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Abstract

The solution of some forms of nonlinear H∞ /L2-gain problems can be obtained
via solution of the corresponding Hamilton-Jacobi-Bellman (HJB) partial differen-
tial equations (PDEs). Alternatively, the solution of some classes HJB PDEs have
representations as solutions of L2-gain problems. Both can be obtained through
solution of corresponding fixed-point problems – where the operators are the semi-
groups associated with the PDEs. In the linear/quadratic case, the solutions of
these problems can be obtained simply by solution of associated Riccati equations.
Here, an exploration of a way in which the operators for linear/quadratic problems
can be combined (in the semiconvex dual space) to obtain operators, and hence
solutions, for more general problems is begun.

Key words: dynamic programming, partial differential equations, max-plus alge-
bra, Legendre transform, semiconvexity, Hamilton-Jacobi-Bellman equations.

1 Introduction

Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDE’s) arise naturally
when one attempts to solve many nonlinear, continuous time/space control and estima-
tion problems via dynamic programming. They specifically occur for problems where one
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is maximizing or minimizing over some input process (typically a controller or distrbance
process). We look at control/estimation problems where the inputs have finite energy,
and so the PDE’s are first-order. These types of problems occur in optimal control and
Robust/H∞ control and estimation. Some H∞ control problems have state-space repre-
sentations which take the form of a game (with both minimizing and maximizing input);
some of these are equivalent to pure control problems (when one player sufficiently dom-
inates) and so have corresponding PDE’s which are HJB equations; in other cases, the
PDE’s are Hamilton-Jacobi-Isaacs equations. We will not be concerned with the latter
here - only HJB equations.

These PDE’s are nonlinear. For instance, in the H∞ case, they typically contain a term
which is quadratic in the gradient. Solution of such PDE’s has presented a formidable
challenge for many years. This challenge is most commonly summed up as the “curse-of-
dimensionality”.

We will be concerned here with steady-state, fully nonlinear, first–order HJB PDE’s
(although similar arguments could apply to time-dependent problems as well). The so-
lutions are typically nonsmooth, and so one must look for solutions in the weaker class
of viscosity solutions. There is generally a unique viscosity solution, however for some
problems one must use and additional criterion to select the correct viscosity solution [29].
The computation of the solution of a nonlinear, steady-state, first-order PDE is typically
quite difficult, and possibly even more so in the presence of the non-uniqueness mentioned
above. Some previous works in the general area of numerical methods for these problems
are [3], [6], [7], [11], [12], [18], and the references therein. All these methods suffer from
the “curse-of-dimensionality”, and are, at the core, in the class of finite element methods.

In recent years, we have begun consideration of an entirely new class of numerical
methods for HJB PDE’s based on the linearity of the semi-group over the max-plus
algebra (cf. [9], [13], [22], [23], [21], [16], [24], [20], [25], [26]). (Alternatively, one uses
the min-plus algebra for minimizing control/estimation problems, but we will work only
with the max-plus algebra and maximizing control/estimation problems so as not to be
repititous). This linearity had previously been noted in [19]. For purposes of completeness,
we recall that the max-plus algebra is a commutative semi-field (R ∪ {−∞},⊕,⊗) with
the addition and multiplication operations given by

a⊕ b = max{a, b},
a⊗ b = a + b

(1)

where the operations are defined for −∞ in the obvious way. Note that −∞ is the additive
identity, and 0 is the multiplicative identity. Note that it is not a field since the additive
inverses are missing. (See [2], [5] among a burgeoning mass of literature related to the
max-plus algebra.)

Another key ingredient in the development of this new class of max-plus-based numer-
ical methods was the development of an appropriate basis for the solution space over the
max-plus algebra (i.e. with the max-plus algebra replacing the standard underlying field).
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In fact this basis was first developed in [9] through the use of a semiconvex transform.
The semiconvex transform is a slight modification of the Legendre transform and convex
duality relationship [9] [30], [31]. The countable, infinite dimensional basis is formed by
taking a countable dense subset of the transform space. In this paper, we will look more
closely at this transform space, and the natural operations which may take place in it.

