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Abstract. A new approach to solving two-point boundary value problems for a wave equation is developed. This
new approach exploits the principle of stationary action to reformulate and solve such problems in the framework of
optimal control. In particular, an infinite dimensional optimal control problem is posed so that the wave equation
dynamics and temporal boundary data of interest are captured via the characteristics of the associated Hamiltonian and
choice of terminal payoff respectively. In order to solve this optimal control problem for any such terminal payoff, and
hence solve any two-point boundary value problem corresponding to the boundary data encapsulated by that terminal
payoff, a fundamental solution to the optimal control problem is constructed. Specifically, the optimal control problem
corresponding to any given terminal payoff can be solved via a max-plus convolution of this fundamental solution with
the specified terminal payoff. Crucially, the fundamental solution is shown to be a quadratic functional that is defined
with respect to the unique solution of a set of operator differential equations, and computable using spectral methods.
An example is presented in which this fundamental solution is computed and applied to solve a two-point boundary
value problem for the wave equation of interest.
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1. Introduction. The principle of stationary action, or action principle, states that any trajectory gen-
erated by a conservative system must render the corresponding action functional stationary in the calculus of
variations sense, see for example [10, 11, 12]. As this action functional is defined as the time integral of the
associated Lagrangian, it may be regarded as the payoff due to a unique trajectory generated by some gen-
eralized system dynamics, and corresponding to a specified initial system state. By regarding the velocity of
these generalized dynamics as an input, the action principle may be expressed as an optimal control problem.
Recent work by the authors has exploited this correspondence with optimal control to develop a fundamental
solution to the classical gravitational N -body problem, see [15, 16]. This fundamental solution is a special case
of a more general notion of a fundamental solution semigroup developed for optimal control problems, see for
example [14, 7, 20, 8]. In the specific case of the gravitational N -body problem, by constructing a fundamental
solution to the optimal control problem corresponding to stationary action, a fundamental solution to a class
of N -body two-point boundary value problems (TPBVPs) may also be constructed. In this paper, the corre-
sponding fundamental solution construction for a class of TPBVPs is extended via infinite dimensional systems
theory to a wave equation [19, 3, 4, 5, 6, 7]. The specific wave equation considered is expressed via the partial
differential equation (PDE) and boundary data

∂2u

∂s2
=
( κ
m

) ∂2u
∂λ2

. u(·, 0) = 0 = u(·, L) , L ∈ R>0 . (1.1)

In a mechanical setting (for example), u(s, λ) may be interpreted as the displacement of a vibrating string at
time s ∈ [0, t̄], t̄ ∈ R>0, and location λ ∈ Λ, Λ

.
= (0, L). Here, constants κ,m ∈ R>0 model the distributed

elastic spring constant and mass respectively (with SI units of N and kgm−1). An example pair of initial and
terminal conditions defining a TPBVP of interest is

u(0, ·) = x(·) , u(t, ·) = z(·) , (1.2)

in which x and z denote the initial and terminal displacements. The problem to solve is then

TPBVP(t, x, z)
.
=





Find the initial velocity ∂u
∂s

(0, ·)
(if it exists) such that (1.1) and (1.2)
hold with functions x and z given.

(1.3)
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(Another example of a TPBVP of interest is to determine the initial velocity such that a desired terminal
velocity is attained.) In order to formulate the action principle for system (1.1), note that the potential and
kinetic energies associated with a solution u(s, ·) of (1.1) at time s ∈ [0, t] are respectively denoted by V (u(s, ·))
and T (∂u

∂s
(s, ·)), where V and T are the functionals defined by

V (u(s, ·)) = κ
2

∫

Λ

∣∣∣∣
∂u

∂λ
(s, λ)

∣∣∣∣
2

dλ , T

(
∂u

∂s
(s, ·)

)
= m

2

∫

Λ

∣∣∣∣
∂u

∂s
(s, λ)

∣∣∣∣
2

dλ . (1.4)

The action principle states that any solution u of (1.1) must render the action functional

∫ t

0

V (u(s, ·))− T

(
∂u

∂s
(s, ·)

)
ds (1.5)

stationary in the sense of the calculus of variations [12], where V and T denote the energy functionals as per
(1.4), and the integrand is the Lagrangian or its additive inverse (as selected here). This includes any solution of
the TPBVP (1.3). Hence, by formulating an appropriate optimal control problem encapsulating this variational
problem, solutions of the TPBVP (1.3) may be investigated. In particular, a fundamental solution to the
TPBVP (1.3) can be constructed within the framework of infinite dimensional optimal control, using a more
general notion of fundamental solution semigroup for optimal control [14, 7, 20, 8]. The attendant optimal
control problem and subsequent TPBVP fundamental solution is formulated and developed in Sections 2 and 3.
Useful auxiliary optimal control problems, and their interrelationships, are employed in this development. The
application of this fundamental solution is then considered in the context of an illustrative example in Section
5. Selected technical details of relevance to the development are included in the appendices.

In terms of the notation, R, R≥0, and R>0 denotes the sets of reals, non-negative reals, and positive reals
respectively. Given an open subset D of a Euclidean space and a Banach space Z , the respective spaces of
continuous, continuously differentiable, and Lebesgue square integrable functions mapping D to Z are denoted
by C(D; Z ), C1(D;Z ), and L2(D;Z ). Symbols ∂ and ∂2 denote first and second order differentation for
functions defined on Λ. An operator O : X →Y between Banach spaces X and Y is Fréchet differentiable at
x ∈ X if there exists a bounded linear operator dO(x) ∈ L(X ;Y ) such that the limit lim‖h‖X →0 ‖O(x+ h)−
O(x) − dO(x)h‖Y /‖h‖X exists and is zero.

2. Approximating stationary action via optimal control. Where the action functional is concave
or convex, the action principle can be formulated as an optimal control problem, see for example [15, 16].
However, this convexity or concavity, corresponding to that of the payoff or cost functional, is limited to a finite
time horizon that is determined by parameters associated with the kinetic and potential energies. In the finite
dimensional case, this limited time horizon is strictly positive, so that the conservative dynamics defined by the
action principle can be propagated via solution of the optimal control problem up to that time horizon. However,
in the infinite dimensional case considered here, this limited time horizon tends to zero, see Theorem 2.1 and [6],
thereby complicating the direct application of the approach of [15, 16]. In order to overcome this complication, a
perturbed optimal control problem is formulated that approximates the stationary action principle on a strictly
positive time horizon, thereby allowing the solution of the TPBVP (1.3) to be approximated on that time
horizon. By concatenating such horizons via the dynamic programming principle, solutions on longer horizons
can also be approximated. Such approximations are shown (using well-known semigroup approximation results)
to be exact in the limit of vanishing perturbations, see Section 4.

2.1. Preliminaries. Define an L2 and Sobolev space by

X
.
= L2(Λ;R) , X0

.
=



x ∈ X

∣∣∣∣∣∣

x, ∂x absolutely continuous,
x(0) = 0 = x(L) ,

∂2x ∈ X



 , (2.1)

and let 〈 , 〉 and ‖ · ‖ denote the standard L2 inner product and norm on X . A specific unbounded operator A
of interest in considering the wave equation (1.1) is densely defined on X by

Ax = (Ax)(·) .
= −∂2x(·) , dom (A)

.
= X0 ⊂ X , X0 = X . (2.2)
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Operator A is closed, positive, self-adjoint, and boundedly invertible, and has a unique, positive, self-adjoint,
boundedly invertible square root, denoted by A 1

2 . The inverse of this square root is denoted by J .
= (A 1

2 )−1 ∈
L(X ). See Appendix A (Lemma A.1), [3] (Example 2.2.5, Lemma A.3.73, and Examples A.4.3 and A.4.26),
and also [2]. These properties admit the definition of Hilbert spaces

X 1

2

.
= dom (A 1

2 ) , 〈x, ξ〉 1

2

.
= 〈A 1

2 x, A 1

2 ξ〉 , ∀ x, ξ ∈ X 1

2

, (2.3)

Y 1

2

.
= X 1

2

⊕ X , 〈(x, p), (ξ, π)〉⊕ .
= m 〈x, ξ〉 1

2

+ 1
κ
〈p, π〉 , ∀ x, ξ ∈ X 1

2

, p, π ∈ X . (2.4)

The corresponding norms are denoted by ‖ · ‖ 1

2

and ‖ · ‖⊕. Similarly, it is also convenient to define the set

Y0
.
= X0 ⊕ X 1

2

⊂ Y 1

2

. (2.5)

Operators A and A 1

2 are Riesz-spectral operators, see Appendix B and [3]. Define orthonormal Riesz bases

B .
= {ϕn}∞n=1 , ϕn(·) .=

√
2
L
sin(nπ

L
·) ,

B̃ .
= {ϕ̃n}∞n=1 ⊂ X 1

2

, ϕ̃n(·) .=
√
2L
nπ

sin(nπ
L

·) ,
(2.6)

for X and X 1

2

respectively (see Lemma A.3). The input space for the optimal control problem of interest is

W [r, t]
.
= L2([r, t];X 1

2

) (2.7)

for all t ∈ R≥0, r ∈ [0, t]. The corresponding norm is defined by ‖w‖2
W [r,t]

.
=
∫ t
r
‖w(s)‖21

2

ds.

2.2. Approximating optimal control problem. In order to formulate the action principle for the
conservative infinite dimensional dynamics of (1.1), define the abstract Cauchy problem [19, 3] by

ξ̇(s) = w(s) , ξ(0) = x ∈ X 1

2

, (2.8)

in which ξ(s) denotes the infinite dimensional state at time s ∈ [0, t] that has evolved from initial state x ∈ X 1

2

in the presence of input w ∈ W [0, s]. The derivative in (2.8) is of Fréchet type, defined with respect to the norm
‖ · ‖ 1

2

. The mild solution [19, 3] of (2.8) is defined as

ξ(s) = x+

∫ s

0

w(σ) dσ (2.9)

for all x ∈ X 1

2

, w ∈ W [0, s], s ∈ [0, t]. In view of these dynamics, define the payoff (action) functional

Jµm,ψ : [0, t̄)× X 1

2

× W [0, t̄)→R for some t̄ ∈ R>0 by

Jµm,ψ(t, x, w)
.
=

∫ t

0

κ
2 ‖ξ(s)‖21

2

− m
2 ‖J µ w(s)‖21

2

ds+ ψ(ξ(t)) , (2.10)

in which κ, m ∈ R>0 are physical constants as per (1.1), µ ∈ R>0 is a real-valued perturbation parameter,
J µ : X 1

2

→X0 × X 1

2

is a bounded linear operator given by

J µ w
.
=

[
J
µ I

]
w , (2.11)

I is the identity operator on X 1

2

, and ψ : X 1

2

→R is any concave terminal payoff. In the integrand in (2.10),

note that ‖ξ(s)‖ 1

2

≡ ‖∂ξ(s)‖ is well-defined as ξ(s) ∈ X 1

2

for each s ∈ [0, t]. Note also that ‖J w(s)‖ 1

2

≡ ‖w(s)‖
is well-defined as ran (J ) = X 1

2

. Consequently, (2.10) approximates the action functional (1.5) as

∫ t

0

V (u(s, ·))− T µ
(
∂u

∂s
(s, ·)

)
ds (2.12)
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where T µ : X 1

2

→R is the approximate kinetic energy functional defined analogously to (1.4) by

T µ
(
∂u

∂s
(s, ·)

)
.
= m

2

(∥∥∥∥
∂u

∂s
(s, ·)

∥∥∥∥
2

+ µ2

∥∥∥∥
∂u

∂s
(s, ·)

∥∥∥∥
2

1

2

)
= m

2 ‖J µ w(s)‖21
2

. (2.13)

Note in particular that the ‖ · ‖21
2

term introduces a penalty on spatial ripples in ∂u
∂s

(s, ·) for µ 6= 0. This term

vanishes for µ = 0, so that T = T 0 by inspection of (1.4) and (2.13).
In order to ensure that the optimal control problem defined via the payoff functional Jµm,ψ of (2.10) has a

finite value, it is critical to establish the existence of a t̄µ ∈ R>0 in (2.10) such that Jµm,ψ(t, x, ·) is either convex
or concave for all t ∈ [0, t̄µ) and x ∈ X 1

2

. To this end, it may be shown (see Theorem 2.1 at the end of this

section) that the second difference ∆Jµm,ψ(t, x, w
∗, δ w̃)

.
= Jµm,ψ(t, x, w

∗+δw̃)−2 Jµm,ψ(t, x, w
∗)+Jµm,ψ(t, x, w

∗−δw̃)
of Jµm,ψ(t, x, ·) for an input w∗ ∈ W [0, t] in direction w̃ ∈ W [0, t], δ ∈ R (with δ ‖w̃‖W [0,t] 6= 0) satisfies

∆Jµm,ψ(t, x, w
∗, δ w̃) ≤ −δ2

[
mµ2 − κ ( t

2

2 )
]
‖w̃‖2

W [0,t] < 0 (2.14)

for all t ∈ [0, t̄µ), provided the terminal payoff ψ is concave, where

t̄µ
.
= µ (2m

κ
)

1

2 . (2.15)

That is, the payoff functional Jµm,ψ(t, x, ·) of (2.10) is strictly concave under these conditions. Consequently,
the approximate action principle (modified to include a concave terminal payoff ψ, and perturbed by µ ∈ R>0)
may be expressed via the value function Wµ : R≥0 × X 1

2

→R,

Wµ(t, x)
.
= sup
w∈W [0,t]

Jµm,ψ(t, x, w) . (2.16)

By interpreting (2.16) as an optimal control problem, it is shown that the state feedback characterization of
the optimal (velocity) input for the approximate action principle is defined via w∗(s) = k(s, ξ∗(s)), where

k(s, x)
.
= 1

m
A 1

2 IµA
1

2 ∇xW
µ(t− s, x). Here, ξ∗(·) denotes the trajectory (2.8) corresponding to input w∗, and

Iµ is a self-adjoint bounded linear operator that approximates the identity for small µ ∈ R>0 (to be defined
later). Consequently, by selecting a terminal payoff that forces the terminal displacement ξ(t) to z (fixed apriori
as per (1.3)), the corresponding initial velocity required to achieve this terminal displacement is shown to be

w(0) = 1
m
A 1

2 IµA
1

2 ∇xW
µ(t, ξ∗(0)) = 1

m
A 1

2 IµA
1

2 ∇xW
µ(t, x) .

The characteristic equations corresponding to the Hamiltonian associated with (2.16) imply that this initial
velocity determines the corresponding initial momentum costate. Here, it is convenient to define a scaled

costate π(s)
.
= m I− 1

2

µ w(s), so that the initialization π(0) = p
.
= m I− 1

2

µ w(0) ultimately yields the terminal
displacement z after evolution of the state and costate dynamics to time t ∈ (0, t̄µ). This evolution is governed
by the abstract Cauchy problem

(
ξ̇(s)
π̇(s)

)
= A⊕

µ

(
ξ(s)
π(s)

)
, A⊕

µ

.
=

(
0 1

m
I

1

2

µ

−κA 1

2 I
1

2

µ A 1

2 0

)
, dom (A⊕

µ )
.
= Y 1

2

, (2.17)

in which ξ(s) and π(s) denote the state and costate at time s ∈ [0, t], evolved from ξ(0) = x and π(0) = p. The
uniformly continuous semigroup of bounded linear operators T ⊕

µ (s) ∈ L(Y 1

2

) generated by A⊕
µ ∈ L(Y 1

2

) yields

solutions of (2.17) of the form
(
ξ(s)
π(s)

)
= T ⊕

µ (s)

(
ξ
π

)
, (2.18)

for all s ∈ [0, t], with ξ solving an approximation of the wave equation (1.1) given by

ξ̈(s) = −( κ
m
)A 1

2 IµA
1

2 ξ(s) (2.19)
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for s ∈ R≥0. Furthermore, A⊕
µ is shown to converge strongly (as µ → 0) to an unbounded, closed, and densely

defined operator A⊕ on Y0
.
= dom (A⊕)

.
= X0×X 1

2

. This operator defines the related abstract Cauchy problem

(
ẋ(s)
ṗ(s)

)
= A⊕

(
x(s)
p(s)

)
, A⊕ .

=

(
0 1

m
I

−κA 0

)
, dom (A⊕)

.
= Y0

.
= X0 ⊕ X 1

2

, (2.20)

and is the generator of the C0-semigroup of bounded linear operators T ⊕(t) ∈ L(Y 1

2

), t ∈ R≥0, yielding all

solutions of (2.20) of the form

(
x(s)
p(s)

)
= T ⊕(s)

(
x
p

)
, (2.21)

in which x(s) and p(s) denote the state and costate analogously to (2.18). Crucially, the state x is the solution
is the wave equation (1.1) itself. As the first Trotter-Kato theorem (e.g. [9]) implies that the semigroup T ⊕

µ (t)
converges strongly to T ⊕(t) for t ∈ R≥0 on bounded intervals, solutions (2.18) of (2.19) converge to solutions
(2.21) of (1.1) as µ→ 0. In this sense, solutions of the TPBVP (1.3) defined with respect to the wave equation
(1.1) may be approximated via the optimal control problem defined by (2.16).

