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I. INTRODUCTION we let the range ot be denoted by = IR. The estimator

We examine the structure of the Witsenhausen coufi€nerates estimatg , knowingY’, but not¢(1). Note that
terexample/problem and its solution. In particular, we fingV€ a@ssume the estimator does know the control strategy to be
it useful to work with the associated quantile function ollowed,((-), but not the actual control applied. The payoff
rather than the controller itself or its distribution. Withis  t© be minimized is
transformation, the problem is reduced to minimization of R i 9 9
a certain criterion over a particular function space. The J(().e) = E{kOK(W” X —ey }’ (1)
optimization criterion is the sum of two functionals. The
first, representing the control cost, is a simple quadratie where ko € [0,00). Due _to the squgred-erro_r form_ of
second, representing the expected squared estimation enge S_?CO”d term on the nght, the optimal est|tnate is the
has a more complex structure over this space. Nonethelegg,nd't'onal expectation, which will be denoted by, and
it has a uniqgue minimum (i.e., no other local minima). Th&'Ven that, we let
problem of determining the parameter region over which the
total cost criterion has a unique minimum remains open,
although numerical experimentation suggests that this m
“typically” be the case. Numerical results also indicate th
form of the solution.

J(C) =E {ko|l¢C(W)|* + |X — éy[*}. 2

@early, the solution depends only on the three parameters,
¢, d, and ky. Upon examining (2), we see that an optimal
control must not only be measurable, but must have finite
Il. BACKGROUND AND DEFINITION variance. Consequently, we take the control space to be

The Witsenhausen counterexample [14] gained substantiaIZ
notoriety for several reasons. The first is that it is a simply
formulated problem, which may appear to a casual observg\ye let
to be of linear/quadratic form, but is in fact far from such,
and certainly does not have a linear controller as the optima . _ Vie,d, ko) = inf J(C) = inf J(Cie,d, ko). (4)
solution. Second, it is a problem where there is incomplete cez €z
communication between the controller and the estimator. As . .
such, it can be viewed as a benchmark problem in the argéth's f_orm, we see th:_;\t the problem reduces to an (infinite-
of networked control problems, which is of course an area éjflmensmnal) optlmlzan_on problem. )
great current interest. Moreover, the controller is attengp A 900d deal of quite interesting work has used this
not only to minimize its own effort, but is also attemptingProblem as a basis for development (c.f., [1], [2], [4], [3],
to aid the estimator through its control action. In fact,sit i (6, [7], [8], [9], [10], [11], [13]). Of particular relevace
this latter role which drives the controller to act at all. 0 the analysis here is [7]. In [7], the authors assume a

The problem formulation is quite simple, and one mighBignaling structure (originally suggested in [14]) for the
place it in the arena of optimization rather than control, a§ontroller, where the controller acts to make take on
one could argue that the problem does not have the tim8N€ Qf a small f|n|te_set of po_SS|bIe values, th_e selection
structure which separates control from optimization. Th&f Which is based on inpud’. This, allows the estimator to
problem is as follows. The first input is a scalar normaforrectly identify X' with high probability, particularly if the
random variableJV ~ A(0,¢), and we let its range be 92P betwee|_’1 possibl& values is relatively large compared
denoted asv = RR. A “controller”, ¢ : W — IR acts with /d. U_smg a more general approac_:h here,_ we f|n_d that
additively on the first input generating outpidt = W + such solutions emerge naturz_zllly in an interesting region of
¢(W). We assume tha{(-) is measurable, of course. An parameter space, while solutions similar to normal random

observationy = X + v is made, wheres ~ A7(0, d), and variables, corresponding to nearly linear controllerssunc
’ in another region. Hybrids of these appear in intervening
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={(: W — R| measurable an&[¢*(W)] < oo} .(3)