With max-plus-based methods for steady-state equations, one notes that the solutions
of the HJB PDE are fixed points of the associated semi-group, that is

W = Sτ [W ] (2)

where Sτ is the semi-group with time-step τ . Note that since 0 is the multiplicative
identity, we can rewrite (2) as

0⊗W = Sτ [W ]. (3)

In other words, W is an eigenvector for Sτ corresponding to eigenvalue 0. The solution is
semiconvex ([24] among other references above). Letting e be the semiconvex transform
of W (or, simply a truncation of the transform), one finds that e satisfies

e = B ⊗ e, or, 0⊗ e = B ⊗ e (4)

where B is the transform of the operator Sτ ; when truncating the basis, B becomes a
finite-dimensional matrix where ⊗ also represents max-plus matrix-vector multiplication.

In this paper, we will be concerned with natural operations on the transformed opera-
tor (specifically max-plus addition), and how these may be used as an aid in the solution
of HJB PDE’s. We note that in application of the max-plus-based numerical method
given in the above references, there were two components to the computation: the com-
putation of B, and the computation of e given B. The computational time for the former
greatly dominated that of the latter by an order of magnitude. Here, we will develop
some techniques for operating on the transform operators themselves which will allow us
to construct a complex B̃ from other, more easily computed, B’s. This will allow us to
escape the “curse-of-dimensionality” in the dominant portion of the computation, for this
class of HJB PDE’s.

2 General Results

In this section, we will give some general results. Since the structure of the systems will
be rather general, the assumptions are not readily verifiable. In a later section, we will
apply the general results to more specific systems, in which case, one will have more
explicit assumptions. In particular, we will consider some finite L2-gain problems with
more specific dynamics.

Throughout, we will work in the space of semiconvex functions, S (cf. [9], [22], [21],
[16], [24], [26] among many more general references). As a reminder, recall that the space
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of semiconvex functions, S, is defined as the set of ψ : Rn → R such that for any R < ∞
there exists CR < ∞ such that ψ(x)+ CR

2
|x|2 is convex over BR(0) = {x ∈ Rn : |x| ≤ R}.

We refer to such a CR as a semiconvexity constant for ψ over BR(0). Note that any ψ ∈ S
is automatically locally Lipschitz [8]. For R > 0, we denote the space of semiconvex
functions for which the semiconvexity constant over BR(0) is CR as SR,CR

.

Consider a finite set of possible system dynamics indexed by m ∈M .
= {1, 2, . . . , M}

Ẋm = Fm(Xm, w)

Xm
0 = x ∈ Rn (5)

where we note that all the systems have the same initial condition, and w ∈ W (for
all m) will be a (disturbance) input. W might be L2 with range in in Rk for example.
Specific assumptions on Fm will follow, but for now assume simply that the systems are
sufficiently well-behaved such that there exist unique solutions for all w ∈ W and for all
x ∈ Rn.

Maintaining the high generality level in this section, we denote a corresponding cost
functional for each system by lmτ (x,w·) where τ will denote the time horizon. For example,
one may have

lmτ (x,w)
.
=

∫ τ

0
hm(Xm

t )− γ2

2
|wt|2 dt (6)

where Xm satisfies (5).

We will work with operators indexed by τ of the form

Sm
τ [φ](x)

.
= sup

w∈W
{lmτ (x,w) + φ(Xm

τ )}(x) (7)

where Xm satisfies (5) where the domain of the Sm
τ operators will be defined explicitly

for specific problems. Note that Sm
τ is a semigroup in the standard algebra sense (i.e.

Sm
τ1+τ2

[φ] = Sm
τ1
{Sm

τ2
[φ]).

One typically finds that when the available storage (cf. [33], [14]), W , exists, it is a
fixed point of the operator Sm

τ for any τ > 0 (cf. [14], [21], [24] among many others).
Specifically, one typically has that the storage

Wm(x)
.
= sup

0<τ<∞
sup

w∈L2(0,τ)

lmτ (x,w) = lim
τ→∞ sup

w∈L2(0,τ)

lmτ (x,w) (8)

is a fixed point of
φ = Sm

τ [φ]. (9)

In the H∞ /L2-gain case under certain assumptions, it is known that the available storage
is the unique fixed point in a class of continuous, nonnegative functions satisfying a
certain quadratic growth condition, and we denote this class as C [29], [21], [24]. For the
present, let us maintain a high level of generality, and not specify C, but simply assume
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the existence of such a set (in which the available storage lies and is the unique fixed
point); in Section 3, a specific example will be given.