Where the terminal velocity is specified (rather than the terminal position as in (1.3)), this same approach
may be applied by employing the terminal payoff

ψ(x) = ψv(x)
.
= m 〈J J v, x〉 1

2

. (2.22)

In that case, the terminal momentum costate is given by

π(t) = A 1

2 I
1

2

µ A 1

2 ∇xW
µ(0, ξ∗(t)) = A 1

2 I
1

2

µ A 1

2 ∇xψv(ξ
∗(t)) = m I

1

2

µ v .

Hence, by solving the optimal control problem (2.16) defined with respect to terminal payoff ψv of (2.22), the
infinite dimensional dynamics of (2.19) can be propagated forward from a known initial position x ∈ X0 ⊂ X 1

2

to a known terminal velocity ξ̇(t) = Iµ v ∈ X0. As in the terminal position case, this approximation converges

to the actual wave equation dynamics satisfying ξ̇(t) = v ∈ X 1

2

as µ → 0. The rigorous development yielding

this conclusion commences with a theorem concerning the concavity of the payoff functional Jµm,ψ of (2.10).
Theorem 2.1. Given t ∈ R>0, x ∈ X 1

2

, and concave terminal payoff ψ : X 1

2

→R, the payoff functional

Jµm,ψ(t, x, ·) of (2.10) is strictly concave. In particular, the second difference ∆Jµm,ψ(t, x, w
∗, δ w̃)

.
= Jµm,ψ(t, x, w

∗+

δw̃) − 2 Jµm,ψ(t, x, w
∗) + Jµm,ψ(t, x, w

∗− δw̃) of the payoff functional Jµm,ψ(t, x, ·) at any w∗ ∈ W [0, t] is strictly
negative as per (2.14) for any direction δ w̃ ∈ W [0, t] in the input space defined by δ ∈ R, δ ‖w̃‖W [0,t] 6= 0.

Proof. Fix t ∈ R>0, x ∈ X 1

2

, w∗ ∈ W [0, t], δ w̃ ∈ W [0, t] and δ ∈ R, with δ ‖w̃‖W [0,t] 6= 0, as per the

theorem statement. Define the trajectories corresponding to inputs w∗ and ŵ
.
= w∗ + δ w̃ via (2.8) as

ξ∗(r)
.
= x+

∫ r

0

w∗(s) ds , ξ̂(r)
.
= x+

∫ r

0

w∗(s) + δ w̃(s) ds = ξ∗(r) + δ ξ̃(r) , ξ̃(r)
.
=

∫ r

0

w̃(s) ds , (2.23)

where r ∈ [0, t]. The integrated action functional in the payoff (2.10) is of the form
∫ t
0
V (ξ(s)) − T µ(w(s)) ds,

where V and T µ are quadratic functionals given by

V (ξ(s))
.
= κ

2 ‖ξ(s)‖
2
1

2

, T µ(w(s))
.
= m

2 ‖J µw(s)‖21
2

, (2.24)

with operator J µ as per (2.11). Applying (2.23) in (2.24),

V (ξ∗(r) + δ ξ̃(r)) = V (ξ∗(r)) + δ κ

〈
ξ∗(r),

∫ r

0

w̃(s) ds

〉

1

2

+ δ2 (κ2 )

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

, (2.25)

T µ(w∗(r) + δ w̃(r)) = T (w∗(r)) + δ m
[
〈J w∗(r), J w̃(r)〉 1

2

+ µ2 〈w∗(r), w̃(r)〉 1

2

]

+ δ2 (m2 )
[
‖J w̃(r)‖21

2

+ µ2 ‖w̃(r)‖21
2

]
. (2.26)

5



Hence, combining (2.10), (2.25), and (2.26),

Jµm,ψ(t, x, w
∗ + δ w̃)− Jµm,ψ(t, x, w

∗)

=

∫ t

0

V (ξ∗(r) + δ ξ̃(r)) − V (ξ∗(r)) − [T µ(w∗(r) + δ w̃(r)) − T µ(w∗(r))] dr + ψ(ξ∗(t) + δ ξ̃(t))− ψ(ξ∗(t))

=

∫ t

0

δ κ

〈
ξ(r),

∫ r

0

w̃(s) ds

〉

1

2

+ δ2 (κ2 )

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

− δ m
[
〈J w∗(r), J w̃(r)〉 1

2

+ µ2 〈w∗(r), w̃(r)〉 1

2

]
− δ2 (m2 )

[
‖J w̃(r)‖21

2

+ µ2 ‖w̃(r)‖21
2

]
dr

+ ψ(ξ∗(t) + δ ξ̃(t))− ψ(ξ∗(t)) (2.27)

A corresponding expression for Jµm,ψ(t, x, w
∗ − δ w̃) − Jµm,ψ(t, x, w

∗) follows by replacing δ with −δ in (2.27).

Adding this expression to (2.27) yields the second difference ∆Jµm,ψ(t, x, w
∗, δ w̃) of Jµm,ψ(t, x, w

∗) at w∗ in
direction δ w̃, with

∆Jµm,ψ(t, x, w
∗, δ w̃) =

∫ t

0

δ2 κ

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

− δ2m
[
‖J w̃(r)‖21

2

+ µ2 ‖w̃(r)‖21
2

]
dr +∆ψ(ξ∗(t), δ ξ̃(t)) , (2.28)

where ∆ψ(ξ∗(t), δ ξ̃(t))
.
= ψ(ξ∗(t) + δ ξ̃(t))− 2ψ(ξ∗(t)) + ψ(ξ∗(t)− δ ξ̃(t)) is the second difference of ψ at ξ∗(t)

in direction δ ξ̃(t). With a view to dealing with first term on the right-hand side of (2.28), define qw̃
.
= ξ̃(r) =∫ r

0
w̃(σ) dσ ∈ X 1

2

and Π : X 1

2

→R by Πω
.
= 〈ω, qw̃〉 1

2

. Note that Π is a closed linear operator (a functional) in

L(X 1

2

;R). Also note that for w̃ ∈ W [0, r], r ∈ [0, t], Hölder’s inequality and Cauchy-Schwartz implies that

∫ r

0

‖w̃(s)‖ 1

2

ds ≤
√
r ‖w̃‖W [0,r] ,

∫ r

0

|Π w̃(s)| ds =
∫ r

0

|〈qw̃, w̃(s)〉 1

2

| ds ≤
√
r ‖qw̃‖ 1

2

‖w̃‖W [0,r] <∞ . (2.29)

That is, w̃ ∈ L1([0, r];X 1

2

) and Π w̃ ∈ L1([0, r];R). Hence, as X 1

2

and R are separable Hilbert spaces (separa-

bility of the former follows by existence of a countable basis, see Lemma A.3), it follows by [3, Theorem A.5.23,
p.628] (for example) that

Π

∫ r

0

w̃(s) ds =

∫ r

0

Π w̃(s) ds . (2.30)

Recalling the definition of Π,

Π

∫ r

0

w̃(s) ds =

〈∫ r

0

w̃(s) ds, qw̃

〉

1

2

=

〈∫ r

0

w̃(s) ds,

∫ r

0

w̃(σ) dσ

〉

1

2

=

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

, (2.31)

while

∫ r

0

Π w̃(s) ds =

∫ r

0

〈w̃(s), qw̃〉 1

2

ds =

∫ r

0

〈
w̃(s),

∫ r

0

w̃(σ) dσ

〉

1

2

ds =

∫ r

0

∫ r

0

〈w̃(s), w̃(σ)〉 1

2

dσ ds

≤
∫ r

0

∫ r

0

‖w̃(s)‖ 1

2

‖w̃(σ)‖ 1

2

dσ ds =

(∫ r

0

‖w̃(s)‖ 1

2

ds

)2

≤ r ‖w̃‖2
W [0,r] ≤ r ‖w̃‖2

W [0,t] , (2.32)

in which [3, Theorem A.5.23, p.628] is applied a second time to obtain the third equality, and the left-hand
inequality in (2.29) is applied to obtained the upper bound. Hence, combining (2.31) and (2.32) in (2.30) yields

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

≤ r ‖w̃‖2
W [0,t] ,
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which in turn implies that the first term on the right-hand side of (2.28) is

∫ t

0

δ2 κ

∥∥∥∥
∫ r

0

w̃(s) ds

∥∥∥∥
2

1

2

dr ≤ δ2 κ

∫ t

0

r dr ‖w̃‖2
W [0,t] = δ2 κ ( t

2

2 ) ‖w̃‖
2
W [0,t] . (2.33)

Substituting (2.33) in (2.28) thus yields the second difference bound

∆Jµm,ψ(t, x, w
∗, δ w̃) ≤ −δ2

[
mµ2 − κ ( t

2

2 )
]
‖w̃‖2

W [0,t] − δ2m ‖J w̃‖2
W [0,t] +∆ψ(ξ∗(t), δ ξ̃(t)) . (2.34)

As the second difference ∆ψ(ξ∗(t), δ ξ̃(t)) is non-positive by concavity of ψ, (2.34) is strictly negative if mµ2 −
κ ( t

2

2 ) > 0. That is, if t ∈ [0, t̄µ), where t̄µ ∈ R>0 is as per (2.15). Under these conditions, it follows immediately
that the payoff functional Jµm,ψ(t, x, ·) of (2.10) is strictly concave.

3. Fundamental solution to the approximating optimal control problem. A fundamental solution
in this optimal control context is an object from which the value function Wµ of (2.16) can be computed given
any concave terminal payoff ψ. This fundamental solution is constructed via four auxiliary control problems.

3.1. Auxiliary control problems. The auxiliary control problems of interest employ the same running
payoff as used in (2.10) to define the approximating optimal control problem (2.16). A specific terminal payoff
is used in each auxiliary problem. Two of these terminal payoffs depend on an additional function z ∈ X 1

2

describing the terminal displacement. These terminal payoffs are denoted by ψµ,c : X 1

2

× X 1

2

→R, ψµ,∞ :

X 1

2

× X 1

2

→R ∪ {−∞}, and ψ0 : X 1

2

→R, where µ, c ∈ R≥0 denote real-valued parameters. Specifically,

ψ0(x)
.
= 0 , ψµ,c(x, z)

.
= − c

2 ‖Kµ (x− z)‖21
2

, ψµ,∞(x, z)
.
=

{
0 , ‖Kµ (x− z)‖ 1

2

= 0 ,

−∞ , ‖Kµ (x− z)‖ 1

2

> 0 ,
(3.1)

where Kµ ∈ L(X 1

2

) is a boundedly invertible operator to be defined later. Using these terminal payoffs and

a fixed real-valued parameter m ∈ (0,m), the four auxiliary control problems of interest are defined via their
respective (auxiliary) value functions

W
µ
: R≥0 × X 1

2

→R , W
µ,c
, Wµ,c : R≥0 × X 1

2

× X 1

2

→R , Wµ,∞ : R≥0 × X 1

2

× X 1

2

→R ∪ {−∞},

where

W
µ
(t, x)

.
= sup

w∈W [0,t]

Jµ
m,ψ0(t, x, w) , W

µ,c
(t, x, z)

.
= sup
w∈W [0,t]

Jµ
m,ψµ,c(·,z)(t, x, w) , (3.2)

Wµ,c(t, x, z)
.
= sup

w∈W [0,t]

Jµ
m,ψµ,c(·,z)(t, x, w) , (3.3)

Wµ,∞(t, x, z)
.
= sup

w∈W [0,t]

Jµ
m,ψµ,∞(·,z)(t, x, w) . (3.4)

The majority of the subsequent analysis will concern the value function Wµ,c of (3.3) and its convergence to
Wµ,∞ of (3.4) as c → ∞. Ultimately, Wµ,∞ plays the role of the fundamental solution for the optimal control
problem (2.16), in the sense that

Wµ(t, x) = sup
z∈X 1

2

{Wµ,∞(t, x, z) + ψ(z)} (3.5)

for all t ∈ R≥0, x ∈ X 1

2

. The remaining value functionsW
µ
andW

µ,c
are useful in ensuring that these auxiliary

problems are well-defined. In particular, note by inspection of the value functions (3.2)–(3.4) that

W
µ
(t, x) ≥W

µ,c
(t, x, z) ≥Wµ,c(t, x, z) ≥Wµ.∞(t, x, z) > −∞ (3.6)

for all t ∈ R>0, x, z ∈ X 1

2

. Here, the last inequality follows by noting that the specific constant input ŵ ∈ W [0, t]

defined by ŵ(s)
.
= 1

t
(z − x) for all s ∈ [0, t] is suboptimal in the definition (3.4) of Wµ,∞(t, x, z). In particular,

Wµ,∞(t, x, z) ≥ Jµ
m,ψµ,∞(·,z)(t, x, ŵ) ≥ −m

2 t ‖z − x‖21
2

> −∞. The following is assumed throughout.

Assumption 1. W
µ
(t, x) <∞ for all µ ∈ (0, 1], t ∈ (0, t̄µ), x ∈ X 1

2

.
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3.2. Fundamental solution. In order to construct a fundamental solution to the optimal control problem
(2.16), it is useful to define the value functional Ŵµ : R≥0 × X 1

2

→R by

Ŵµ(t, x)
.
= sup
z∈X 1

2

{Wµ,∞(t, x, z) + ψ(z)} . (3.7)

Theorem 3.1. The value functionals Wµ and Ŵµ of (2.16) and (3.7) are equivalent, with Wµ(t, x) =

Ŵµ(t, x) for all t ∈ [0, t̄µ) and x ∈ X 1

2

.

Proof. Fix t ∈ [0, t̄µ), x ∈ X 1

2

. Substituting (3.4) in (3.7), and recalling (3.1),

Ŵµ(t, x) = sup
z∈X 1

2

sup
w∈W [0,t]

{
Jµ
m,ψ0(t, x, w) + ψµ,∞(ξ(t), z) + ψ(z)

∣∣∣∣
(2.8) holds with

ξ(0) = x

}

= sup
w∈W [0,t]

sup
z∈X 1

2

{
Jµ
m,ψ0(t, x, w) + ψµ,∞(ξ(t), z) + ψ(z)

∣∣∣∣
(2.8) holds with

ξ(0) = x

}

= sup
w∈W [0,t]



J

µ
m,ψ0(t, x, w) + sup

z∈X 1

2

{ψµ,∞(ξ(t), z) + ψ(z)}
∣∣∣∣
(2.8) holds with

ξ(0) = x



 . (3.8)

By inspection of (3.1), the inner supremum must be achieved at z = z∗
.
= ξ(t), with supz∈X 1

2

{ψµ,∞(ξ(t), z) +

ψ(z)} = ψµ,∞(ξ(t), z∗) + ψ(z∗) = 0 + ψ(ξ(t)) = ψ(ξ(t)). Substituting in (3.8) and recalling (2.16) yields that

Ŵµ(t, x) = sup
w∈W [0,t]

{
Jµ
m,ψ0(t, x, w) + ψ(ξ(t))

∣∣∣∣
(2.8) holds with

ξ(0) = x

}
= sup

w∈W [0,t]

Jµm,ψ(t, x, w) =Wµ(t, x).

Theorem 3.1 provides an explicit decomposition of the approximating optimal control problem associated
with the principle of stationary action. In particular, it provides a means of evaluating of the value functional
Wµ of (2.16) for any concave terminal payoff ψ, including that of (2.22). In this regard, inspection of (3.7) via
Theorem 3.1 reveals that Wµ,∞ of (3.4) can be regarded as an approximation (for µ 6= 0) of the fundamental
solution to the TPBVP (1.3) via the principle of stationary action. Consequently, characterization of an explicit
representation of Wµ,∞ is important for its application in the computation of Wµ.

3.3. Explicit representation of the fundamental solution. In order to characterize the fundamental
solution of the approximating optimal control problem (2.16) via Theorem 3.1, an explicit form for the value
function Wµ,∞ of (3.4) may be constructed via three steps:

❶ Show that the value function Wµ,∞ of (3.4) may be obtained as the limit of Wµ,c of (3.3) as c→ ∞;
❷ Develop a verification theorem that provides a means for proposing and validated an explicit represen-

tation for the value function Wµ,c of (3.3);
❸ Find an explicit representation satisfying the conditions of the verification theorem of ❷, and apply the

limit argument of ❶ to obtain the corresponding representation for Wµ,∞ of (3.4).