Ill. QUANTILE REPRESENTATION Theorem 3.2:7 =7

We will find it helpful to optimize not over controller Proof: We refer the reader to standard texts (c.f., [3])
u, but instead over the resulting distribution of, Fy. for more detail. S u
Further, we will find it helpful to perform the bulk of ~Remark 3.3:For purposes of intuition, it is helpful to
the analysis not with distribution functiof’x, but with con5|der the simple smooth, stnqtly increasing case. i th
the corresponding quantile function, which we denote a&se, WithG' = Z[F], we may writeG = F~' where the
G. Consequently, it is helpful to review the transformatiorfnverse function is interpreted in the classical sense,car&d
between the two representations. [Etdenote the space of has, formally,
probability distribution functions onR with finite second du dF
moments. Let du=_—dz=_dz= f(a)dz
G = {G: (0,1) — ]R‘ G2(u) du < o0, mono. inc., with f denoting the corresponding density.

(0,1) Remark 3.4:Further, for square-integrablg,

continuous on the left, limits on the rigl}t (5) B[H(X)] = / H(z)dF(x) = H(G(u)du, (L1)
R (

Given F' € F, let 0.1)

where this equivalence holds in the general case, and we do

Z[F)(u) = inf{z | F(z) > u}, (6) ot include the proof.
for all u € (0, 1). IV. COST STRUCTURE
Theorem 3.1.7 is a bijection fromF to G. We now examine the structure of the cost criterion,

Proof: This is somewhat classical. We mention someising a quantile functional representation. First, let
useful points in the proof. Fi¥' € F, and letG = Z|[F]. . ) ) . ) e
First note that by the definitions &f and F, G(u) € IR for AQ) = E{ko| (W)} and B(() =E{[Y —éy|*}.

all w € (0,1). Foru € (0,1), let A, = {y € R|F(y) > . ) N (12)
u}. It is both useful and not difficult to show that, = First, we look atB. Note that the conditional expectation
[G(u),0). In particular, one immediately sees that> u of X givenY =y is

implies that4, C A, and consequently; is monotonically ki [paha(z,y)dFx(z)

i i is impli imi ey =E{X|Y=yt=—= 13
L?;t:?asmg. Of course, this implies th@t has limits on the Y {X| y} %o sz hala, y) dFx (2) (13)
To see the left continuity, lefu,},en C (0,1) be Where

2
monotonically increasing, and in particular, tef — @ < 1. ha(z,y) = 1 exp {ﬂ} )
Let z, = G(un) Vn € N andi = G(4). SinceG is 2md 2d
monotonically increasing,x.,, } is monotonically increasing, Employing change of variables (11), this becomes
and there existg& € IR such thatz, T z < . Suppose
T < Z. By the definitions ofz,, andZ, &, = Jo Gha(Gw), y) du’ (14)
) f(O.,l) hd(G(u)v y) du
un, < Fla,) Vn. (7)
. ) whereG = Z[Fx] anddu indicates integration with respect
Let ¢ = (& — ,)/2 > 0. Then, using (7) and the {5 | ehesgue measure. Further, noting that for measurable
monotonicity of ', CC R, PY €C)= [, [pha(z,y)dFx (z)dy, we see that
Up < F(zy, +€) = F(Z —¢). (8)

- - BQ = [ [ 1= fhatey) arxie) dy
On the other hand, by definitior; = G(u) implies that _ JRJR _
inf{z | F(z) > 4} = #, and consequently, there exists- 0 Which again by the change of variables,

such that = / |G (u) — &,?ha(G(u),y) dudy = B(G). (15)
F(@—¢e) <a-—20. 9 R J(0,1)
Combining (8) and (9), we see that, < @ — ¢ for all n, Ne_xt, we look to_ representi in terms qf _the guantile
which is a contradiction. Therefore,, 1 #, and we have left function corresponding t&'. Due to the explicit presence of
continuity. ¢, one should examine the transformation carefully. Noté tha
We refer the reader to standard texts (c.f., [3]) for thé Wishes to transform inpud” into some form (presumably
remaining assertions. m Mmore useful to the estimator). Considering (15), we see
) that the expected estimator err@, depends not oq, but
Next, givenG € G, let only on the resulting distribution’x, or equivalently, the
L sup{u|G(u) <z} if {u]|G(u) <z} #£0, quantile functionGG. Consequently; would like to generate
JTG](z) = 0 otherwise, any givenF'x, with the minimum squared effort given by.

