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I. I NTRODUCTION

We examine the structure of the Witsenhausen coun-
terexample/problem and its solution. In particular, we find
it useful to work with the associated quantile function,
rather than the controller itself or its distribution. Withthis
transformation, the problem is reduced to minimization of
a certain criterion over a particular function space. The
optimization criterion is the sum of two functionals. The
first, representing the control cost, is a simple quadratic.The
second, representing the expected squared estimation error,
has a more complex structure over this space. Nonetheless,
it has a unique minimum (i.e., no other local minima). The
problem of determining the parameter region over which the
total cost criterion has a unique minimum remains open,
although numerical experimentation suggests that this may
“typically” be the case. Numerical results also indicate the
form of the solution.

II. BACKGROUND AND DEFINITION

The Witsenhausen counterexample [14] gained substantial
notoriety for several reasons. The first is that it is a simply
formulated problem, which may appear to a casual observer
to be of linear/quadratic form, but is in fact far from such,
and certainly does not have a linear controller as the optimal
solution. Second, it is a problem where there is incomplete
communication between the controller and the estimator. As
such, it can be viewed as a benchmark problem in the area
of networked control problems, which is of course an area of
great current interest. Moreover, the controller is attempting
not only to minimize its own effort, but is also attempting
to aid the estimator through its control action. In fact, it is
this latter role which drives the controller to act at all.

The problem formulation is quite simple, and one might
place it in the arena of optimization rather than control, as
one could argue that the problem does not have the time-
structure which separates control from optimization. The
problem is as follows. The first input is a scalar normal
random variable,W ∼ N (0, c), and we let its range be
denoted asW .

= IR. A “controller”, ζ : W → IR acts
additively on the first input generating outputX = W +
ζ(W ). We assume thatζ(·) is measurable, of course. An
observation,Y = X + ν is made, whereν ∼ N (0, d), and
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we let the range ofY be denoted byY = IR. The estimator
generates estimateeY , knowingY , but notζ(W ). Note that
we assume the estimator does know the control strategy to be
followed,ζ(·), but not the actual control applied. The payoff
to be minimized is

Ĵ(ζ(·), e·) .
= E

{

k0|ζ(W )|2 + |X − eY |2
}

, (1)

where k0 ∈ [0,∞). Due to the squared-error form of
the second term on the right, the optimal estimate is the
conditional expectation, which will be denoted byêY , and
given that, we let

J(ζ)
.
= E

{

k0|ζ(W )|2 + |X − êY |2
}

. (2)

Clearly, the solution depends only on the three parameters,
c, d, and k0. Upon examining (2), we see that an optimal
control must not only be measurable, but must have finite
variance. Consequently, we take the control space to be

Z .
=

{

ζ : W → IR | measurable andE[ζ2(W )] < ∞
}

.
(3)

We let

V = V (c, d, k0)
.
= inf

ζ∈Z
J(ζ) = inf

ζ∈Z
J(ζ; c, d, k0). (4)

In this form, we see that the problem reduces to an (infinite-
dimensional) optimization problem.

A good deal of quite interesting work has used this
problem as a basis for development (c.f., [1], [2], [4], [5],
[6], [7], [8], [9], [10], [11], [13]). Of particular relevance
to the analysis here is [7]. In [7], the authors assume a
signaling structure (originally suggested in [14]) for the
controller, where the controller acts to makeX take on
one of a small finite set of possible values, the selection
of which is based on inputW . This, allows the estimator to
correctly identifyX with high probability, particularly if the
gap between possibleX values is relatively large compared
with

√
d. Using a more general approach here, we find that

such solutions emerge naturally in an interesting region of
parameter space, while solutions similar to normal random
variables, corresponding to nearly linear controllers, occur
in another region. Hybrids of these appear in intervening
regions.



III. QUANTILE REPRESENTATION

We will find it helpful to optimize not over controller
u, but instead over the resulting distribution ofX , FX .
Further, we will find it helpful to perform the bulk of
the analysis not with distribution functionFX , but with
the corresponding quantile function, which we denote as
G. Consequently, it is helpful to review the transformation
between the two representations. LetF denote the space of
probability distribution functions onIR with finite second
moments. Let

G .
=

{

G : (0, 1) → IR
∣

∣

∣

∫

(0,1)

G2(u) du < ∞, mono. inc.,

continuous on the left, limits on the right
}

. (5)

GivenF ∈ F , let

I[F ](u)
.
= inf{x | F (x) ≥ u}, (6)

for all u ∈ (0, 1).

