SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS FOR A WAVE EQUATION VIA
THE PRINCIPLE OF STATIONARY ACTION AND OPTIMAL CONTROL *

PETER M. DOWER! AND WILLIAM M. MCENEANEY#

Abstract. A new approach to solving two-point boundary value problems for a wave equation is developed. This
new approach exploits the principle of stationary action to reformulate and solve such problems in the framework of
optimal control. In particular, an infinite dimensional optimal control problem is posed so that the wave equation
dynamics and temporal boundary data of interest are captured via the characteristics of the associated Hamiltonian and
choice of terminal payoff respectively. In order to solve this optimal control problem for any such terminal payoff, and
hence solve any two-point boundary value problem corresponding to the boundary data encapsulated by that terminal
payoff, a fundamental solution to the optimal control problem is constructed. Specifically, the optimal control problem
corresponding to any given terminal payoff can be solved via a max-plus convolution of this fundamental solution with
the specified terminal payoff. Crucially, the fundamental solution is shown to be a quadratic functional that is defined
with respect to the unique solution of a set of operator differential equations, and computable using spectral methods.
An example is presented in which this fundamental solution is computed and applied to solve a two-point boundary
value problem for the wave equation of interest.
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1. Introduction. The principle of stationary action, or action principle, states that any trajectory gen-
erated by a conservative system must render the corresponding action functional stationary in the calculus of
variations sense, see for example [10, 11, 12]. As this action functional is defined as the time integral of the
associated Lagrangian, it may be regarded as the payoff due to a unique trajectory generated by some gen-
eralized system dynamics, and corresponding to a specified initial system state. By regarding the velocity of
these generalized dynamics as an input, the action principle may be expressed as an optimal control problem.
Recent work by the authors has exploited this correspondence with optimal control to develop a fundamental
solution to the classical gravitational N-body problem, see [15, 16]. This fundamental solution is a special case
of a more general notion of a fundamental solution semigroup developed for optimal control problems, see for
example [14, 7, 20, 8]. In the specific case of the gravitational N-body problem, by constructing a fundamental
solution to the optimal control problem corresponding to stationary action, a fundamental solution to a class
of N-body two-point boundary value problems (TPBVPs) may also be constructed. In this paper, the corre-
sponding fundamental solution construction for a class of TPBVPs is extended via infinite dimensional systems
theory to a wave equation [19, 3, 4, 5, 6, 7]. The specific wave equation considered is expressed via the partial
differential equation (PDE) and boundary data

2u K\ 0%u
In a mechanical setting (for example), u(s,\) may be interpreted as the displacement of a vibrating string at
time s € [0,7], ¢ € Rs, and location A € A, A= (0,L). Here, constants k,m € R model the distributed
elastic spring constant and mass respectively (with SI units of N and kgm™!). An example pair of initial and

terminal conditions defining a TPBVP of interest is

in which x and z denote the initial and terminal displacements. The problem to solve is then

Find the initial velocity %(O, )
TPBVP(t,z,z) = ¢ (if it exists) such that (1.1) and (1.2) (1.3)
hold with functions z and z given.
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(Another example of a TPBVP of interest is to determine the initial velocity such that a desired terminal
velocity is attained.) In order to formulate the action principle for system (1.1), note that the potential and
kinetic energies associated with a solution u(s, ) of (1.1) at time s € [0, ] are respectively denoted by V (u(s,-))
and T(2%(s,-)), where V and T are the functionals defined by

Vi) -5 [ o r(2eo)-2

The action principle states that any solution u of (1.1) must render the action functional

2

Ou dx. (1.4)

5(57)‘)

ou
%(Sv )\)

/ V(s )~ T (Gees.) as (15)

stationary in the sense of the calculus of variations [12], where V and T denote the energy functionals as per
(1.4), and the integrand is the Lagrangian or its additive inverse (as selected here). This includes any solution of
the TPBVP (1.3). Hence, by formulating an appropriate optimal control problem encapsulating this variational
problem, solutions of the TPBVP (1.3) may be investigated. In particular, a fundamental solution to the
TPBVP (1.3) can be constructed within the framework of infinite dimensional optimal control, using a more
general notion of fundamental solution semigroup for optimal control [14, 7, 20, 8]. The attendant optimal
control problem and subsequent TPBVP fundamental solution is formulated and developed in Sections 2 and 3.
Useful auxiliary optimal control problems, and their interrelationships, are employed in this development. The
application of this fundamental solution is then considered in the context of an illustrative example in Section
5. Selected technical details of relevance to the development are included in the appendices.

In terms of the notation, R, R>¢, and Rs denotes the sets of reals, non-negative reals, and positive reals
respectively. Given an open subset D of a Euclidean space and a Banach space 2, the respective spaces of
continuous, continuously differentiable, and Lebesgue square integrable functions mapping D to & are denoted
by C(D; &), CY(D; Z), and % (D; Z). Symbols & and 9? denote first and second order differentation for
functions defined on A. An operator O : £ =% between Banach spaces 2 and % is Fréchet differentiable at
x € 2 if there exists a bounded linear operator dO(z) € L(27; %) such that the limit limyy,,, o [|O(z +h) —
O(z) —dO(x) h||o /||h|| 2 exists and is zero.

