
Acta Materialia 50 (2002) 575–596
www.elsevier.com/locate/actamat

Self-organization of shear bands in titanium and
Ti–6Al–4V alloy

Q. Xue, M.A. Meyers*, V.F. Nesterenko
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA

92093-0411, USA

Received 28 May 2001; received in revised form 10 September 2001; accepted 10 September 2001

Abstract

The evolution of multiple adiabatic shear bands was investigated in commercially pure titanium and Ti–6Al–4V
alloy through the radial collapse of a thick-walled cylinder under high-strain-rate deformation (�104 s�1). The shear-
band initiation, propagation, as well as spatial distribution were examined under different global strains. The shear
bands nucleate at the internal boundary of the specimens and construct a periodical distribution at an early stage. The
shear bands are the preferred sites for nucleation, growth, and coalescence of voids and are, as such, precursors to
failure. The evolution of shear-band pattern during the deformation process reveals a self-organization character. The
differences of mechanical response between the two alloys are responsible for significant differences in the evolution
of the shear band patterns. The number of shear bands initiated in Ti (spacing of 0.18 mm) is considerably larger than
in Ti–6Al–4V (spacing of 0.53 mm); on the other hand, the propagation velocity of the bands in Ti–6Al–4V (�556
m/s) is approximately three times higher than in Ti (�153 m/s). The experimental shear-band spacings are compared
with theoretical predictions that use the perturbation analysis and momentum diffusion; the shortcomings of the latter
are discussed. A new model is proposed for the initiation and propagation that incorporates some of the earlier ideas
and expands them to a two-dimensional configuration. The initiation is treated as a probabilistic process with a Weibull
dependence on strain; superimposed on this, a shielding factor is introduced to deal with the deactivation of embryos.
A discontinuous growth mode for shear localization under periodic perturbation is proposed. The propagating shear
bands compete and periodically create a new spatial distribution. 2002 Published by Elsevier Science Ltd on behalf
of Acta Materialia Inc.
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1. Introduction

Shear localization is an important and often
dominating deformation and failure mechanism at
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high strain rates e.g. [1] and [2]. It has been the
object of numerous studies, focused both on the
mechanics and microstructural aspects of the pro-
cess. The constitutive equations governing adia-
batic shear localization are well known, and the
approaches developed by Clifton [3], Bai [4], Mol-
inari and Clifton [5], Wright [6], and Wright and
Walter [7] successfully predict the strains for the
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initiation as well as other parameters, such as band
thickness. These analyses have been corroborated
by controlled, instrumented experiments; promi-
nent among those are the pioneering results by
Marchand and Duffy [8]. From a microstructural
evolution viewpoint, a number of structural alter-
ations, including dynamic recovery, dynamic
recrystallization, phase transformations, and
melting/resolidification have been observed. For
titanium and titanium alloys, Schechtman et al. [9],
Grebe et al. [10], Meyers and Pak [11], Meyers et
al. [12], and Timothy and Hutchins [13,14], have
identified important microstructural alterations.
Ramesh and coworkers [15–17] have recently
investigated Ti and Ti alloys.

However, the great majority of studies addressed
an individual shear band. Exceptions are the stud-
ies by Bowden [18] and Shockey [19] showing
multiple shear bands and emphasizing their spac-
ing. It was shown by Nesterenko et al. [20] that
shear bands in titanium exhibit a self-organization
behavior with a characteristic spacing. These
observed spacings were compared with the three
existing Grady–Kipp [21] and Wright–Ockendon
[22] and Molinari [23] theories. One of the objec-
tives of this report is to expand on the initial find-
ings [20] and to propose a new, two-dimensional
treatment for the self-organization of shear bands.
The role played by shear bands in the initiation and
evolution of damage is also characterized.
Titanium and Ti–6Al–4V alloy were chosen
because they both have close compositions, den-
sity, and a demonstrated propensity for shear local-
ization but have rather different mechanical
properties; the yield strength of Ti–6Al–4V is
approximately twice that of Ti.

2. Theoretical predictions

A few theoretical predictions for spacing of
shear bands have been proposed to characterize the
spatial distribution of shear bands. Since the evol-
ution of multiple shear bands is very complex due
to the interactions among them, most analyses are
still simplified under one-dimensional simple
shear condition.

Grady [24] was the first to propose a pertur-

bation solution to shear instability of brittle
materials. The governing equations were simplified
as a dimensionless system. The principle of pertur-
bation analysis is shown in Fig. 1. The schematic
process reveals the development of perturbations
in an initially homogeneous deformation. The com-
petition among small perturbations produces a new
distribution of perturbations with larger ampli-
tudes. In Fig. 1, two wavelengths (L1 and L3) are
shown. The amplitude of the perturbation with
larger wavelength (L3) grows faster and dominates
the process at t3. Shear bands evolve from the
growth of perturbations. A Newtonian viscous
constitutive equation was used to describe the
shear deformation of the solid medium:

t � h(T)
∂v
∂y

, (1)

where t is the shear stress, v is the velocity, and the
viscous coefficient h(T) is temperature dependent:

h(T) � h0 exp[�a(T�T0)], (2)

h0 and T0 are a material constant and the reference
temperature, respectively. The perturbation wave-
length associated with the instability corresponds
to the minimum spacing. The following character-
istic wavelength was obtained from the pertur-
bation analysis:

LG �
2p
ġ0
� kC
a2h0

�1/4

. (3)

Fig. 1. Schematic of evolution perturbations with develop-
ment of characteristic spacing for subsequent shearband
nucleation.
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Grady and Kipp [21] later proposed another
approach (called here the GK model) to determine
spatial distribution of shear bands. They extended
Mott’s [25] early analysis for dynamic fracture.
Mott [25] pointed out that the velocity of stress
release away from the point of fracture was con-
trolled by momentum diffusion and was much
lower than elastic wave velocity. Fig. 2 gives the
deformation distribution under one-dimensional
simple shear and shows in a schematic manner the
principle of momentum diffusion. The momentum
diffusion due to the unloading creates a rigid
region between the shear band and the plastic
deformation region. The rigid–plastic interface
propagates at a speed lower than the elastic wave
velocity. A linear relaxation of stress was used to
describe approximately the relation of unloading
stress. A simple constitutive equation, t = t0[1�
a(T�T0)], was applied; a is a softening parameter.
Work hardening and strain rate sensitivity are neg-
lected. Grady and Kipp [21] indicated that the
shear band spacing should correspond to the mini-
mum localization time during which the shear band

Fig. 2. Structure of one-dimensional shear band and stress
release behavior in the vicinity of the shear band. Note that rigid
regions and plastic flow regions are separated by a propagating
interface (adapted from Grady and Kipp [21]).

reached its critical width. The predicted spacing,
LGK, is:

LGK � 2� 9kC
ġ30a2t0

�1/4

. (4)

