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PROPAGATION OF NONLINEAR COMPRESSION PULSES IN GRANULAR MEDIA 

V. F. Nesterenko UDC 624.131 + 532.215 + 534.22 

The study of mechanics of a granular medium is of substantial interest, both scientif- 
ically and for the solution of applied problems. Such materials are, for example, good 
buffers for shock loads. Their, study is important for the development of processes of the 
pulse deformation of several porous materials. A review of studies of small deformations 
and elastic wave propagation in these media was carried out in [i] on the basis of discrete 
models. The structure of a stationary shock wave was analyzed in [2] as a function of its 
amplitude. 

i. Statement of the Problem. The problem of nonstationary, nonlinear perturbations 
in one-dimensional granular media is stated in the present paper on the basis of the well- 
known interaction between neighboring granules. 

As an interaction law we choose the Hertz law [3] 

3 ( i : r  

where F is the compression force of granules, E is the Young modulus of their material, R, 
and R2 are radii, ~ is the Poisson coefficient, and x, and x2 are the coordinates of spheri- 
cal granules (x2 > x,). 

It is necessary to point out that a dependence of the form ~s/~, where 6 is the closest 
approach of particle centers, is valid not only for spheres, but also for contacts of other 
finite bodies [3]. Interestingly, it is only due to the finite particle sizes of a linearly 
elastic material constituting the granular medium that its behavior has a nonlinearly elastic 
character. 

The use of the static Hertz law in solving dynamic problems implies the following re- 
strictions: I) the maximum stress achieved at the center of the contact must be less than 
the elastic limit; 2) the sizes of the contact surface are much smaller than the radii of 
curvature of each particle; and 3) the characteristic times of the problem r are much longer 
than the oscillation period of the basic shape for the elastic sphere T 

~ > > T ~ 2 . 5 R ~ z ,  

w h e r e  c t  i s  t h e  v e l o c i t y  o f  s o u n d  i n  t h e  s p h e r e  m a t e r i a l .  

C o n d i t i o n s  1 - 3  r e s t r i c t  t h e  m a s s  v e l o c i t i e s  o f  t h e  medium t o  q u a n t i t i e s  o f  t h e  o r d e r  
o f  s e v e r a l  m e t e r s  p e r  s e c o n d  f o r  m e t a l l i c p a r t i c l e s  w i t h  r a d i i  i n  t h e  i n t e r v a l  1 - 5  mm. 
D i s s i p a t i o n  p r o c e s s e s  a r e  n o t  t a k e n  i n t o  a c c o u n t  a t  t h e  p r e s e n t  s t a g e  o f  t h e  s t u d y .  

F o r  n u m e r i c a l  s t u d y  o f  p e r t u r b a t i o n  p r o p a g a t i o n  p r o c e s s e s  i n  a o n e - d i m e n s i o n a l  c h a i n  
o f  s p h e r i c a l  p a r t i c l e s  w i t h  a r b i t r a r y  r a d i i  R i t h e  s e c o n d  o r d e r  e q u a t i o n s  o f  m o t i o n  w e r e  r e -  
d u c e d  t o  a f i r s t  o r d e r  s y s t e m  o f  e q u a t i o n s :  

xi = F~(~ ,  x = (~ ,  x~ . . . .  , ~N),  i = 1 . . . . .  2N, ( 1 . 2 )  

F~(x) = ~ ( x )  - - ~ ( x ) ,  ~ = t ,  . . . ,  N ,  
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Fl(x) ~ x t - x ,  t = N § t . . . .  , 25". 
/ 

" ~ 1 ' 2 E " - - - ' - " - ' - ~ 8 ~ 2 1 ,  if 0 ~ - 1 > 0 ,  t 2, , 

~ ( x ) = 0 ,  if 8 t - ~ < 0 ,  t = 2  . . . .  N~ ( 1 . 2 )  

[ R~R~ 1 ~i,'~ E 

~ ( x )  =0, i f  8t~--<O, i = i . . . . .  N - - t ,  

~ - z  = B~ + B~_~ - -  ~ + ~  " x~+~-z) ,  ~ = 2 . . . . .  N ,  

z~+~ (t = O) = x~+~_~ + R~ + R~_~, ~ = 2 . . . . .  N ,  x~+~(t = O) = O. 

It is clear from this form of writing that for N />i~l the quantities x~ are the 
velocity values of the i-th particle, while for 2N~i>N they are the coordinate values. 
The initial conditions for the velocities on ~ and ~N are specified below for each separate 
case. 

2. Analysis of the Anharmonic and Long-Wave Approximations. Consider a one-dimensional 
chain of identical spherical granules. We assume that it is subject to constant compression 
forces F~, applied to ~he chain edges and securing the initial closest approach 6o. As will 
be clear from the following, ~ is conveniently introduced into the equation explicitly. 
With this purpose in mind we replace the coordinate x i by the displacement of the given par- 
ticle from its equilibrium position u i. Using the expression for the force (i.i), the par- 
ticle equation of motion becomes 

~l  = A(8o - -  ul + ui - i )  a/2 - -  A(8o - -  u~+i + ui) 8/z, ( 2 . 1 )  

A = E(2R)t ;2 / [3( t  - -  v ' )m] ,  N - -  I > / t  .>I 2, 

where m is the mass of the particle. It is assumed here that the distance between the par- 
ticle~canters does not exceed 2R. 