The available storage is also the unique viscosity solution in C of the corresponding
HJB equation

0 = Hm(x,∇φ) (10)

with boundary condition φ(0) = 0 (i.e. φ being zero at the origin). More specifially, in
the case of form (6), one would have HJB PDE

0 = sup
w∈Rk

[
Fm(x,w) · ∇φ + hm(x)− γ2

2
|w|2

]
. (11)

In the case Fm(x,w) = fm(x) + σm(x)w, this has the form

0 = sup
w∈Rk

[
fm(x) · ∇φ + (σm(x)w)T∇φ + hm(x)− γ2

2
|w|2

]

= sup
w∈Rk

[
fm(x) · ∇φ + hm(x) +

1

2γ2
∇φT σm(x)(σm)T (x)∇φ

]
. (12)

That Wm is the unique viscosity solution in a certain set C for this case (12) under certain
conditions is given in [29], with a related result under weaker conditions appearing in [32].

Thus, we see that one “typically” expects (for well-defined) integral functional prob-
lems, that the fixed point of the operator Sm

τ is identical to the viscosity solution of the
HJB PDE (both being the available storage).

We suppose for the remainder of this general section only that for integral functionals
lmτ with dynamics (5), there exists a unique solution of the corresponding fixed point
problem φ = Sm

τ [φ] in class C, and that this is also the unique viscosity solution of
0 = Hm(x,∇φ) in C.

One may view the space of semiconvex functions as a “vector space” over the max-
plus commutatuve semi-field, and we will henceforth refer to this space as a semi-vector
space (where the “semi-” refers to the replacement of a field with a semi-field), and
more particularly as a max-plus semi-vector space. In [2] a max-plus semi-vector space
is denoted as a moduloid; we use the term max-plus semi-vector space as it seems more
intuitive to this community. We now demonstrate a max–plus basis over S. The following
theorem is a minor variant of the semiconvex duality result given in [9]. It is derived from
convex duality [30], [31] in a straight-forward manner. Refer to [9] for a proof; the only
change is the replacement of a constant c > CR there by a symmetric matrix C such that
C − CRI > 0 where I is the (usual algebra) identity matrix. This replacement allows
more freedom in the actual numerical implementation.

Theorem 2.1 Let φ ∈ S. Let C be a symmetric matrix such that C − CRI > 0 where
CR > 0 is a semiconvexity constant for φ, and let LR be the Lipschitz constant for φ over
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BR(0). Then for all x ∈ BR(0),

φ(x) = max
x̃∈BLR/CR

[
−1

2
(x− x̃)T C(x− x̃) + a(x̃)

]
= max

x̃∈Rn

[
−1

2
(x− x̃)T C(x− x̃) + a(x̃)

]
where

a(x̃) = −max
x∈BR

[
−1

2
(x− x̃)T C(x− x̃)− φ(x)

]
.

Let φ ∈ S. Let {xi} be a countable, dense set over BLR/CR
(0), and let symmetric

C − CRI > 0 where (again) CR > 0 is a semiconvexity constant for φ over BR(0). Define

ψi(x)
.
= −1

2
(x− xi)

T C(x− xi)

for each i. Then, using Theorem 2.1, one finds (see [9] for details)

φ(x) =
∞⊕
i=1

[ai ⊗ ψi(x)] ∀x ∈ BR (13)

where
ai

.
= −max

x∈BR

[ψi(x)− φ(x)]. (14)

This is a countable max–plus basis expansion for φ. More generally, the set {ψi} forms
a max–plus basis for the space of semiconvex functions over BR(0) with semiconvexity
constant, CR, and one might denote this space as SR,CR

.