Theorem 3.1:I is a bijection fromF to G.
Proof: This is somewhat classical. We mention some

useful points in the proof. FixF ∈ F , and letG
.
= I[F ].

First note that by the definitions ofI andF , G(u) ∈ IR for
all u ∈ (0, 1). For u ∈ (0, 1), let Au

.
= {y ∈ IR |F (y) ≥

u}. It is both useful and not difficult to show thatAu =
[G(u),∞). In particular, one immediately sees thatv ≥ u
implies thatAv ⊆ Au, and consequently,G is monotonically
increasing. Of course, this implies thatG has limits on the
right.

To see the left continuity, let{un}n∈N ⊂ (0, 1) be
monotonically increasing, and in particular, letun → û < 1.
Let xn = G(un) ∀n ∈ N and x̂ = G(û). Since G is
monotonically increasing,{xn} is monotonically increasing,
and there exists̄x ∈ IR such thatxn ↑ x̄ ≤ x̂. Suppose
x̄ < x̂. By the definitions ofxn andI,

un ≤ F (xn) ∀n. (7)

Let ǫ = (x̂ − xn)/2 > 0. Then, using (7) and the
monotonicity ofF ,

un ≤ F (xn + ǫ) = F (x̂− ǫ). (8)

On the other hand, by definition,̂x = G(û) implies that
inf{x | F (x) ≥ û} = x̂, and consequently, there existsδ > 0
such that

F (x̂− ε) ≤ û− δ. (9)

Combining (8) and (9), we see thatun ≤ û − δ for all n,
which is a contradiction. Therefore,xn ↑ x̂, and we have left
continuity.

We refer the reader to standard texts (c.f., [3]) for the
remaining assertions.

Next, givenG ∈ G, let

J [G](x)
.
=

{

sup{u |G(u) ≤ x} if {u |G(u) ≤ x} 6= ∅,
0 otherwise,

(10)
for all x ∈ IR.

Theorem 3.2:J = I−1.
Proof: We refer the reader to standard texts (c.f., [3])

for more detail.
Remark 3.3:For purposes of intuition, it is helpful to

consider the simple smooth, strictly increasing case. In this
case, withG

.
= I[F ], we may writeG = F−1 where the

inverse function is interpreted in the classical sense, andone
has, formally,

du =
du

dx
dx =

dF

dx
dx = f(x) dx

with f denoting the corresponding density.
Remark 3.4:Further, for square-integrableH ,

E[H(X)] =

∫

IR

H(x) dF (x) =

∫

(0,1)

H(G(u)) du, (11)

where this equivalence holds in the general case, and we do
not include the proof.

IV. COST STRUCTURE

We now examine the structure of the cost criterion,J ,
using a quantile functional representation. First, let

Â(ζ)
.
= E

{

k0|ζ(W )|2
}

and B̂(ζ)
.
= E

{

|Y − êY |2
}

.
(12)

First, we look atB̂. Note that the conditional expectation
of X givenY = y is

êy
.
= E{X |Y = y} =

k1
k0

=

∫

IR
xhd(x, y) dFX(x)

∫

IR
hd(x, y) dFX(x)

(13)

where

hd(x, y)
.
=

1√
2πd

exp

[−(x− y)2

2d

]

.

Employing change of variables (11), this becomes

êy =

∫

(0,1)
G(u)hd(G(u), y) du

∫

(0,1)
hd(G(u), y) du

, (14)

whereG = I[FX ] anddu indicates integration with respect
to Lebesgue measure. Further, noting that for measurable
C ⊆ IR, P (Y ∈ C) =

∫

C

∫

IR
hd(x, y)dFX(x) dy, we see that

B̂(ζ)=

∫

IR

∫

IR

|x− êy|2hd(x, y) dFX(x) dy,

which again by the change of variables,

=

∫

IR

∫

(0,1)

|G(u)− êy|2hd(G(u), y) du dy
.
= B(G). (15)

Next, we look to represent̂A in terms of the quantile
function corresponding toX . Due to the explicit presence of
ζ, one should examine the transformation carefully. Note that
ζ wishes to transform inputW into some form (presumably
more useful to the estimator),X . Considering (15), we see
that the expected estimator error,B, depends not onζ, but
only on the resulting distribution,FX , or equivalently, the
quantile functionG. Consequently,ζ would like to generate
any givenFX , with the minimum squared effort given bŷA.
It seems intuitively clear that in order to minimize cost, for
any givenFX , one would choose a monotonically increasing



ζ(·). However, to be completely rigorous, we do not presume
this form, but find this form, along with the representation
of the problem, in terms of the quantile function.