The equation provided will describe the propagation of one-dlmensional perturbations 
in a three-dimensional simple cubic packing of spheres if the front plane is parallel to the 
cube boundaries. Differences occur only in the numerical coefficient in A. 

Equation (2.1) can be transformed to a well-investigated system of nonlinear oscilla- 
tors under the assumption of small deformation in the medium by comparison with the initial 
closest approach 6a, i.e., putting 

l U l - ~  - ut I/6o << t .  

In the anharmonic approximation Eq. (2.1) is then 

u~ = =(u~+l - 2ul + u,-1)  + ~(ui+l - 2u~ + u , - 0  x 

x (ui-1 - u~+l), ( 2 . 2 )  

3 1" = y A6o ", ~ = A6~ 1/2, N - - 1 > t  ~ > t  2. 

Equations of the type (2.2) with a quadratic nonlinearity were solved numerically in a num- 
ber of studies (see, e.g., [4, 5]), and a brief review can be found in [6]. It was shown 
that in the problem of a piston moving with a constant velocity vo there exists an oscillat- 
ing nonstationary structure of a "shock wave," in whose head is formed a soliton with the 
velocity in the maximum equal to 2vo. The oscillations are damped behind the front even in 
the absence of dissipation. A similar equation can be obtained for small perturbations and 
for a different choice of interaction potentials. Oscillations undamped in time were ob- 
served near the piston for sufficiently high values of its velocity in numerical calcula- 
tions of a Toda chain with a particle interaction determined by the Morse potential [6, 7]. 
The existence of solitons in a chain with a Morse potential was shown numerically in [7], 

In the long-wave approximation (L >> u = 2R, where L is a characteristic spatial size 
of the perturbation) and with the usual replacement 

ui = u(x), u i -1  = ~ - ~ % ( x ) ,  u i + i = : % ( z ) ,  

D - ~ O / a x  
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one can obtain from Eq. (2.2) the nonlinear wave equation 

u~t = c~ou= -4- 2 c 0 ~ u = =  - -  ~ u ~ u ~ ,  

co = Af~/~6R ~, ~ = coR~/6, e = c~R/5 o. 
(2 .3 )  

c • l  ~ \ 4  I a \ 2 1  U \ 2 3  
A l l  te s of  o r d e r  l and h i g h e r  were  o m i t t e d  in  d e r i v i n g  ( 2 . 3 ) .  

S o l u t i o n s  o f  t h i s  e q u a t i o n  s a t i s f y  the  Korteweg--de V r i e s  (KdV) e q u a t i o n ,  whose p r o p e r t i e s  
a re  q u i t e  w e l l  known [ 8 ] ,  a c c u r a t e l y  up to  terms q u a d r a t i c  in  t he  n o n l i n e a r i t y  and d i s p e r -  
s i o n  c o e f f i c i e n t s .  Not: d w e l l i n g  on the  d e t a i l s  o f  d i s c u s s i n g  t h e s e  p r o p e r t i e s ,  we n o t e  t h a t  
i n  a g r a n u l a r  medium o f  p r o p e r  s t r u c t u r e ,  compressed by an e x t e r n a l  f o r c e ,  the  e x i s t e n c e  i s  
p o s s i b l e  o f  s o l i t a r y  waves ,  p e r i o d i c  waves,  and shock  waves w i t h  an o s c i l l a t i n g  s t r u c t u r e .  
The q u a l i t a t i v e  b e h a v i o r  o f  the  s o l u t i o n s  depends on the  t ime c h a r a c t e r i s t i c s  o f  the  l o a d i n g  
p u l s e  [ 8 ] .  

We a r e  i n t e r e s t e d  i n  the  case  6o -~ 0. Then, as seen  from Eq. ( 2 . 2 ) ,  t he  q u a n t i t y  8 § | 
and the  anharmonic  a p p r o x i m a t i o n  becomes i n a p p l i c a b l e .  For  ~o = 0, i n  the  long-wave  a p p r o x i -  
ma t ion  compres s ion  waves o f  sma l l  amp l i t ude  canno t  be d e s c r i b e d  by the  s t a n d a r d  wave a p p r o x i -  
ma t i on ,  which  i s  a d i r e c t  consequence  of  the  anharmonic  a p p r o x i m a t i o n .  I n  the  case  l u~ - i - -u i l  
/80 ~ i one can o b t a i n  from (2 ,1 )  on ly  an e q u a t i o n  c o r r e s p o n d i n g  to  the  long-wave approxima-  
t i o n  (L >> a) by a r e p l a c e m e n t  s i m i l a r  to  the  p r e c e e d i n g  one.  The e q u a t i o n  i s  

(==)' 
. "8 ( - - ' u . , )  '/~ 64 (_  tt , )"'J ' ( 2 . 4 )  

- -  u ~ > 0 ,  cz= 2E 
~Po ( i  - 4 ' )"  