3.3.1. Limit argument – ❶. This first step is formalized via the following theorem.
Theorem 3.2. The auxiliary value functions Wµ,c, Wµ,∞ of (3.3), (3.4) satisfy the limit relationship

lim
c→∞

Wµ,c(t, x, z) =Wµ,∞(t, x, z) (3.9)

for all t ∈ [0, t̄µ), x, z ∈ X 1

2

.
In order to demonstrate the limit property summarized by Theorem 3.2, it is useful to first note that a ball

of any fixed radius centered on z ∈ X 1

2

can be reached by a sufficiently near-optimal trajectory defined with

respect to (3.3).
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Lemma 3.3. Fix t ∈ [0, t̄µ) and x, z ∈ X 1

2

. For each ǫ ∈ R>0, there exists a c̄
.
= c̄ǫt,x,z ∈ R>0, δ̄ ∈ (0, 1],

such that
∥∥ξc,δ(t)− z

∥∥
1

2

≤ ǫ for all c ∈ (c̄,∞) and δ ∈ (0, δ̄), where ξc,δ(·) denotes the trajectory of system (2.8)

corresponding to any δ-optimal input wc,δ ∈ W [0, t] in the definition (3.3) of Wµ,c(t, x, z).
Proof. Fix t ∈ [0, t̄µ) and x, z ∈ X 1

2

. Recalling the assumed bounded invertibility of Kµ on X 1

2

, see (3.1),

set κµ
.
=
∥∥K−1

µ

∥∥2
1

2

∈ R>0. Suppose the statement of the lemma is false. That is, there exists an ǫ ∈ R>0 such

that for all c̄ ∈ R>0 and δ̄ ∈ (0, 1], there exists a c ∈ (c̄,∞) and δ ∈ (0, δ̄) such that
∥∥ξc,δ(t)− z

∥∥
1

2

> ǫ. So,

given this ǫ ∈ R>0, choose a specific c̄ ∈ R>0 and δ̄ ∈ (0, 1] such that

( c̄
2κµ

) ǫ2 − δ̄ ≥W
µ
(t, x) −Wµ,∞(t, x, z) . (3.10)

(Note that this is always possible by Assumption 1.) Let c ∈ (c̄,∞) and δ ∈ (0, δ̄) be such that
∥∥ξc,δ(t)− z

∥∥
1

2

> ǫ

as per the hypothesis above. Note by bounded invertibility of Kµ on X 1

2

,

ǫ2 <
∥∥K−1

µ Kµ (ξc,δ(t)− z)
∥∥2

1

2

≤ κµ
∥∥Kµ (ξc,δ(t)− z)

∥∥2
1

2

. (3.11)

Hence, by definition of any δ-optimal input wc,δ in Wµ,c(t, x, z) of (3.3),

Wµ,c(t, x, z)− δ < Jµ
m,ψc(·,z)

(
t, x, wc,δ

)
= Jµ

m,ψ0(t, x, w
c,δ) + ψµ,c

(
ξc,δ(t), z

)

≤W
µ
(t, x)− c

2

∥∥Kµ (ξc,δ(t)− z)
∥∥2

1

2

≤W
µ
(t, x) − ( c

2κµ
) ǫ2 ,

where the equality follows by (3.1), while the inequalities follow by suboptimality of wc,δ in the definition (3.3)
of Wµ,c, (3.6), and (3.11). Consequently, W

µ
(t, x)−Wµ,∞(t, x, z) ≥W

µ
(t, x)−Wµ,c(t, x, z) ≥ ( c

2κµ
) ǫ2 − δ >

( c̄
2 κµ

) ǫ2 − δ̄, which contradicts (3.10). Hence, the assertion in the lemma statement is true.

An upper norm bound on near-optimal inputs is also useful.
Lemma 3.4. With c ∈ R>0, δ ∈ (0, 1], t ∈ [0, t̄µ), and x, z ∈ X 1

2

fixed, any input wc,δ ∈ W [0, t] that is

δ-optimal in the definition (3.3) of Wµ,c(t, x, z) satisfies the bound

‖J µwc,δ‖W [0,t] ≤Mµ,c,δ(t, x, z) ≤M
µ
(t, x, z) (3.12)

where

Mµ,c,δ(t, x, z)
.
=

(
W

µ,c
(t, x, z)−Wµ,c(t, x, z) + δ

1
2 (m−m)

) 1

2

, M
µ
(t, x, z)

.
=

(
W

µ
(t, x) −Wµ,∞(t, x, z) + 1

1
2 (m−m)

) 1

2

.

Proof. Input wc,δ ∈ W [0, t] is respectively sub-optimal and δ-optimal in the definitions (3.2) and (3.3) of
W

µ,c
(t, x, z) and Wµ,c(t, x, z), so that

W
µ,c

(t, x, z) ≥ Jµ
m,ψc(·,z)(t, x, w

c,δ) =

∫ t

0

κ
2 ‖ξc,δ(s)‖21

2

− m

2 ‖J µwc,δ(s)‖21
2

ds+ ψµ,c
(
ξc,δ(t), z

)
,

Wµ,c(t, x, z)− δ < Jµ
m,ψc(·,z)(t, x, w

c,δ) =

∫ t

0

κ
2 ‖ξc,δ(s)‖21

2

− m
2 ‖J µwc,δ(s)‖21

2

ds+ ψµ,c
(
ξc,δ(t), z

)
,

in which ξc,δ(·) denotes the trajectory corresponding to wc,δ(·). The left-hand inequality of (3.12) follows by
subtracting the second inequality above from the first, while the right-hand inequality of (3.12) follows by
application of (3.6) in the definition of Mµ,c,δ(t, x, z) to yield the upper bound M

µ
(t, x, z).

Lemmas 3.3 and 3.4 facilitate the proof of the required limit property of Theorem 3.2.
Proof. [Theorem 3.2] Fix t ∈ [0, t̄µ) and x, z ∈ X 1

2

. Observe that for all c ∈ R≥0, c1 ∈ R≥c,

ψµ,c(x, z) ≥ ψµ,c1(x, z) ≥ ψµ,∞(x, z) , Wµ,c(t, x, z) ≥Wµ,c1(t, x, z) ≥Wµ,∞(t, x, z) ,
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where the first set of inequalities follows immediately by inspection of (3.1), which in turn implies the second
set of inequalities by inspection of (3.3) and (3.4). That is, Wµ,c is non-increasing in c and satisfies

lim
c→∞

Wµ,c(t, x, z) ≥Wµ,∞(t, x, z) . (3.13)

In order to prove the opposite inequality required to demonstrate (3.9), a sub-optimal input for Wµ,∞ is
constructed from a near-optimal input for Wµ,c. To this end, fix an arbitrary ǫ ∈ R>0. With ξc,δ(·) and wc,δ(·)
as per the statement of Lemma 3.3, there exists a c̄ ∈ R>0 and δ̄ ∈ (0, 1] such that

∥∥ξc,δ(t)− z
∥∥

1

2

≤ ǫ (3.14)

for all c ∈ (c̄,∞) and δ ∈ (0, δ̄). Define a new input ŵc,δ ∈ W [0, t] by

ŵc,δ(s)
.
= wc,δ(s) + 1

t

(
z − ξc,δ(t)

)
(3.15)

for all s ∈ [0, t]. By inspection of (2.8) and (3.15), the corresponding state trajectory ξ̂c,δ(·) satisfies

ξ̂c,δ(s) = x+

∫ s

0

ŵc,δ(σ) dσ = x+

∫ s

0

wc,δ(σ) dσ + s
t

(
z − ξc,δ(t)

)
= ξc,δ(s) + s

t

(
z − ξc,δ(t)

)
, (3.16)

so that ξ̂c,δ(0) = x and ξ̂c,δ(t) = z. However, as ξc,δ(t) need not equal z, (3.1) implies that ψµ,c
(
ξc,δ(t), z

)
=

− c
2

∥∥Kµ (ξc,δ(t)− z)
∥∥2

1

2

≤ 0 = ψµ,∞(ξ̂c,δ(t), z). So, for all c ∈ (c̄,∞), δ ∈ (0, δ̄),

Wµ,c(t, x, z)− δ < Jµ
m,ψc(·,z)(t, x, w

c,δ) =

∫ t

0

κ
2 ‖ξc,δ(s)‖21

2

− m
2 ‖J µ wc,δ(s)‖21

2

ds+ ψµ,c(ξc,δ(t), z)

≤
∫ t

0

κ
2 ‖ξ̂c,δ(s)‖21

2

− m
2 ‖J µ ŵc,δ(s)‖21

2

ds+ ψµ,∞(ξ̂c,δ(t), z) + ∆µ,ǫ(t, x, z) = Jµ
m,ψ∞(·,z)

(
t, x, ŵc,δ

)
+∆µ,ǫ(t, x, z)

≤Wµ,∞(t, x, z) + ∆µ,ǫ(t, x, z) , (3.17)

where sub-optimality of ŵc,δ in the definition (3.4) of Wµ,∞(t, x, z) has been applied, and

∆µ,ǫ(t, x, z)
.
=

∫ t

0

κ
2

(
‖ξc,δ(s)‖21

2

− ‖ξ̂c,δ(s)‖21
2

)
− m

2

(
‖J µ wc,δ(s)‖21

2

− ‖J µ ŵc,δ(s)‖21
2

)
ds

≤
∫ t

0

κ
2

(
‖ξ̂c,δ(s)‖ 1

2

+ ‖ξc,δ(s)‖ 1

2

)
‖ξ̂c,δ(s)− ξc,δ(s)‖ 1

2

+ m
2

(
‖J µ ŵc,δ(s)‖ 1

2

+ ‖J µwc,δ(s)‖ 1

2

)
×

‖J µ (ŵc,δ(s)− wc,δ(s))‖ 1

2

ds . (3.18)

(Here, the upper bound follows by the triangle inequality.) Note that ∆µ,ǫ(t, x, z) is parameterized by ǫ ∈ R>0

via c̄ and δ̄ (see Lemma 3.3). In order to bound the right-hand side of (3.18), Hölder’s inequality implies that
for any Hilbert space Z (with norm denoted by ‖ · ‖Z ) and any z, ẑ ∈ Z [0, t]

.
= L2([0, t];Z ),

∫ t

0

(‖ẑ(s)‖Z + ‖z(s)‖Z ) ‖ẑ(s)− z(s)‖
Z
ds ≤

(∫ t

0

(‖ẑ(s)‖Z + ‖z(s)‖Z )
2
ds

) 1

2
(∫ t

0

‖ẑ(s)− z(s)‖2
Z
ds

) 1

2

≤
√
2
(
‖ẑ‖2

Z [0,t] + ‖z‖2
Z [0,t]

) 1

2 ‖ẑ − z‖
Z [0,t] ≤

√
2
(
‖ẑ‖Z [0,t] + ‖z‖Z [0,t]

)
‖ẑ − z‖

Z [0,t] , (3.19)

in which ‖z‖2
Z [0,t]

.
=
∫ t
0
‖z(s)‖2

Z
ds. Meanwhile, the triangle inequality states that

‖ẑ‖Z [0,t] ≤ ‖ẑ − z‖Z [0,t] + ‖z‖Z [0,t] . (3.20)

With a view to applying (3.19) and (3.20) to the right-hand side of (3.18), note that by (2.11) and (3.15),

‖J µ (ŵc,δ(s)− wc,δ(s))‖21
2

= ‖J (ŵc,δ(s)− wc,δ(s))‖21
2

+ µ2 ‖ŵc,δ(s)− wc,δ(s)‖21
2
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= ‖J 1
t
(z − ξc,δ(t))‖21

2

+ µ2 ‖ 1
t
(z − ξc,δ(t))‖21

2

= 1
t2
‖J A 1

2 (z − ξc,δ(t))‖2 + µ2

t2
‖z − ξc,δ(t)‖21

2

≤ ‖J‖2+µ2

t2
‖z − ξc,δ(t)‖21

2

≤
(

‖J‖2+µ2

t2

)
ǫ2 ,

where commutation of J ∈ L(X ) and A 1

2 follows by Lemma A.1. Hence, integration yields

∥∥J µ (ŵc,δ − wc,δ)
∥∥

W [0,t]
≤
(∫ t

0

(
‖J‖2+µ2

t2

)
ǫ2 ds

) 1

2

=
(

‖J‖2+µ2

t

) 1

2

ǫ . (3.21)

Consequently, Lemma 3.4, (3.20), and (3.21) together imply that

∥∥J µwc,δ
∥∥

W [0,t]
≤M

µ
(t, x, z) ,

∥∥J µ ŵc,δ
∥∥

W [0,t]
≤M

µ
(t, x, z) +

(
‖J‖2+µ2

t

) 1

2

ǫ . (3.22)

Similarly, (3.14) and (3.16) imply that

∥∥∥ξ̂c,δ − ξc,δ
∥∥∥

W [0,t]
= 1

t

∥∥z − ξc,δ(t)
∥∥

1

2

(∫ t

0

s2 ds

) 1

2

≤ 1
t
ǫ
(
t3

3

) 1

2

=
(
t
3

) 1

2 ǫ . (3.23)

As ŵc,δ is sub-optimal in the definition (3.4) of Wµ,∞(t, x, z), while ψµ,∞(ξ̂c,δ(t), z) = 0 by (3.1) and (3.16),

Wµ,∞(t, x, z) ≥
∫ t

0

κ
2 ‖ξ̂c.δ(s)‖21

2

− m
2 ‖J µ ŵc,δ(s)‖21

2

ds+ ψµ,∞(ξ̂c,δ(t), z) = κ
2 ‖ξ̂

c,δ‖2
W [0,t] − m

2 ‖J µ ŵc,δ‖2
W [0,t] ,

or, equivalently, ‖ξ̂c,δ‖2
W [0,t] ≤ 2

κ
Wµ,∞(t, x, z) + m

κ
‖J µ ŵc,δ‖2

W [0,t]. Applying the second inequality of (3.22),

the triangle inequality, and (3.23) yields the respective inequalities

∥∥∥ξ̂c,δ
∥∥∥

W [0,t]
≤ M̃µ,ǫ(t, x, z) ,

∥∥ξc,δ
∥∥

W [0,t]
≤ M̃µ,ǫ(t, x, z) +

(
t
3

) 1

2 ǫ , (3.24)

in which M̃µ,ǫ(t, x, z)
.
= [ 2

κ
Wµ,∞(t, x)+m

κ

(
‖J ‖2+µ2

t

) 1

2

ǫ+m
κ
M

µ
(t, x, z)]

1

2 . So, combining (3.21), (3.22), (3.23),

(3.24) in (3.18) yields that

∆µ,ǫ(t, x, z) ≤ κ√
2
(‖ξ̂c,δ‖W [0,t] + ‖ξc,δ‖W [0,t])‖ξ̂c,δ − ξc,δ‖W [0,t]

+ m√
2
(‖J µ ŵc,δ‖W [0,t] + ‖J µwc,δ‖W [0,t])‖J µ (ŵc,δ − wc,δ)‖W [0,t]

≤ κ√
2

(
2 M̃µ,ǫ(t, x, z) +

(
t
3

) 1

2 ǫ
) (

t
3

) 1

2 ǫ+ m√
2

(
2M

µ
(t, x, z) +

(
‖J ‖2+µ2

t

) 1

2

ǫ

)(
‖J‖2+µ2

t

) 1

2

ǫ = O(ǫ) (3.25)

This bound is independent of c and δ. Fix any ǭ ∈ R>0. With t, x, and z given, there exists an ǫ ∈ R>0 such
that ∆µ,ǫ(t, x, z) < ǭ. Inequality (3.17) then implies that Wµ,c(t, x, z)− δ < Wµ,∞(t, x, z) + ǭ for all c ∈ (c̄,∞)
and δ ∈ (0, δ̄). So, sending δ → 0+ and c → ∞ yields limc→∞Wµ,c(t, x, z) ≤ Wµ,∞(t, x, z) + ǭ. As ǭ ∈ R>0

is arbitrary, it follows that limc→∞Wµ,c(t, x, z) ≤ Wµ,∞(t, x, z) for any t ∈ [0, t̄µ), x, z ∈ X 1

2

. Combining this

inequality with (3.13) completes the proof.

3.3.2. Verification theorem – ❷. The second step in explicitly characterizing the fundamental solution
to the optimal control problem (2.16) utilizes a verification theorem. In stating this theorem, it is convenient
to define operator Iµ ∈ L(X ) by

Iµ y .
= (I + µ2 A)−1 y , dom (Iµ) .= X , ran (Iµ) = X0 , (3.26)

where boundedness, the stated range, and a number of other useful properties follow by Lemma A.4.
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Theorem 3.5 (Verification). Given µ ∈ R>0, t̄
µ ∈ R≥0 as per (2.15), c ∈ R≥0, and z ∈ X 1

2

, suppose that

a functional W ∈ C([0, t̄µ]× X 1

2

× X 1

2

;R) ∩C1((0, t̄µ)× X 1

2

× X 1

2

;R) satisfies

0 = −∂W
∂t

(t, x, z) +H(x,∇xW (t, x, z)) , (3.27)

W (0, x, z) = ψµ,c(x, z) (3.28)

for all t ∈ [0, t̄µ) and x ∈ X 1

2

, where ∇xW (t, x, z) ∈ X 1

2

denotes the Fréchet derivative of W (t, ·, z) at x ∈ X 1

2

,

defined with respect to inner product 〈 , 〉 1

2

on X 1

2

, and H : X 1

2

× X 1

2

→R is the Hamiltonian

H(x, p)
.
= κ

2 ‖x‖21
2

+ 1
2m ‖I

1

2

µ A 1

2 p‖21
2

, (3.29)

in which I
1

2

µ is the unique square root of Iµ of (3.26), see Lemma A.4. Then, W (t, x, z) ≥ Jµ
m,ψµ,c(·,z)(t, x, w) for

all x ∈ X 1

2

, w ∈ W [0, t], t ∈ [0, t̄µ). Furthermore, if there exists a mild solution ξ∗ as per (2.9) corresponding
to a distributed input w∗ defined via the feedback characterization

w∗(s)
.
= k(s, ξ∗(s)) , k(s, x)

.
= 1

m
A 1

2 IµA
1

2 ∇xW (t− s, x, z) , (3.30)

such that ξ∗(s) ∈ X 1

2

for all s ∈ [0, t], then W (t, x, z) = Jµ
m,ψµ,c(·,z)(t, x, w

∗), and W (t, x, z) =Wµ,c(t, x, z).