Wright and Ockendon [22] developed their
theoretical model (WO model), based on the analy-
sis of small perturbations. The basic concept is
similar to Grady’s earlier work [24]. The following
constitutive equation for a rate dependent material
was used:

t � t0[1�a(T�T0)]� ġġ0�
m

, (5)

where m is the strain rate sensitivity. The spacing
of shear bands, LWO, is:

LWO � 2p�m3kC
ġ30a2t0

�1/4

. (6)

More recently, Molinari [23] modified the WO
model by adding strain hardening:

t � m0(g � gi)nġ mTn. (7)

m0 and n are constants and gi is a pre-strain, and
m is the strain-rate sensitivity and n is the strain
hardening exponent. The predicted spacing of
shear bands is:

LM �
2p
x0�1 �

3
4

rc
∂ġ
∂g

bt0
∂ġ
∂T

�
�1

, (8)

where x0 is the wave number. For a non-hardening
material, the Molinari model takes the simple
form:

LM� � 2p�kCm3(1�aT0)2

(1 � m)ġ30a2t0
�1/4

. (9)

Eq. (7) for linear thermal softening can be rewrit-
ten as:

ġ � t1/m[m0(1�aT)]�1/m(g � gi)�n/m. (10)

The initial wave number x0 is obtained directly
from the non-hardening solution of shear band
spacing:
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x0 �
2p
LM�

. (11)

The spacing of shear band with work hardening
effect is obtained by substituting Eqs. (8) and (10)
into Eq. (11):

LM � �1�
3
4
rc
bt20

n(1�aT)
bag ��1

· �kCm3(1�aT0)2

(1 � m)ġ30a2t0
�1/4

, (12)

where the pre-strain is assumed to be zero, gi=0.
The above predictions are classified into two

types: momentum diffusion to describe the later
stage of the shear localization [21], and the pertur-
bation analysis to explain the initial growth of
shear bands at an early stage [22–24]. They can
also be expressed as:

Grady � Kipp

L � 2p� kC
ġ3a2t0

�1 /4

·
91/4

p
(13)

Wright � Ockendon

L � 2p� kC
ġ3a2t0

�1 /4

·m3/4 (14)

Molinari

L � 2p� kC
ġ3t0a2�1 /4

· �m3(1�aT0)2

(1 � m) �1 /4

for n � 0. (15)

The WO and Molinari models are the same except
for a factor [(1�aT0)2 /(1 � m)]1/4. Since m is much
less than 1 and T0 is the reference temperature, this
factor is approximated as (1�aT0)1/2. The form of
the equations enables direct comparison between the
three predictive models. Generally speaking, if the
strain hardening effect is ignored, the Molinari pre-
diction is of the same order as the WO model, except
for the coefficient. The coefficient in the GK model
is independent of work hardening. Under such an
extreme condition, the absence of strain-rate sensi-
tivity in the GK model does not affect the distri-
bution of shear bands, although we can incorporate
the strain rate term into the constitutive equation by
obtaining t0 from Eq. (7). The coefficient of GK
model is 0.55, which is at least 5 to 10 times larger
than m3/4 since m is about 10�2 for most metals.

3. Materials and experimental procedure

3.1. Materials and constitutive behavior

Commercially pure titanium is a typical high
purity α titanium with HCP structure. Titanium
undergoes an allotropic transformation from HCP
(α-Ti) to BCC (β-Ti) at about 882°C. Nesterenko
et al. [20] used this material to examine the spatial
distribution of shear bands. In the present research,
the former cylindrical specimens after collapse
were re-examined for the detailed characterization
of shear localization.

Ti–6Al–4V alloy, in the form of a rod 1 inch in
diameter, was used (ASTM B348-95 with grade 5).
It was in the annealed condition (705°C for two
hours and air cooling), providing a two-phase
structure with elongated grains. The grain size is
about 7 µm length and 3 µm width.

The constitutive response of the materials used
was described by means of Zerilli–Armstrong (Z–
A) equations. Quasi-static and dynamic tests were
conducted to obtain the Z-A parameters. The ther-
mal softening parameters a0, a1, b0 and b1 were
taken directly from Zerilli and Armstrong [26].
Zerilli and Armstrong extended their theoretical
prediction, initially developed for BCC [27] and
FCC [28] metals, to HCP [26]. They pointed out
that HCP metals have a mechanical response fall-
ing somewhere between BCC and FCC metals.
They used a combination of predominant interac-
tions, the Peierls stress type (BCC) and the forest
dislocations type (FCC) to describe the constitutive
response of HCP metals:

s � sa � Be�(b0�b1 ln ė)T (16)
� B0eCne�(a0�a1 ln ė)T.

In Eq. (16), B, B0, b0, b1, a0, a1 and Cn are para-
meters. The constant sa represents the athermal
component of the flow stress (that includes the
grain size effect). The second and the third terms
describe the thermal activation from the Peierls
stress interaction and the intersection of dislo-
cations, respectively. The parameters not obtained
experimentally were taken from Zerilli and Arm-
strong [26], Chichili et al. [16,17], and Meyers et
al. [12] for Grade 2 CP titanium. The prediction
equation was fitted and the parameters are listed
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Table 1
Parameters of Zerilli–Armstrong prediction for Ti and Ti–6Al–4V alloy

Mixed model: s = C0 + B0eCn exp(�a0T + a1T ln ė) + B exp(�b0T + b1T ln ė)

C0 (MPa) B0 (MPa) a0 (K�1) a1 (K�1) Cn B (MPa) b0 (K�1) b1 (K�1)

CP Ti 0 990 1.1×10�4 7.5×10�5 0.5 700 2.24×10�3 9.73×10�5

Ti–6Al–4V 340 1135 1.4×10�5 7×10�5 0.5 1485 2.75×10�3 7.47×10�5

in Table 1. Fig. 3(a) shows a comparison of the
experimental curves by Chichili et al. [16,17] and
Meyers et al. [12] with the Z-A predictions for Ti.
The predicted curves are in good agreement with
the experimental data.

Fig. 3. Comparison between the experimental data and the
Zerilli–Armstrong predictions for (a) CP titanium. Experimental
data from Chichili et al. [16] (quasi-static, ė = 10�3 s�1;
dynamic, ė = 5×103 s�1, and Meyers et al. [12] (dynamic,
ė = 1.2×103 s�1).(b) Ti–6Al–4V. Note that ‘Q’ and ‘D’ rep-
resent quasi-static and dynamic; and the corresponding strain
rates are 10�3 s�1 and 3.8×103 s�1, respectively.

Ti–6Al–4V alloy includes both HCP (α phase)
and BCC (β phase) structure. Its constitutive
response depends much more on the mechanism
that dominates BCC metals than titanium. The
parameters are listed in Table 1. The predicted
responses are compared with experimental results
in Fig. 3(b). There is a good match with experi-
mental curves. These constitutive equations were
used in the prediction of the adiabatic temperature
rise (Section 5.4).