2. Approximating stationary action via optimal control. Where the action functional is concave
or convex, the action principle can be formulated as an optimal control problem, see for example [15, 16].
However, this convexity or concavity, corresponding to that of the payoff or cost functional, is limited to a finite
time horizon that is determined by parameters associated with the kinetic and potential energies. In the finite
dimensional case, this limited time horizon is strictly positive, so that the conservative dynamics defined by the
action principle can be propagated via solution of the optimal control problem up to that time horizon. However,
in the infinite dimensional case considered here, this limited time horizon tends to zero, see Theorem 2.1 and [6],
thereby complicating the direct application of the approach of [15, 16]. In order to overcome this complication, a
perturbed optimal control problem is formulated that approximates the stationary action principle on a strictly
positive time horizon, thereby allowing the solution of the TPBVP (1.3) to be approximated on that time
horizon. By concatenating such horizons via the dynamic programming principle, solutions on longer horizons
can also be approximated. Such approximations are shown (using well-known semigroup approximation results)
to be exact in the limit of vanishing perturbations, see Section 4.

2.1. Preliminaries. Define an .45 and Sobolev space by

x, 0z absolutely continuous,

X = 2L(0MR), Zo=Rzed z(0) =0==z(L), , (2.1)
Pre X
and let (,) and || - || denote the standard %% inner product and norm on 2". A specific unbounded operator A
of interest in considering the wave equation (1.1) is densely defined on 2~ by
Az = (Az)() = =0%2(:), dom(A) =2 C X, 20=2". (2.2)
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Operator A is closed, positive, self-adjoint, and boundedly invertible, and has a unique, positive, self-adjoint,
boundedly invertible square root, denoted by Az. The inverse of this square root is denoted by J = (A%)_l €
L(Z). See Appendix A (Lemma A.1), [3] (Example 2.2.5, Lemma A.3.73, and Examples A.4.3 and A.4.26),
and also [2]. These properties admit the definition of Hilbert spaces

2 = dom (A?), (@, €)y = (A2 x, A2 ), Ve, (2.3)
The corresponding norms are denoted by | - [[1 and || - ||e. Similarly, it is also convenient to define the set
%i%GB%%C@%. (2.5)

Operators A and A2 are Riesz-spectral operators, see Appendix B and [3]. Define orthonormal Riesz bases

B = {pn}oy, pn() = /% sin(%E-),
] (2.6)
B={au}ola C 2y, $al) = L sin(22 ),

for 2" and 2~ 1 respectively (see Lemma A.3). The input space for the optimal control problem of interest is
Wr,t] = Lo([r,t]; Z1) (2.7)

for all t € Rx>g, r € [0,t]. The corresponding norm is defined by [[w]|5,, , = f: lw(s)||3 ds.
J 3

2.2. Approximating optimal control problem. In order to formulate the action principle for the
conservative infinite dimensional dynamics of (1.1), define the abstract Cauchy problem [19, 3] by

f(s):w(s), {(O):xeﬁ?f%, (2.8)

in which £(s) denotes the infinite dimensional state at time s € [0, ¢] that has evolved from initial state © € 2~ 1

in the presence of input w € #[0, s]. The derivative in (2.8) is of Fréchet type, defined with respect to the norm
I| - ||% The mild solution [19, 3] of (2.8) is defined as

£(s) = o + /O w(o) do (2.9)

for all z € 2 1, w € #100,s], s € [0,t]. In view of these dynamics, define the payoff (action) functional
T 0 [0,8) x 2y x #[0,£) >R for some £ € R by

T (t) = [ 516G = 3 17" w(o)l s+ w(e(w). (2.10)

in which &, m € Ry are physical constants as per (1.1), u € R is a real-valued perturbation parameter,
TH 3&%—%%”0 X 3?/”% is a bounded linear operator given by

J“wﬁ[fz}w, (2.11)

7 is the identity operator on 27, and 1 : 21 —R is any concave terminal payoff. In the integrand in (2.10),
note that [|{(s)|[1 = [|9&(s)]| is well-defined as {(s) € £ for each s € [0,]. Note also that |7 w(s)|[1 = [lw(s)|
is well-defined as ran (J) = 2. Consequently, (2.10) approximates the action functional (1.5) as

/Ot Viu(s, ) — T" <%(s, .)) ds (2.12)
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where T" : 271 —R is the approximate kinetic energy functional defined analogously to (1.4) by

() =2 ([

Note in particular that the || - ||3 term introduces a penalty on spatial ripples in %(s, -) for p # 0. This term
vanishes for = 0, so that T = 0 by inspection of (1.4) and (2.13).

In order to ensure that the optimal control problem defined via the payoff functional J W of (2.10) has a
finite value, it is critical to establish the existence of a t# € Ry in (2.10) such that J}, (¢, ,-) is either convex
or concave for all ¢t € [0,#") and z € 2. To this end, it may be shown (see Theorem 2. 1 at the end of this
section) that the second difference AJ), (¢, z, w3 @) = J), (¢, 2, w6w)—2J), ,(t,x,w )+ T}, (¢, 2, w* W)
of J), ,(t,x,-) for an input w* € #/[0,#] in direction @ € #/[0,t], 6 € R (with d [|@||[0,5) # 0) satisfies

ou
g(sv)

2

2
) = 217 w(s)l (213)

AJE (ta,w' S ) < —62 [m,u — k()] 101104 < 0 (2.14)
for all t € [0,t"), provided the terminal payoff 1 is concave, where

P (2m)h (2.15)

That is, the payoff functional J/! 1/J(t x,-) of (2.10) is strictly concave under these conditions. Consequently,
the approximate action principle (modlﬁed to include a concave terminal payoff 1), and perturbed by p € Rsq)
may be expressed via the value function W# : R>q x 2~ 1 —R,