The verification Theorem 3.5 may be proved via completion of squares and a chain rule for Fréchet differ-
entiation, summarized via the following preliminary lemmas.

Lemma 3.6. Given any p ∈ X 1

2

, the quadratic functional πµp : X 1

2

7→ R, πµp (w)
.
= 〈p, w〉 1

2

− m
2 ‖J µ w‖21

2

,

satisfies supw∈X 1

2

πµp (w) = πµp (w
∗) = 1

2m ‖I
1

2

µ A 1

2 p‖21
2

with w∗ .
= 1

m
A 1

2 IµA
1

2 p ∈ X 1

2

and Iµ as per (3.26).

Proof. Fix p ∈ X 1

2

and w ∈ X 1

2

. Note that A 1

2 p ∈ X and J w ∈ X0 = dom (A), by Lemma A.1. Note

also that (J 2 + µ2 I)w = J (I + µ2 A)J w = J I−1
µ J w. Hence, by definition of πµp (w) and (2.11),

πµp (w) = −m
2

[
〈w, J I−1

µ J w〉 1

2

− 2
m
〈p, w〉 1

2

]
, (3.31)

As I−1
µ has a unique, positive, self-adjoint and boundedly invertible square root (Lemma A.4), it follows that

〈p, w〉 1

2

= 〈I
1

2

µ A 1

2 p, I− 1

2

µ J w〉 1

2

and 〈w, J I−1
µ J w〉 1

2

= ‖I− 1

2

µ J w‖21
2

, where I
1

2

µ : X →X 1

2

and I
1

2

µ ∈ L(X ).

Substituting in (3.31),

πµp (w) = −m
2

[
‖I− 1

2

µ J w‖21
2

− 2
m
〈I

1

2

µ A 1

2 p, I− 1

2

µ J w〉 1

2

]
= 1

2m ‖I
1

2

µ A 1

2 p‖21
2

− m
2 ‖I− 1

2

µ J w − 1
m
I

1

2

µ A 1

2 p‖21
2

= 1
2m ‖I

1

2

µ A 1

2 p‖21
2

− m
2 ‖I

− 1

2

µ J (w − w∗)‖ 1

2

for all w ∈ X 1

2

, where w∗ ∈ X 1

2

is as per the lemma statement. Taking the supremum of πµp (w) over w ∈ X 1

2

,

sup
w∈X 1

2

πµp (w) =
1

2m ‖I
1

2

µ A 1

2 p‖21
2

− m
2 inf
w∈X 1

2

‖I− 1

2

µ J (w − w∗)‖ 1

2

= 1
2m ‖I

1

2

µ A 1

2 p‖21
2

= πµp (w
∗),

as per the lemma statement, with the supremum attained at w∗ ∈ X 1

2

.

The following lemma is standard and its proof is omitted (see for example [1]).
Lemma 3.7 (Fundamental Theorem of Calculus). Given any µ ∈ R>0, t ∈ (0, t̄µ) with t̄µ ∈ R>0 as per

(2.15), x ∈ X 1

2

, w ∈ W [0, t], let ξ : [0, t]→X 1

2

denote the mild solution (2.9), and let W ∈ C([0, t̄µ] × X 1

2

×
X 1

2

;R) ∩ C1((0, t̄µ)× X 1

2

× X 1

2

;R). Then, for any τ ∈ [0, t],

W (t− τ, ξ(τ), z)−W (t, x, z) =

∫ τ

0

−dW
dt

(t− s, ξ(s), z) + 〈∇xW (t− s, ξ(s), z), w(s)〉 1

2

ds ,
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where ∇xW (t, x, z) ∈ X 1

2

denotes the Riesz representation of the Fréchet derivative of W (t, ·, z) at x, defined

with respect to inner product 〈 , 〉 1

2

on X 1

2

.
Lemmas 3.6 and 3.7 facilitate the proof of the verification Theorem 3.5.
Proof. [Theorem 3.5] Given t̄µ ∈ R>0 and z ∈ X 1

2

, letW ∈ C([0, t̄µ]×X 1

2

×X 1

2

;R)∩C1((0, t̄µ)×X 1

2

×X 1

2

;R)

denote a solution of (3.27) – (3.28) as per the theorem statement. Fix w ∈ W [0, t], t ∈ [0, t̄µ), and let ξ(·) denote
the mild solution (2.9) of (2.8) with ξ(0) = x ∈ X 1

2

and w(s) = w(s), s ∈ [0, t]. Recall that ξ(s) ∈ X 1

2

for

all s ∈ [0, t]. Set p(s)
.
= ∇xW (t − s, ξ(s), z), and note that p(s) ∈ X 1

2

for all s ∈ [0, t]. Hence, both terms in

H(ξ(s), p(s)) as per (3.29) are well-defined for all s ∈ [0, t]. In particular, Lemma 3.6 implies that

1
2m

∥∥∥I
1

2

µ A 1

2 ∇xW (t− s, ξ(s), z)
∥∥∥
2

1

2

≥ 〈∇xW (t− s, ξ(s), z), w(s)〉 1

2

− m
2 ‖J µw(s)‖21

2

(3.32)

for all s ∈ [0, t]. Hence, substituting (3.32) in (3.27) yields that 0 ≥ −∂W
∂t

(t − s, ξ(s), z) + 〈∇xW (t −
s, ξ(s), z), w(s)〉 1

2

+ κ
2

∥∥ξ(s)
∥∥2

1

2

− m
2 ‖J µw(s)‖21

2

for all s ∈ [0, t]. Integrating with respect to s ∈ [0, t], the

Fundamental Theorem of Calculus (Lemma 3.7) implies that

0 ≥
∫ t

0

−∂W
∂t

(t− s, ξ(s), z) + 〈∇xW (t− s, ξ(s), z), w(s)〉 1

2

ds+

∫ t

0

κ
2

∥∥ξ(s)
∥∥2

1

2

− m
2 ‖J µw(s)‖21

2

ds

=W (0, ξ(t), z)−W (t, x, z) +

∫ t

0

κ
2

∥∥ξ(s)
∥∥2

1

2

− m
2 ‖J µ w(s)‖21

2

ds .

Applying (3.28) and (2.10) to this yields W (t, x, z) ≥ Jµ
m,ψµ,c(·,z)(t, x, w) as per the first assertion. In order to

prove the second assertion, define w∗ as per (3.30). By assumption, ξ∗(s) ∈ X 1

2

and ∇xW (t, ξ∗(s), z) ∈ X 1

2

for

all s ∈ [0, t]. Hence, the argument from (3.32) onwards may be repeated, this time with equality, yielding that
W (t, x, z) = Jµ

m,ψµ,c(·,z)(t, x, w
∗) =Wµ,c(t, x, z) as required.

3.3.3. An explicit representation of the fundamental solution Wµ,∞ of (3.4) – ❸. The third step
in explicitly characterizing the fundamental solution to approximating optimal control problem (2.16) involves
the construction of a functional that satisfies the conditions of Theorem 3.5, followed by an application of the
limit argument ❶. To this end, define the bi-quadratic functional W̆µ,c : [0, t̄µ)× X 1

2

× X 1

2

→R by

W̆µ,c(t, x, z)
.
= 1

2 〈x, P
µ,c(t)x〉 1

2

+ 〈x, Qµ,c(t) z〉 1

2

+ 1
2 〈z, R

µ,c(t) z〉 1

2

, (3.33)

where Pµ,c, Qµ,c, Rµ,c : [0, t̄µ)→L(X 1

2

) denote operator-valued functions of time that satisfy the operator
differential equations

Ṗµ,c(t) = κ I + 1
m
Pµ,c(t)A 1

2 IµA
1

2 Pµ,c(t), Pµ,c(0) = −cMµ, (3.34)

Q̇µ,c(t) = 1
m
Pµ,c(t)A 1

2 IµA
1

2 Qµ,c(t), Qµ,c(0) = +cMµ, (3.35)

Ṙµ,c(t) = 1
m
(Qµ,c)(t)′ A 1

2 IµA
1

2 Qµ,c(t), Rµ,c(0) = −cMµ, (3.36)

in which I denotes the identity operator on X 1

2

, and

Mµ
.
= (Kµ)′ Kµ ∈ L(X 1

2

) (3.37)

is self-adjoint, positive, and boundedly invertible by definition of Kµ. It may be shown that the functional W̆µ,c

of (3.33) satisfies the conditions of the verification Theorem 3.5, thereby providing an explicit representation
for the value function Wµ,c of (3.3) in terms of the operator-valued functions Pµ,c, Qµ,c, Rµ,c.

Theorem 3.8. The functionals Wµ,c of (3.3) and W̆µ,c of (3.33) are equivalent. That is,

Wµ,c(t, x, z) = W̆µ,c(t, x, z) (3.38)
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for all t ∈ [0, t̄µ), x, z ∈ X 1

2

.

Proof. As indicated above, it is sufficient to demonstrate that W̆µ,c of (3.33) satisfies the conditions of
Theorem 3.6. To this end, fix t ∈ [0, t̄µ), x, z ∈ X 1

2

. Firstly, in order to show that W̆µ,c satisfies (3.27), note

that W̆µ,c(·, x, z) and W̆µ,c(t, ·, z) are Fréchet differentiable. In particular,

∂W̆µ,c

∂t
(t, x, z) = 1

2 〈x, Ṗ
µ,c(t)x〉 1

2

+ 〈x, Q̇µ,c(t) z〉 1

2

+ 1
2 〈z, Ṙ

µ,c(t) z〉 1

2

, (3.39)

∇xW̆
c(t, x, z) = Pµ,c(t)x +Qµ,c(t) z . (3.40)

With a view to verifying that (3.27) holds, further note that

κ
2 ‖x‖21

2

= 1
2 〈x, κ I x〉 1

2

, (3.41)

1
2m ‖I

1

2

µ A 1

2 ∇xW̆
µ,c(t, x, z)‖21

2

= 1
2 〈x, 1

m
Pµ,c(t)A 1

2 IµA
1

2 Pµ,c(t)x〉 1

2

+ 〈x, 1
m
Pµ,c(t)A 1

2 IµA
1

2 Qµ,c(t) z〉 1

2

+ 1
2 〈z, 1

m
(Qµ,c(t))′ A 1

2 IµA
1

2 Qµ,c(t) z〉 1

2

, (3.42)

where the second equality also exploits the fact that P̆µ,c(t) is self-adjoint. Hence, substitution of (3.39) (3.40),
(3.41), (3.42) in the right-hand side of (3.27) yields the bi-quadratic functional (in x and z)

1
2 〈x, X (t)x〉 1

2

+ 〈x, Y(t) z〉 1

2

+ 1
2 〈z, Z(t) z〉 1

2

(3.43)

in which X (t)
.
= −Ṗµ,c(t) + κ I + 1

m
Pµ,c(t)A 1

2 IµA
1

2 Pµ,c(t), Y(t) .
= −Q̇µ,c(t) + 1

m
Pµ,c(t)A 1

2 IµA
1

2 Qµ,c(t),

and Z(t)
.
= −Ṙµ,c(t) + 1

m
(Qµ,c(t))′ A 1

2 IµA
1

2 Qµ,c(t). However, (3.34), (3.35), (3.36) imply that these three

operator-valued functions are identically zero, so that (3.43) must be zero. Hence, the explicit functional W̆ c

of (3.33) satisfies (3.27).
Secondly, (3.40), in which Pµ,c(t), Qµ,c(t) : X 1

2

→X 1

2

, implies that ∇xW̆
µ,c(t, x, z) ∈ X 1

2

.

Finally, in order to show that W̆µ,c satisfies the initial condition (3.28), note by inspection of (3.33), the

initial conditions of (3.34), (3.35), (3.36), and the identities J A 1

2 = I and Mµ = (Kµ)′ Kµ, that

W̆µ,c(0, x, z) = 1
2 〈x, P

µ,c(0)x〉 1

2

+ 〈x, Qµ,c(0) z〉 1

2

+ 1
2 〈z, R

µ,c(0) z〉 1

2

= 1
2 〈x, (−cMµ)x〉 1

2

+ 〈x, (+cMµ) z〉 1

2

+ 1
2 〈z, (−cMµ) z〉 1

2

= − c
2 ‖Kµ (x− z)‖21

2

= ψµ,c(x, z) ,

as required by (3.28). That is, the explicit functional W̆µ,c of (3.33) satisfies the conditions (3.27), (3.28) of
Theorem 3.5. Consequently, W̆µ,c(t, x, z) =Wµ,c(t, x, z).

Theorem 3.8 provides a representation for Wµ,c of (3.3), via W̆µ,c of (3.33), in terms of operator-valued
functions Pµ,c, Qµ,c, Rµ,c satisfying (3.34), (3.35), (3.36). Candidate definitions for these functions are Riesz-
spectral operator-valued functions of the form (C.1), see Appendix C. In particular, define an operator-valued
function P̆µ,c of the form (C.1) by

P̆µ,c(t)x .
=

∞∑

n=1

pµ,cn (t) 〈x, ϕ̃n〉 1

2

ϕ̃n , (3.44)

where {pµ,cn (t)}n∈N denotes the set of eigenvalues of P̆µ,c(t) corresponding to its eigenvectors {ϕ̃n}n∈N defined
by the Riesz basis (2.6) for X 1

2

. Motivated by the initial condition P̆µ,c(0) = −cMµ specified in (3.34), restrict

Mµ to be a Riesz-spectral operator of the form (B.1), with simple (i.e. non-repeated) eigenvalues {mµ
n}n∈N.

Note in particular that pµ,cn (0) = −cmµ
n. Analogously define operator-valued functions Q̆µ,c and R̆µ,c. Select

the respective eigenvalues of the operators in the range of these three operator-valued functions to be

pµ,cn (t)
.
= − 1

α
µ
n

1

tan (ωµn t+ θµ,cn )
, qµ,cn (t)

.
= + 1

α
µ
n

(
1

1 + ( 1
α

µ
nm

µ
n c

)2

) 1

2

1

sin (ωµn t+ θµ,cn )
, (3.45)
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rµ,cn (t)
.
= − 1

α
µ
n

(
1

1 + ( 1
α

µ
nm

µ
n c

)2

)[
1

α
µ
nm

µ
n c

+
1

tan (ωµn t+ θµ,cn )

]
, (3.46)

for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ R>0, where

αµn
.
= [( 1

mκ
)λµn]

1

2 , λµn
.
=

λn
1 + µ2 λn

, t̄µ
.
= µ (2m

κ
)

1

2 ,

ωµn
.
= [( κ

m
)λµn]

1

2 , λn
.
= (nπ

L
)2 , θµ,cn

.
= tan−1( 1

α
µ
n m

µ
n c

) .

(3.47)

Note by inspection that {λn}, {λµn}, {αµn}, {ωµn} define strictly increasing sequences in n ∈ N. In particular,

λ11 ≤ λµ1 ≤ λµn ≤ λµ∞
.
= 1

µ2 , (3.48)

with corresponding inequalities holding for αµn, ω
µ
n .

In order to establish that the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c defined by (3.44)–
(3.46) satisfy the respective operator-valued initial value problems (3.34)–(3.36), it is important to first establish
differentiability of these operator-valued functions, given a specific choice of initial condition operator Mµ.
This can be achieved by application of Lemma C.1. In particular, motivated by condition (i) of Lemma
C.1 (concerning strict monotonicity of sequences {pµ,cn (t)}, {qµ,cn (t)}, {rµ,cn (t)}, n ∈ N), it is convenient by
inspection of (3.45)–(3.47) to select Mµ to be a Riesz-spectral operator of the form (B.1) with eigenvalues

{mµ
n}n∈N satisfying 1

α
µ
nm

µ
n
=

√
mκ =

√
λ
µ
n

α
µ
n

. That is,

Mµ x =
∞∑

n=1

mµ
n 〈x, ϕ̃n〉 1

2

ϕ̃n , mµ
n

.
=

1√
λµn

=

(
1 + µ2 λn

λn

) 1

2

x ∈ dom (Mµ) = X 1

2

. (3.49)

(Note that Mµ ∈ L(X 1

2

) as {µµn}n∈N is bounded.) The eigenvalues (3.45)–(3.46) subsequently simplify to

pµ,cn (t) = − 1
α

µ
n

1

tan
(
ωµn t+ tan−1

(√
mκ

c

)) , qµ,cn (t) = + 1
α

µ
n

(
1

1 + (
√
mκ
c

)2

) 1

2

1

sin
(
ωµn t+ tan−1

(√
mκ

c

)) ,

(3.50)

rµ,cn (t) = − 1
α

µ
n

(
1

1 + (
√
mκ

c
)2

)
√

mκ
c

+
1

tan
(
ωµn t+ tan−1

(√
mκ

c

))


 . (3.51)

For convenience, define

c̄
.
=

√
mκ tan

√
2 . (3.52)

Lemma 3.9. Given µ ∈ (0, 1], c ∈ (c̄,∞), c̄ ∈ R>0 as per (3.52), and Mµ ∈ L(X 1

2

) as per (3.49),

the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c of the form (3.44) and defined by the respective
eigenvalues (3.50)–(3.51) satisfy P̆µ,c(t), Q̆µ,c(t), R̆µ,c(t) ∈ L(X 1

2

) for every t ∈ [0, t̄µ), while P̆µ,c, Q̆µ,c, R̆µ,c :

[0, t̄µ)→L(X 1

2

) are Fréchet differentiable and satisfy the initial value problems (3.34)–(3.36).
Proof. The proof proceeds by demonstrating that the conditions of Lemma C.1 hold for each of the

Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c, thereby demonstrating their Fréchet differentiability.
Satisfaction of the initial value problems (3.34)–(3.36) then follows by inspection.