Let FW denote the distribution corresponding to (normally
distributed) inputW , and letGW

.
= I[FW ], which is of

course,C∞.
Theorem 4.1:For anyG ∈ G,

min
ζ

{

E[ζ2]
∣

∣I[FX ](·) = G(·)
}

=

∫

(0,1)

[G(u)−GW (u)]2du.

Proof: We first demonstrate that there is aζ such that

E[ζ2] =
∫

(0,1)

[G(u)−GW (u)]2du.

Equivalently, we construct a function,̂X(w), with distribu-
tion FX such that
∫

R

[X̂(w) − w]2P (dw) =

∫

(0,1)

[G(u)−GW (u)]2du. (16)

For eachw ∈ R, define

X̂(w)
.
= G(FW (w)). (17)

Note thatFW belongs to the class indicated in Remark 3.3,
and consequently,GW = F−1

W in the classical sense. Thus,
it suffices to show
∫

R

[X̂(w)− w]2P (dw) =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

(18)
The proof proceeds by approximating the arguments of the
integrals in (18) by simple functions.

Denote the Lebesgue measure on(0, 1) asλ(·) and define
the indicator functionIA(x), with argumentx, to equal 1
whenx ∈ A and 0 otherwise. Given a Borel setB ⊂ (0, 1),
a useful fact (see, for instance, [12]) is that

P (B) = λ({u|GW (u) ∈ B}). (19)

SinceX̂ andW have finite second moments, the integrand
of the left-hand side of (18) is dominated by an integrable
function, specifically[X̂(w) − w]2 ≤ 2[X̂2(w) + w2].

Now we are in a position to define a sequence of domi-
nated simple functions,{sn(w)}n∈N,

sn(w) ,
∑

k

βn(k)IBn(k)(w) ≤ 2[X̂2(w) + w2], a.e.,

which converges aslimn→∞ sn(w) = [X̂(w) − w]2 for al-
most everyw ∈ R. By the Lebesgue Convergence Theorem,

E[sn] =
∫

R

sn(w)P (dw) =
∑

k

βn(k)P (Bn(k)) (20)

−→
n→∞

∫

R

[X̂(w) − w]2P (dw).

(21)

Also, because the mapping between almost everyu ∈ (0, 1)
and almost everyw ∈ R is bijective and continuous,

Sn(u) , sn ◦GW (u) =
∑

k

βn(k)I{u|GW (u)∈Bn(k)}(u)

−→
n→∞

[X̂(GW (u))−GW (u)]2

almost everywhere. Furthermore,Sn(FW (w)) is dominated
by 2[X̂(w)2 + w2]; thus,Sn(u) is dominated almost every-
where by an integrable function. Using (19) and (20),

E[sn] =
∑

k

βn(k)P (Bn(k))

=
∑

k

βn(k)λ({u|GW (u) ∈ Bn(k)}) =
∫

(0,1)

Sn(u)du.

(22)

Again using the Lebesgue Convergence Theorem,

lim
n→∞

∫

(0,1)

Sn(u)du =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

(23)
Combining (21)–(23), we arrive at
∫

R

[X̂(w)− w]2P (dw) =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

It remains to prove the reverse inequality. This proof is
substantially more technical, and we do not include it here,
although we do note that if one assumesζ to be monoton-
ically increasing, the proof is substantially less demanding.

Given Theorem 4.1, it is natural to define

A(G)
.
=

∫

(0,1)

[G(r) −GW (r)]2dr. (24)

Then, combining the above, and with a bit more work, one
finally finds that problem (4) is equivalently

V = V (c, d, k0) = inf
G∈G

J̄(G) = inf
G∈G

J̄(G; c, d, k0), (25)

where
J̄(G) = k0A(G) +B(G). (26)

Further, given an optimalG, one could construct the cor-
responding controller fromζ(w) = X̂(w) − w whereX̂ is
given by (17).

V. SOLUTION FORM

We make some remarks on the form of the solution of
our optimization problem. First, of course, in this quantile
representation, theA(G) functional is simply a quadratic,
with minimum of zero atG = GW .