Wh(t,z) = sup Jo (t2,w). (2.16)
weW[0,t] ™Y

By interpreting (2.16) as an optimal control problem, it is shown that the state feedback characterization of
the optimal (velocity) input for the approximate action principle is defined via w*(s) = k(s,£&*(s)), where
k(s,z) = L Az Z, Az YV, WH(t — s,2). Here, £*(-) denotes the trajectory (2.8) corresponding to input w*, and
7, is a self-adjoint bounded linear operator that approximates the identity for small 4 € R (to be defined
later). Consequently, by selecting a terminal payoff that forces the terminal displacement £(t) to z (fixed apriori
as per (1.3)), the corresponding initial velocity required to achieve this terminal displacement is shown to be

w(0) = L A3 T, A3 V,WH(t,£°(0)) = L AT T, A% V,WH(t,2).

The characteristic equations corresponding to the Hamiltonian associated with (2.16) imply that this initial
velocity determines the corresponding initial momentum costate. Here, it is convenient to define a scaled

1 1
costate m(s) = mZ, ? w(s), so that the initialization 7(0) = p = mZ, * w(0) ultimately yields the terminal
displacement z after evolution of the state and costate dynamics to time ¢ € (0,7*). This evolution is governed
by the abstract Cauchy problem

(4)-2(3)- #=(Laaa

in which &(s) and 7(s) denote the state and costate at time s € [0,¢], evolved from £(0) = x and 7(0) = p. The
uniformly continuous semigroup of bounded linear operators 7,%(s) € L(#) generated by A? € L(#) yields

solutions of (2.17) of the form
()75

for all s € [0,¢], with £ solving an approximation of the wave equation (1.1) given by

3=

(@)
’;Nm\)-t

), dom (A7) = %1, (2.17)

£(s) = —(£) A T, A% €(s) (2.19)
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for s € R>g. Furthermore, A;‘f is shown to converge strongly (as p — 0) to an unbounded, closed, and densely

defined operator A% on % = dom (A%) = 25 x 2 1. This operator defines the related abstract Cauchy problem

( N ) - < Zg; > , AT= ( —ISA ﬁoz > dom (A?) = % = 2o ® 27, (2-20)

and is the generator of the Cp-semigroup of bounded linear operators T (t) € E(@% ), t € R>, yielding all

solutions of (2.20) of the form
( 28 ) = T%(s) ( Z ) (2.21)

in which z(s) and p(s) denote the state and costate analogously to (2.18). Crucially, the state x is the solution
is the wave equation (1.1) itself. As the first Trotter-Kato theorem (e.g. [9]) implies that the semigroup 7,2 (t)
converges strongly to T®(t) for t € R>g on bounded intervals, solutions (2.18) of (2.19) converge to solutions
(2.21) of (1.1) as g — 0. In this sense, solutions of the TPBVP (1.3) defined with respect to the wave equation
(1.1) may be approximated via the optimal control problem defined by (2.16).

Where the terminal velocity is specified (rather than the terminal position as in (1.3)), this same approach
may be applied by employing the terminal payoff

() =t (x) =m (T T v, x)

In that case, the terminal momentum costate is given by

(2.22)

1
2

1 1 1
m(t) = A2 T A2 V,WH(0,6%(t) = A2 T A2 Vb (£°(t) = mZ2 v

Hence, by solving the optimal control problem (2.16) defined with respect to terminal payoff ¢, of (2.22), the

infinite dimensional dynamics of (2.19) can be propagated forward from a known initial position z € Zy C £ 1

to a known terminal velocity { (t) =Z,v € Zy. As in the terminal position case, this approximation converges

to the actual wave equation dynamics satisfying § t)y=ve B?f 1 as 4 — 0. The rigorous development yielding

this conclusion commences with a theorem concerning the conca\nty of the payoff functional J" » of (2.10).
THEOREM 2.1. Given t € Ryq, x € %1 , and concave terminal payoff v : %1 —R, the payoﬁ functional

Tt @, 0) of (2.10) is strictly concave. In partzcular the second difference AJ* (t r,awhdw) = JE (¢ z, wt

m,tp
5w) - 2J p(Ezw™) + J (¢ 2, w = 6W) of the payoff functional J), (¢, =, ) at any w* € #00,t] is strictly

negative as per (2 14) for any dzrectwn dw € #10,t] in the input space deﬁned by 0 € R, §[|0|w0,9 # 0.
Proof. Fix t € Rso, € 231, w* € #0,t], 6w € #[0,t] and 6 € R, with 5||wHW 0, 7 0, as per the

theorem statement. Define the trajectories corresponding to inputs w* and @ = w* + § @ via (2.8) as
e 2ot [ wds, ) zo [0 suds =€)+ 58w, &= [ alds, (@229
0 0 0

where r € [0,t]. The integrated action functional in the payoff (2.10) is of the form fot V(&(s)) — TH(w(s)) ds,
where V' and T* are quadratic functionals given by

VEE) = 5166013, T*w(s) =5 |7 wls)]3 (2.24)

with operator J#* as per (2.11). Applying (2.23) in (2.24),

2

V(E (r) + 66(r) = V(E*(r) + 65 <§*(7°), /Ortb(s)ds>l 182 (%) /Orw(s) | . @)
T (w' (1) + 80(r) = T(w* (1) + §m [(T w (1), Td(r))y + 2 (w' (r), @), ]
+0%(3) [ij( I3 + i ()3 ] (2.26)
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Hence, combining (2.10), (2.25), and (2.26),

me

= /0 V(€ (r) +8&(r)) = V(" (r) — [T (w"(r) + 6 @(r)) — TH(w* ()] dr + (" () + 6 €(1)) — (€ (1)