In order verify that condition (i) of Lemma C.1 holds for each of the Riesz-spectral operator-valued functions
P̆µ,c, Q̆µ,c, R̆µ,c, strict monotonicity of their respective eigenvalues must be demonstrated. To this end, by
inspection of the eigenvalues (3.49) of Mµ, it is straightforward to show via (3.47) that

ωµn t ∈ [0,
√
2) , ωµn t+ θµ,cn ∈

(
tan−1

(√
mκ
c

)
,
√
2 + tan−1

(√
mκ
c̄

))
⊂ (0, π2 ) (3.53)
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for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ (c̄,∞), where c̄ ∈ R>0 is as per (3.52). Hence, by inspection of (3.50)–(3.51),
the eigenvalues of operators P̆µ,c(t), Q̆µ,c(t), Q̆µ,c(t) are well-defined for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ (c̄,∞),
and n ∈ N. Furthermore, strict monotonicity of the sequences {αµn} and {ωµn} in n ∈ N, and strict monotonicity
of the trigonometric functions tan and sin on [0, π2 ), implies that the sequences {pµ,cn (t)}, {qµ,cn (t)}, {rµ,cn (t)}
are strictly monotone in n ∈ N for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ (c̄,∞). It is straightforward to see that the
respective closures of these sets of eigenvalues are totally disconnected. Hence, condition (i) of Lemma C.1
holds for each of the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c.

In order verify that condition (ii) of Lemma C.1 holds for each of the Riesz-spectral operator-valued functions
P̆µ,c, Q̆µ,c, R̆µ,c, first recall that by (3.53) that the functions pµ,cn , qµ,cn , rµ,cn of (3.50)–(3.51) are continuous on
[0, t̄µ), for every µ ∈ (0, 1], c ∈ (c̄,∞), and n ∈ N. These functions are (twice) differentiable, with

ṗµ,cn (t) = κ+ 1
m
λµn (p

µ,c
n (t))2 , p̈µ,cn (t) = 2

m
λµn p

µ,c
n (t) ṗµ,cn (t) , pµ,cn (0) = −cmµ

n , (3.54)

q̇µ,cn (t) = 1
m
λµn p

µ,c
n (t) qµ,cn (t) , q̈µ,cn (t) = 1

m
λµn (pµ,cn (t) q̇µ,cn (t) + ṗµ,cn (t) qµ,cn (t)) , qµ,cn (0) = +cmµ

n , (3.55)

ṙµ,cn (t) = 1
m
λµn (q

µ,c
n (t))2 , r̈µ,cn (t) = 2

m
λµn q

µ,c
n (t) q̇µ,cn (t) , rµ,cn (0) = −cmµ

n , (3.56)

for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ (c̄,∞), and n ∈ N. Hence, the first and second derivatives (3.54)–(3.56) must
also be continuous by inspection. That is, condition (ii) of Lemma C.1 holds for each of the Riesz-spectral
operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c.

In order verify that condition (iii) of Lemma C.1 holds for each of the Riesz-spectral operator-valued
functions P̆µ,c, Q̆µ,c, R̆µ,c, note by inspection of (3.48) and (3.50)–(3.56) that

|pµ,cn (t)| ≤ 1
α

µ
1

c√
mκ

.
=Mµ,c

p <∞ , |ṗµ,cn (t)| ≤ κ+ 1
m
λµ∞ (Mµ,c

p )2
.
=Mµ,c

ṗ <∞ ,

|p̈µ,cn (t)| ≤ 2
m
λµ∞Mµ,c

p Mµ,c
ṗ

.
=Mµ,c

p̈ <∞ ,

for all µ ∈ (0, 1], t ∈ [0, t̄µ), c ∈ (c̄,∞), and uniformly in n ∈ N, with analogous bounds holding for qµ,cn (t)
and rµ,cn (t), and their first and second derivatives. That is, condition (iii) of Lemma C.1 holds for each of the
Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c.

In summary, Lemma C.1 thus implies that the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c :
[0, t̄µ)→L(X 1

2

) of the form (3.44) and defined by the eigenvalues (3.50)–(3.51) are Fréchet differentiable. Fur-

thermore, their Fréchet derivatives are also Riesz-spectral operators, and take the form (C.2). Hence, combining
(C.2) and (3.54), and recalling Lemma B.2,

˙̆Pµ,c(t)x =

∞∑

n=1

ṗµ,cn (t) 〈x, ϕ̃n〉 1

2

ϕ̃n =

∞∑

n=1

(
κ+ 1

m

(
λn

1 + µ2 λn

)
(pµ,cn (t))2

)
〈x, ϕ̃n〉 1

2

ϕ̃n

= κ I x+ 1
m

∞∑

n=1

(
pµ,cn (t)

√
λn (1 + µ2 λn)

−1
√
λn p

µ,c
n (t)

)
〈x, ϕ̃n〉 1

2

ϕ̃n

=
(
κ I + 1

m
P̆µ,c(t)A 1

2 IµA
1

2 P̆µ,c(t)
)
x , (3.57)

for all µ ∈ (0, 1], t ∈ (0, t̄µ), c ∈ (c̄,∞), x ∈ X 1

2

. Recalling the definition (3.49) of the eigenvalues of Mµ,

P̆µ,c(0)x =

∞∑

n=1

pµ,cn (0) 〈x, ϕ̃n〉 1

2

ϕ̃n =

∞∑

n=1

−cmµ
n 〈x, ϕ̃n〉 1

2

ϕ̃n = −cMµ x , (3.58)

for all µ ∈ (0, 1], c ∈ (c̄,∞), x ∈ X 1

2

. That is, (3.57) and (3.58) imply that P̆µ,c satisfies the initial value problem
(3.34). Analogous calculations similarly imply that Q̆µ,c and R̆µ,c satisfy (3.35) and (3.36) respectively.

Given the role of the eigenvalues (3.49) of the operator Mµ in the definition of operators P̆µ,c, Q̆µ,c, R̆µ,c,
it is convenient to construct a closed-form for Mµ, and subsequently Kµ of (3.37).

Lemma 3.10. Mµ, Kµ of (3.37), (3.49) are bounded, self-adjoint, positive, and boundedly invertible, with

Mµ x = (A−1 + µ2 I) 1

2 x , x ∈ dom (Mµ) = X 1

2

, (3.59)
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Kµ x = M
1

2

µ x , x ∈ dom (Kµ) = X 1

2

. (3.60)

Proof. Recall that A of (2.2) is a Riesz-spectral operator of the form (B.1), with eigenvalues {λn}n∈N (see
Lemmas A.2 and B.6). Consequently, noting the form (B.2) of the identity I, it follows that I−1

µ = I + µ2 A is
also a Riesz-spectral operator of the same form (B.1), defined on X0 via (3.26), with eigenvalues {1+µ2 λn}n∈N.
Furthermore, as I−1

µ is self-adjoint and positive (by Lemma A.1), it also has a unique self-adjoint and positive

square root I− 1

2

µ : X0→X 1

2

, which is also a Riesz-spectral operator of the form (B.1) by Corollary B.5. Similarly,

A 1

2 and hence J .
= (A 1

2 )−1 are Riesz-spectral operators of the same form (see Lemma B.6). In particular,

I− 1

2

µ x =

∞∑

n=1

(1 + µ2 λn)
1

2 〈x, ϕ̃n〉 1

2

ϕ̃n , x ∈ dom (I− 1

2

µ ) = X0 , ran (I− 1

2

µ ) = X 1

2

, (3.61)

J x =
∞∑

n=1

1

(λn)
1

2

〈x, ϕ̃n〉 1

2

ϕ̃n , x ∈ dom (J ) = X 1

2

, ran (J ) = X0 . (3.62)

Applying Lemma B.2, the composition M̂µ
.
= I− 1

2

µ J : X 1

2

→X 1

2

is also a Riesz-spectral operator, with

M̂µ x
.
= I− 1

2

µ J x =
∞∑

n=1

(
1 + µ2 λn

λn

) 1

2

〈x, ϕ̃n〉 1

2

ϕ̃n =
∞∑

n=1

mµ
n 〈x, ϕ̃n〉 1

2

ϕ̃n = Mµ x , x ∈ dom (M̂µ) = X 1

2

,

(3.63)

where the third and fourth equalities follow by definition (3.49) of the eigenvalues {mµ
n}n∈N ofMµ. Furthermore,

again applying Lemma B.2, and the fact that J and A are Riesz-spectral operators,

M2
µ x = MµMµ x =

∞∑

n=1

(
1 + µ2 λn

λn

)
〈x, ϕ̃n〉 1

2

ϕ̃n =

∞∑

n=1

(
1√
λn

(1 + µ2 λn)
1√
λn

)
〈x, ϕ̃n〉 1

2

ϕ̃n

= J (I + µ2 A)J x = (A−1 + µ2 I)x , x ∈ dom (M2
µ) = X 1

2

. (3.64)

(Note that this equivalently follows from (3.63) via commutation of I− 1

2

µ and J in M2
µ = M̂2

µ = I− 1

2

µ J I− 1

2

µ J .)
Applying Lemma A.1, A−1 + µ2 I is bounded, self-adjoint, and positive, and so has a unique, bounded, self-
adjoint, and positive square root defined on X 1

2

. That is, Mµ is equivalently defined by (3.59), and it is

bounded, self-adjoint, and positive. Consequently, a unique Kµ .
= M

1

2

µ ∈ L(X 1

2

) exists as per (3.37) and (3.60),
with the additional properties that it is also self-adjoint and positive.

It remains to be shown that Mµ and Kµ are boundedly invertible. To this end, note that M2
µ = I−1

µ A−1 by
commuting the left-hand J with I + µ2 A in the fourth equality of (3.64). Hence, M2

µ is boundedly invertible,

as M−2
µ = AIµ = 1

µ2 (I − Iµ) ∈ L(X 1

2

) by Lemma A.4. Also, as M2
µ is positive and self-adjoint, so is M−2

µ .

Consequently, M−2
µ has a unique, bounded, positive, and self-adjoint square-root and fourth root, namely M−1

µ

and M− 1

2

µ = K−1
µ . That is, Mµ and Kµ are boundedly invertible as required.

With Lemma 3.10 in place, Kµ of (3.59) satisfies the properties required by definition (3.1) and the proof
of Lemma 3.3. Consequently, an explicit form for the fundamental solution (3.4) may be established.

Theorem 3.11. With Kµ as per (3.60) in (3.1), µ ∈ (0, 1], and c ∈ (c̄,∞), c̄ ∈ R>0 as per (3.52), the

value functional Wµ,c of (3.3) takes the explicit form of W̆µ,c of (3.33) with the operator-valued functions Pµ,c,
Qµ,c, Rµ,c given by the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c : [0, t̄µ)→L(X 1

2

) of the form

(3.44) with respective eigenvalues defined by (3.45)–(3.46). Furthermore, the value functional Wµ,∞ of (3.4)
defining the fundamental solution of the approximating optimal control problem (2.16) via (3.5) is given by

Wµ,∞(t, x, z)
.
= lim

c→∞
W̆µ,c(t, x, z) = 1

2 〈x, P̆
µ,∞(t)x〉 1

2

+ 〈x, Q̆µ,∞(t) z〉 1

2

+ 1
2 〈z, R̆

µ,∞(t) z〉 1

2

, (3.65)
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for all t ∈ (δ, t̄µ), x, z ∈ X 1

2

, given any δ ∈ (0, t̄µ), with P̆µ,∞, Q̆µ,∞, R̆µ,∞ : (δ, t̄µ)→L(X 1

2

) defined by

P̆µ,∞(t)x
.
=

∞∑

n=1

pµ,∞n (t) 〈x, ϕ̃n〉 1

2

ϕ̃n , x ∈ dom (P̆µ,∞(t)) = X 1

2

, (3.66)

Q̆µ,∞(t) z
.
=

∞∑

n=1

qµ,∞n (t) 〈z, ϕ̃n〉 1

2

ϕ̃n , z ∈ dom (Q̆µ,∞(t)) = X 1

2

, (3.67)

R̆µ,∞(t) z
.
=

∞∑

n=1

rµ,∞n (t) 〈z, ϕ̃n〉 1

2

ϕ̃n , z ∈ dom (R̆µ,∞(t)) = X 1

2

, (3.68)

and

pµ,∞n (t)
.
= − 1

α
µ
n

1

tan(ωµn t)
, qµ,∞n (t)

.
= + 1

α
µ
n

1

sin(ωµn t)
, rµ,∞n (t)

.
= − 1

α
µ
n

1

tan(ωµn t)
. (3.69)

Proof. The first assertion concerning the explicit form of Wµ,c follows by Theorem 3.8, Lemma 3.9, and
the specified functional W̆µ,c. In order to prove the second assertion concerning the explicit form (3.65) of the
limit value function Wµ,∞ of (3.4), the operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c : [0, t̄µ)→L(X 1

2

) must be

shown to converge (either strongly or uniformly) to their respective candidate limits defined by (3.66)–(3.68),
whereupon Theorem 3.2 can be used to complete the proof. To this end, fix µ ∈ (0, 1] and δ ∈ (0, t̄µ), and note
that the eigenvalues of P̆µ,c(t), Q̆µ,c(t), R̆µ,c(t) ∈ L(X 1

2

), given by (3.50)–(3.51), satisfy (after straightforward

calculation of the respective Taylor series expansions with respect to 1/c)

|pµ,cn (t)− pµ,∞n (t)| ≤ 1
c
∆µ
p (δ) , ∆µ

p (δ)
.
=

√
mκ

αµ1

1

sin2(ωµ1 δ)
,

|qµ,cn (t)− qµ,∞n (t)| ≤ 1
c
∆µ
q (δ) , ∆µ

q (δ)
.
=

√
mκ

αµ1

1

sin(ωµ1 δ)

[√
mκ

c̄
+

1

tan(ωµ1 δ)

]
,

|rµ,cn (t)− rµ,∞n (t)| ≤ 1
c
∆µ
r (δ) , ∆µ

r (δ)
.
=

√
mκ

αµ1

[
1 +

1

tan(ωµ1 δ)
+

1

sin2(ωµ1 δ)

]

for all n ∈ N, t ∈ (δ, t̄µ), c ∈ (c̄,∞). Hence, (3.44), (3.50)–(3.51), (3.66)–(3.68), (3.69), and (B.2) imply that

‖P̆µ,c(t)− P̆µ,∞(t)‖ 1

2

≤ 1
c
∆µ
p (δ) , ‖Q̆µ,c(t)− Q̆µ,∞(t)‖ 1

2

≤ 1
c
∆µ
q (δ) , ‖R̆µ,c(t)− R̆µ,∞(t)‖ 1

2

≤ 1
c
∆µ
r (δ) ,

for all µ ∈ (0, 1], δ ∈ (0, t̄µ), t ∈ (δ, t̄µ), and c ∈ (c̄,∞), where ‖ · ‖ 1

2

denotes the induced operator norm

in X 1

2

. Consequently, Lemma 3.9 and the triangle inequality imply that P̆µ,∞, Q̆µ,∞, R̆µ,∞ : (δ, t̄µ)→L(X 1

2

).

Furthermore, the Riesz-spectral operator-valued functions P̆µ,c, Q̆µ,c, R̆µ,c : (δ, t̄µ)→L(X 1

2

) converge uniformly

to P̆µ,∞, Q̆µ,∞, R̆µ,∞ : (δ, t̄µ)→L(X 1

2

) as c→ ∞.
Corollary 3.12. Under the conditions of Theorem 3.11, the state feedback characterization of the optimal

input w∗ of (3.30) corresponding to the fundamental solution Wµ,∞(t, x, y) of (3.4) of the approximating optimal
control problem (2.16) is given by

w∗(s) = k(s, ξ∗(s)) , k(s, x) = 1
m
A 1

2 IµA
1

2

(
P̆µ,∞(t− s)x+ Q̆µ,∞(t− s) y

)
(3.70)

for all µ ∈ (0, 1], δ ∈ (0, t̄µ), t ∈ (δ, t̄µ), s ∈ [0, t − δ), and x, y ∈ X 1

2

, where ξ∗ is the corresponding optimal

trajectory generated by the open-loop dynamics (2.8) in feedback with policy k of (3.70).
Proof. Immediate by Theorems 3.2, 3.5, and 3.11.