It is often the case that in the case of the integral functional for instance, the available
storage (a.k.a. fixed-point of the semi-group, a.k.a. solution of the HJB PDE) is semicon-
vex. Suppose there exists semiconvexity constant CR < ∞ for the Wm over BR(0) (i.e.
Wm ∈ SR,CR

for all m), and a corresponding Lipschitz constant, LR. Let C − CRI > 0
and {xi} be dense over BLR/CR

(0), and define the basis {ψi} as above. Then

Wm(x) =
∞⊕
i=1

[am
i ⊗ ψi(x)] ∀x ∈ BR (15)

where
am

i
.
= −max

x∈BR

[ψi(x)−Wm(x)]. (16)

Throughout this paper, we will assume that such available storage functions actually
have finite max-plus expansions, i.e. that

Wm(x) =
N⊕

i=1

[am
i ⊗ ψi(x)] ∀x ∈ BR (17)

for some N < ∞. Although this assumption is completely unrealistic, it will greatly
reduce the analysis – which seems acceptable in an introductory paper. Note that we
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used this same assumption in the early work on the use of max-plus linearity as a basis
for a numerical method for solution of HJB equations (cf. [9], [21], [13], [24]), and later
proved convergence as the number of terms in basis expansion went to infinity ([22], [20],
[26]).

In this paper, we will not be concerned with a numerical method for solution of HJB
PDE’s based on the max-plus eigenvector problem solution, but rather on the construc-
tion of matrices (the B matrices of Section 1) for max-plus eigenvector problems from
other matrices whose max-plus eigenvector problems are analytically tractable, and the
relationship of the constructed matrices to corresponding HJB PDE’s. In a very loose
way, this is somewhat similar to working in the frequency domain for classical control
problems; this analogy provides the inspriation for the direction of work being pursued
here (although note that we are working over state space rather than the time dimen-
sion). The following theorem makes a critical connection between the problems over the
corresponding domains.

Theorem 2.2 Let Sm
τ be defined by (7) for each m in some finite set M. Suppose that

for each i ∈ {1, 2, . . . , N} and each m ∈M, there exists a finite basis expansion of Sm
τ [ψi],

i.e. that

Sm
τ [ψi](x) =

N⊕
i=1

Bm
j,i ⊗ ψj(x) ∀x ∈ BR(0). (18)

Define S̄τ [φ] for any φ in the domain (to be specified for specific problems below) by

S̄τ [φ](x) = sup
w∈W

{
max
m∈M

[lmτ (x,w) + φ(Xm
τ )]

}
∀x ∈ BR(0) (19)

where Xm satisfies (5). Then

S̄τ [ψi](x) =
N⊕

j=1

B̄j,i ⊗ ψj(x) ∀x ∈ BR(0) (20)

where
B̄j,i = max

m∈M
Bm

j,i =
⊕

m∈M
Bm

j,i ∀ i, j ∈ {1, 2, . . . , N}. (21)

Remark 2.3 Again, note that the assumption of finite basis expansions is unrealistic.
Proofs of convergence as the number of basis functions in the finitely-reuncated set goes
to infinity (in a reasonable way) appear in [25], [27] and [26]. A full proof in this context
is well beyond the scope of this paper, but the above references contain similar proofs.

Proof. The proof is a simple manipulation given by

S̄τ [ψi](x) = sup
w∈W

{
max
m∈M

[lmτ (x,w) + ψi(X
m
τ )]

}
= max

m∈M

{
sup
w∈W

[lmτ (x,w) + ψi(X
m
τ )]

}
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= max
m∈M

Sm
τ [ψi](x)

= max
m∈M

max
j∈{1,2,...,N}

Bm
j,i ⊗ ψj(x)

= max
j∈{1,2,...,N}

[max
m∈M

Bm
j,i]⊗ ψj(x)

=
N⊕

j=1

B̄j,i ⊗ ψj(x).

Corollary 2.4 Suppose that the solution of

W = S̄τ [W ] (22)

exists and also lies in SR,CR
. (Recall from the discussion above that we are already as-

suming that the Wm are in SR,CR
and are fixed points of the Sm

τ .) Further, assume that
the expansion for W is also finite with N coefficients which we denote as

W (x) =
N⊕

j=1

ēj ⊗ ψj(x) ∀x ∈ BR(0).