/Orw(s)ds 2

—am [(Tw (), Ta(r) g + 6 (), @)y | - 62 (3) [IT 603 + k2 |63 ] dr
(1) + 5E(1) — w(E° (1) (2:27)

A corresponding expression for J  (t,z,w* —dw) — J} ,(t,z,w*) follows by replacing § with —¢ in (2.27).
Adding this expression to (2.27) yields the second difference AJﬁwj(t,x,w*,&D) of Jrﬁfbdj(t,x,w*) at w* in
direction § w, with

(t,w,w* +0w) — Jy (8@, w")

1

2

2

/OT’LD(S)dS T

t
AT (o) = [ 5 2o (17 ()13 + 2 ()3 ] dr + A(E (), 66(1), (2:28)

where Aw(£*(t), SE(L)) = (EX(t) + 0 E(L)) — 20p(E5 (1)) + (E*(t) — 6 (1)) is the second difference of 1 at £*(t)
in d1rect1on §&(t). With a view to dealing with first term on the right-hand side of (2.28), define g4 = £(r) =
fo o)do € 21 and I1: 27 =R by Ilw = (w, qw> Note that II is a closed linear operator (a functional) in

(3&” 1;R). Also Tote that for @ € #00,r], r € 0,t], “Holder’s inequality and Cauchy-Schwartz implies that

[ 1y as < Flalan. [ maelds = [ s, o6y 1ds < VFlaal Lol < oo 229

That is, w € Z1([0,7]; 27) and Ilw € £ ([0, 7]; R). Hence, as 21 and R are separable Hilbert spaces (separa-
bility of the former follows by existence of a countable basis, see Lemma A.3), it follows by [3, Theorem A.5.23,
p.628] (for example) that

H/OTw(s) ds = /Orﬂzb(s)ds. (2.30)

Recalling the definition of II,

H/Orzb(s)ds:</orzb(s)ds, qu~,>é:</oru~)(s)ds, /Orzb(o)do>é:’/oru7(s)ds
while

[ ias = [ is= [ (a0, [ ) U> = [ [ 166, w0 doas
< [ [ 1y oy dods = ( [ e ||1ds) < il o < Il (232)

in which [3, Theorem A.5.23, p.628] is applied a second time to obtain the third equality, and the left-hand
inequality in (2.29) is applied to obtained the upper bound. Hence, combining (2.31) and (2.32) in (2.30) yields

r 2
0 3

2
, (2.31)

1

<r @l 0. »




which in turn implies that the first term on the right-hand side of (2.28) is

/Ota% /Orﬁ)(s)ds

Substituting (2.33) in (2.28) thus yields the second difference bound

2 t
~ 2 ~
ar <8 [ raril g = 8 (5 ol (233)

1
2

AJh (@ wi W) < =6 {m p =k (%)} @15 0.0 — 8> m 1T @504 + A(E7(£), 5 €(2)) - (2.34)

As the second difference Av(£*(t), 8 £(t)) is non-positive by concavity of 1, (2.34) is strictly negative if m p? —

K (%) > 0. That is, if ¢ € [0, "), where t* € Ry is as per (2.15). Under these conditions, it follows immediately
that the payoff functional Jf, (¢, z,-) of (2.10) is strictly concave. O

3. Fundamental solution to the approximating optimal control problem. A fundamental solution
in this optimal control context is an object from which the value function W# of (2.16) can be computed given
any concave terminal payoff ¢. This fundamental solution is constructed via four auxiliary control problems.

3.1. Auxiliary control problems. The auxiliary control problems of interest employ the same running
payoff as used in (2.10) to define the approximating optimal control problem (2.16). A specific terminal payoff
is used in each auxiliary problem. Two of these terminal payoffs depend on an additional function z € 2" 1
describing the terminal displacement. These terminal payoffs are denoted by ¢ : 2~ 1 X Z 1 —R, >

3?,”% X 3?/”% —RU{—oc0}, and ¢ : 3?/”% —R, where i, ¢ € R>o denote real-valued parameters. Specifically,

0, [[Ky(z = 2)

[
LK @=2)ly >0, @Y

—00

P20 ) =g -l (e = |

where IC, € L(Z 1 ) is a boundedly invertible operator to be defined later. Using these terminal payoffs and
a fixed real-valued parameter m € (0,m), the four auxiliary control problems of interest are defined via their
respective (auxiliary) value functions

W i Ryo x 210R, W, WHRyg x 21 X Z19R, WH™ :Ryg x 21 x 21 -RU {—o0},

where
W)= sup T ot w), W) = sup T Gnw),  (32)
wewfo,] wew (04
WHe(t, z,2) = GS;I[)O ) Jg)wmc(yz)(t,x,w), (3.3)
WH(t,x, 2) = s;% ) Jz,wu,w(.,z)(tvwi)' (3.4)
we s

The majority of the subsequent analysis will concern the value function W#¢ of (3.3) and its convergence to
WH> of (3.4) as ¢ — oco. Ultimately, W#>° plays the role of the fundamental solution for the optimal control
problem (2.16), in the sense that