In  t he  e q u a t i o n  g iven  the  d i s p l a c e m e n t  u i n c l u d e s  the  i n i t i a l  d i s p l a c e m e n t  r e s p o n s i b l e  f o r  
the  c l o s e s t  app roach  ~o. The t h r e e  l a s t  t e rms  in  Eq. (2 .4 )  a r e  Of o r d e r  (a /L)  2 i n  compar i -  
son w i t h  the  f i r s t .  H i g h e r - o r d e r  terms have been o m i t t e d .  I n  the  p r e s e n c e  o f  a c o n s t a n t  
compres s ion  f o r c e ,  g u a r a n t e e i n g  an i n i t i a l  c l o s e s t  approach  ~o, Eq. (2 .4)  r e d u c e s  to  the  
nonlinear equation (2.3) in the same approximation. This is easily done by representing the 
full deformation in the form 

u~ = - -  6o/2R + Au x 

and carrying out an expansion in the small quantity Au x of the terms in the right-hand side 
of the equation. Standard solutions of Eq. (2.4) can be found in the form u(x -- Vt). In- 
troducing the new variable ~ =-u x, we obtain 

V ~ 3 ~1/2~x a2 ( ~ ) ~  o~ ( 2 . 5 )  
~- ~ = ~"  + 8 ~v~ ~ / ~ "  

Equation (2.5) can be integrated, performing the variable replacement 5 = z~/~: 

(Cx is an integration constant). The last equation is conveniently written in dimensionless 
form, with variable replacement: 

z = y, x = " y - ' ~ - U ]  ~' (2 .6 )  

y~,5 = y~5 + yl:Synn + C2 

(C2 is a constant). 

If C2 = 0, Eq. 
solution is 

(2.6) is easily integrated. In a system moving with velocity V the 

/ s v 2 \  2 V ~  x (2.7) 
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For x=~-~tT• n=0, ~,.. ~ vanishes, This is found to contradlct the condition ~ > 0, 

under which Eq. (2.4) was derived, Therefore it is necessary to study the behavior of the 
solution for C= # 0. With thls purpose in mind we rewrite Eq. (2.6) in th~ following form, 
making it possible to use ~he analogy with particle motion in the potential field [8]: 

O + t yi Cs~ll~ y ~  = - ~ W (y), W (y) = - y~t~ + -i" + " 

It can be noted from the equation for W(y) that for 0 < C= < 5/27 the function W(y) 
has the form of a curve with two extreme, shown in Fig. 1 for the values Cs - 4/27 (curve 
i) and 0.i (curve 2). The extreme yl and Ya, marked on Fig. i, correspond to the case 
Cs - 0.i. For Cs * 0 the value of the maximum W(yz) also tends to zero, as does the value of 
its coordinate Yl. For Ca - 0 we obtain a solution of (2.7) in the form of periodic waves. 
The deviation of Cs from zero changes the nature of the solution qualitatively. From the 
shape of the function W(y) for 0 < C, < 5/27 it can be concluded that Eq. (2.4) admits in 
this case :the existence of stationary solutions of the type of periodic functions, while 
solitary waves are also possible under certain conditions. Zndeed, near the maximum y~ W(y) 
can be expanded in powers of (y - yi): 

w(v)  ~ w ( ~ )  - ~ v  - y,)'. 

This form of potential energy leads within the mechanical analogy to an infinite "time" of 
particle fall with total energy W(yz) at the point Yz, which corresponds to the formation 
of~a solitary wave [8]. The dependence of the potential energy on coordinate near yz cor- 
responds to the stationary case for the KdV equation near the analog point. Therefore, the 
behavior of the solution for y § y: will coincide asymptotically with the soliton solution 
of the KdV equation. 

The restriction Cs < 5/27 guarantees a value of the phase velocity of a solitary com- 
pression wave larger than the initial velocity of sound. Indeed, the phase velocity of a 
soliton V and the velocity of sound co equal, respectively: 

-I./4 / 3 ~1/9 ' 
v = ~|l~'ui -~/~, Co = c~o ~,-~-] , 

where ~o is the initial deformation. By comparing the expressions above it is seen that the 
inequality V > co is satisfied for yl < (2/3) s/a. The given condition is satisfied for Cs < 
5/27, as can be seen from the shape of W(y). For Cs - 5/27 we have Yl " (2/3)s/=, The con- 
stant Cs determines the ratio of the maximum soliton amplitude to the initial deformation ~o. 

We find the soliton parameters corresponding to the case of small values Cs << 5/27. 
If the value of the total particle energy equals in this case W(yz), the behavior of the 
solution for y >> y~ is near the behavior of the solution (2.7), corresponding to the case 
Cs = 0 and to vanishing total energy. Consequently, the maximum deformation value in a 
solitary wave is near the amplitude value of the periodic wave (2.7): 

~. = i T T )  - 

The characteristic spatial size of a soliton is determined in this case by the period of the 
solution (2.7), which equals 

"Sa 

The solitary waves found differ from solitons of the KdV equation by the dependence of the 
phase v e l o c i t y  on the wave ~ p l i t u d e .  ~ o t h e r  important d i f ference is  the independence of 
the characteristic spatial size of the soliton of Eq. (2.4) L = 5u on the wave amplitude. 
As already noted, for a small deformation in the wave in comparison with ~o the solution of 
Eq. (2.4) in the form of a solitary wave will be close to the analo 8 solution of the KdV 
equation. 
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In the presence of dissipation in the medium, for Cs = 0 the deformation behind the 
front of the stationary shock wave corresponding to the minimum W(yz) equals the value ~c' 
coinciding with that found from the conservation laws for a chain with ~o = 0: 

Br = V %  4. 