(10) It seems intuitively clear that in order to minimize cost; fo
for all z € R. any givenFy, one would choose a monotonically increasing



¢(-). However, to be completely rigorous, we do not presumalmost everywhere. Furthermorg, (Fiy (w)) is dominated
this form, but find this form, along with the representatiorby 2[X (w)? + w?]; thus, S,,(u) is dominated almost every-

of the problem, in terms of the quantile function.

Let Fy denote the distribution corresponding to (normally
distributed) inputi¥, and letGyw = Z[Fw], which is of

course,C*°.
Theorem 4.1:For anyG € G,

min{EC?] |ZIFx]() = GO} = | G ~ Guw (u)du

where by an integrable function. Using (19) and (20),
Elsn] = Zﬁn(k)P(Bn(k))
k

Sp(u)du.
(0,1)

= Buk)M{u|Gw (u) € Bu(k)}) =
g (22)

, 0,1) .
Proof: We first demonstrate that there ig asuch that Again using the Lebesgue Convergence Theorem

ELC?] = /( (660 = G

Equivalently, we construct a functiodX (w), with distribu-

tion F'x such that
[ @) - uPpw) = [ (G - Gw(wPdu. 15)
R (0,1)

For eachw € R, define
X(w) = G(Fw (w)). (17)

Note thatFy, belongs to the class indicated in Remark 3.3
and consequentlyZy = Fi;,' in the classical sense. Thus,

it suffices to show

/ [X (w) — w]2P(dw) = / X (Gw (w)) — Gw (w)du.
R (0,1)
(18)

lim S, (u)du = / (X (Gw () — Gw (u)]du.
(0,1) (0,1)

n—oo
(23)
Combining (21)—(23), we arrive at

[ @)~ uPPin) = [ (G ) - G (w)du.
R (0,1)

It remains to prove the reverse inequality. This proof is
substantially more technical, and we do not include it here,
although we do note that if one assunieto be monoton-
fcally increasing, the proof is substantially less demagdi

]

Given Theorem 4.1, it is natural to define

AG) = /( |, [60) G (24)

The proof proceeds by approximating the arguments of thPnen, combining the above, and with a bit more work, one

integrals in (18) by simple functions. _ finally finds that problem (4) is equivalently
Denote the Lebesgue measure(0nl) asA(-) and define

the indicator functionl4(z), with argumentz, to equal 1

whenz € A and 0 otherwise. Given a Borel sBtC (0, 1),
a useful fact (see, for instance, [12]) is that

P(B) = A({u|Gw (u) € BY). (19)

SinceX andWW have finite second moments, the integran
of the left-hand side of (18) is dominated by an integrabl

function, specifically[ X (w) — w]? < 2[X%(w) + w?).

Now we are in a position to define a sequence of domi-

nated simple functionss,, (w) }nen,

sp(w) £ Zﬂn(k)IBn(k) (w) < 2[X%(w) +w?], a.e.,
k

which converges alim,, . s, (w) = [X(w) — w]? for al-

most everyw € R. By the Lebesgue Convergence Theorem

Els,] = / su(w)P(dw) = 3 Bu(B)P(Ba(K)  (20)
k

(X (w) — w]*P(dw).
(21)

Also, because the mapping between almost ewegy(0, 1)
and almost everyw € R is bijective and continuous,

Sn() £ 550 G (1) = B (k) {u|Gry (e B ()} (1)
k

—

n—oo R

— [X(Gw(u) — Gw(u)]

n—roo

V=V(ed, ko) = Cl;Iéfg J(G) = Cl;Iéfg J(G;c,d, ko), (25)

where

J(G) = koA(G) + B(G). (26)

Further, given an optimals, one could construct the cor-

Jesponding controller fronj(w) = X (w) — w where X is
Given by (17).