WH(t, ) = Sup {Wre(t,, 2) +9(2)} (3.5)

forallt € R>g, z € 2 1. The remaining value functions W" and W are useful in ensuring that these auxiliary
problems are well-defined. In particular, note by inspection of the value functions (3.2)—(3.4) that

W (t,x) > Wt x, 2) > Wz, 2) > WHP(t, 2, 2) > —o0 (3.6)

forallt € Ryg, x,2 € 2" 1. Here, the last inequality follows by noting that the specific constant input @& € #(0, ]
defined by (s) = +(z — z) for all s € [0,¢] is suboptimal in the definition (3.4) of W*°(t,z, z). In particular,
W (t,x,z) > JF e (o) (b T, W) = =5 |z — 2|2 > —oo. The following is assumed throughout.
) ’ 2
AsSUMPTION 1. W'(t,z) < 0o for all € (0,1], t € (0,8), x € 2}.
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3.2. Fundamental solution. In order to construct a fundamental solution to the optimal control problem
(2.16), it is useful to define the value functional W# : R>q X 21 —=R by

o~

WH(t,x) = 21;1;) {WHe(t,x,2) + ()} . (3.7)

THEOREM 3.1. The value functionals W" and W* of (2.16) and (3.7) are equivalent, with WH(t,x) =
WH(t,z) for all t € [0,t*) and x € 2.
Proof. Fix t € [0,t"), x € 2’1 Substituting (3.4) in (3.7), and recalling (3.1),

Wh(ta) = sup sup {7 ) 460, + )| B0

) holds with }
ze2y wen o

§0) =

B sup sup {J:_;{ wo(f,iﬂ,w) +1/1M’w(§(t),z) +w(z)’ (28) hOliS with }
weW (o] z€2) ’ £0) ==z
0o 2.8) holds with
= s Sl + s (0 (e0,2) + o) | COEE T )

weW[0,t] ZG%%

By inspection of (3.1), the inner supremum must be achieved at z = 2* = {(t), with sup,¢ o, {¥**°(£(?),2) +
P(z)} =P (E(t), 2*) + P(2*) = 04+ (&(t)) = ¥(&(t)). Substituting in (3.8) and recalling (22.16) yields that

= sup J) (tx,w) =WHt, ).

Whita) = sup 8 ) + o)
, wen[0t]

(2.8) holds with }
weW[0,t]

£0)==

d

Theorem 3.1 provides an explicit decomposition of the approximating optimal control problem associated
with the principle of stationary action. In particular, it provides a means of evaluating of the value functional
WH of (2.16) for any concave terminal payoff ¢, including that of (2.22). In this regard, inspection of (3.7) via
Theorem 3.1 reveals that W/ of (3.4) can be regarded as an approximation (for p # 0) of the fundamental
solution to the TPBVP (1.3) via the principle of stationary action. Consequently, characterization of an explicit
representation of W is important for its application in the computation of W*.

3.3. Explicit representation of the fundamental solution. In order to characterize the fundamental
solution of the approximating optimal control problem (2.16) via Theorem 3.1, an explicit form for the value
function W of (3.4) may be constructed via three steps:

O Show that the value function W of (3.4) may be obtained as the limit of W of (3.3) as ¢ — o0;

O Develop a verification theorem that provides a means for proposing and validated an explicit represen-
tation for the value function W of (3.3);

0 Find an explicit representation satisfying the conditions of the verification theorem of [, and apply the
limit argument of 0 to obtain the corresponding representation for W of (3.4).

3.3.1. Limit argument — 0. This first step is formalized via the following theorem.
THEOREM 3.2. The auziliary value functions WH< W of (3.8), (8.4) satisfy the limit relationship

lim WHe(t,x, z) = WH(t,z, 2) (3.9)
cC— 00
for allt € [0,t"), x,z € 3?//%.
In order to demonstrate the limit property summarized by Theorem 3.2, it is useful to first note that a ball
of any fixed radius centered on z € 2~ 1 can be reached by a sufficiently near-optimal trajectory defined with
respect to (3.3).



LEMMA 3.3. Fizt € [0,i*) and z,z € 2. For each € € Ry, there exists a ¢ = ¢f , . € Rso, 5 € (0,1],
such that ||€°(t) — z||, < € for all ¢ € (¢,00) and & € (0,6), where £°(+) denotes the trajectory of system (2.8)
2

corresponding to any d-optimal input w®® € W[0,t] in the definition (3.3) of WH°(t, x, z).
Proof. Fix t € [0,¢") and z,2 € 21 Recalling the assumed bounded invertibility of K, on 27, see (3.1),

set Ky, = HIC;lHQl € Rso. Suppose the statement of the lemma is false. That is, there exists an € € Rsg such
2 _ _
that for all ¢ € Ry and 6 € (0,1], there exists a ¢ € (¢,00) and § € (0,6) such that |[£>(t) — z|[, > €. So,
— 2
given this € € Rsq, choose a specific ¢ € R+ and 0 € (0, 1] such that

(55-) €2 =6 > W' (t,2) — WH>(t,z,2). (3.10)

2k,

(Note that this is always possible by Assumption 1.) Let ¢ € (¢, 00) and § € (0, 8) be such that ||€%°(t) — z||, > €
2
as per the hypothesis above. Note by bounded invertibility of I, on 2~ 1,

e < ||, K (€9°(t) — 2)

2 . 2
L < [ (€°0(1) = )] - (3.11)
Hence, by definition of any d-optimal input w®® in WH*°(t, z, ) of (3.3),

WHE(t,z,2) — 0 < ng,wc(»,z) (t,x,wc"s) = Jﬂwo(t,x,wc"s) + P (fc"s(t), z)
<SWH(t,2) = § ||Ku (6°(1) — Z)Hzl <W'(ta) — (5%) €,

3 2k,

where the equality follows by (3.1), while the inequalities follow by suboptimality of w9 in the definition (3.3)
of W<, (3.6), and (3.11). Consequently, W' (t,2) — W™ (t,z,2) > W' (t,z) — Wre(t,2,2) > (7<) € — & >

Kp

(%) €2 — §, which contradicts (3.10). Hence, the assertion in the lemma statement is true. O

An upper norm bound on near-optimal inputs is also useful.