Also assume that each ψj is active in the sense that
⊕

i6=j ēj ⊗ ψj 6= ⊕N
j=1 ēj ⊗ ψj for

any i ≤ N . Then the vector of coefficients, ē is the solution of the max-plus eigenvector
equation

ē = B̄ ⊗ ē

where B̄j,i =
⊕

m∈MBm
j,i for all j, i.

Proof. By assumption, for all x ∈ BR(0)

N⊕
j=1

ej ⊗ ψj(x) = W (x) = S̄τ [W ](x)

= S̄τ

[
N⊕

i=1

ei ⊗ ψi

]
(x)

=
N⊕

i=1

ei ⊗ S̄τ [ψi](x)

which by Theroem 2.2

=
N⊕

i=1

ei ⊗
 N⊕

j=1

Bj,i ⊗ ψj(x)


=

N⊕
j=1

[
Bj,i ⊗ ei

]
⊗ ψj(x).

8



Using the assumption that all the ψj are active, this implies that

ej =
N⊕

j=1

Bj,i ⊗ ei ∀ j,

or equivalently,
e = B ⊗ e.

3 Solution of some HJB PDEs

Now suppose that instead of desiring to solve for fixed points of the semigroups, one
desires to solve related HJB PDEs. The assumptions in the theorems and corollary of
Section 2 are all assumed to hold throughout this section. Let us consider here the HJB
PDE

0 = H̃(x,∇φ) (23)

.
= max

m∈M
sup

w∈Rk

[
Fm(x,w) · ∇φ + hm(x)− γ2

2
|w|2

]
(24)

= max
m∈M

Hm(x,∇φ). (25)

Consider the sets of measurable processes with values in M given by

Mp = {µ : [0,∞) →M| measurable }
and

Mp
τ = {µ : [0, τ) →M| measurable } .

Also, for the sake of concreteness, let us takeW .
= Lloc

2 ([0,∞),Rk) andWτ
.
= L2([0, τ),Rk).

Then by standard dynamic programming results under typical assumptions (cf. [29], [21],
[22], [24]), one obtains the following theorem. A specific example of a class of dynamics,
cost and set C is given in the remark just below the theorem statement.

Theorem 3.1 There exists a unique solution in some class C of PDE (23), and this
viscosity solution is also the unique solution in C of

W̃ = S̃τ [W̃ ] (26)

where

S̃τ [φ](x)
.
= sup

µ∈Mp
τ

sup
w∈Wτ

{∫ τ

0
hµt(X̃t)− γ2

2
|wt|2 dt + φ(X̃τ )

}
, (27)

˙̃
X = f̃(X̃, w, µ) (28)

f̃(X̃t, wt, µt)
.
= fµt(X̃t, wt). (29)
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This solution is also given by

W̃ (x) = sup
µ∈Mp

sup
w∈W

sup
T<∞

∫ T

0
hµt(X̃t)− γ2

2
|wt|2 dt (30)

where X̃ satisfies (28).

Remark 3.2 In order to ground the analysis, specific assumptions under which the above
result holds are as follows. Suppose the dynamics are of the form Ẋ = fm(X)+σm(X)w.
Assume that for each m ∈ M, fm is globally Lipschitz with some constant, Kf , that
(x− y)T (fm(x)− fm(y)) ≤ −c|x− y|2 for all x, y, and that fm(0) = 0. Assume that for
each m ∈ M, σm is globally Lipschitz with some constant, Kσ, and that |σm(x)| ≤ M
for all x. Suppose also that for each m ∈ M, 0 ≤ hm(x) ≤ α|x|2. Finally, suppose
that (αM2)/(γ2c2) < 1. Then, the class C is the set of continuous, nonnegative functions
satisfying growth condition 0 ≤ φ(x) ≤ [c(γ − δ)2]/M2 for all x for some δ > 0. See [21],
[13], [24], [29] for details.