3.2. Thick-walled cylinder explosion technique

The thick-walled cylinder implosion technique
was introduced by Nesterenko et al. [29,30] and
represents an improvement from the contained
exploding cylinder technique developed by
Shockey [19]. The technique is described in detail
elsewhere [31,32] and will be only briefly
presented here.

The specimen is sandwiched between a copper
driver tube and a copper stopper tube and is col-
lapsed inwards during the test. OFHC copper was
used to make these tubes. The internal diameters
of the inner copper tube were selected to produce
prescribed and controlled final strains. In some
special cases a central steel rod was also used. The
explosive is axi-symmetrically placed around the
specimen. The detonation is initiated on the top.
The expansion of the detonation products exerts a
uniform pressure on the cylindrical specimen and
drives the specimen to collapse inward. The deton-
ation velocity of the selected explosive is approxi-
mately 4000 m/s and the density of the explosive
is 1 g/cm3. The velocity of the inner wall of the
tube was determined by an electromagnetic gage.
The initial velocity of collapse of the inner tube
was found by Nesterenko et al. [33] to be approxi-
mately 200 m/s.
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It is possible to obtain an estimate of the upper
bound of this velocity by a simple analytical calcu-
lation which equates the chemical energy of the
explosive to the kinetic energy of the collapsing
cylinder and of the detonation gases. This is the
Gurney approach. An equation applicable to the
geometry used here was developed by Meyers and
Wang [34]. Neglecting the effect of plastic defor-
mation work, we have:

V � (17)

�2E�
3

5
M
c

� 2�M
c �2R � r

r
�

2r
R � r

�
1/2

.

V is the collapse velocity of the cylinder, E is the
Gurney energy, M and c are the masses of metal
and explosive charge, respectively, R is the exter-
nal radius of the explosive charge (equal to 30
mm), and r is the external radius of the cylinder
(equal to 15 mm). The Gurney energy was
obtained through the empirical relationship by
Kennedy [35]:

√2E � D/3. (18)

D is the detonation velocity, equal to 4000 m/s.
The initial collapse velocity was equal to 366 m/s.
Recent calculations using RAVEN have yielded a
collapse velocity of 250 m/s. These calculations
represent an upper bound and shows that the meas-
ured value of 200 m/s is reasonable. Incorporation
of the plastic deformation work would reduce the
calculated velocity obtained from Eq. (17).

To avoid extra wave reflection from the free
interface between the stopper and the specimen, a
shrink-fit technique was applied. The outer diam-
eter of stopper was designed 0.03 mm larger than
the inner diameter of the specimen. For Ti–6Al–
4V alloy, special steel rods were applied to stop
the radial deformation at a much earlier stage. Steel
rods with diameters of 7 mm and 9 mm were used
as the core at the center of cylinder specimen to
stop the deformation.

The collapse of thick-walled cylinder specimen
occurs in a plane strain condition. The stress state
can be considered as a superposition of a hydro-
static pressure and a pure shear stress due to the
axi-symmetrical geometry and loading. The

maximum shear strain occurs on the internal sur-
face of the cylindrical specimen, and thus shear
bands preferentially initiate there. After each
experiment, the cylinders were sectioned, ground
and polished. The lengths of shear bands, li, the
edge displacements, di, the average radius of final
internal boundary, Rf, and the angle between spatial
position from origin, �i, were measured as shown
in Fig. 4. In order to compare the deformation at
the different positions on the specimen, an effec-
tive strain is used as:

eef �
2
√3
err �

2
√3

ln �r0

rf
�, (19)

where r0 and rf are the initial and final radii of a
reference point. The effective global strain at the
internal boundary of the specimen is considered as
a characteristic value of deformation since all the
specimens have the same initial dimensions. Based
on the number of distinguishable shear bands, the
average spacing between them is:

L �
�i Rf

ni√2
, (20)

Fig. 4. Characteristics of shear band pattern and basic
measurement; �i is the reference angle and Rf is the final radius
of the collapsed cylinder; Li is the spacing between the ith and
the i�1 shear band, li is the length of the ith shear band and
di is its edge length.
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where ni is the number of shear bands at the parti-
cular region i and �i is the corresponding angle
referring to the original angle. If ni = ntotal, �i =
2p. The spacing between shear bands decreases as
plastic deformation proceeds due to the continuing
deformation [36]. The measured spacings are actu-
ally the sum of the real developing part and the
geometrical part due to the change of the cylinder
configuration. This geometrical effect needs to be
subtracted from the results by an appropriate cor-
rection. The values of spacings at the initiation of
the bands was taken as a reference. The spacing of
shear bands can be expressed as:

L �
�i Rf

ni√2 �Rf0

Rf
��

	
i

Li,i�1

ni
�Rf0

Rf
�, (21)

where Rf0 is the radius of the specimen at shear
band initiation, and Rf is the final radius, at any
larger effective strain. Li,i�1 is defined as the spac-
ing between ith and i�1th shear bands in Fig. 4.
Since Rf � Rf0, the corrected spacing based on the
final configuration always has a lower value.

4. Microstructural characterization

There are significant differences between the
two materials, in spite of their close composition
and thermal properties. Fig. 5 shows the character-
istic configuration of shear bands for Ti and Ti–
6Al–4V. Three bands are seen in Fig. 5(a), whereas
only one band is seen in Fig. 5(b); it should also
be noted that the magnification in Fig. 5(a) is
almost twice of that in Fig. 5(b). These results sug-
gest (and this will be analytically developed in Sec-
tion 6) that the interaction between nuclei of shear
bands in Ti–6Al–4V is relatively weak. Each shear
band grows fast once it nucleates. Unloading from
a developed shear band during growth reduces new
nucleation sites in the surrounding areas. The
examination of the ratio of the lengths of shear
bands and their edge displacement, 1/d, also indi-
cates the major difference between Ti and Ti–6Al–
4V. 1/d is about 14.5 for Ti and 26.5 for Ti–6Al–
4V at the same value of d. This result clearly indi-
cates that the shear bands develop much faster in

Fig. 5. Comparison of nucleation sites between Ti and Ti–
6Al–4V alloy. (a) Titanium and (b) Ti–6Al–4V alloy.

Ti–6Al–4V alloy than in Ti. The detailed analysis
of shear band development is presented in Sec-
tion 6.