LEMMA 3.4. With ¢ € Rsq, 6 € (0,1], ¢t € [0,t*), and z,z € 2 fiwed, any input w € W0,t] that is
d-optimal in the definition (3.3) of WH<(t, x, 2) satisfies the bound

[T* w0 < MO (t 2, 2) < M (t, 2, 2) (3.12)

where

1 1
Wt @, 2) = WHe(tx,2) +6\~  —u (W) =Wt 2) + 1
l(m_m) Y M (t,.I,Z): 1 :
2 22

e (g g 2) =
ME e 2) < 3(m —m)

Proof Input w®® € #0,1] is respectively sub-optimal and d-optimal in the definitions (3.2) and (3.3) of
W"(t, z, 2) and WH<(t, x, z), so that

t
Wt w,2) > Jh (™) = / SIE (I = F 1T w ()| ds + e (€°(1), 2)
- 0
t
WHe(t,a,2) = 8 < Th ey (b, w™) = /0 SIEC (I = 5 1T w ()| ds + e (€°°(1), 2)

in which 56’5(-) denotes the trajectory corresponding to wc"s(-). The left-hand inequality of (3.12) follows by
subtracting the second inequality above from the first, while the right-hand inequality of (3.12) follows by
application of (3.6) in the definition of M*®9(t, x, z) to yield the upper bound M”(t, x,2). 0

Lemmas 3.3 and 3.4 facilitate the proof of the required limit property of Theorem 3.2.

Proof. [Theorem 3.2] Fix t € [0,¢*) and x,z € 21 Observe that for all ¢ € R>o, ¢1 € Rx,

Y (x, z) > P (x, z) > P (x, 2) WHE(t x,z) > W (tx, z) > WHP(t x, 2),
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where the first set of inequalities follows immediately by inspection of (3.1), which in turn implies the second
set of inequalities by inspection of (3.3) and (3.4). That is, W*¢ is non-increasing in ¢ and satisfies

lim WHe(t,x,z) > WH(t,z,2) . (3.13)

c— 00

In order to prove the opposite inequality required to demonstrate (3.9), a sub-optimal input for W is
constructed from a near-optimal input for W#¢. To this end, fix an arbitrary € € Rso. With £%°(-) and w®?(-)
as per the statement of Lemma 3.3, there exists a ¢ € Ry and § € (0, 1] such that

le®®) — =, <e (3.14)
for all ¢ € (¢,00) and § € (0,6). Define a new input w*? € #0,t] by
va“(s) = wc"s(s) + % (z - {Cva(t)) (3.15)
for all s € [0,¢]. By inspection of (2.8) and (3.15), the corresponding state trajectory £%%(-) satisfies

éc’é(s) =x+ /S 12)‘2’5(0) do =z + /S wc";(a) do + ¢ (z - §C’J(t)) = {C"s(s) + 4 (z - 5‘2’5(15)) , (3.16)
0 0

so that £99(0) = z and £%%(t) = z. However, as £9(t) need not equal z, (3.1) implies that ¢ (£5°(t), 2) =
=5 [l (620(1) = D)} < 0= (E0(1), 2). So, for all c € (2.00), § € (0,9),

WHE(t,2,2) = 6 < Jh o (6, w5?) = / S () — B 1T wS ()] ds + (€ (1), 2)

t
< /0 SIE ()R — B NT" @ (s)II3 ds + 9 (E0(E), 2) + At w,2) = Th oo (8 2,05) + A(t, 2, 2)
S WH(t x, 2) + A (t,x, 2) , (3.17)

where sub-optimality of ©®°® in the definition (3.4) of W*°(t,z, z) has been applied, and
t
A(t,2) = / 5 (I ()3 = 1€5)13 ) - B (17w ()3 = 17" 6% (s)]13 ) ds

< / 5 (1€ ()lly + 1€ (3)lly ) 1€ (5) = €20 (9)lly + 3 (1T @ (5)lly + 1T o (s) 4 )
7% (% (5) — w"(s))]| 3 ds (3.18)

(Here, the upper bound follows by the triangle inequality.) Note that A*€(t,x, z) is parameterized by € € R<q
via ¢ and 4 (see Lemma 3.3). In order to bound the right-hand side of (3.18), Holder’s inequality implies that
for any Hilbert space 2 (with norm denoted by || - || ) and any z, 2 € Z[0,t] = %([0,t]; Z&),

t t
[ ez + 1002 126) = (6 ds < ([ Ul + 106012 ) ([ )= =12 ds)
1
A 2 4 o A
< V2 (12l 00 + 1213100) 12 = 2l 0.0 < VE (122100 + Izl z100) 12 = 2l 310, - (3.19)
in which ||Z||?@"[o . fo |z(s)||% ds. Meanwhile, the triangle inequality states that
2l 0.0 < 12 = zll 210, + 2l 20, - (3.20)
With a view to applying (3.19) and (3.20) to the right-hand side of (3.18), note that by (2.11) and (3.15),