By comparing the quantities ~m and ~c it is seen that for weak dissipation the ratio 
of maximum deformation at the front of the stationary shock wave to its established value 
behind the front reaches the value 

~m/~c = (5/4) ~ .~ 1.56.  

The given difference in deformations leads to the circumstance that the ratio of the 
maximum pressure at the front of the stationary shock wave Pm to the established pressure 
behind it Pc can achieve the value 

P~p~ = (~,,,/~)~/~ = (5 /4p  ~ i . 9 5 .  

Further use of the one-dimensional nonlinear chain of oscillators, interacting compressively 
according to the Hertz law, was carried out numerically. 

3. Analysis of Computational Results. For numerical solution of the system of nonlin- 
ear equations (1.2) we used the Eamming and fourth order Runge-Kutta methods. The control 
solution was obtained by the momentum and energy conservation laws and comparison of the re- 
sults obtained by various methods. During the calculation the momentum conservation law is 
satisfied with an accuracy not worse than 10-5%, and total energy conservation law was 
satisfied within i0-s-I0-2%. An estimate of the relative error in determining the particle 
velocity gives the value 10-2%. With the purpose of verifying the correctness of the calcu- 
lationwe also compared the numerical solution of the problem of impact of a single particle 
with a chain of i00 identical particles, arranged with initial gaps, with its obvious exact 
solution. This comparison showed coincidence of the numerical and exact solutions within the 
limits of relative errors mentioned above. 

We make one more comment. For 6o = 0 and identical R i Eq. (2.1) with variable replace- 
ment 

wi = ui /vo ,  �9 = t(A~Vo) '/5 

is transformed to dimensionless form 

[5 I,i, (3.1) 

Clearly, for a chain with free ends (~i =$N = 0) identical ~ values correspond to 
identical w i values if the problem is solved with initial conditions 

w~(t  = O) = t ,  i = 1 . . . . .  k ,  w~ ( t  = O) = O, k < l <. N. 

A similar conclusion is also valid for solving the problem of a piston moving with constant 
velocity. Therefore, one further control method was verification of the observedequality 
of dimensionless particle velocity w i at identical moments T for problems with different val- 
ues of initial velocities. For convenience of comparison with experiment the problem was 
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solved in real time. The choice of the initial step At in time was done by starting from 
the natural physical condition 

A t  << T 1 = 2 . 9 4  (5/8A)2/5/v~/5, 

where T, is the impact time of two spheres with relative initial velocity v o  [3]. 

In the following the magnitude of the step was necessarily varied with the purpose of 
reaching a compromise between computational accuracy and computer time. 

3.1. Decompositio 9 of Initial Perturbation in a Chain of Granules with Free Ends. 
Here and later on (Sets, 3.2-3.4) all R i are identical and equal to 3'i0~ m. The following 
values were chosen for the quantities A and Po, characteristic of steel particles: A = 5.6. 
i0 .2 N/(m'/'.kg), Po = 7.8.10' kg/m'. The initial conditions for velocity are the following 
in the first case: 

x i ( t  = O) = x2(t = 0) = v o = 5 m / s e c  

x~(t =0) =0, N~i>2, N =I00. 

The time dependences obtained for xi/vo are shown in Fig. 2 (curves a). It is seen 
that for these initial data two solutions are formed with practically resting material between 
them. The formation of an initial perturbation of two stationary solitary waves is already 
concluded on the twentieth particle. They further propagate as stationary. As a consequence 
of formation of solitary waves the final velocity of the last particle x N differs from vo. 
For example, x~o/~ = 1.2338, xbo/~ = 1.2342, xlo,/~ = 1.2342. The equality of velocities xso = 
x, oo serves as further verification of the stationary nature of a large-amplitude soliton. 

Since the soliton amplitudes vary, the distance between them increases continuously. 
A completely similar pattern is also observed for other values of the initial velocities of 
the first two particles with varying time scale. It is necessary to note that for free ends 
of the chain (~, =$N = 0) there occurs a recoil of the first particles and a "destruction" 
of the system. For example, at the moment of time t = 2-10 -~ sec~ when the second soliton 
of lesser amplitude is located near the 27th particle, the particles from 1 to 7 have a nega- 
tive velocity, and those from 1 to 8 are removed from each other by a distance larger than 
2R. The velocity values of the flrstseven particles equal --0AI:--0.048,--0.013,--0.0068, 
~-0.0029, and --0.0004 m/set. The removed fractional pulse is approximately 10% of the 
initial value, Clearly, the "destruction" of the system at a certain moment of time will 
not affect the sollton shape, but the very fact of destruction renders it impossible to ac- 
curately determine the soliton amplitude from the initial conditions in any continuum de- 
scription. 