TheB(G) functional is more complex, and is the source of
the difficulties. Fix someG ∈ G. We will consider certainL2

variations aroundG. Let γ ∈ L2(0, 1) (with specific form to
follow), andδ > 0. Recall from (13) that̂ey = k1/k0 where
k1, k0 are given there. By standard computations,

k1(G+ δγ)− k1(G)

= δ

∫

(0,1)

hd(y,G(v))

[

1 +G(v)

(

y −G(v)

d

)]

γ(v) dv

+O(δ2), (27)

k0(G+ δγ)− k0(G)

= δ

∫

(0,1)

hd(y,G(v))

(

y −G(v)

d

)

γ(v) dv +O(δ2). (28)



Taking a similar differential in (13) , and employing (27) and
(28), one obtains

êy(G+ δγ)− êy(G) = δ

∫

(0,1)

hd(y,G(v))

k0(y,G)

·
{

1 +

[

G(v)− k1(y,G)

k0(y,G)

](

y −G(u)

d

)}

γ(v) dv

+O(δ2)

.
= δ

∫

(0,1)

∆0
e(y,G,G(v))γ(v) dv +O(δ2), (29)

where, for clarity, we remark that whenG(v) appears as an
argument, it indicates dependence onG evaluated atv, and
when G appears as an argument with no argument of its
own, this indicates dependence on the entire function.

Continuing with this process, and suppressing dependence
of êy on y,G, we find

B(G+ δγ)−B(G) = δ

∫

(0,1)

∫

IR

hd(y,G(u))

·
[

2(G(u)− êy) + |G(u)− êy|2
(

y −G(u)

d

)]

+∆1
e(y,G)∆0

e(y,G,G(u)) dy γ(u) du+O(δ2)

.
= δ

∫

(0,1)

b(G,G(u))γ(u) du +O(δ2), (30)

where
∆1

e(y,G)
.
=

∫

(0,1)

2(êy −G(v))hd(y,G(v)) dv. (31)

It is worthwhile explicitly noting that forα ∈ IR,

b(G,α) =

∫

IR

{

hd(y, α)

·
[

2(α− êy(G)) + |α− êy(G)|2
(

y − α

d

)]

(32)

+∆1
e(y,G)

hd(y, α)

k0(y,G)

[

1 +

(

α− k1(y,G)

k0(y,G)

)(

y − α

d

)]}

dy

which is clearlyC∞ in α.
Now, recalling thatG is monotonically increasing, there

exists at most a countably infinite number of discontinuities.
Consequently, there exists a finite or countably infinite setof
open intervals{(βk, βk+1)}k∈K such thatG is continuous
on each open interval and such that(0, 1)\⋃k∈K(βk, βk+1)
consists of at most a countably infinite number of points.
Suppose there existk ∈ K, β̂k ∈ (βk, βk+1), ε̂k > 0
and δ̃k > 0 such thatBε̂k(β̂k) ⊆ (βk, βk+1) and G(v) −
G(u) ≥ δ̃k(v − u) for all v ≥ u in Bε̂k(β̂k). (Otherwise,
G is piecewise constant.) Supposeb(G,G(β̂k)) 6= 0, and in
particular, supposeb(G,G(β̂k)) > 0. Sinceb(G,α) is C∞

in α, there exists̄δk > 0 and b̄k > 0 such that

b(G,α) > b̄k ∀α ∈ Bδ̄k
(G(β̂k)). (33)

Also, sinceG ∈ C((βk, βk+1)), there existsε̄k ∈ (0, ε̂k)
such that

G(u) ∈ Bδ̄k
(G(β̂k)) ∀u ∈ Bε̄k(β̂k). (34)

Again, recalling thatIA denotes the indicator function for
measurable setA, let

γ(u)
.
= I[β̂k,β̂k+ε̄k)

(u)(β̂k + ε̄k − u),

and letδ ∈ (0, δ̃k). Then,

(G(v) + δγ(v))− (G(u) + δγ(v)) ≥ (δ̃k − δ)(v − u) ≥ 0

for all v ≥ u in (β̂k, β̂k + ε̄k). Consequently,G + δγ ∈ G
for all δ ∈ [0, δ̃k).