177 (@°°(s) = w* ()3 = [T (@ (s) = w(s)F + i |6 (s) — w* ()3
10
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= 17 Mz — €SO + 12 2z — @I = & 1T AF(z = €5 0) 2 + 5 12— €0 (1)}

2, 2 2, 2
||x7||t2+# Hz_é-c,é(t)Hé < (”J”ﬁhﬂ ) 62,

IN

where commutation of J € £(.2") and A? follows by Lemma A.1. Hence, integration yields
40 e ey )t _ (1ot

| T (0 — w® )HW[M] < /0 (T) eds) = (f) €. (3.21)
Consequently, Lemma 3.4, (3.20), and (3.21) together imply that

s - e 7 LTI 2

17" 0y oy < T 2) ([T 6°0 |y < T, 2) + (BZHE) e (3.22)
Similarly, (3.14) and (3.16) imply that
5 ¢ 3 3\ 3 1

| =1 - (t>||§(/0 52d5> <ie(£) =i (3.23)

As % is sub-optimal in the definition (3.4) of W (¢, z, z), while "> (£%9(t), z) = 0 by (3.1) and (3.16),

éc,é _ 56,5

‘W[O,t]

t
Wee(t0,2) > [ FIETIE 31701 ds+ 9= E00.2) = §1E7 P00 = 170 0

or, equivalently, Héc"sHQW[Qﬂ < ZWHeR(tx, z) + || T 0| QW[M]. Applying the second inequality of (3.22),

the triangle inequality, and (3.23) yields the respective inequalities

56,5

=

‘W[O,t] S Mﬂﬁe(tvxvz)v ||§Cyé||7/[0,t] S Mﬂ’e(t,x,z) + (%) €, (324)

Nl=

in which M (t,x, 2) = [2 W (t,z) 4 (nzn%ﬁ)

m - e+ " (t,2,2)]2. So, combining (3.21), (3.22), (3.23),
(3.24) in (3.18) yields that

AR<(t 2, 2) < 25 (1€ w0 + 1€ w0, I1E° = €% o
+ (1T 0 o, + 1T W po,0) | T* (@0 = w0,

<& (MMt + (5)T ) (B)F e+ 2 (m“@,x,z) + (U2 ) (122) e~ o) (325

This bound is independent of ¢ and §. Fix any € € Rso. With ¢, z, and z given, there exists an € € R such
that A*€(t,x, z) < € Inequality (3.17) then implies that W °(t,x,z) — 6 < WH>(t,z,z) + € for all ¢ € (¢, 00)
and § € (0,9). So, sending § — 07 and ¢ — oo yields lim, 0o WHC(¢,2,2) < WH™(t,z,2) + & As € € Ry
is arbitrary, it follows that lim._,co WHC(t, 2, 2) < WH(t,z, 2) for any ¢ € [0,t#), z,2 € 3&”%. Combining this
inequality with (3.13) completes the proof. O

3.3.2. Verification theorem — [J. The second step in explicitly characterizing the fundamental solution
to the optimal control problem (2.16) utilizes a verification theorem. In stating this theorem, it is convenient
to define operator Z,, € L(Z") by

T,y= T+ Ay, dom(Z,) =2, ran(Z,) =2, (3.26)

where boundedness, the stated range, and a number of other useful properties follow by Lemma A .4.
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THEOREM 3.5 (Verification). Given u € Rsg, t* € R>q as per (2.15), ¢ € R>q, and z € 3?/”%, suppose that
a functional W € C([0,#] x 21 x Z1;R) NCL((0,t") x 21 x Z1;R) satisfies

0= —%—Vz/(t,x, 2)+ H(zx, V. W(t,z,2)), (3.27)
W(O,I,Z) = U)MC(I52> (328)

for allt € [0,") and x € 2y, where VoW(t,z,2) € 21 denotes the Fréchet derivative of W(t,-,2) at v € 271,
defined with respect to inner pmduct (, >% on Zy, and H 21 x Z1—R is the Hamiltonian

H(x,p) = § 2l3 + 57 L |ZE A e (3.29)

in which Iz is the unique square root of Z,, of (3.26), see Lemma A.4. Then, W (t,z,z) > J" e (- Z)(t,x,w) for
all x € 3{%, w € #|0,t], t € [0,t*). Furthermore, if there exists a mild solution £* as per (2 9) corresponding
to a distributed input w* defined via the feedback characterization

w(s) = k(s, €5(s)),  k(s,z) = L AZT, ATV, W(t - s,x,2), (3.30)

such that £*(s) € 2 for all s € [0, 1], then W(t,,z) = Jghwyc(,)z)(t,x,w*), and W (t,z,z) = WHe(t,z, z).
The verification Theorem 3.5 may be proved via completion of squares and a chain rule for Fréchet differ-
entiation, summarized via the following preliminary lemmas.
LEMMA 3.6. Given any p € 21, the quadratic functional 7)) : 21 — R, nf(w) = (p, w)s — 3 [|T* wH

1
satisfies SUDye 27, mh(w) = Th(w*) = 3= |2 Az pHQ% with w* = L A2 T, Aspe 21 and I, as per (3.26).