The thickness of the band was found to be a
function of the distance from its tip. This holds for
both materials and had been observed earlier by
Nesterenko et al. [20] for Ti. The largest shear-
band thickness in Ti is approximately 10 µm. The
tip of the band reaches a level of intermittent local-
ization in which the grain scale plays a role. This
is seen in Fig. 6(a) in which the band (in Ti–6Al–
4V) is shown by arrows. The thickness is on the
order of 1 µm. There is a slight discontinuity,



582 Q. Xue et al. / Acta Materialia 50 (2002) 575–596

Fig. 6. Evolution of shear band width and morphology in Ti–
6Al–4V alloy: (a) fine tip section of the band; (b) well-
developed section of the band.

marked by a black arrow. Fig. 5(b), on the other
hand, shows a well-developed band. The thickness
is approximately 8 µm. The interior is virtually fea-
tureless, and the original microstructure has been
eliminated. It has been shown by Grebe et al. [37]
for Ti–6Al–4V and by Meyers and Pak [11] and
Meyers et al. [12] for Ti that the structure within
the shear band consists, at a sufficiently high shear
strain, of small (0.1–0.3 µm) equiaxed grains. The
featureless material within the band was concluded
to be the result of a rotational dynamic recrystalliz-
ation instead of the product of phase transform-
ation, as suggested by the early literature on shear

bands, based exclusively on optical microscopy
observations. It is now recognized that a number
of microstructural changes can and do occur within
shear bands, including dynamic recovery and
recrystallization, phase transformation and even
amorphization. The presence of fine equiaxed
subgrains within the shear band with the average
diameter of 0.2 µm provided a direct evidence for
dynamic recrystallization. However the defor-
mation time is lower, by orders of magnitude, than
the time required for boundary migration. Thus, a
rotational mechanism, previously mentioned by
Derby [38] in his classification of dynamic recrys-
tallization, was proposed for the shear bands
[39,40].

Another important feature of shear bands
observed in the exploding cylinder geometry is the
bifurcation. This bifurcation of bands is geometri-
cally necessary due to the spiral trajectory of the
bands, starting in the internal surface. In order to
retain the same band spacing as they travel out-
wards, new bands have to be generated. Bifur-
cation is one possible means and it has been pre-
viously observed in steels (e.g. [41], Fig. 5). Fig.
7 shows a bifurcation event for Ti–6Al–4V.

Shear localization precedes failure mechanisms
such as voids and cracks. A well-developed shear
band is often accompanied with voids and cracks

Fig. 7. Shear band bifurcation and induced damage in Ti–
6Al–4V alloy.
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within it. These defects evolve and interact with
shear bands during shear localization. Defects
accelerate localization and localized deformation
creates fresh nucleation of micro-voids and cracks.

The evolution of defects within shear bands in
Ti–6Al–4V alloys showed, in this geometry, an
entire range of events associated with damage and
failure. The nucleation of micro-voids is con-
sidered as a result of the tensile stress inside shear
bands. Void evolution is comprised of the three
main stages: nucleation, growth, and coalescence.
Fig. 8(a) shows nucleation stage of voids within
shear bands. Three voids with circular or elliptical
shape are initiated within shear band. All voids
have smooth surfaces. It means that the material
inside the band is quite soft and the temperature
within the band is high. These voids nucleate com-
pletely inside the band and are surrounded by the

Fig. 8. Void nucleation and growth inside a shear band in Ti–6Al-4V alloy: (a) nucleation of voids within a shear band; (b) growth
of voids; (c) elongation and rotation of voids; (d) coalescence.

flow of localized deformation. They grow up with
the localization progress in the growth stage. Most
of voids first grow to the width of the band and
then are elongated to elliptical shape along the
direction of the shear band (see Fig. 8(b)). Further
growth of these voids is accompanied with rotation
along the shear direction. The second stage of void
growth is characterized with the void elongation
and rotation. Several voids are elongated to ellipse
shape and rotated along direction of shear moment
in Fig. 8(c). The third stage of void development
is coalescence of voids and crack generation. Fig.
8(d) shows the whole process of void coalescence.
These elliptical voids tilt their long axis to a certain
angle coalescence of a group of voids inside
shear band.

Timothy and Hutchings [13,14] proposed a sim-
ple schematic plot to express the void evolution
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within shear bands. A similar schematic descrip-
tion is presented in Fig. 9. Although there are some
differences in the details, the major processes in
their plot are in good agreement with what is
observed in Ti–6Al–4V alloy represented in Fig.
8. Voids nucleate within the shear bands when
there is tension. They grow until their edges reach
the boundary of the band, where the strength of the
material is higher due to the lower temperature.
Growth continues within the bands, and the voids
become elongated in the process. They can eventu-
ally coalesce, creating complete separation. This
process in the absence of shear strains is shown in
Fig. 9(a). If there are shear strains present concur-
rently with tension, the voids are elongated and
rotated. This is shown in Fig. 9(b). The ellipsoids
no longer share a common major axis. Their axes
are parallel and inclined to the shear-band plane.
In the present case a mixture of the two cases was
observed. The collapsed cylinder specimens move
continuously inward during the implosion process,
and only compressive and shear stresses are gener-
ated at this stage. During the unloading stages, ten-
sile circumferential stresses are generated in the
cylinders because of the radial dependence of the
stresses. These tensile stresses are responsible for
further growth of voids generated within the bands.

Fig. 9. Schematic representation of void nucleation, growth,
and coalescence in (a) absence and (b) presence of continuing
shear.

5. Shear-band spacings

5.1. Titanium

In the present study, the titanium samples from
the experiments carried out by Nesterenko et al.
[20] were carefully re-examined by using both
optical microscopy and SEM. The configuration of
shear bands on the cross sections of the cylindrical
specimens was described before [20,34]. It consists
of spiral trajectories. The lengths, the edges and
spacing of shear bands were re-measured. Detailed
observation shows that there is a large number of
small shear bands that had not been counted in the
former work. The total number of shear bands in
CP titanium at this stage is 116, while the earlier
count [20] was 11. The large difference is due to
fact that emerging shear bands were neglected
earlier. At an effective strain of 0.92, the number
of shear bands is 108. The earlier count was 30.
The spectra of shear-band distribution at the two
strains are shown in Fig. 10. The numbers of shear
bands at both the early stage and the later stage
are similar. This implies that there is no new
nucleation of shear bands at the internal boundary
after an effective strain of 0.55. Only previously
nucleated shear bands grow between eef = 0.55 and
eef = 0.92. The spacing of shear bands in CP
titanium reaches a saturation state and remains
constant. The average shear band spacing is 0.18
mm. Fig. 10 shows that the number of bands grow-
ing at the strain of 0.92 is smaller than at 0.55; the
spacing is dependent on the size of the shear bands.
This size-dependent spacing necessitates a two-
dimensional treatment; this is done in Section 6.

5.2. Ti–6Al–4V alloy

Four different effective strains were selected to
examine the evolution of the patterns of shear
localization. They are 0.13, 0.26, 0.55 and 0.92.
Shear localization is initiated at a much earlier
stage in Ti–6Al–4V alloy than in CP Ti. In com-
parison, at the same effective strains of 0.55 and
0.92 for Ti, the shear bands are much shorter [47].
A well-developed shear-band pattern is already
formed at an effective strain of 0.26. The numbers
of shear bands are: 68 for eef = 0.26, 64 for
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Fig. 10. Spectra of shear band distribution in CP titanium at
two different stages: (a) eef = 0.55; and (b) eef = 0.92.

eef = 0.55, and 68 for eef = 0.92. The numbers of
shear bands remain approximately constant, indi-
cating that once the shear band becomes well-
developed, no further nucleation takes place. The
shear band pattern at an early stage, at an effective
strain of eef = 0.13, gives a number of only 25. This
strain is within the nucleation stage.