It follows from Eq. (3.1) and the fact of existence of stationary solitary waves that 
the temporal half-width of a soliton % and its phase velocity V must depend on the particle 
velocity at the maximum of the solitary wave v m as follows: 

~.. v~  ~/~, V N v~  5. 

The obvious difference between solitons in the given system and soliton solutions of 
the KdV equation is the nonlinear dependence of the propagation velocity and of the square 
of the reciprocal half-width %-* on the velocity amplitude v m. It is also interesting that 
the spatial soliton size is in the given case independent of the~,velocity amplitude Vm, and 
equals five particle diameters. We recall that solutions of the continuum equation (2.4) 
in the form of solitary waves exist only for non~anishing initial deformations ~o. Its final 
value guarantees the required asymptotic behavior of the solution for ~ + ~o, leading to so- 
liton formation. In a numerical calculation solitary ~ waves also exist for ~o = 0. In spe- 
cific numerical calculations it was clarified that in the presence of initial deformations 
to << ~m, guaranteeing the application of constant external forces to the ends of the chain, 
the pattern of perturbation decomposition into solitary waves does not change qualitatively 
with respect to the case ~o = O. It was also found that assignment of an initial deforma- 
tion ~o ~ ~m changes qualitatively the nature of the solution. 

It is interesting to compare the stationary solutions of the continuum equation (2.4) 
with those in a numerical account of solitary waves, being the stationary solutions of the 
system of equations (1.2). As already noted, the solutions of Eq. (2.4) in the form of soli- 
tary waves for ~ deformations much larger than the initial ~o are very well described by the 
function (2.7). The time dependence of ~/2R is shown in Fig. 3 for particles with numbers 
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60 and 61 (curve i), obtained with a time step 0.25.10 -s sec, as well as the function (2.7) 
(curve 2), in which the value of the phase velocity was taken equal to its value in the nu- 
merical account. The moment of achieving maximum deformation is reached later on. It is 
seen from Fig. 3 that the continuum approximation is in satisfactory agreement with the nu- 
merical calculation with t~10 -5 sec. At the same time the difference is large for ~ + 0, 
which is natural, since the function (2.7) does not give the correct asymptotic behavior in 
this region. 

Also investigated was the case in which the initial velocity is communicated by the 
first 4 particles. In this case the perturbation was decomposed into 4 solitary waves. If 
the initial velocity is communicated by the single first particle, a single soliton is formed 
in the system. 

3.2. Soliton Interaction. Two cases were investigated. 

A. Colllsion'of solitons moving toward each other. The initial velocity conditions are: 

x l ( t  = O) = z~(t  = O) = 5 m / ~ c  - z lo . ( t  = O) = z , 9 ( t  = 0)  = - - 5  m l s e c  

x~(t = 0) = 0 ,  ~ =f= i ,  2, t00 ,  99', N = i00 .  

The ends of the chain are assumed free. The result of the collision is shown in Fig. 2, 
where it is seen that initially there is a decomposition into 4 solitons, moving toward each 
other. Until the collision each of the pairs is displaced similarly to the case 3.1. Fol- 
lowing the interaction, the solitons do not change their shape. Only phase changes occur. 
The difference in the arrival time of the first velocity maximum at the 75th particle be- 
tween case A and the corresponding case 3.1 is around i0 ~sec (see Fig. 2). A similar soli- 
ton interaction without a change in their shape was observed by us during reflection from a 
rigid wall of a sequence of 6 solitary waves, generated by impact with a chain of particles 
(N ffi 80) by a piston with mass 5m. 

B. Overtaking of a lower amplitude soliton by a larger amplitude soliton. The initial 
conditions for the velocity are 

xl( t  = O) = x~(t = O) = t 0  m / s e c ,  xls(t  = O) ----- x ls( t  = O) = 5 m/ sec  

x~(t = O) = 0 ,  ~=g=t, 2, t8 ,  19, N =  150. 

The ends of the chain are free: ~i =~ =0 In particular, the leading group of the soli- 
tary waves I-3, shown in Fig. 4, were formed for the choice of initial conditions in the 
system. The time interval 2.~0-4 < t <3.10-4seccorresponds to the velocity graph of the 50th 
particle, the interval 4.10 -4 < t< 5.5.I0-4sec -- to the velocity graph of the 85th particle, 
and the interval t>8.10 -4 sec -- to the velocity of the 145th particle. In the latter case 
soliton 2 is not shown, since even for t > 5"10 -4 sec it does not participate in the inter- 
action between solitons of a given group. It is seen from Fig. 4 that soliton 3 is subse- 
quently passed by solitons 2 and i. The amplitude and shape of the solitary waves did not 
change in this case. It is interesting that for these initial conditions 6 solitary waves 
formed in the system, despite the fact that the initial perturbation, consisting only of 2 
moving particles, decomposes into 2 solitons (Section 3.1). The fact given is a consequence 
of the nonlinear nature of the particle interaction. 

3.3. Action of External Force of Triangular Profile. The initial conditions for the 
velocity are: 
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x,(t =0)  =0 ,  N >  ~i> i, N =i00.  
The force acting on =he left end of the chain was given as follows: 

~i = 2'10e(i--1040 m/se~, 0~<t<10"~sec~i = 0, t>i0 -~ sec. 