V. SOLUTION FORM

We make some remarks on the form of the solution of
our optimization problem. First, of course, in this quamtil
representation, thel(G) functional is simply a quadratic,
with minimum of zero atG' = Gy .

The B(G) functional is more complex, and is the source of
the difficulties. Fix somé& € G. We will consider certairl,
variations arounds. Let~y € L(0, 1) (with specific form to
follow), andé > 0. Recall from (13) thag, = k; /k, where
k1, ko are given there. By standard computations,

k1 (G + o) — k1(G)

=5 [ty 60 |1+ 60) (L= )| 50y
+O(62), 27)
ko(G + 67) — ko(G)
=5 haly,G(®)) <y_TG(”)) ~(v) dv + O(8?). (28)
(0.1)



Taking a similar differential in (13) , and employing (27)d&n
(28), one obtains

6y (G +om) —ey(G) =5 [ MG

.{1 + [G(v) _ kl(yéﬁ)(hy{)@g&))} (v) do
+O(5?) e ‘ '

Ay, G, G(v)y(v) dv + O(8%),
(0,1)

=5 (29)

where, for clarity, we remark that whe®(v) appears as an
argument, it indicates dependence @revaluated awv, and

when G appears as an argument with no argument of its

own, this indicates dependence on the entire function.

Continuing with this process, and suppressing dependence

of &, ony, G, we find

B(G + d¢v) —

—5/ /hdya
(0,1)

- [2<G<u> 6+ 1) — & (yTG” ]
Agly G)Ao(y,G G(u)) dy~y(u) du + O(5?)

= 5/ b(G, G(w))y(u) du + O(5?), (30)
where

ALy, G) = / 26, - G(o)ha(y, G(v)) dv.  (31)

0,1)
It is worthwhile explicitly noting that forn € IR,
WGy = [ {hd@, o)
N N 2o (Y~
Jpa-aeyri-a@r (2] e

1 ha(y, ) ki(y, G)\ (y—«

ol [+ (o ) (5o

which is clearlyC* in «.

Now, recalling thatG' is monotonically increasing, there G(1/2 — )

Again, recalling that/ 4 denotes the indicator function for
measurable setl, let

V(W) = I, ey () B+ 8 — w),
and lets € (0,4;). Then,
(G(v) +07(v)) = (G(u) + 67(v)) >

for all v > w in (BkaBk + &;). ConsequentlyG + 6y € G
for all § € [0, o).
Further, with this choice o and~, and using (31),

B(G) =6

(6, — &) (v —u) >0

B(G + d0v) — b(G, G(u))y(u) du + O(5?)

(0,1)

= 5/A ~ b(G, G(w)(Br + & — u) du+ O(5?),
(Br,Br+Ek)
which by (33) and (34)
> Ob, (Br + & — u) du + O(6%)
~ (B, Br+ex)
= 6brey, + O(6%) > 0

for § > 0 sufficiently small. Consequently; cannot be
optimal. The case whelgG, G(5;)) < 0 is similar. We see
that if G is optimal and not constant on sor(pék,ﬂkﬂ)
thenb(G, G(u)) = 0 for all u € (B, Bry1). As it appears
technically demanding to prove, for the present, we assume:

b(G, a) has only isolated zeros as a function of
o forany G e G. (4.1)

The reader may choose to examine (32) for an understanding
of the motivation behind this assumptiondfis not constant

N (Br, Brs1), then by (A.1) and the continuity ofG
over this interval, there exists ¢ (ﬁk,ﬂkﬂ) such that
b(G,G(u)) # 0, and soG cannot be optimal. We have:

Lemma 5.1:Assume(A.1). SupposeB has a local mini-
mum atG € G. Then,G is piecewise constant.