Fig. 11 shows the distribution of shear bands for
two effective strains in Ti–6Al–4V alloy. The
nucleation of shear bands occurs within a certain
range of strains after a critical strain is reached.
Two principal differences exist between the evol-

Fig. 11. Spectra of shear bands distribution in Ti–6Al–4V
alloy: (a) early stage (eef = 0.13); (b) late stage, (eef = 0.26).

ution in Ti and Ti–6Al–4V. One is that the range
of strains for nucleation in Ti–6Al–4V alloy
appears to be broader than in titanium. The other
is associated with the velocity of shear bands. The
velocity can be estimated from the collapse velo-
city of the cylinder and the length of the bands.
The total travel distance of the inner surface of the
cylinder divided by the collapse velocity provides
the propagation time. The calculation is carried out
in Section 5.3. The spacing is, as for Ti, observed
to increase with the size of the bands.
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5.3. Propagation velocity of shear bands

The velocity of shear band propagation can be
estimated from the experimental data of the col-
lapsed cylinder tests. According to Nesterenko et
al. [20,30,33], the average shear strain rate in the
internal boundary of the thick-walled cylinder
specimen is 3.5×104 s�1. The corresponding radial
strain rate, ėrr is 1.75×104 s�1. This corresponds to
an average collapse velocity of 200 m/s. Radial
strains at the two deformation stages can be trans-
formed into the corresponding effective strains by
using Eq. (19). For CP Ti, the radial strains are
0.476 and 0.797, corresponding to eeff = 0.55 and
eeff = 0.92, respectively. For Ti–6Al–4V alloy, they
are 0.113 and 0.225, corresponding to eeff = 0.13
and eeff = 0.26, respectively. The differences of
duration between two strains are:

�t �
�err

ėrr

�
err2�err1

ėrr

, (22)

where the subscripts 1 and 2 represent the two
stages of strain. The differences of duration are
18.3 µs for Ti and 6.46 µs for Ti–6Al–4V. The
increments of the longest length of shear bands for
these two materials are obtained directly from the
data in Figs. 10 and 11. The maximum length of
shear bands in Ti increases from 1.2 mm
(eeff = 0.55) to 4.0 mm (eeff = 0.92), while that in
Ti–6Al–4V increases from 0.58 mm (eeff = 0.13) to
4.18 mm (eeff = 0.26). The average velocities of
shear band propagation are directly calculated and
are equal to 153 m/s for Ti and 556 m/s for Ti–
6Al–4V.

Zhou et al. [42,43] measured and numerically
calculated the velocity of propagation of shear
band in Ti–6Al–4V impacted at 64.5 m/s. The
propagation velocities were 50–75 m/s, one order
of magnitude less than the current results. It is con-
cluded that the velocity of propagation of shear
bands is dependent on the energy available for
release at the front. The energy release rate for Ti–
6Al–4V is significantly higher than for Ti due to
its higher yield stress. This explains, qualitatively,
its higher propagation velocity.

Mercier and Molinari [44] proposed a theoretical
analysis for the velocity of propagation of shear
bands incorporating some of these concepts. The

band is evaluated in simple shear (Mode II). Fig.
12(a) shows the Mode II configuration used by
Mercier and Molinari [44]. A slab with thickness
2h is sheared with top and bottom boundaries dis-
placed at velocities C and �C, respectively. A
shear band propagates in the center of the slab with
velocity V. The band thickness is t and the process
zone size is l. Using a variational method, two
variational relations were obtained as



h

�h

[sxx]�
��dy � 


�

��

[sxy]h
�h (23)

� 

� �

��
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�h

�sij

∂ėij
∂V
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∂vi

∂V�dx dy � 0,

Fig. 12. Calculated propagation velocity for shear band, using
Mercier and Molinari’s [42] theory): (a) velocity configuration
used in calculation; (b) predicted velocities for different con-
ditions.
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�sij

∂ėij
∂l

� rai

∂vi

∂l�dx dy � 0, (24)

where ai = vi,kvk (i = 1,2) is the acceleration of
shear bands, and sxy are the deviatoric Cauchy
stresses. These relations were further simplified
under the constrained condition. The velocity of
shear band V and the characteristic length of the
process zone l can be obtained by the solution of
following equations:



�

��

[sxy(x,h) � sxy(x,�h)�2sxy(x,0)]dx (25)

�rCV(h�t) � 0,
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�h

rxV��∂vx

∂x �2

� �∂vx

∂y �2�dx dy

� 0.

For a rigid perfectly plastic material, an
expression of the form was obtained by Mercier
and Molinari [44]:

V �
sf

rC
g�lh,

t
h�, (27)

where sf is the flow stress, r is the density. Thus,
the shear band velocity is directly proportional to
the flow stress. The value for the function g(l/h,
t/h) = 0.343 was obtained from Fig. 5 of Mercier
and Molinari [44]. The predicted velocities are
shown in Fig. 12(b). The velocity C was taken, to
a first approximation, as 200 m/s. This is the initial
collapse velocity for the cylinder. For the current
results, the predicted velocities are 190.5 for Ti (sf

= 500 MPa) and 571.5 m/s for Ti–6Al–4V (sf =
1500 MPa), respectively. The corresponding
experimental velocities are 153 and 556 m/s,
respectively. The calculated and experimentally

inferred results are in excellent agreement. The
variational theory of Mercier and Molinari [44]
predicts correctly the dependence of propagation
velocity on flow stress.