The right end of the chain Is assumed free (~N-- 0), 

It is seen from Fig. 5, where the velocities of the 35-th and 60-th particles are shown, 
that the perturbation decomposed into 7 solitons. For decreasing time of force action down 
to 10 -~ sec the number of solitons decreased to one. The pulse durations of 10-100 ~sec are 
typical of blast experiments. Therefore the discrete structure of the granular medium appears 
to have a substantial effect on the formation of pulse compression in this case. 

3.4. The Piston Problem. The initial conditions for the velocities are: 

xl(t = 0 )  = 5  m/sac , x~(t = 0 )  = 0 ,  N ~ > ~ > I ,  N =200 .  

The right end of the chain is assumed free ($N = 0), while the left end is subject to the 
condition ~I =~2, guaranteeing constancy of the first particle velocity. 

The values of all particle velocities at moment of time t = 5.45,i0 -~ sec are given in 
~ig. 6. For convenience of perception the velocity values of neighboring par=icles were in=er- 
preted as a union of straight lines. The real velocity values correspond only =o integers. The amp- 
li=ude of the first maximum v m approaches wi=h =ime twice =he value of the pis=on velocity vo. 
This result is similar to those ob=ained for a Toda chain [6], for particles mutually inter- 
acting according to the Morse potential [7], and for the nonlinear KdV equation [8]. It is 
also seen from Fig. 6 that a soliton with a velcoity amplitude equal to 2vo is formed with 
the flow of time at the head of the wave. The motion of the medium does not merge on the 
stationary regime, despite the practical constancy, starting with i = 20, the velocity of 
the leading front equal to the soliton velocity with an amplitude 2vo, and the achievement 
of a stationary state by particles near the piston. The nonstationarity of motion consists 
of a continuous increase in the number of particles participating in the oscillatory motion. 
It is necessary to note that the velocity of the leading front gets near the velocity of the 
established soliton with an accuracy of 1% already at the first ten particles. Therefore, 
fixing in the experiment only the velocity of the leading front, one can reach erroneous 
conclusions concerning process stationarity. 

It is interesting to compare the velocity of the leading front of a nonstationary wave 
V wi=h the velocity DI of a stationary impact wave, propagating in the given case in the 
presence of dissipation. Starting from the equations of stats of the medium and the mass 
and momentum conservation equations, we find that 

2E J..,,'5 . . l: 1 ' 5 "  
Dl (i -- ~'-') ~Po 

Using the numerical results, we obtain that the soliton phase velocity V with maximum veloc- 

i=y v m equals 

I =/5 2E . V ~ 0 . 9 1 5  (i ~'~)~r./ l ~ i  ~ . 

For v m = 2vo we have a ratio V/DI : 1.05. 

Thus the difference between the established velocity of the leading front of a nonsta- 
tionary wave and a stationary wave is *5%. The given difference renders the possibility of 
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estimating an experiment only from the leading front velocity unreal unless we are in the 
stationary regime. 

If there are dissipative losses in the medium, then if they are small it is natural to 
expect (by analogy with the KdV equation) that the shape of the leading front of the wave 
is near a soliton shape. Its amplitude Vm, must guarantee the front velocity, equal to D,. 
Using the expression for the soliton velocity, we find from this requirement 

v ~ i ~ i . 5 6  %. 

Thus ,  f o r  s m a l l  d i s s i p a t i o n  t h e  mass  v e l o c i t y  a t  t h e  s t a t i o n a r y  f r o n t  can  e x c e e d  the  p i s t o n  
v e l o c i t y  by  1 ,56  t i m e s .  I t  i s  i n t e r e s t i n g  t h a t  t h e  r a t i o  found  Vm,/Vo c o i n c i d e s  w i t h  t h e  
v a l u e s  o f  ~m/~C,  o b t a i n e d  f rom t h e  c o n t i n u u m  t r e a t m e n t  ( s e c .  2 ) .  I t  was found  i n  [6 ,  7] 
t h a t  f o r  a s u f f i c i e n t l y  l a r g e  i n d e x  o f  n o n l i n e a r i t y  t h e  p a r t i c l e s  n e a r  t h e  p i s t o n  c a r r y  ou t  
undamped o s c i l l a t i o n s .  U n l i k e  t h e s e  two c a s e s ,  i t  was found  i n  o u r  n u m e r i c a l  e x p e r i m e n t  t h a t  
t h e  v e l o c i t y  p r o f i l e s  i n  t h e  c o o r d i n a t e s  w i -- i a r e  i d e n t i c a l  f o r  t h e  v a l u e s  vo /V = 0 .95  and 
5 . 1 0 - "  a t  t h e c o r r e s p o n d i n g  moments o f  t i m e ,  wh ich  i s  i n  a g r e e m e n t  w i t h  Eq. ( 3 . 1 ) .  I t  f o l -  
lows f rom t h e  d e p e n d e n c e  o f  t h e  shock  wave v e l o c i t y  On vo t h a t  t h e  i m p a c t  a d i a b a t  o f  t h e  g r a n -  
u l a r  medium i s  i n d e p e n d e n t  o f  t he  s i z e  o f  t h e  powder  p a r t i c l e s ,  as  i s  t h e  f r o n t  v e l o c i t y  f o r  
n o n s t a t i o n a r y  wave m o t i o n  i n  t h e  a b s e n c e  o f  d i s s i p a t i o n .  