We sayG € G is antisymmetric (around/2) if G(u) =
—G(1 — u) for almost everyu € (0,1). (Alternatively,
—G(1/2+ 0) for almost every € (0,1/2).)

exists at most a countably infinite number of discontinsitie Similarly, F' € F is antisymmetric (around range valuig2)

Consequently, there exists a finite or countably infiniteoet
open intervals{(Sx, fr+1) }kex such thatG is continuous
on each open interval and such thi@f1) \ U, ¢ (Bk, Br+1)

consists of at most a countably infinite number of points.

Suppose there exist € K, ﬁk Bk, Br+1)s €k > 0
and &, > 0 such thatBe, (5x) C (Br, Be+1) and G(v) —
G(u) > 6p(v —u) for all v > u in Be, (Bk) (Otherwise,
G is piecewise constant.) Supposes, G(3x)) # 0, and in
particular, supposé(@, G(3x)) > 0. Sinceb(G, o) is C*°
in o, there existg), > 0 andb;, > 0 such that

b(G,a) > by Vae B; (G(B)). (33)

Also, sinceG € C((Bk,Br+1)), there exists, € (0,&x)
such that

G(u) € Bs5, (G(Br)) Yu€ Bz, (Br). (34)

if F(—z) = 1—F(x) forall z € IR. Both of these correspond
to a symmetric density function when such exists. Let

G* ={G € G| G is antisymmetrig.

The following is obivous.

Lemma 5.2:The minimum ofB (as well as the minimum
of A) overg is attained org®.

Of the piecewise constant quantile functions, the entirely
constant function is important. Suppose there exjsts IR
such thatG(u) = g for all w € (0,1). Then,

~ o kl(yaG) _ gkO(yaG) I
A TN R TON
Consequentlylé, (G) — G(u)|? = 0 for all y,u, and we see

B(G) = 0.



. . N—-1
Now, suppose&~ is not constant. Then, noting the mono- ~ B i, _ _
tonicity, there exist > 0 and0 < @ < © < 1 such that Fa(py) = Z; 751 [ha(€i,y) = ha(=Ei,y)]
G(v) — G(u) = e. This implies l‘/\

+

N2_ Mfzv [ha(€nsy) — ha(—En,y)]
G(u) <G(u) Yue (0,a

G(u) > G(®) Yue (o). +%5 [hd(f, y) — ha(=¢, y)} :

Letting B(y) denote the corresponding cost, one Big) =

Therefore, since, (G) is independent of;, for anyy & I, B(G*) whereG* is the quantile function corresponding to

densit
either  [Gi(u) — &,(G)] = = Vue o), ensty .
i
o |Gu) — &,(G)| z% Vu e (0, ). (@) =Xodo(2) + 3 5 106, () + 6, (2)]
1=1
Employing this in (15), one finds +)‘N2_ O (@) + 0_c (2)] +% [56(3”) + 576(5”)}
2
56)> [ winf [ Zhd@,c« ) du rote th
r Upa 8= [ {xena0.0)
R

/ i Zhd(y,G(u)) du} dy > 0.
(0 +Z (16— &y () hal8i,v) + |6 + &y (1) *ha(—&i, )]

Consequently, we have

)\
Lemma 5.3:If G is constant, therB(G) = 0; otherwise, + N2 [[€n — &y (1) [Pha(En
B(G) > 0.

Y)
o - e + &y (1) Pha(=€x,9)] + 5 [1€ = & () Phalén, y)
At this point, one knows that ang that minimizesB Y Y 2 Y '
is piecewise constant, and that one may restrict the search |£+é (1) [2ha(=En )]}
Y 9

for minima to G%. One also knows that constant functions
yield the minimum, with the constant functio6iy(u) = 0
being the minimizer withing®. We have not yet shown that
there do not exist other local minima. We briefly indicate
this result.

Lemma 5.4:Neglecting the absolute minimizet(u) =
0, there are no other local minimizers &f over G*.