3.4. Application of the fundamental solution to solve optimal control problem (2.16). The
fundamental solution (3.4), (3.65) can be applied via (3.7) and Theorems 3.1 and 3.11 to solve the approximating
optimal control problem (2.16) for any concave terminal payoff ψ : X 1

2

→R ∪ {−∞} for which the associated
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value function Wµ is finite. In particular, given t ∈ (0, t̄µ), x ∈ X 1

2

, the optimal control w∗ ∈ W [0, t] that

maximizes the payoff Jm,ψ(t, x, ·) in (2.16) is given by (3.70) with y = z∗, where

z∗ ∈ argmax
ζ∈X 1

2

{Wµ,∞(t, x, ζ) + ψ(ζ)} . (3.71)

For the specific terminal payoff ψ
.
= ψµ,∞(·, z), z ∈ X 1

2

, given by (3.1), z∗ = z by inspection of (3.71). In that

case, the value functional Wµ(t, ·) of (2.16) and fundamental solution Wµ,∞(t, ·, z) of (3.4) coincide, as do their
corresponding optimal inputs, see (3.70). Furthermore, by substituting the series representations (3.66), (3.67)
for P̆µ,∞(t), Q̆µ,∞(t) in (3.70), a state feedback characterization of the optimal control w∗ is given by

w∗(s) = 1
m

∞∑

n=1

λn
1 + µ2 λn

(
pµ,∞n (t− s) 〈ξ∗(s), ϕ̃n〉 1

2

+ qµ,∞n (t− s) 〈z∗, ϕ̃n〉 1

2

)
, ξ̇∗(s) = w∗(s) , (3.72)

for all s ∈ [0, t− δ), where δ ∈ (0, t) is as per Theorem 3.11, ξ∗(0) = x ∈ X 1

2

, and z∗ = z ∈ X 1

2

.

Alternatively, with ψ
.
= ψv as per (2.22), v ∈ X 1

2

, Theorem 3.11 and (3.71) imply that

z∗ = −
(
R̆µ,∞(t)

)−1 [
Q̆µ,∞(t)′ x+mJ J v

]
=

∞∑

n=1

1

rµ,∞n (t)

[
qµ,∞n (t) 〈x, ϕ̃n〉 1

2

+
m

λn
〈v, ϕ̃n〉 1

2

]
, (3.73)

where the series representation follows by substitution of (3.67), (3.68) for the Riesz-spectral operators Q̆µ,∞(t),
R̆µ,∞(t) respectively. (Note that existence of the inverse involved, and a representation for it, follows by
Corollary B.5.) The optimal control w∗ is again given by (3.72), with z∗ ∈ X 1

2

given by (3.73).

Finally, it is important to note that the optimal input defined by (3.70) and (3.71) is not defined everywhere
on the time interval [0, t]. In particular, by inspection of (3.65), this input is not defined on a time interval [t−δ, t]
containing the final time, where δ ∈ (0, t) is arbitrarily small. While this might appear to be a problematic
limitation, it is the initial input w∗(0) that is required for the approximate solution of TPBVPs such as (1.3)
via the approximating optimal control problem (2.16).

4. Approximate solution of two-point boundary value problems. For sufficiently short time hori-
zons, Theorem 2.1 guarantees that stationarity of the action functional (2.12) is achieved as a maximum. In
particular, for horizons t ∈ [0, t̄µ), t̄µ ∈ R>0 as per (2.15), the value function Wµ(t, ·) of (2.16) is finite, and
the corresponding optimal trajectory defined by (2.8), (3.70), and (3.71) renders the action functional (2.12)
stationary in the calculus of variations sense. However, as the action principle only requires stationarity of the
action functional with respect to trajectories, concavity of the action functional (2.12) may be lost for longer
horizons. This implies a loss of concavity of the associated payoff Jµm,ψ of (2.10), and hence an infinite corre-
sponding value function (2.16). In that case, the stationary action trajectory is no longer the optimal trajectory
defined by (2.8), (3.70), and (3.71), so that more analysis is required. Below, the short horizon case is discussed
first, i.e. where the stationary and maximal action coincide. An indication of an extension to longer horizons is
provided subsequently.

4.1. Short horizons. On shorter time horizons, i.e. those satisfying t ∈ [0, t̄µ), the optimal trajectory
defined by (2.8), (3.70), and (3.71) is described by the characteristic equations corresponding to the Hamiltonian
H of (3.29) for HJB (3.27). These characteristic equations together define the abstract Cauchy problem

(
ξ̇(s)
π̇(s)

)
= A⊕

µ

(
ξ(s)
π(s)

)
, A⊕

µ

.
=

(
0 1

m
I

1

2

µ

−κA 1

2 I
1

2

µ A 1

2 0

)
, dom (A⊕

µ )
.
= Y 1

2

, (2.17)

where Y 1

2

is the Hilbert space defined in (2.4). Here, the augmented state is constructed from the (position) state

ξ(s) ∈ X 1

2

of the dynamics (2.8) driven by the optimal input w∗(s) of (3.70), (3.71), together with a transformed

(momentum) costate π(s)
.
= I− 1

2

µ p(s) = m I− 1

2

µ w∗(s) = A 1

2 I
1

2

µ A 1

2 (P̆µ,∞(t− s) ξ(s) + Q̆µ,∞(t− s) z∗) ∈ X for
all s ∈ [0, t − δ), z ∈ X 1

2

, where δ ∈ (0, t̄µ) is as per Theorem 3.11, and z∗ ∈ X 1

2

is as per (3.71). (Note that

19



A 1

2 I
1

2

µ A 1

2 ∈ L(X 1

2

;X ) by Lemma A.4.) Meanwhile, the wave equation (1.1) defines an analogous abstract
Cauchy problem, namely,

(
ẋ(s)
ṗ(s)

)
= A⊕

(
x(s)
p(s)

)
, A⊕ .

=

(
0 1

m
I

−κA 0

)
, dom (A⊕) = Y0 , (2.20)

where Y0 is the set defined in (2.5). As noted in the following lemma, operators A⊕
µ and A⊕ generate respective

semigroups of bounded linear operators defined on all time horizons. Crucially, these operators converge in an
appropriate sense as µ → 0. Furthermore, the subsequent theorem shows that the generated semigroups also
converge, implying that any solution of the abstract Cauchy problem (2.17) converges to an analogous solution
of the abstract Cauchy problem (2.20). This naturally includes respective trajectories corresponding to the
approximate and exact solution of TPBVPs such as (1.3).

Lemma 4.1. Given µ ∈ (0, 1], the operators A⊕
µ and A⊕ of (2.17) and (2.20) satisfy the following properties:

(i) A⊕
µ ∈ L(Y 1

2

);

(ii) A⊕
µ generates a uniformly continuous semigroup of bounded linear operators T ⊕

µ (t) ∈ L(Y 1

2

), t ∈ R≥0;

(iii) A⊕ is unbounded, closed, and densely defined on Y0 (with Y0 = Y 1

2

);

(iv) A⊕ generates a strongly continuous semigroup of bounded linear operators T ⊕(t) ∈ L(Y 1

2

), t ∈ R≥0;

(v) A⊕
µ converges strongly to A⊕ as µ → 0, i.e. limµ→0 ‖A⊕

µ y −A⊕ y‖⊕ = 0 for all y ∈ Y0.

Proof. (i) Fix any y
.
=

(
ξ
π

)
∈ Y 1

2

. Applying definitions (2.4) and (2.17) of ‖ · ‖⊕ and A⊕
µ ,

‖A⊕
µ y‖2⊕ =

∥∥∥∥∥

(
1
m
I

1

2

µ π

−κA 1

2 I
1

2

µ A 1

2 ξ

)∥∥∥∥∥

2

⊕

= 1
m

∥∥∥I
1

2

µ π
∥∥∥
2

1

2

+ κ
∥∥∥A 1

2 I
1

2

µ A 1

2 ξ
∥∥∥
2

= 1
m

∥∥∥A 1

2 I
1

2

µ π
∥∥∥
2

+ κ
∥∥∥A 1

2 I
1

2

µ (A 1

2 ξ)
∥∥∥
2

≤ 1
m

∥∥∥A 1

2 I
1

2

µ

∥∥∥
2

‖π‖2 + κ
∥∥∥A 1

2 I
1

2

µ

∥∥∥
2

‖ξ‖21
2

=M2 ‖y‖2⊕ ,

where M
.
= ( κ

m
)

1

2

∥∥∥A 1

2 I
1

2

µ

∥∥∥ <∞ by assertion (A.16) of Lemma A.4, as required.

(ii) Immediate by (i) and [19, Theorem 1.2, p.2].
(iii) and (iv) Follows by an analogous argument to [3, Example 2.2.5, p.34].

(v) Fix any y
.
=

(
ξ
π

)
∈ dom (A⊕) = Y0 = X0 ⊕ X 1

2

. Recalling (2.4), (2.17) and (2.20),

∥∥A⊕
µ y −A⊕ y

∥∥2
⊕ =

∥∥∥∥∥

(
0 1

m
I

1

2

µ

−κA 1

2 I
1

2

µ A 1

2 0

)
y −

(
0 1

m
I

−κA 0

)
y

∥∥∥∥∥

2

⊕

=

∥∥∥∥∥

(
1
m
(I

1

2

µ − I)π
−κA 1

2 (I
1

2

µ − I)A 1

2 ξ

)∥∥∥∥∥

2

⊕

= 1
m
‖(I

1

2

µ − I)π‖21
2

+ 1
κ
‖A 1

2 (I
1

2

µ − I)A 1

2 ξ‖2 = 1
m
‖(I

1

2

µ − I)A 1

2 π‖2 + κ ‖(I
1

2

µ − I)A ξ‖2 ,
(4.1)

where the last equality follows by definition of ‖ · ‖ 1

2

and assertion (A.15) of Lemma A.4. Note further that

A 1

2 π, A ξ ∈ X by definition of y ∈ Y0. Consequently, it remains to be shown that I
1

2

µ converges strongly

to I on X as µ → 0. To this end, fix any x ∈ X0, and note that ‖Ax‖ < ∞. Note also that I
1

2

µ − I is a

Riesz-spectral operator on X , with dom (I
1

2

µ − I) = X , so that

∥∥∥(I
1

2

µ − I)x
∥∥∥
2

=

∞∑

n=1

βλn
(µ2) |〈x, ϕn〉|2 , (4.2)

where βλ : R≥0→[0, 1) is defined for each λ ∈ R>0 by βλ(ǫ)
.
= [1− 1√

1+ǫ λ
]2. Taylor’s theorem implies that for any

ǫ ∈ R≥0, there exists an cǫ ∈ (0, ǫ) such that βλ(ǫ) = [d
2βλ

dǫ2
(cǫ)]

ǫ2

2 ≤ 1
2 λ

2 ǫ2
[
3
2 (1 + cǫ λ)

− 5

2 + 2 (1 + cǫ λ)
−3
]
≤
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7
4 λ

2 ǫ2 for all λ ∈ R>0. Substitution in (4.2) yields that ‖(I
1

2

µ − I)x‖2 ≤ 7
4 µ

4
∑∞

n=1 |λn|2 |〈x, ϕn〉|2 =
7
4 µ

4 ‖Ax‖2. Recalling that x ∈ X0, so that ‖Ax‖ < ∞, it follows immediately that limµ→0 ‖(I
1

2

µ − I)x‖ = 0

for any x ∈ X0. As I
1

2

µ ∈ L(X ) by Lemma A.4, and X0 is dense in X , it may also be concluded that

limµ→0 ‖(I
1

2

µ − I)x‖ = 0 for any x ∈ X . Applying this fact in (4.1) completes the proof.
Theorem 4.2. T ⊕

µ (t) converges strongly to T ⊕(t) as µ → 0, uniformly for t ∈ R>0 in compact intervals.

In particular, limµ→0

∥∥T ⊕
µ (t) y − T ⊕(t) y

∥∥
⊕ = 0 for all y ∈ Y , t ∈ Ω, Ω ⊂ R≥0 compact.

Proof. The proof follows by application of the First Trotter-Kato Approximation Theorem (see for example
[9, Theorem 4.8, p.209]), via Lemma 4.1.

With the convergence property of all solutions of (2.17) and (2.20) provided by Theorem 4.2, and formu-
lae (3.70), (3.71) for the optimal input that generates the corresponding optimal trajectory that renders the
approximate action functional stationary, a recipe for approximating the solution of TPBVPs such as (1.3) on
short time horizons may be enumerated.

Recipe for the approximate solution of TPBVPs for horizons t ∈ (0, t̄µ)

❶ Select the approximation parameter µ ∈ (0, 1], and a truncation order N ∈ N for the Riesz-
spectral operator representations.

❷ Fix t ∈ (0, t̄µ), where t̄µ ∈ R>0 is as per (2.15).
❸ Select a terminal payoff ψ : X 1

2

→R∪{−∞} that encapsulates the terminal condition of interest,

e.g. (2.22), and apply (3.71) via the fundamental solution (3.65) to determine the corresponding
terminal state z∗ ∈ X 1

2

, see for example (3.73).

❹ Truncate the Riesz-spectral operator representation for the optimal input w∗(0) of (3.70), with

w∗(0) = k(0, x) = 1
m
A 1

2 IµA
1

2

(
P̆µ,∞(t)x+ Q̆µ,∞(t) z∗

)

≈ w̃∗(0)
.
= 1

m

N∑

n=1

λn
1 + µ2 λn

(
pµ,∞n (t) 〈x, ϕ̃n〉 1

2

+ qµ,∞n (t) 〈z∗, ϕ̃n〉 1

2

)
,

where pµ,∞n (t) and qµ,∞n (t) are as per (3.69).
❺ Propagate the solution of the wave equation (1.1) using ∂u

∂s
(0, ·) = w̃∗(0).

With particular reference to step ❹ in the case where a fixed final velocity v ∈ X 1

2

is specified via ψ
.
= ψv

as per (2.22), substitution of the left-hand equality of (3.73) in (3.70) yields the required initial velocity as

w∗(0) = 1
m
A 1

2 IµA
1

2

([
P̆µ,∞(t)− Q̆µ,∞(t)

(
R̆µ,∞(t)

)−1

Q̆µ,∞(t)′
]
x−m Q̆µ,∞(t)

(
R̆µ,∞(t)

)−1

J J v

)
.

(4.3)

A series form for w∗(0) follows by substitution of the Riesz-spectral operator representations for Pµ,∞(t),

Q̆µ,∞(t), R̆µ,∞(t), A 1

2 , Iµ, and J into (4.3), with the details omitted for brevity.

4.2. Longer horizons. As noted previously, the correspondence between stationary action and optimal
control exploited for shorter horizons via (2.16) may break down for longer time horizons due to loss of concavity
of the associated payoff (2.10), see Theorem 2.1. Consequently, for longer time horizons, a modified approach
is required. Two such approaches have been developed for finite dimensional problems, see [17, 18], based
on replacing the supremum in the definition (2.16) of the associated optimal control problem with a stat
operation. This stat operation yields the stationary payoff (and hence the stationary action functional) without
assuming that it is achieved at a maximum. In particular, in [17], longer time horizons are accumulated via the
concatenation of sufficiently many sufficiently short time horizons, with the stat operation used to characterize
the intermediate states joining adjacent short time horizons. More generally, the supremum over inputs in
(2.16) may be completely replaced with the stat operation, see [18]. Using either approach here requires a
corresponding extension to infinite dimensions. For brevity, such an extension is postponed to later work.
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Instead, for the purpose of presenting an illustrative example in Section 5, an outline of the development of the
former (concatenation) approach is provided, in a formal setting only. This outline is as follows.

Given a fixed longer time horizon t ∈ (t̄µ,∞) of interest, select a sufficiently large number nt ∈ N of shorter
horizons τ

.
= t/nt such that τ ∈ (0, t̄µ). By definition of τ , Theorem 2.1 implies that the payoff Jµm,ψ(τ, x, ·)

defined by (2.10), and hence the action functional of (2.12), is concave for any x ∈ X 1

2

. That is, the action

functional is concave on each of the subintervals [(k − 1) τ, k τ ], k ∈ [1, nt] ∩ N, with any loss of concavity
occurring in the dependence on the intermediate states ζk

.
= ξ(k τ) ∈ X 1

2

.
Motivated by this observation, a correspondence between stationary action and optimal control can be

established for longer horizons for finite dimensional problems by relaxing the supremum in the associated
optimal control problem, see [17]. In the infinite dimensional case considered here, it is conjectured that the
fundamental solutionWµ,∞(t, ·, ·) of the approximating optimal control problem defined by (2.16), as appearing
in (3.5), is defined on longer time horizons by

Wµ,∞(t, x, z)
.
= stat
ζ∈(X 1

2

)nt−1

{
nt∑

k=1

Wµ,∞(τ, ζk−1, ζk)

∣∣∣∣ ζ0 = x, ζnt
= z

}
(4.4)

for all x, z ∈ X 1

2

, in which the stat operation is defined generally by

stat
x∈X 1

2

F (x)
.
=



F (x̄)

∣∣∣∣∣∣
x̄ ∈ arg stat

x∈X 1

2

F (x)



 , arg stat

x∈X 1

2

F (x)
.
=

{
x ∈ X 1

2

∣∣∣∣∣ 0 = lim
y→x

|F (y)− F (x)|
‖y − x‖ 1

2

}
,

for functional F : X 1

2

→R. Figure 4.1 provides an illustration of the role of the intermediate states ζk ∈ X 1

2

,

k ∈ [1, nt] ∩ N. (Note that replacing stat with sup in (4.4) recovers the original short horizon fundamental
solution (3.4) as per (3.5), albeit applied to the longer horizon.)

x w1

ζ1 ζ2

w2 wnt

z = ζnt
= ξ(nt τ)

x = ζ0 = ξ(0) ζnt−1

Fig. 4.1. Concatenations of trajectories to yield a longer time horizon.