Note that operators S̃τ do not necessarily form a semigroup, although they do form a
sub-semigroup (i.e. S̃τ1+τ2 [φ](x) ≤ S̃τ1S̃τ2 [φ](x) for all x and all φ in the domain). Further,
it is easily seen that Sm

τ ≤ S̃τ ≤ S̄τ for all m.

Let τ act as a time-discretization step-size and define

Mp,τ =
{
µ : [0,∞) →M| for each n ∈ N ∪ {0}, there exists mn ∈M such that

µ(t) = mn for t ∈ [nτ, (n + 1)τ)
}
,

and for T = n̄τ with n̄ ∈ N define

Mp,τ
T =

{
µ : [0, T ) →M| for each n ∈ {0, 1, 2, . . . , n̄− 1}, there exists mn ∈M

such that µ(t) = mn for t ∈ [nτ, (n + 1)τ)
}
.

Let MN denote the outer product of M N times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max{mk}n̄−1
k=0

∈MN

{
n̄−1∏
k=0

Smk
τ

}
[φ](x).

We make the claim in the following theorem without proof. Roughly speaking it simply
states that any nealy optimal (worst cse) w ∈Mp

T can be arbitrarily closely approximated
(in terms of the cost) by a piecewise constant w ∈Mp,T

τ for some small τ .

Theorem 3.3 Given T < ∞, R < ∞ and ε > 0, there exists N ∈ N sufficiently large
such that letting τ = T/N , one has

S̃T [Wm](x)− ε ≤ ¯̄S
τ

T [Wm](x) ∀x ∈ BR(0) (31)

for all m ∈M.
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In fact, we believe ε ∼ O(τ 2), but that is not needed here.

Note that since Wm,W ∈ C, one has [29]

lim
T→∞

S̃T [Wm] = W̃ ∀m ∈M and, lim
T→∞

S̃T [W ] = W̃ . (32)

Also, for all T < 0,
W̃ = S̃T [W̃ ] = lim

T→∞
S̃T [W̃ ]. (33)

By (32) and (33), given R < ∞ and ε > 0, there exists T̂ < ∞ such that for all T ≥ T̂
and all m ∈M,

S̃T [W̃ ](x)− ε ≤ S̃T [Wm](x) ∀x ∈ BR(0). (34)

Also note that

W = S̄τ [W ] =
n−1∏
k=0

S̄τ [W ] ≥
n−1∏
k=0

Sm
τ [W ]. (35)

Since this is true for all n,

W ≥ lim
T→∞

Sm
T [W ]

and since W ∈ C, one has [29]
= Wm (36)

for any m ∈M. On the other hand,

W =
n−1∏
k=0

S̄τ [W ] ≤
n−1∏
k=0

S̃τ [W ] = S̃nτ [W ]

which implies (using (32))
W ≤ lim

T→∞
S̃T [W ] = W̃ . (37)

Combining (36) and (37), one has

Wm ≤ W ≤ W̃ ∀m ∈M. (38)

Also, by definition it is obvious that

¯̄S
τ

T [φ] ≤ S̃T [φ] ∀φ ∈ C. (39)

Now, by Theorem 3.3 and (34), given R < ∞ and ε > 0, there exist T < ∞ and
n̄ < ∞ such that with τ = T/n̄, one has

W̃ (x)− 2ε = S̃T [W̃ ](x)− 2ε ≤ ¯̄S
τ

T [Wm](x)

which by (38) and (39)

≤ ¯̄S
τ

T [W ](x) ≤ S̃T [W ](x) ≤ S̃T [W̃ ](x) = W̃ (x) ∀x ∈ BR(0). (40)

Since W (x) = S̄τ [W ](x) = (S̄τ )
n̄[W ](x) = ¯̄S

τ

T [W ](x) on BR(0), (40) implies the following.
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Theorem 3.4 Given R < ∞ and ε > 0, there exists τ > 0 such that

W̃ (x)− 2ε ≤ W (x) ≤ W̃ (x) ∀x ∈ BR(0) (41)

where W̃ and W satisfy

W̃ = S̃τ [W̃ ] and W = S̄τ [W ].
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