One shows that fo sufficiently large, B(x) is mono-
tonically decreasing inu. For intuition, note that as one
may chooset quite “far” from the &;, wheny is large
positive, the estimator predic&,(u) to be quite close to
¢, and thus the contribution from this term is lower than that
from the ¢y term. Thus, as one increasgdrom 0 to Ay,
Proof: (Sketch of proof.) Here we find it convenientthe cost decreases. Next, one proceeds to apply the same
to work with F'x € F and the corresponding density “func-method to theV — 1 term in the sum, with exactly the same
tion” represented in terms of Dirat functions. Consider a (sufficiently large)¢. By induction, one finally obtaing:?
piecewise constar®” € G. Associated to this is a density which is piecewise constant, with at most three segments,
function. Without loss of generality, we let this density be and a corresponding density

F2(x) = Aodo(z) + (1 _2)\0) [‘55(1) +0_¢(2)|,

where B(G®) < B(GP). Lastly, one shows that there is a

ath from G2 to G, along which B(G) is monotonicall
where X\, \; € [0,1] and Ao + -7, A; = 1. We will show gecreasmg 0 9 (@) .y

that one can construct a path fr(ﬂiﬁ’ to Gy such thatB(G . - .
P 0 (&) The above simple results indicate something of the struc-

monotonically decreases along the path. As our proof igquit f1h timizati bl One desires to minimi
technical, the details cannot be included here. However, ghure of the optimization problem. One desires to minimize

main points will be indicated. We will take > 0 sufficiently th? su:n of lanua?;a:Lcll with mr|]n|{nudr3 a';G ‘ GW';ndt q
large such that several terms B become quite small. Let a functiona Wi € somewhat odd structure indicate

1€ [0, Aw], and leté, (1) = kl(ﬂvy) where here. This interplay is what leads to the variety of solution

fP(x) = Xodo(x Z [0¢, () + 0—¢, (2)]

Eo(u, one finds over the parameter space, where the “signaling”

optima are those where th8 component plays a more
~ iy Ai significant role than the cases where the solution looks
ko(ky) =Aoha(0,y) + Z B} [ha(&i>y) + ha(=&i, y)] closer to a normal random variable. Note that although both

=1 . - . .

Ay — A and B have unique minima, this does not imply that
5 [hd(gN,y) + ha(—€&n,Y)] J = koA + B does not possess extraneous local minima.
L . . Sufficient conditions guaranteeing such will be the subject

+5 [hd(& y) + ha(=¢, y)} ; of a longer paper.



VI. NUMERICAL RESULTS AND COMMENTS

Although a complete analysis indicating under exactly
what parameter sets we are able to guarantee that the total
cost,J(G) = ko A(G) + B(G), has no extraneous local min-
ima is not included, we nonetheless begin experimentation t
verify the structure of the optimal distribution. In partlar,

a gradient-descent algorithm has been constructed totsearc
for the optimum under various sets of parameter values. We
note that this algorithm obtains the same numerical values
(to the published number of digits) as obtained in [2] for

the cases given there. The algorithm optimizes over the
guantile representation of the control-induced distidubf

X. Roughly, at each iteration, it proceeds by moving in the

direction opposite the gradient, until the cost begins s$e.ri

At that point another gradient calculation is done, and the
process is repeated. It is not fruitful to indicate the finer

details such as stopping criteria at this point, and in the
limited space.

In some parameter regions, the algorithm finds (approxi-
mate) optima which are of the signaling form discussed in
[7], [14], while in other regions, the optima are generatgd b
controllers that are roughly linear. Intuitively, the distion
flows from the relative importance éf, A and B in the total
cost, where consideration of alone would lead to linear
optima, while B (with some impetus from4) pushes the
solution toward signaling forms. We include three figures
below. Perhaps the most interesting is the second figure,
where the parameters are in an area between these two
regions, and the optimal solution appears to have a mix of
the two forms.

0.3

findminwit output
c1=2, cobs= 5, k0= 0.05

0.2

(5]
(6]
(7]

(8]
El

L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1

[10]
[11]
Fig. 1. Approximate solutionc = 2, d = 5, ko = 0.05.
[12]
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