In order to test the conjecture that (4.4) is a suitable generalization of the longer horizon fundamental
solution, recall that Wµ,∞(τ, ·, ·) takes the form of the quadratic functional given by (3.65), see Theorem 3.11.
Combining (3.65) and (4.4),

Wµ,∞(t, x, z) = stat
ζ∈(X 1

2

)nt−1

Θµ(τ, x, ζ, z) , Θµ(τ, x, ζ, z)
.
= 1

2

〈


x
ζ
z


 , Πµ(τ)




x
ζ
z



〉

⋆

(4.5)

where 〈·, ·〉⋆ denotes an inner product on (X 1

2

)nt+1, defined for all ζ̂, ξ̂ ∈ (X 1

2

)nt+1 by 〈ζ̂ , ξ̂〉⋆ .
=
∑nt+1
i=1 〈ζ̂i, ξ̂i〉 1

2

,

and Πµ(τ) ∈ (L(X 1

2

))(nt+1)×(nt+1) is a matrix of Riesz-spectral operators defined by

Πµ(τ)
.
=




P̆µ,∞(τ) Q̆µ,∞(τ) 0 · · · 0 0

Q̆µ,∞(τ)′ P̆µ,∞(τ) + R̆µ,∞(τ) Q̆µ,∞(τ) · · · 0 0

0 Q̆µ,∞(τ)′ P̆µ,∞(τ) + R̆µ,∞(τ) · · · 0 0

0 0 Q̆µ,∞(τ)′ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Q̆µ,∞(τ) 0

0 0 0 · · · P̆µ,∞(τ) + R̆µ,∞(τ) Q̆µ,∞(τ)

0 0 0 · · · Q̆µ,∞(τ)′ R̆µ,∞(τ)



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≡




P̆µ,∞(τ) Πµ1,2(τ) 0

Πµ1,2(τ)
′ Πµ2,2(τ) Πµ2,3(τ)

0 Πµ2,3(τ)
′ R̆µ,∞(τ)


 . (4.6)

The existence of a solution of a TPBVP such as (1.3) on the long horizon t ∈ R>0 requires (by the action
principle) that the stat in the definition (4.5) of Wµ,∞(t, x, z) exist. Define ζ∗ ∈ (X 1

2

)nt−1 by

ζµ,∗
.
= arg stat
ζ∈(X 1

2

)nt−1

Θµ(t, x, ζ, z) ,

and note that 0 = ∇ζΘ
µ(t, x, ζµ,∗, z), where ∇ζΘ

µ(t, x, ζ, z) ∈ (X 1

2

)nt−1 is the Fréchet derivative of Θµ(t, x, ·, z)
at ζ ∈ (X 1

2

)nt−1. Applying (4.6) yields

Πµ2,2(τ) ζ
µ,∗ = −Πµ1,2(τ)

′ x−Πµ2,3(τ) z . (4.7)

Hence, on the longer horizon t ∈ [t̄µ, 2 t̄µ) (for example), the fundamental solution (3.4) generalizes as per (4.4)
to Wµ,∞(t, x, ζµ,∗) +Wµ,∞(t, ζµ,∗, z), where ζµ,∗ solves (4.7) for nt

.
= 2, τ

.
= t/2. This approach generalizes

to any fixed longer horizon t ∈ R>0, and taking µ → 0 corresponds to sending nt → ∞ in (4.4). Furthermore,
in this limit, it may be shown that evaluating (4.4) via (4.5) and (4.7) yields the same explicit quadratic
representation for the fundamental solution Wµ,∞(t, x, z), but with µ = 0, as presented in Theorem 3.11.

5. Example. For sufficiently short time horizons, as considered in Section 4.1, the action principle cor-
responding to the wave equation (1.1) may be approximated by the optimal control problem (2.16). This
approximation may be extended to longer horizons via the concatenation approach outlined in Section 4.2, and
becomes exact in the limit of the perturbation parameter µ ∈ R tending to zero (see Theorem 4.2). Consequently,
as the action principle describes all possible solutions to the wave equation (1.1), including those constrained
by any specific combination of boundary data, TPBVPs involving this wave equation may be solved via the
optimal control problem (2.16). The initial velocity w∗(0) that solves such a TPBVP may be found via the
recipe enumerated in Section 4.1, with µ = 0. In particular, step ❹ of that recipe yields the initial velocity that
solves a TPBVP as

v = w∗(0) = 1
m
A 1

2 I0 A
1

2 ∇xW
0,∞(t, x, z) = 1

m
A
[
P̆0,∞(t)x+ Q̆0,∞(t) z∗

]

= 1
m

∞∑

n=1

λ0n

[
p0,∞n (t) 〈x, ϕ̃n〉 1

2

+ q0,∞n (t) 〈z∗, ϕ̃n〉 1

2

]
ϕ̃n , (5.1)

where p0,∞n , q0,∞n are as per (3.69) and z∗ is as per (3.71), after sending µ→ 0.
Withm = κ = L = 1 (with appropriate dimensions) in (1.1), suppose that the specific problem TPBVP(t, x, z)

is to be solved given the (arbitrary) initial displacement x = 0 ∈ X0, terminal displacement z ∈ X0 as per

Figure 5.1(a), and horizon t
.
= π L

3 (m
κ
)

1

2 (≈ 1.05). Recall in that case that the terminal payoff ψ
.
= ψµ,∞(·, z)

encapsulates the required terminal displacement, and z∗ = z is required in (5.1), as per discussion following
(3.71). Applying (5.1) then yields the required initial velocity illustrated in Figure 5.1(b) that solves TPBVP
(1.3) via the fundamental solution (3.4). This solution may be tested by propagating the initial displacement
and velocity obtained forward to time t by solving the wave equation (1.1) directly. (Here, the C0-semigroup
T ⊕(·) of (2.21) generated by A⊕ is applied to this end, see for example [3].) The resulting wave equation
dynamics are illustrated in Figure 5.2(a), with the desired terminal displacement clearly achieved. Integration
over a longer time period reveals (expected) periodic behaviour, see Figure 5.2(b).

6. Conclusion. A new fundamental solution based approach to solving a two point boundary value prob-
lem for a wave equation is considered. A value functional based characterization of this fundamental solution is
formulated via the analysis of an optimal control problem that encapsulates the principle of stationary action.
This value functional is shown to enjoy an explicit Riesz-spectral operator based representation via an associ-
ated infinite dimensional Hamilton Jacobi Bellman partial differential equation. Application of the fundamental
solution obtained is illustrated via a simple example.

23



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ

z
(λ
)
(≡

u
(t
,λ

))

(a) Terminal displacement z(λ) vs λ.

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

5

λ

v
(λ
)
(≡

∂
u
∂
s
(0
,λ

))

(b) Initial velocity v(λ) vs λ.

Fig. 5.1. Initial velocity required to achieve terminal displacement.
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(a) Wave equation solution u(s, λ), s ∈ [0, t], λ ∈ [0, L].
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Fig. 5.2. Solutions of wave equation (1.1).
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Appendix A. Properties of operators A and A 1

2 . Operators A and A 1

2 are key to the application of
the principle of stationary action to obtain the wave dynamics (1.1) via optimal control. The relevant properties
of these operators are largely well-known [3], and are stated without proof unless otherwise indicated.

Lemma A.1. The following properties hold on X :
(i) Operator A is self-adjoint, positive, boundedly invertible, and closed, with

A′ x = Ax , ∀x ∈ dom (A′) = dom (A) = X0 ,

ran (A) = ran (A′) = X , (A.1)

〈x, Ax〉 = ‖∂x‖2 > 0 , ∀ x ∈ dom (A) = X0 , x 6= 0 , (A.2)

A−1 x =

∫

Λ

Â(·, ζ)x(ζ) dζ , Â(λ, ζ)
.
= 1

L

{
(L− ζ)λ , 0 ≤ λ ≤ ζ ≤ L ,
(L− λ) ζ , 0 ≤ ζ < λ ≤ L ,

∀ x ∈ dom (A−1) = X ,

ran (A−1) = dom (A) = X0 . (A.3)

(ii) Operator A has a unique, positive, self-adjoint, boundedly invertible, and closed square root A 1

2 , with

A 1

2 x ∈ dom (A 1

2 ) = X 1

2

∀ x ∈ dom (A) = X0 , (A.4)

A 1

2 A 1

2 x = Ax , ∀ x ∈ dom (A) = X0 , (A.5)

‖A 1

2 x‖ = ‖∂x‖ = ‖x‖ 1

2

∀ x ∈ dom (A) = X0 , (A.6)

J x
.
=
(
A 1

2

)−1

x =
(
A−1

) 1

2 x , ∀x ∈ dom (J ) = X ,

ran (J ) = dom (A 1

2 ) = X 1

2

, (A.7)

‖J x‖ 1

2

= ‖x‖ , ∀x ∈ dom (J ) = X . (A.8)

Lemma A.2. Operator A of (2.2) has countably infinite simple eigenvalues given by {λn}∞n=1, where
eigenvalue λn corresponds to eigenvector ϕn ∈ B of (2.6) (or equivalently ϕ̃n ∈ B̃) and

λn
.
= (nπ

L
)2 . (A.9)

Similarly, the square root A 1

2 of operator A has countably infinite simple eigenvalues given by {
√
λn}∞n=1, where

eigenvalue
√
λn corresponds to eigenvector ϕn ∈ B (or equivalently in ϕ̃n ∈ B̃) and λn is as per (A.9).

Lemma A.3. B and B̃ of (2.6) are orthonormal Riesz bases for X and X 1

2

respectively.
Lemma A.4. The following properties hold on X for any µ ∈ R>0:
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(i) Operator Iµ of (3.26) is bounded, linear, self-adjoint, positive, with

Iµ x ∈ dom (A) = X0 ∀ x ∈ dom (Iµ) = X , (A.10)

Iµ x =

∫

Λ

Iµ(·, ζ)x(ζ) dζ , Iµ(λ, ζ)
.
=

1

µ sinh(L
µ
)

{
sinh(λ

µ
) sinh(L−ζ

µ
) , 0 ≤ λ ≤ ζ ≤ L ,

sinh( ζ
µ
) sinh(L−λ

µ
) , 0 ≤ ζ ≤ λ ≤ L ,

∀ x ∈ dom (Iµ) = X . (A.11)

(ii) Operator Iµ has a unique, bounded, linear, self-adjoint, and positive square root I
1

2

µ , with

I
1

2

µ x ∈ dom (A 1

2 ) = X 1

2

∀ x ∈ dom (I
1

2

µ ) = X , (A.12)

I
1

2

µ I
1

2

µ x = Iµ x ∀ x ∈ dom (I
1

2

µ ) = dom (Iµ) = X , (A.13)

(iii) Operators Iµ, I
1

2

µ , A, and A 1

2 commute, with

I
1

2

µ A 1

2 x = A 1

2 I
1

2

µ x , IµA
1

2 x = A 1

2 Iµ x ∀ x ∈ dom (A 1

2 ) = X 1

2

. (A.14)

IµAx = AIµ x , I
1

2

µ Ax = AI
1

2

µ x ∀ x ∈ dom (A) = X0 , (A.15)

(iv) Selected compositions of operators Iµ, I
1

2

µ , A, and A 1

2 define bounded linear operators, with

AIµ, A
1

2 I
1

2

µ ∈ L(X ) , (A.16)

AIµ ∈ L(X 1

2

) , (A.17)

A 1

2 I
1

2

µ A 1

2 ∈ L(X 1

2

;X ) . (A.18)

Proof. (i) Fix any x ∈ dom (A) = X0. Consequently, Ax ∈ X , and

〈x, (I + µ2 A)x〉 = ‖x‖2 + µ2 〈x, Ax〉 ≥ ‖x‖2 ,

where the inequality follows by positivity of A, see assertion (A.2) of Lemma A.1. That is, I + µ2 A is
both positive and coercive [3, Definition A.3.71, p.606]. It is also self-adjoint by (A.1). Hence, I + µ2 A is
boundedly invertible, see for example [3, Example A.4.2, p.609] and [13, Problem 10, p.535]. In particular,
Iµ .

= (I + µ2 A)−1 ∈ L(X ). In order to show that Iµ is also self-adjoint and positive (but not coercive),
fix any y, η ∈ X , and define x, ξ ∈ X0 by x

.
= Iµ y and ξ = Iµ η. As I + µ2 A is self-adjoint, 〈y, Iµ η〉 =

〈(I+µ2 A)x, ξ〉 = 〈x, (I+µ2 A) ξ〉 = 〈Iµ y, η〉. As y, η ∈ X are arbitrary, it follows that Iµ is also self-adjoint.
Furthermore, with y = η, 〈y, Iµ y〉 = 〈(I+µ2 A)x, x〉 ≥ ‖x‖2 = ‖Iµ y‖2. As Iµ is invertible, the right-hand side
is zero if and only if y = 0. Hence, Iµ is positive. However, Iµ is not coercive, as it has eigenvalues arbitrarily
close to zero. For example, select y

.
= ψn, with ψn is as per (2.6). Note that ‖ψn‖ = 1. Applying Lemma

A.2, it is straightforward to show that 〈ψn, Iµ ψn〉 = 1
1+µ2 λn

‖ψn‖2 = 1

1+µ2 (
nπ
L

)2
‖ψn‖2 for all n ∈ N. Note in

particular that the coefficient on the right-hand side may be made arbitrarily small for sufficiently large n ∈ N.
Hence, Iµ cannot be coercive.

It remains to be shown that (A.10) and (A.11) hold. Fix any x ∈ X . By noting that I − Iµ ∈ L(X ), the
definition (3.26) of Iµ implies that

∞ > 1
µ2 ‖(I − Iµ)x‖ = 1

µ2 ‖([I + µ2 A] Iµ − Iµ)x‖ = ‖AIµ x‖ . (A.19)

Hence, Iµ x ∈ dom (A) = X0 for any x ∈ X , so that (A.10) holds. Given the kernel Iµ as defined in (A.11),

define the operator Îµ by

Îµ x .
=

∫

Λ

Iµ(·, ζ)x(ζ) dζ , dom (Îµ) .= X , (A.20)
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and note that Îµ ∈ L(X ) by inspection. Fix any x ∈ X and define y
.
= Iµ x ∈ X0. Hence, A y ∈ X , and

ÎµA y =
∫
Λ Iµ(·, ζ) [−∂2 y(ζ)] dζ = −

∫
Λ[∂

2
2Iµ(·, ζ)] y(ζ) dζ, where ∂22Iµ(λ, ζ)

.
= 1

µ2 Iµ(λ, ζ) − 1
µ2 δ(λ − ζ) is the

second weak derivative of Iµ(λ, ·), λ ∈ Λ fixed. Note in particular that the boundary conditions y(0) = 0 = y(L)

have been used here. Consequently, ÎµA y = − 1
µ2

∫
Λ
[Iµ(·, ζ) − δ(· − ζ)] y(ζ) dζ = − 1

µ2 (Îµ y − y), so that

Îµ (I + µ2 A) y = y. Recalling the definition of y, it follows immediately that Îµ x = Iµ x. As x ∈ X is
arbitrary, assertion (A.11) follows.

(ii) The existence of a unique, bounded linear, self-adjoint, and positive square root I
1

2

µ follows (for example)
by [2, Theorem 4]. (Alternatively, see [3, Lemma A.3.73, p.606].)

(iii) Fix x ∈ X 1

2

. By definition, A 1

2 x ∈ X = dom (I
1

2

µ ), and

IµA
1

2 x = (I + µ2 A)−1 A 1

2 x = (J [I + µ2 A])−1 x = (J + µ2 J A 1

2 A 1

2 )−1 x

= (J + µ2 A 1

2 A 1

2 J )−1 x = ([I + µ2 A]J )−1 x = A 1

2 (I + µ2 A)−1 x = A 1

2 Iµ x ,

so that right-hand equality in assertion (A.14) holds. The remaining equalities follow similarly, with x ∈ X0

yielding assertion (A.15).
(iv) The first assertion in (A.16) follows from the proof of (i) above. In particular, I − Iµ ∈ L(X ) and

(A.19) imply that ‖AIµ‖ = 1
µ2 ‖I − Iµ‖ < ∞, as required. In order to prove the second assertion of (A.16),

note that for any x ∈ X 1

2

, (A.15) implies that

‖A 1

2 I
1

2

µ x‖2 = 〈x, I
1

2

µ AI
1

2

µ x〉 = 〈x, AIµ x〉 ≤ ‖x‖ ‖AIµ x‖ ≤ ‖AIµ‖‖x‖2 .

