:45:00 PM)

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

Bottom View

Flight (1:00:00 PM)

Side View

Bottom View

Flight (1:08:00 PM)

ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

84,000 feet

Looking North Over Salton Sea at 84,000 feet

Flight (1:09:00 PM)

-

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

Balloon Burst -

Free-Fall Tumbling Begins

Bottom View

Flight (1:38:00 PM)

*

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Side View

30-minute Parachute Drop

Bottom View

Flight (1:39:00 PM)

+

Flight Summary (12/06/2008)

<u>edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego</u>

Plaster City, California

Time: 1 Hour 51 Minutes

Distance: 65 miles

Altitude: 84,000 feet

Fall, 2008

Glamis, California

Payload Recovery (1:46 PM)

-

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Osborne Lookout (65 miles away)

Hike with GPS Tracking (3:11 PM)

+

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

2.2 mile hike into desert nature preserve

Payload Found (4:00 PM)

-

Payload Recovered

March Out of the Desert

-

Fall, 2008

On-Board Cameras Were Still Recording

ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Fall, 2008

ttp://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Pressure vs Altitude

Standard atmosphere models show exponential reduction in pressure with increasing altitude

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Temperature (oF) vs Altitude

Standard atmosphere models show linear cooling to stratosphere edge, then constant temperature isothermal layer, followed by linear heating above 82,000 feet

-

http://aerospace.ucsd.edu/ Mechanical and Aerospace Engineering Department, University of California, San Diego

Cockroaches survived

- -40 oF,
- space (0.333 psi) pressure,
- space radiation

Planaria Worms survived

space radiation