5.4. Comparison of predicted and experimental
results

The significant differences in shear-band spacing
encountered in the two materials is surprising. It
is indeed interesting to notice that these two
materials, with fairly close compositions based on
Ti, have such a dissimilar response. The physical
and mechanical parameters for CP Ti and Ti–6Al–
4V alloy are listed in Table 2. Using these para-
meters, the predicted spacings of shear bands from
the three theoretical models presented in Section 2
can be calculated. The predictions for the three
models are shown in Table 3. Since the Grady–
Kipp model does not consider the strain rate effect,
the shear yield stresses in this model correspond
to those under dynamic loading condition. The WO
and Molinari (without work hardening) models
give predictions for Ti as Li = 0.29 mm and Li

= 0.24 mm, respectively. The experimental results
show that the spacing of shear bands is 0.18 mm.
The predictions are reasonably close to the
observed spacing. The GK model predicts the shear
band spacing to be 2.13 mm, which is much larger.
Thus, the predictions of WO/Molinari models are
in approximate agreement with the observed shear
band spacing in CP titanium. If work hardening is
incorporated into the Molinari model, the predicted
spacing increases somewhat. The Molinari equ-
ation is applied in its simplified, non-work harden-
ing form (Eq. (15)) and in the form given below,
which uses a softening term different from the
original formulation for ease of mathematical
manipulation. The following constitutive equation
was used:

t � m0(g � gi)n ġ m(1�aT). (28)

The corresponding spacing is

LM � L0�1�
3
4
rc
bt0

n(1�aT)
ag ��1

, (29)

L0 is the spacing for the non-work hardening case.
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Table 2
Physical and mechanical parameters for prediction of shear-band spacinga

Material Density Heat capacity Thermal Thermal softening Strain rate
conductivity factor hardening index

r (g/cm3) C (J/kg K) k (W/mK) a (K�1) M

Titanium 4.51 528 16.44 10�3 0.027
Ti–6Al–4V 4.43 564 3.07 10�3 0.017

Strain hardening Shear stress Dynamic shear Shear strain rate
index stress
n (MPa) (MPa) ġ (s�1)

Titanium 0.18 180 280 6×104

Ti–6Al–4V 0.15 490 650 6×104

a Thermal properties and densities are from Ref. 50; thermal softening factor from Nesterenko et al. [20]; other parameters from
experimental data.

Table 3
Comparison of shear band spacings between the experimental results and theoretical predictions

Spacing (mm) Experimental data Grady–Kipp Wright–Ockendon Molinari (without Molinari (with
strain hardening) strain hardening

effect)

CP titanium 0.18 2.13 0.29 0.24 0.64
Ti–6Al–4V alloy 0.53 1.15 0.10 0.09 0.10

The predicted spacing is increased from 0.24 mm
to 0.64 mm.

The number of shear bands for Ti–6Al–4V alloy
is essentially constant for the global effective
strains 0.26, 0.55 and 0.92; an average number can
be taken as approximately 66. The corresponding
spacing of shear bands is Li = 0.526 mm. There-
fore, it can be concluded that after this spacing is
reached, no further nucleation occurs. The pre-
dicted results for shear band spacing are also
shown in Table 3. The values of spacing for WO
and Molinari models are 0.10 mm and 0.09 mm,
respectively. Thus, the experimental results are
roughly 5 times the theoretical predictions. On the
other hand, the GK model predicts a spacing L =
1.15 mm, which is roughly double the experi-
mental results. So, the experimental and calculated
spacings do not show as good an agreement as in
Ti. Moreover, the proposed models do not predict
observed tendency in shear band spacing between
titanium and Ti–6Al–4V.

The failure of these theoretical predictions in Ti–
6Al–4V alloy suggests that some mechanisms of
shear band development have not been included
into the current models. Considering the Molinari
model with work hardening, the strain hardening
is 0.15 for the Ti–6Al–4V alloy, which is lower
than the one for Ti. The incorporation of this strain
hardening index cannot result in a substantial
change of the spacing of shear bands. Therefore,
strain hardening should not be the main reason for
the failure of the prediction.

The Grady–Kipp model overestimates the spac-
ing considerably, whereas WO and M models
underestimate it. Section 6 will present a two-
dimensional model in which shielding is incorpor-
ated into the nucleation.

The temperature increment due to deformation
can be estimated through the predictive constitut-
ive relations. This temperature rise helps to explain
some of the differences in shear bands between the
two materials. The temperature change is given by:
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dT
dt

� b
sė
rC(T)

, (30)



T

T0

rC(T)
bs(T)

dT � 

t

0

ėdt � 

e

0

de � e. (31)

The stress as the function of temperature, s(T), is
obtained directly from the Zerilli–Armstrong equ-
ation (Eq. (16)). The heat capacities C(T) are:

CP Ti C(T) � 0.514 � 1.357×10�4 T

�
3.366×103

T2

� 2.767×10�8 T2[J /kgK] (32)

Ti�6Al�4V C(T) � 0.559

� 1.357×10�4 T�
3.366×103

T2

� 2.767×10�8 T2[J /kgK] (33)

In the adiabatic case (b = 1), numerical integration
of Eq. (31) gives the relation between strain and
temperature increment. Fig. 13(a) shows the tem-
perature as a function of effective strain for the two
materials. The temperature rises faster for Ti–6Al–
4V. The effective strains corresponding to the
initiation of localization, approximately 0.5 and
0.3, correspond to the same temperature rise of 100
K. A greater plastic deformation is needed to
increase the temperature to the same level in Ti.
Culver [45] introduced a simple relation between
true strain and engineering shear strain.

e � ln�1 � g �
g2

2
(34)

g � √2e2e�1�1 (35)

It should be mentioned that his conversion relation
is for simple shear case, although, strictly speak-
ing, the state of stress in these experiments is of
pure shear. The relations between temperature and
the converted engineering shear strain are plotted
in Fig. 13(b). The temperature corresponding to
Tm/2 (one half the melting temperature) is an
approximate measure of the onset of recrystalliz-
ation. It is marked in Fig. 13(b). It represents shear
strains of 5 and 3 for Ti and Ti–6Al–4V, respect-
ively. The shear strains in the bands can be esti-

Fig. 13. Predicted temperature for CP titanium and Ti–6Al–
4V alloy (a) as a function of effective strain g, and (b) as a
function of shear strain.

mated from the edge length/thickness (d/t) ratios.
The typical edge length in the Ti–6Al–4V speci-
men at a global strain of 0.13 is about 30 µm at
eef = 0.26 and the typical thickness of the shear
band is 8 µm. This gives a shear strain about 4.
At a more advanced stage (global strains of 0.26
and 0.55) the edge lengths are about 0.33 mm and
1.67 mm, respectively. These correspond to strains
of 41 and over 200, respectively. These are vastly
superior to the recrystallization temperature and
could even generate melting.
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6. Two-dimensional effects among multiple
shear bands

The failure of the one-dimensional models to
explain the evolution of shear-band spacing led to
the considerations outlined below. In order to
describe such self-organization behavior two basic
processes, initiation and growth, need to be
included separately. Initiation can be treated as the
selective activation of sites. Growth represents the
competition among bands and interaction during
the propagation stage.

The three important factors that determine the
development of spacing of shear bands are: (a) the
rate of initiation, (b) the rate of growth (or the velo-
city of shear bands), and (c) characteristic time of
interaction between shear bands.

6.1. Initiation stage

Shear bands nucleate at the internal boundary of
the specimen. The initiation sites are determined
by the small perturbations of initial deformation.
They may be located at favorably oriented grains
and defects. Initiation of shear bands requires a
critical strain at a certain stress. Heterogeneous
microstructural or surface effects (boundary
geometry, defects, orientation of grains, etc.) deter-
mine the range of strains in which the nucleation
takes places. We will treat the initiation like a
nucleation process. In heterogeneous nucleation
theory, the term embryo is used as a potential
nucleation site. The rate of nucleation of bands is
associated with a plastic strain rate, ė.