Hence, the restriction Rµ of A 1

2 I
1

2

µ : X →X to the domain X 1

2

⊂ X is bounded and linear on that domain.

However, as X 1

2

= X , Rµ can be uniquely extended to an operator Eµ ∈ L(X ) (see for example [13, Theorem

2.7-11, p.100]) that satisfies Eµ x = Rµ x = A 1

2 I
1

2

µ x for all x ∈ X 1

2

. Fix y ∈ X . Hence, for any x ∈ X 1

2

,

‖Eµ y − A 1

2 I
1

2

µ y‖ ≤ ‖Eµ x − A 1

2 I
1

2

µ x‖ + ‖(Eµ − A 1

2 I
1

2

µ ) (y − x)‖ ≤ ‖Eµ − A 1

2 I
1

2

µ ‖ ‖y − x‖. Consequently, as

x ∈ X 1

2

is arbitrary and X 1

2

= X , implies that ‖Eµ y − A 1

2 I
1

2

µ y‖ ≤ ‖Eµ − A 1

2 I
1

2

µ ‖ infx∈X 1

2

‖y − x‖ = 0. As

y ∈ X is arbitrary, Eµ ≡ A 1

2 I
1

2

µ . Recalling that Eµ ∈ L(X ) completes the proof of assertion (A.16).

In order to prove assertion (A.17), note that A 1

2 and Iµ commute on X 1

2

by (A.14). Hence, with x ∈ X 1

2

.

‖AIµ x‖ 1

2

= ‖A 1

2 IµA
1

2 x‖ 1

2

= ‖AIµ (A
1

2 x)‖ ≤ ‖AIµ‖ ‖A
1

2 x‖ = ‖AIµ‖ ‖x‖ 1

2

. As AIµ ∈ L(X ) by (A.16),

assertion (A.17) immediately follows.

Finally, in order to prove assertion (A.18), note that (A.16) implies that ‖A 1

2 I
1

2

µ A 1

2 x‖ ≤ ‖A 1

2 I
1

2

µ ‖ ‖A 1

2 x‖ =

‖A 1

2 I
1

2

µ ‖ ‖x‖ 1

2

for any x ∈ X 1

2

. Consequently, supx∈X 1

2

,‖x‖ 1

2

6=0
‖A

1

2 I
1

2
µ A

1

2 x‖
‖x‖ 1

2

≤ ‖A 1

2 I
1

2

µ ‖ <∞ as required.

Appendix B. Riesz-spectral operators. It is useful to consider self-adjoint operators of the form

F̆ x
.
=

∞∑

n=1

fn 〈x, ϕ̃n〉 1

2

ϕ̃n , dom (F̆)
.
=

{
x ∈ X 1

2

∣∣∣∣ F̆ x ∈ X 1

2

}
, (B.1)

where the set {fn}n∈N ⊂ R of eigenvalues of F̆ is simple and has a totally disconnected closure (i.e. no two
elements of this closure can be joined by a segment lying entirely within it), and B̃ = {ϕ̃n}n∈N (enumerating
the corresponding eigenvectors of F̆) is the orthonormal Riesz basis defined by (2.6). This type of operator is
closed and densely defined on X 1

2

, see [3, Example 2.1.13, p.29], and is referred to as a Riesz-spectral operator

on X 1

2

, see [3, Definition 2.3.4, p.41]. Operators A and A 1

2 are Riesz-spectral operators, and may be similarly

represented, see [3, Theorem 2.3.5] and Lemma B.6 below. The identity I also takes the form (B.1), with

x = I x .
=

∞∑

n=1

〈x, ϕ̃n〉 1

2

ϕ̃n , dom (I) ≡ X 1

2

. (B.2)
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However, I is not a Riesz-spectral operator (its eigenvalues are repeated at 1, and so are not simple). Never-
theless, ‖x‖21

2

=
∑∞

n=1 |〈x, ϕ̃n〉 1

2

|2 for all x ∈ X 1

2

, see [3, Corollary 2.3.3, p.40].

The remainder of this appendix documents some useful properties of Riesz-spectral operators that are
applied in the main body of the paper. Unless otherwise indicated, proofs of these properties are considered
standard and are omitted.

Lemma B.1. The domain dom (F̆) of a Riesz-spectral operator F̆ of the form (B.1) is equivalently given by

dom (F̆) =
{
x ∈ X 1

2

∣∣∣ ‖F̆ x‖ 1

2

<∞
}
, ‖F̆ x‖21

2

=
∞∑

n=1

|fn|2 |〈x, ϕ̃n〉 1

2

|2 . (B.3)

Lemma B.2. Let F̆ and Ğ denote two Riesz-spectral operators of the form (B.1), with respective point spectra
σp(F̆) = {fn}∞n=1 and σp(Ğ) = {gn}∞n=1, and domains dom (F̆), dom (Ğ) as per (B.3). Suppose additionally that

{fn gn}∞n=1 is simple, and its closure is totally disconnected. Then, the composition F̆ Ğ is also a Riesz-spectral
operator of the form (B.1), with

F̆ Ğ x =

∞∑

n=1

fn gn 〈x, ϕ̃n〉 1

2

ϕ̃n , dom (F̆ Ğ) =
{
x ∈ dom (Ğ) ⊂ X 1

2

∣∣∣∣ Ğ x ∈ dom (F̆)

}
. (B.4)

Corollary B.3. Let F̆ and Ğ be Riesz-spectral operators as per Lemma B.2. Then, the domain of the
composition F̆ Ğ of (B.4) is equivalently given by

dom (F̆ Ğ) =
{
x ∈ X 1

2

∣∣∣∣∣
∞∑

n=1

(1 + |fn|2) |gn|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}
. (B.5)

If additionally there exists f− ∈ R>0 such that |fn| ≥ f− for all n ∈ N, then the domain dom (F̆ Ğ) specified via
(B.1) or (B.5) is equivalently given by

dom (F̆ Ğ) =
{
x ∈ X 1

2

∣∣∣∣∣
∞∑

n=1

|fn gn|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}
. (B.6)

Proof. Recalling (B.4), x ∈ dom (F̆ Ğ) if and only if x ∈ dom (Ğ) and Ğ x ∈ dom (F̆). These respective
properties hold if and only if

∞ >

∞∑

n=1

|gn|2 |〈x, ϕ̃n〉 1

2

|2 , ∞ >

∞∑

n=1

|fn|2 |〈Ğ x, ϕ̃n〉 1

2

|2 =

∞∑

n=1

|fn gn|2 |〈x, ϕ̃n〉 1

2

|2 . (B.7)

So, the domain of F̆ Ğ is given by

dom (F̆ Ğ) =
{
x ∈ dom (Ğ) ⊂ X 1

2

∣∣∣∣ Ğ x ∈ dom (F̆)

}
=

{
x ∈ dom (Ğ) ⊂ X 1

2

∣∣∣∣∣
∞∑

n=1

|fn gn|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}

=

{
x ∈ X 1

2

∣∣∣∣∣
∞∑

n=1

(1 + |fn|2) |gn|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}
,

as specified by (B.5). Suppose additionally that there exists f− ∈ R>0 such that |fn| ≥ f− for all n ∈ N.

Define the domain candidate D as per (B.6), that is D
.
=
{
x ∈ X 1

2

∣∣∣
∑∞
n=1 |fn gn|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}
. Fix any

x ∈ dom (F̆ Ğ) via (B.5). By inspection, it immediately follows that x ∈ D . That is, dom (F̆ Ğ) ⊂ D . In order
to prove the opposite direction, fix any x ∈ D , and note that the second inequality in (B.7) implies the first. In
particular,

∞ >

∞∑

n=1

|fn gn|2 |〈x, ϕ̃n〉 1

2

|2 > f2
−

∞∑

n=1

|gn|2 |〈x, ϕ̃n〉 1

2

|2 f−∈R>0

=⇒ ∞ >

∞∑

n=1

|gn|2 |〈x, ϕ̃n〉 1

2

|2 , (B.8)
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which implies that ∞ >
∑∞

n=1 |fn gn|2 |〈x, ϕ̃n〉 1

2

|2 +∑∞
n=1 |gn|2 |〈x, ϕ̃n〉 1

2

|2 =
∑∞
n=1(1+ |fn|2) |gn|2 |〈x, ϕ̃n〉 1

2

|2.
Consequently, x ∈ D implies that x ∈ dom (F̆ Ğ), or D ⊂ dom (F̆ Ğ). Combining this with the earlier conclusion
that D ⊃ dom (F̆ Ğ) yields that D ≡ dom (F̆ Ğ). That is, (B.6) holds as required.

Lemma B.4. Let F̆ , F̆ ♯ denote a pair of Riesz-spectral operators of the form (B.1), with point spectra
0 6∈ σp(F̆) = {fn}∞n=1 and σp(F̆ ♯) = { 1

fn
}∞n=1. Then,

F̆ F̆ ♯ x = x , ∀ x ∈ dom (F̆ ♯) , F̆ ♯ F̆ x = x , ∀ x ∈ dom (F̆) . (B.9)

Corollary B.5. A Riesz operator F̆ on X 1

2

with point spectrum satisfying 0 /∈ σp(F̆) = {fn}∞n=1 is

invertible. Furthermore, its inverse F̆−1 is also a Riesz-spectral operator on X 1

2

, and is given by

F̆−1 x =

∞∑

n=1

1
fn

〈x, ϕ̃n〉 1

2

ϕ̃n , dom (F̆−1) =

{
x ∈ X 1

2

∣∣∣∣
∞∑

n=1

| 1
fn
|2 |〈x, ϕ̃n〉 1

2

|2 <∞
}
. (B.10)

It is well known by Riesz’s Lemma that the identity I of (B.2) is not a Riesz-spectral operator on X 1

2

.

Consequently, the composition of a Riesz-spectral operator F̆ and its inverse F̆−1 (also a Riesz-spectral operator,
by Corollary B.5) is not itself a Riesz-spectral operator. Indeed, in attempting to apply Lemma B.2 to such
a composition F̆ F̆−1 reveals that its point spectrum σp(F̆ F̆−1) = {1} is not simple, thereby violating the
definition of a Riesz-spectral operator.

Lemma B.6. A, A 1

2 , J , Iµ, I
1

2

µ , I− 1

2

µ , and A 1

2 IµA
1

2 are Riesz-spectral operators of the form (B.1) on

X and X 1

2

, with respective eigenvalues given by λn, λ
1

2

n , λ
− 1

2

n , (1 + µ2 λn)
−1, (1 + µ2 λn)

1

2 , (1 + µ2 λn)
− 1

2 , and

λn (1 + µ2 λn)
−1 for all n ∈ N, where λn is as per (A.9).

Proof. Operator A is closed and linear on X , with simple eigenvalues σp(A) = {λn}∞n=1 ⊂ R defined by
(A.9) and corresponding to eigenvectors B = {ϕn}∞n=1 ⊂ X as per (2.6). The closure of the point spectrum of
A, denoted by σp(A), is totally disconnected, and B forms a Riesz basis for X , see Lemmas A.1, A.2, and A.3.
Hence, operator A is a Riesz-spectral operator on X (see also[3, Definition 2.3.4, p.41]), and operator A and
its domain dom (A) = X0 may be represented as per (B.1) with the aforementioned eigenvalues. An analogous
argument for A defined in X 1

2

, with eigenvectors B̃ as per (2.6) corresponding to the same eigenvalues {λn}n∈N

and forming a Riesz basis for X 1

2

, yields that A is also a Riesz-spectral operator on X 1

2

. A similar argument

yields that A 1

2 is a Riesz-spectral operator on X and X 1

2

. As A 1

2 J = I, Corollary B.5 implies that J is
similarly a Riesz-spectral operator on X and X 1

2

.

In order to show that the remaining operators are Riesz-spectral operators, first note that I−1
µ = I + µ2 A

defined via (3.26) is a Riesz-spectral operator, with eigenvalues {1 + µ2 λn}n∈N. This follows by (B.2) and the
fact that A is a Riesz-spectral operator. Consequently, Corollary B.5 implies that Iµ is also a Riesz-spectral

operator. Lemma A.4 states that Iµ has a unique square-root I
1

2

µ . Subsequently applying Lemma B.2 and

Corollary B.5 implies that both I
1

2

µ and I− 1

2

µ are Riesz-spectral operators. The fact that the composition

A 1

2 IµA
1

2 is a Riesz-spectral operator follows by two further applications of Lemma B.2.

Appendix C. Riesz-spectral operator-valued functions. A Riesz-spectral operator-valued function
takes the form

F(t)x
.
=

∞∑

n=1

fn(t) 〈x, ϕ̃n〉 1

2

ϕ̃n , dom (F(t))
.
=

{
x ∈ X 1

2

∣∣∣∣F(t)x ∈ X 1

2

}
, (C.1)

where t ∈ Ω, ϕ̃n ∈ B̃ is as per (2.6), and fn : Ω→R, for all n ∈ N, for some interval Ω ⊂ R≥0.
Lemma C.1. Suppose that the Riesz-spectral operator-valued function F defined by (C.1) satisfies the

following properties with respect to a bounded open interval Ω ⊂ R>0:
(i) {fn(t)}n∈N ⊂ R is a strictly monotone sequence for every t ∈ Ω;
(ii) fn ∈ C2(Ω;R) for all n ∈ N; and
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(iii) there exists an Mf ∈ R≥0 such that max(|fn(t)|, |ḟn(t)|, |f̈n(t)|) ≤Mf for all n ∈ N and t ∈ Ω.

Then, F(t) ∈ L(X 1

2

) for all t ∈ Ω, and F : Ω→L(X 1

2

) is Fréchet differentiable with derivative Ḟ : Ω→L(X 1

2

)

of the form (C.1) given for all t ∈ Ω and x ∈ X 1

2

by

Ḟ(t)x =

∞∑

n=1

ḟn(t) 〈x, ϕ̃n〉 1

2

ϕ̃n . (C.2)

Proof. Fix t ∈ Ω and x ∈ X 1

2

, x 6= 0. By property (i), as {fn(t)}n∈N ⊂ R is a strictly monotone sequence,
its closure is the union of itself and its supremum or infemum, where the latter is strictly less than or strictly
greater than every element of {fn(t)}n∈N. Hence, there always exists at least one open interval between any
two distinct elements of {fn(t)}n∈N, so that any two such elements cannot be joined by a segment lying entirely
within {fn(t)}n∈N. That is, {fn(t)}n∈N is totally disconnected. As B̃ = {ϕ̃n}n∈N is an orthonormal Riesz basis
for X 1

2

, it follows by [3, Corollary 2.3.6, p.45] that F(t) is a Riesz-spectral operator. Applying (B.3) to F(t),

and applying property (iii) and (B.2), yields that

‖F(t)x‖21
2

≤
∞∑

m=1

|fm(t)|2 |〈x, ϕ̃m〉 1

2

|2 ≤M2
f

∞∑

m=1

|〈x, ϕ̃m〉 1

2

|2 =M2
f ‖x‖21

2

, (C.3)

or F(t) ∈ L(X 1

2

) with ‖F(t)‖ ≤ Mf . Define Ω(t)
.
= {s ∈ R>0 | s+ t ∈ Ω}, and fix ǫ ∈ Ω(t), ǫ 6= 0. Define Ḟ

as per (C.2), and note by property (iii) and (C.3) that Ḟ(t) ∈ L(X 1

2

) with ‖Ḟ(t)‖ 1

2

≤ Mf , where ‖ · ‖ 1

2

here

denotes the induced operator norm on X 1

2

. Applying property (ii), fn(t + ǫ) = fn(t) + ǫ ḟn(t) + ( ǫ
2

2 ) f̈n(τ) for

some τ ∈ (t, t+ ǫ), so that

∥∥∥[F(t+ ǫ)−F(t)− ǫ Ḟ(t)]x
∥∥∥
2

1

2

=

∞∑

n=1

|fn(t+ ǫ)− fn(t)− ǫ ḟn(t)|2 |〈x, ϕ̃n〉 1

2

|2

≤ ( ǫ
2

2 )
2

∞∑

n=1

sup
τ∈Ω(t)

|f̈n(τ)|2 |〈x, ϕ̃n〉 1

2

|2 ≤ ( ǫ
2

2 )
2M2

f

∞∑

n=1

|〈x, ϕ̃n〉 1

2

|2 = ( ǫ
2

2 )
2M2

f ‖x‖21
2

.

Consequently, dividing through by ǫ 6= 0 and ‖x‖ 1

2

6= 0,

lim
ǫ→0

∥∥∥F(t+ ǫ)−F(t)− ǫ Ḟ(t)
∥∥∥

1

2

|ǫ| = lim
ǫ→0

sup
‖x‖ 1

2

6=0

∥∥∥[F(t+ ǫ)−F(t)− ǫ Ḟ(t)]x
∥∥∥

1

2

|ǫ| ‖x‖ 1

2

≤ lim
ǫ→0

|ǫ|
2 Mf = 0 ,

in which the left-hand norm is again the induced operator norm on X 1

2

, thereby demonstrating that Ḟ is indeed
the Fréchet derivative of F .
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