We now t u r n  o u r  a t t e n t i o n  t o  t h e  e n e r g y  d i s t r i b u t i o n  i n  t h e  s y s t e m  b e t w e e n  k i n e t i c  E k 
and p o t e n t i a l  Ep e n e r g i e s .  The r a t i o  Ek/Ep = 1 .249  i s  e s t a b l i s h e d  by t h e  t i m e  t ~ 3"10 -5  
s e c ,  when p r i m a r i l y  6 p a r t i c l e s  p a r t i c i p a t e  i n  t h e  m o t i o n .  I t  f o l l o w s  t h a t  Ek/E p i s  p r a c -  
t i c a l l y  c o n s t a n t .  The maximum d e v i a t i o n  f rom t h i s  v a l u e  does  n o t  e x c e e d  0.8%. The g i v e n  
v a l u e  o f  Ek/E p i s  n e a r  t h e  e x p e c t e d  one by t h e  v i r i a l  t h e o r e m  f o r  p a r t i c l e s  i n t e r a c t i n g  a c -  
c o r d i n g  to the Hertz law and performing finite oscillatory motion: 

= = i , 2 5  

I t  does  n o t  f o l l o w  f rom t h e  v i r i a l  t h e o r e m ,  h o w e v e r ,  t h a t  d e v i a t i o n s  f rom t h e  mean v a l u e  w i l l  
be  s m a l l ,  a s  i s  o b s e r v e d  i n  t h e  n u m e r i c a l  c a l c u l a t i o n .  The s m a l l n e s s  o f  d e v i a t i o n s  f rom mean 
v a l u e s  i s ,  o b v i o u s l y ,  e x p l a i n e d  by t h e  l a r g e  number o f  p a r t i c l e s  i n  t h e  s y s t e m .  A s i m i l a r  
e n e r g y  d i s t r i b u t i o n  b e t w e e n  E k and Ep was a l s o  o b s e r v e d  i n  c a s e s  3 .1  and 3 . 2 .  

We a l s o  n o t e  a f e a t u r e  o b s e r v e d  i n  t h e  n u m e r i c a l  c a l c u l a t i o n .  S i n c e  t h e  v e l o c i t y  a m p l i -  
t ude  o f  t h e  s o l i t o n  p e a k  i n c r e a s e s ,  a p p r o a c h i n g  2vo ,  t h e  v a l u e  o f  t he  maximum v e l o c i t y  o f  t h e  
l a s t  p a r t i c l e  V N w i l l  e x c e e d  2Vo. The v a l u e s  o f  VN/Vo f o r  N = 20,  50,  100,  and 200 e q u a l ,  
r e s p e c t i v e l y ,  2 . 708 ,  2 . 836 ,  2 . 8 7 6 ,  and 2 . 895 .  As a l r e a d y  n o t e d ,  t h e  r a t i o  VN/Vo i s  i n d e p e n -  
d e n t  o f  vo .  

The r e s u l t s  o f  t h e  c a l c u l a t i o n  show t h a t  i n  t h e  p r o b l e m  u n d e r  c o n s i d e r a t i o n  t h e  p r e s s u r e  
i n  t h e  maximum o f  t h e  f i r s t  o s c i l l a t o r  Pm s u b s t a n t i a l l y  e x c e e d s  t h e  p r e s s u r e  e s t a b l i s h e d  n e a r  
t he  p i s t o n  Pc" For  e x a m p l e ,  f o r  a p i s t o n  v e l o c i t y  vo = 5 m / s e c  a t  t h e  moment o f  t i m e  the  wave 
f r o n t  i s  f ound  a t  t h e  50 th  p a r t i c l e ,  pm/Pc = 2 . 2 4 .  We r e c a l l  t h a t  on t h e  b a s i s  o f  t h e  c o n -  
t inuum a p p r o x i m a t i o n  f o r  t he  s t a t i o n a r y  shock  wave t h e  P r e s s u r e  r a t i o  may r e a c h  t h e  v a l u e  
pm/Pc = 1 . 9 5 .  Thus ,  t he  p r e s s u r e  i n  t h e  shock  wave a t  t h e  n o n s t a t i o n a r y  p o r t i o n  can  e x c e e d  
the pressure at the front of the stationary wave. 

~.5. Perturbation Propagation in a Chain of Varying Radius Granules. The particle radii 
were assigned by us by using a sequence of random numbers in the interval (0, i), found by 

means of the standard program RAND: 

R~ = {R o + RAND(i,O)}IO -8 m. 

A. The Piston Problem. The initial and boundary conditions are similar to the case 
3.4. The velocity profile for Ro = 0.5 (at the moment of time t = 3.8.10 -4 sea), corre- 
sponding to the piston velocity vo = 5 m/sea, is given in Fig. 7a. Figure 7b shows the veloc- 
ity of the 25th particle as a function of time for Ro = 0.5 and for the same piston veloc- 
ity. The radius of this particle is 7.82465-10 -~ m. The values of the constants equal 
E = 2li0nN/m 2 P0 = 7.8 Xi0Skg/maw=0.29 . The most important differences between the system 
with different particle sizes and the case when their sizes are identical (see Fig. 6) are 
the following. 