The probability of nucleation is given by
P(V0,S0), in a reference volume, V0, or surface, S0,
depending whether initiation occurs in the bulk or
on the surface. It can be described by a modified
Weibull [46] distribution, using strain as the inde-
pendent variable (in lieu of stress, in the conven-
tional approach). Thus,

P(V0,S0) � 1� exp��� e�eie0�ei
�q�, (36)

where ei is the critical strain below which no
initiation takes place; e0 is the average nucleation
strain (material constant); e is the variable; and q is

a Weibull modulus. The different Weibull moduli
reflect the dispersion of shear band nucleation. For
different materials the nucleation curve can have
different shapes and positions, adjusted by setting
q, ei, and e0. The rate of nucleation can be obtained
by taking the time derivative of the above
expression. In the geometry used in the experi-
ments, the initiation occurs on the inside surface
of the cylinder. For Ti and Ti–6Al–4V, the average
nucleation strains are selected as 0.4 and 0.12,
respectively, to best fit the experimental results; q
was given values of 2, 3, 6, and 9, providing differ-
ent distributions. Figs. 14(a) and (b) show the pre-
dicted distributions of initiation strains for Ti and
Ti–6Al–4V, respectively.

There is also a continuing shielding effect, so
that the bands that actually grow can be a fraction
of the total possible initiation sites. Fig. 15 shows
the schematic interaction between embryos and
growing shear bands. Each growing band generates
a shielded region around itself, that is the result
of unloading.

The factors governing the evolution of self-
organization include: (a) the strain rate, ė; (b) the
velocity of growth of shear band, V; (c) the initial
spacing, L.

Different scenarios emerge, depending on the
growth velocity V. The shielded volume is depen-
dent on the velocity of propagation of stress
unloading and is directly related to the momentum
transfer used by Grady and Kipp [21]; this is given
by k1V, where k1�1. If the unloading velocity were
equal to the propagation velocity, one would have

Fig. 14. Probability of nucleation of shear bands in Ti (a) and
Ti–6Al–4V (b) as a function of shear strain for four values of
q: 2, 3, 6, and 9.
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Fig. 15. Two-dimensional representation of concurrent nucleation and shielding.

k1 = 1. The activation of embryos at three times,
t1, t2, and t3, is shown in Fig. 15. When V is low,
the embryos are all activated before shielding can
occur, and the natural spacing L establishes itself.
As V increases, shielding becomes more and more
important, and the number of deactivated embryos
increases. For a full nucleation case, the predicted
spacing of shear bands in Ti is roughly 0.24 times
of the maximum length of shear bands. The width
of the unloaded region is 2k1 times the length of
the shear band.

The shielding effect can be expressed by S:

S � 1�
ėL

k0k1V
. (37)

The parameter k0 defines the range of strains over
which nucleation occurs. It can be set as 2(e0�ei):

k0 � 2(e0�ei). (38)

The physical meaning of the shielding factor S
is determined by the ratio of two characteristic
times. One is the characteristic time for complete
nucleation, t̄:

t̄ �
k0

ė
�

2(e0�ei)
ė

. (39)

The other characteristic time is ts � t̄�tcr, where
tcr is a critical time at which complete shielding
occurs:

tcr �
L

k1V
. (40)

It is assumed that the nuclei that have not been
activated after tcr can no longer be initiated. There-
fore, the shielding factor is defined as:

S �
t̄�tcr

t̄
. (41)

This expression correctly predicts an increase in
shielding S with increasing V, decreasing ė, and
decreasing L. For an extremely large velocity of
propagation of shear band, the critical time is very
small and the shielding factor is close to one,
which means almost complete shielding. The prob-
ability of nucleation under shear band shielding,
P(L), is obtained by combining Eq. (37) and Eq.
(36):

P(L) � (42)

�(1�S)·P(V0,S0) � � ėL
2(e0�ei)V

�1� exp��� e�eie0�ei
�q�� if tcr � t̄

P(V0,S0) � 1� exp��� e�eie0�ei
�q�� if tcr	t̄

When S = 0 no shielding effect exists and all
nuclei grow. If, in the other extreme case, S = 1, no
nucleation can happen. Fig. 16(a) shows predicted
evolutions of nucleation probabilities as a function
of increasing strain, for different values of the
shielding factor, S: 0, 0.2, 0.4, 0.6. This simple
model has the correct physics and shows how the
initial distribution of activated embryos can be
affected by different parameters. Xue et al. [47]
and Nesterenko et al. [48] present a preliminary,
simplified version of this analysis. It explains,
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Fig. 16. (a) Effect of shielding on the probability of nucleation
as a function of plastic strain (different values of shielding, S,
given in plot). Representative values for Ti–6Al–4V. (b) Prob-
ability of nucleation of shear bands (incorporating calculated
shielding factor S) for Ti (q=6, S=0.14) and Ti–6Al–4V (q=4,
S=0.89).

qualitatively, the smaller spacing of shear bands in
Ti, as compared to Ti–6Al–4V. Fig. 16(b) shows
the predictions for these two materials. Applying
Eq. (37), we obtain the shielding factors for the
two cases. The following values were used: V=153
and 556 m/s for Ti and Ti–6Al–4V, respectively;
ėrr = 1.75×104 s�1; ei�e0 = 0.1 and 0.07 for Ti and
Ti–6Al–4V, respectively; the range is numerically
larger in Ti than in Ti–6Al–4V. In comparison with
experimental observations, spacings L = 0.29 mm
for Ti and L = 0.1 for Ti–6Al–4V are obtained
from the Wright–Ockendon perturbation analysis

(Table 3). The ratio of the unloading velocity and
the velocity of shear band, k1, is taken as 0.2. It is
recognized that these values are only approximate.
The resultant shielding factors S are 0.14 for Ti and
0.89 for Ti–6Al–4V. Nevertheless, they provide a
good estimate of the evolution of nucleation for
the two cases. Fig. 16(b) shows that the spacing of
shear bands is far from reaching saturation in Ti–
6Al–4V due to significant shielding, whereas this
effect is not so pronounced for Ti.

The shear-band spacing, corrected for shielding,
is represented by:

Ls �
LWO

P(L)�t
t̄

�
LWO

(1�S)
. (43)

LWO is the Wright–Ockendon spacing. This spacing
is plotted as a function of S in Fig. 17(a) and as a
function of plastic strain, at a fixed value of S, in
Fig. 17(b). It is clear that the shear-band spacing
decreases with strain until a final, steady state
value is reached (Fig. 17(b)). Using the calculated
shielding factors S of 0.14 for Ti and 0.89 for Ti–
6Al–4V, the corresponding values for Ls are 0.34
and 0.9 mm, respectively. These values only
approximate the experimental results (0.18 and
0.53 mm, respectively) but they have the correct
trend, i.e. the spacing for Ti–6Al–4V is larger than
for Ti. This eliminates the incorrect predictions of
WO and M models where the spacing between
shear bands in Ti–6Al–4V is smaller than in Ti.
Considering the uncertainties of experiments and
measurements, it is felt that the agreement is satis-
factory.