Further, with this choice ofδ andγ, and using (31),

B(G+ δγ)−B(G) = δ

∫

(0,1)

b(G,G(u))γ(u) du +O(δ2)

= δ

∫

(β̂k,β̂k+ε̄k)

b(G,G(u))(β̂k + ε̄k − u) du+O(δ2),

which by (33) and (34)

> δb̄k

∫

(β̂k,β̂k+ε̄k)

(β̂k + ε̄k − u) du+O(δ2)

= δb̄kε̄k +O(δ2) > 0

for δ > 0 sufficiently small. Consequently,G cannot be
optimal. The case whereb(G,G(β̂k)) < 0 is similar. We see
that if G is optimal and not constant on some(β̂k, β̂k+1),
then b(G,G(u)) = 0 for all u ∈ (β̂k, β̂k+1). As it appears
technically demanding to prove, for the present, we assume:

b(G,α) has only isolated zeros as a function of
α for anyG ∈ G. (A.1)

The reader may choose to examine (32) for an understanding
of the motivation behind this assumption. IfG is not constant
on (β̂k, β̂k+1), then by (A.1) and the continuity ofG
over this interval, there existsu ∈ (β̂k, β̂k+1) such that
b(G,G(u)) 6= 0, and soG cannot be optimal. We have:

Lemma 5.1:Assume(A.1). SupposeB has a local mini-
mum atḠ ∈ G. Then,Ḡ is piecewise constant.

We sayG ∈ G is antisymmetric (around1/2) if G(u) =
−G(1 − u) for almost everyu ∈ (0, 1). (Alternatively,
G(1/2− δ) = −G(1/2 + δ) for almost everyδ ∈ (0, 1/2).)
Similarly, F ∈ F is antisymmetric (around range value1/2)
if F (−x) = 1−F (x) for all x ∈ IR. Both of these correspond
to a symmetric density function when such exists. Let

Ga .
= {G ∈ G |G is antisymmetric}.

The following is obivous.

Lemma 5.2:The minimum ofB (as well as the minimum
of A) overG is attained onGa.

Of the piecewise constant quantile functions, the entirely
constant function is important. Suppose there existsḡ ∈ IR
such thatG(u) = ḡ for all u ∈ (0, 1). Then,

êy(G) =
k1(y,G)

k0(y,G)
=

ḡk0(y,G)

k0(y,G)
= ḡ.

Consequently,|êy(G)−G(u)|2 = 0 for all y, u, and we see
B(G) = 0.



Now, supposeG is not constant. Then, noting the mono-
tonicity, there existε > 0 and 0 < ū < v̄ < 1 such that
G(v̄)−G(ū) = ε. This implies

G(u) ≤ G(ū) ∀u ∈ (0, ū]

G(u) ≥ G(v̄) ∀u ∈ [v̄, 1).

Therefore, sincêey(G) is independent ofu, for anyy ∈ IR,

either |G(u)− êy(G)| ≥ ε

2
∀u ∈ [v̄, 1),

or |G(u)− êy(G)| ≥ ε

2
∀u ∈ (0, ū].

Employing this in (15), one finds

B(G)≥
∫

IR

min

{
∫

[v̄,1)

ε2

4
hd(y,G(u)) du,

∫

(0,ū]

ε2

4
hd(y,G(u)) du

}

dy > 0.

Consequently, we have

Lemma 5.3:If G is constant, thenB(G) = 0; otherwise,
B(G) > 0.

At this point, one knows that anyG that minimizesB
is piecewise constant, and that one may restrict the search
for minima to Ga. One also knows that constant functions
yield the minimum, with the constant function,̄G0(u) ≡ 0
being the minimizer withinGa. We have not yet shown that
there do not exist other local minima. We briefly indicate
this result.

Lemma 5.4:Neglecting the absolute minimizer,̄G0(u) ≡
0, there are no other local minimizers ofB overGa.

Proof: (Sketch of proof.) Here we find it convenient
to work with FX ∈ F and the corresponding density “func-
tion” represented in terms of Diracδ functions. Consider a
piecewise constantGp ∈ Ga. Associated to this is a density
function. Without loss of generality, we let this density be

fp(x) = λ0δ0(x) +

N
∑

i=1

λi

2
[δξi(x) + δ−ξi(x)] ,

whereλ0, λi ∈ [0, 1] andλ0 +
∑N

i=1 λi = 1. We will show
that one can construct a path fromGp to Ḡ0 such thatB(G)
monotonically decreases along the path. As our proof is quite
technical, the details cannot be included here. However, the
main points will be indicated. We will takêξ > 0 sufficiently
large such that several terms inB become quite small. Let
µ ∈ [0, λN ], and letẽy(µ)

.
= k̃1(µ,y)

k̃0(µ,y)
where

k̃0(µ, y) =λ0hd(0, y) +

N−1
∑

i=1

λi

2
[hd(ξi, y) + hd(−ξi, y)]

+
λN − µ

2
[hd(ξN , y) + hd(−ξN , y)]

+
µ

2

[

hd(ξ̂, y) + hd(−ξ̂, y)
]

,

k̃1(µ, y) =

N−1
∑

i=1

λi

2
ξi [hd(ξi, y)− hd(−ξi, y)]

+
λN − µ

2
ξN [hd(ξN , y)− hd(−ξN , y)]

+
µ

2
ξ̂
[

hd(ξ̂, y)− hd(−ξ̂, y)
]

.