I. In a system with chaotic particle sizes (Fig. 7a) no uniform state in velocities is 
reached even near the piston, unlike the case of identical sizes (see Fig. 6) for the number 
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of particles investigated by us N = 200. The given feature is also characteristic of the 
cases Ro = 2 and 3 at the same piston velocity of 5 m/sec. 

2. The velocity amplitude at the front can be lower than its value behind the front 
(Fig. 7a, b), and does not tend monotonically to the value of half the piston velocity. 
The value of the particle velocity in the first leading oscillation varies with the propa- 
gation into the material in a nonmonotonic way, and can be both smaller than Vo and sub- 
stantially exceed this value. In this case the smallest particle mass does not necessarily 
correspond to a high velocity in the first maximum, and conversely. Behind the wave front 
different particles can reach velocity values larger than 2vo (see Fig. 7a, b). Particle 
velocities larger than 2vo were determined in all three investigated cases with Ro = 0.5s 
2, 3 for a piston velocity v, - 5 m/sec. The'excess of individual particle velocities over 
2Vo increased with decreasing Ro, i.e., with the increase in spread in values of particle 
sizes and masses. The maximum velocity value behind the front 11.76 m/sec was fixed at the 
25th particle with Ro - 0.5, Vo - 5 m/sec. The wave front is at this moment at the 170th 
particle. A feature of the problem with chaotic particle sizes is also the appearance of 
negative velocities. For example, in the problem with Ro = 0.5s Vo = 5 m/sec the same 25th 
particle had a velocity of--2.142 m/sec. The wave front was at this time at the 148th par- 
ticle. 

When the perturbation emerges from the free ends of the chains the final velocity for 
the last particle is for Ro = 2 less than in the case of identical particles. For example, 
Vxoo/Vo = 2.366, distinctly from the value 2.876 for the case of identical particles. At 
the same time, for Ro = 0.5 Vxoo/Vo = 2.969, which is larger than the similar velocity ratio 
in the case of identical particles. 

Thus, although the chaotically varying particle size causes disordered oscillations of 
their velocities behind the fronts the nonlinearity of the interaction can also lead in this 
case to substantial excess of the velocity amplitude at the front and behind it in compari- 
son with the piston velocity. 

3. The ratio of kinetic to potential energies in a system with varying particle size 
also contains oscillations near the mean values as is the case for a system with identical 
particle sizes. The differences between these two cases are that the maximum deviations 
from the mean value are substantially larger in the first cases and the mean values of Ek/E p differ 
by more from the value 1.25, following from the virial theorem. For examples the values of 
Ek/Ep, averaged over the time interval during which the leading front of the wave traverses 

the 8istance from the 70th to the 90th particle for the cases Ro = 0.5s 2, and 3, equals 
respectively, 1.178, 1.236, and 1.232. In this case the maximum relative deviations from 
these mean values equals respectivelys 9, 7, and 6%. 
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B. Decomposition of an Initial Perturbation in a Chain of Granules with Free Ends. 
The initial conditions are similar to the case 3.1. 

The time dependences of the velocities for the 61st and first oscillations of velocity 
for the 96th particle are given in Fig. 8 (Ro = 2). Compared with the case of identical 
particles, the perturbation does not decompose.now into 2 solitons, but has a significant 
amount Of random character. At the same time it is characteristic that the leading pertur- 
bation can be near in shape to a soliton, and decay in amplitude even in the absence of �9 
dissipative losses. It is seen from Fig. 8 that this damping is related to scattering of 
energy by a large number of particles. The velocity amplitude damping is conveniently 
traced by the maximum velocity v N of the last particle. Thus, for Ro =0.5 vioo/v o = 0.892 , 
for R 0 = 2 v100/u 0 = 0.507, and for R 0 = 3 V~o[V, = ~.003 . It is seen that these values are sub- 
stantially smaller than 1.2342, characteristic of a system of identical particles (see Sec. 
3.1). It is interesting that here, as in the piston problem considered in the preceding 
section, a significant increase in the amount of particle chaotization in size does not lead 
in the transition from Ro = 2 to Ro = 0.5 to an enhanced damping of the velocity amplitude. 
On the contrary, damping is smaller in the case with Ro = 0.5. In conclusion we enumerate 
the basic results: ~ 

i. The existence of solitary waves of new type was observed by numerical methods for 
properly packed spherical granules. 

2. The reaction of the given system to various perturbations was investigated. The 
interaction of solitons and their basic properties and features were studied. 

3. It was found that the continuum equation of a nonlinear chain of oscillators, being 
a long-wave approximation, has stationary solutions in satisfactory agreement with numerical 
calculations. 

4. The basic features of perturbation propagation in systems with chaotically varying 
granule sizes were investigated. 

The author is grateful to L. V. Ovsyannikov, A. A. Deribas, and R. M. Garipov for dis- 
cussing the results, and to V. V. Deineko, L. N. Shcheglov, and N. G. Annikov for assistance 
in performing the numerical calculations. 
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