6.2. Growth stage

It was observed in experiments that growing
shear bands form an approximately periodical pat-
tern. This is called a self-organization phenom-
enon.

Further deformation produces heterogeneous
growth of these shear bands: some shear bands
grow faster than others. The favorably loaded shear
bands grow faster, while the unloaded shear bands
slow down, and finally stop. The ‘ living’ shear
bands compete each other and construct a new spa-
tial pattern by following the self-organization rule.
The dead small shear bands may be left at their
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Fig. 17. Predicted shear-band spacing, Ls, as a function of (a)
shielding factor S at large strain; and (b) strain with constant S.

original locations, or may be merged into the large
plastic deformation of the surrounding area. In the
latter case the apparent number of shear bands is
effectively reduced.

The dominant factors in this process depend on
the material parameters, constitutive character,
loading condition, and strain rate. The velocity of
shear bands, relative to unloading, is an important
factor that affects their spatial distribution, an
aspect which the current theories have not covered.
In the extreme case when time of propagation of
shear band through the specimen is smaller than

the characteristic time of shear band interactions,
no self-organization during growth will take place.

The driving force for shear-band propagation is
the release of elastic energy. The rate of nucleation
is quite different from the growth rate (or growth
velocity). It is reasonable to assume that the growth
is governed by stress, whereas initiation is gov-
erned by strain. The necessary condition is:

tg � ti, (44)

where tg and ti are the critical shear stresses for
growth and initiation, respectively. The greater the
difference, the higher the velocity of propagation.
The unloading waves sweep through the surround-
ing area of a shear band and make any new
nucleation impossible within this area.

The interaction of shear bands leads to the com-
petitive growth of the propagating shear bands. The
volume of material shielded from further
nucleation and growth increases with the length of
a shear band in cylindrical geometry and is not
constant, as predicted with these elements in place,
one can construct a more realistic two-dimensional
theory for the evolution of the self-organization of
shear bands.

Different evolution stages for shear bands are
schematically indicated in Fig. 18. At a certain
length li, the spacing is Li. The growth becomes
unstable at a critical length lcr,i, and alternate shear
bands grow with a new spacing Li+1; the other
shear bands stop growing. The mathematical rep-
resentation of the step function shown in Fig. 13 is

L � L0 � 	n

j � 1

k�j·H(l�lcr,j), (45)

where H(l�lcr,i) is a Heaviside function. The para-
meters k�

j can be expressed as:

k�
j � f(V,L0,ei,ep), (46)

where V is the shear band propagation velocity,
L0 is the initial spacing, ei is the critical strain for
initiation and ep is the critical strain for propa-
gation. A similar phenomenon was observed and
analyzed by Nemat Nasser et al. [49] in the fracture
of glass. Thermal stresses were used to drive paral-
lel cracks. As their length increased, their spacing
would also increase. This occurred in a discontinu-
ous manner.
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Fig. 18. (a) Schematic diagram of the evolution of shear-band
spacing at different levels: t1, random initiation; t2, self-organi-
zation into ‘periodic’ pattern among nuclei; t3, some shear
bands grow faster, suppressing others; t4, self-organization of
developed shear bands. (b) Spacing of propagating shear bands
as a function of length.

7. Conclusions

Collective organization processes take place
during the formation of shear bands. All the current
theories on prediction of spacing of shear bands are
based on one-dimensional analyses of shear bands.
Therefore, it is no surprise that the current theories
cannot explain the self-organization behavior of
shear bands when they grow into two and three
dimensional patterns.

The evolution of multiple adiabatic shear bands
was investigated in commercially pure titanium
and Ti–6Al–4V alloy through a radial collapse

technique of a thick-walled cylinder under high-
strain-rate deformation. Shear-band initiation,
propagation, as well as spatial distribution were
examined under different global strains. The shear
bands nucleate at the internal boundary of the
specimens and construct a periodical distribution
at an early stage. The shear bands undergo bifur-
cation as they progress in their spiral trajectory and
as their spacing increases. The shear bands are fav-
ored initiation sites for failure, which occurs by
void nucleation, growth, and coalescence inside the
thermally softened regions. The evolution of the
morphology of the voids is determined by the
restrictions imposed by the bands.

The evolution of shear-band pattern during the
deformation process reveals a self-organization
character. The differences of mechanical response
between the two alloys are responsible for signifi-
cant differences in the evolution of the shear band
patterns. The number of shear bands initiated in Ti
(spacing of 0.18 mm) is considerably larger than
in Ti–6Al–4V (spacing of 0.53 mm); on the other
hand, the propagation velocity of the bands in Ti–
6Al–4V (V�556 m/s) is approximately three times
higher than in Ti (V�153 m/s). The propagation
velocities are successfully compared with values
predicted from a variational analysis developed by
Mercier and Molinari [44]. The experimentally
obtained shear-band spacings are compared with
theoretical predictions by Grady and Kipp [21],
Wright and Ockendon [22], and Molinari [23] and
the shortcomings of the predictions are discussed.
The experimental results presented here for Ti and
Ti–6Al–4V corroborate the earlier results [20] that
self-organization is an important phenomenon in
deformation by shear-band propagation. However,
the shear-band interactions are more complex than
previously thought and their spacing cannot be pre-
dicted by the one-dimensional perturbation theories
of Wright and Ockendon [22] and Molinari [23].
The Grady–Kipp theory cannot accommodate the
increased spacing as the shear-band size increases,
since it is also one-dimensional. The proposed two
dimensional model correctly describes the differ-
ences of spacings between behaviors of Ti and Ti–
6Al–4V. It incorporates elements that are out-
lined below:
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1. Rate of nucleation of shear bands. The prob-
ability of nucleation, P(V0,S0), in a reference
volume V0, or surface S0 was successfully
described by a Weibull [46] distribution in
which the stress was replaced by strain as the
independent variable. Parameters defining the
distribution are a critical strain for nucleation, a
mean nucleation strain, and a Weibull modulus.
There can also be shielding at the nucleation
stage, depending on the relative values of the
rate of nucleation and rate of growth.

2. Rate of growth, or velocity of propagation. This
is an important factor in their self organization.
Shear bands compete among themselves and
gradually change their patterns. A ‘Darwinian’
natural selection takes place, and a large number
of small bands evolves gradually into a smaller
number of large bands, due to the shielding of
stresses produced during growth. Such evol-
ution of shear band pattern occurs under a
homogeneously distributed pressure acting on
the external boundary of the cylindrical speci-
men. This is a typical self-organization process
among “aging” population of shear bands.
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