Letting B̃(µ) denote the corresponding cost, one hasB̃(µ) =
B(G̃µ) whereG̃µ is the quantile function corresponding to
density

f̃µ(x) =λ0δ0(x) +

N−1
∑

i=1

λi

2
[δξi(x) + δ−ξi(x)]

+
λN − µ

2
[δξN (x) + δ−ξN (x)] +

µ

2

[

δ
ξ̂
(x) + δ−ξ̂

(x)
]

.

Note that

B̃(µ)=

∫

IR

{

λ0ẽ
2
y(µ)hd(0, y)

+

N−1
∑

i=1

λi

2

[

|ξi − ẽy(µ)|2hd(ξi, y)+ |ξi + ẽy(µ)|2hd(−ξi, y)
]

+
λN − µ

2

[

|ξN − ẽy(µ)|2hd(ξN , y)

+|ξN + ẽy(µ)|2hd(−ξN , y)
]

+
µ

2

[

|ξ̂ − ẽy(µ)|2hd(ξN , y)

+|ξ̂ + ẽy(µ)|2hd(−ξN , y)
]

}

dy.

One shows that for̂ξ sufficiently large, B̃(µ) is mono-
tonically decreasing inµ. For intuition, note that as one
may chooseξ̂ quite “far” from the ξi, when y is large
positive, the estimator predicts̃ey(µ) to be quite close to
ξ̂, and thus the contribution from this term is lower than that
from the ξN term. Thus, as one increasesµ from 0 to λN ,
the cost decreases. Next, one proceeds to apply the same
method to theN − 1 term in the sum, with exactly the same
(sufficiently large)ξ̂. By induction, one finally obtainsG2

which is piecewise constant, with at most three segments,
and a corresponding density

f2(x) = λ0δ0(x) +

(

1− λ0

2

)

[

δ
ξ̂
(x) + δ−ξ̂

(x)
]

,

whereB(G2) ≤ B(Gp). Lastly, one shows that there is a
path fromG2 to Ḡ0 along whichB(G) is monotonically
decreasing.

The above simple results indicate something of the struc-
ture of the optimization problem. One desires to minimize
the sum of a quadratic,A, with minimum atG = GW , and
a functional,B, with the somewhat odd structure indicated
here. This interplay is what leads to the variety of solutions
one finds over the parameter space, where the “signaling”
optima are those where theB component plays a more
significant role than the cases where the solution looks
closer to a normal random variable. Note that although both
A and B have unique minima, this does not imply that
J̄ = k0A + B does not possess extraneous local minima.
Sufficient conditions guaranteeing such will be the subject
of a longer paper.



VI. N UMERICAL RESULTS AND COMMENTS

Although a complete analysis indicating under exactly
what parameter sets we are able to guarantee that the total
cost,J̄(G)

.
= k0A(G)+B(G), has no extraneous local min-

ima is not included, we nonetheless begin experimentation to
verify the structure of the optimal distribution. In particular,
a gradient-descent algorithm has been constructed to search
for the optimum under various sets of parameter values. We
note that this algorithm obtains the same numerical values
(to the published number of digits) as obtained in [2] for
the cases given there. The algorithm optimizes over the
quantile representation of the control-induced distribution of
X . Roughly, at each iteration, it proceeds by moving in the
direction opposite the gradient, until the cost begins to rise.
At that point another gradient calculation is done, and the
process is repeated. It is not fruitful to indicate the finer
details such as stopping criteria at this point, and in the
limited space.

In some parameter regions, the algorithm finds (approxi-
mate) optima which are of the signaling form discussed in
[7], [14], while in other regions, the optima are generated by
controllers that are roughly linear. Intuitively, the distinction
flows from the relative importance ofk0A andB in the total
cost, where consideration ofA alone would lead to linear
optima, whileB (with some impetus fromA) pushes the
solution toward signaling forms. We include three figures
below. Perhaps the most interesting is the second figure,
where the parameters are in an area between these two
regions, and the optimal solution appears to have a mix of
the two forms.
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Fig. 1. Approximate solution:c = 2, d = 5, k0 = 0.05 .
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