Proof. Fix p € 23 and w € 2. Note that Azpe 2 and Jw € 2y = dom (A), by Lemma A.1. Note
also that (7° + > T)w = J (Z+ p* A) Jw = J I, " J w. Hence, by definition of 4 (w) and (2.11),

wg(w) = —% (w, jI;l ju}>% — % (p, w>% , (3.31)

As T, ! has a unique positive self-adjoint and boundedly invertible square root (Lemma A.4), it follows that
1 1

(p, w)y = <12 Az p T, 2 jw>1 and (w, J I, Jw>1 =|Z,? JwH , where ) + =23 and Iji € L(Z).

Substituting in (3.31),

_1 1 1 1 1 1 _1 1 1
mw) = —2 (|15 Tl - 2 @ AT, T Ty | = 5 1T ARl — 217 Tw— LT bl

1

2
1 % 1 2 m _% *

=5 1T AQPH% —S1Z, 2 T (w—w )H%

for all w € Ez“f%, where w* € Ez“f% is as per the lemma statement. Taking the supremum of wg(w) over w € Ez“f%,

i 1 -1 1
o _ 1 T2 3 2 _ m £z, 2 ¥ _ 1 12 3 2 _ *
wseu% ™ (W) = g 172 A2 pll} zwler;{%ll w? I (w—w)lly =57 15 A2 plly = m, (W),

as per the lemma statement, with the supremum attained at w* € 2~ 1. a

The following lemma is standard and its proof is omitted (see for example [1]).

LEMMA 3.7 (Fundamental Theorem of Calculus). Given any p € Rsg, t € (0,t*) with t* € Rso as per
(2.15), v € Zy, w e W|0,t], let £ : [0,1]=> 2 denote the mild solution (2.9), and let W € C([0,t#] x 21 x
21;R) N CL((0,t4) x 21 x Z1;R). Then, for any 7 € [0,],

aw

Wit -, 5(7),2)—W(t,1?,2)—/OT——(t—S £(5); 2) +(VaW(t = 5,£(s), 2), w(s))

d
dt 5

1
2
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where V,W(t,z,z) € 3&”% denotes the Riesz representation of the Fréchet derivative of W (t,-,2) at x, defined
with respect to inner product <,>% on Ez“f%.

Lemmas 3.6 and 3.7 facilitate the proof of the verification Theorem 3.5.

Proof. [Theorem 3.5] Given t* € Rsg and 2 € 271, let W € C([0, 8] x 27 x %%;R)ﬁcl((o, ) x Z1x 21 R)
denote a solution of (3.27) — (3.28) as per the theorem statement. Fix w € #[0,], t € [0,#*), and let £(-) denote
the mild solution (2.9) of (2.8) with £(0) = z € 27 and w(s) = W(s), s € [0,t]. Recall that {(s) € 2 for
all s € [0,¢]. Set p(s) = VoW (t — 5,£(s),2), and note that p(s) € 27 for all s € [0,7]. Hence, both terms in
H(&(s),p(s)) as per (3.29) are well-defined for all s € [0,¢]. In particular, Lemma 3.6 implies that
2
L (VW= 5, E(5),2), T(s)

2

1
2

A |z At v — s, E6), 2)

=g l7"w(s)3 (3.32)

for all s € [0,¢]. Hence, su2bstituting (3.32) in (3.27) yields that 0 > —2W (¢t — s, &(s), 2) + (V. W(t —

s, £(s), 2), w(s))1 + 5 €))L — 2T E(s)”é for all s € [0,¢]. Integrating with respect to s € [0,¢], the
2

Fundamental Theorem of Calculus (Lemma 3.7) implies that

02/0 _%—T(t—s, (), 2) + (VoW (t — s, E(S),z),w(s))%ds-i-/o 5 HZ(S)HQ% — w1} ds

t
_ o 15 A2 m _
—WO.E0), 2 - Wt )+ [ 5 [E); - 3 17T ds.
0
Applying (3.28) and (2.10) to this yields W (t,z,z) > J" e (. .y (t,2,W) as per the first assertion. In order to
prove the second assertion, define w* as per (3.30). By assumption, £*(s) € 27 and VoW (t,"(s),2) € 2 for
all s € [0,¢]. Hence, the argument from (3.32) onwards may be repeated, this time with equality, yielding that

W(t,z,z)=J" e (o) (B T W) = W< (¢, x, z) as required. O

3.3.3. An explicit representation of the fundamental solution W#** of (3.4) — 0. The third step
in explicitly characterizing the fundamental solution to approximating optimal control problem (2.16) involves
the construction of a functional that satisfies the conditions of Theorem 3.5, followed by an application of the
limit argument [0. To this end, define the bi-quadratic functional Whe [0,t#) x 2" 1 X Z 1 —R by

WHe(t, @, 2) = §(x, PO(t) 2)y + (o, @(1) 2)3 + 5 (=, RC() 2)y (3.33)

1
2

where PH:C, Qe RIHE [O,f“)%ﬁ(e%”%) denote operator-valued functions of time that satisfy the operator
differential equations

Pre(t) = T + & PHe(t) A2 T, A PPE(1), PrA0) = —e My, (3.34)
Qre(t) = L Pre(t) A T, AF Qre(1), Q"(0) = +e My, (3:35)
RIC(H) = £ (@) (1) A T, A Q(0), RIC(0) = —c My, (3.36)

in which Z denotes the identity operator on 2" 1 and
M, =(K,) K, € E(%%) (3.37)

is self-adjoint, positive, and boundedly invertible by definition of £C,,. It may be shown that the functional Whe
of (3.33) satisfies the conditions of the verification Theorem 3.5, thereby providing an explicit representation
for the value function W# of (3.3) in terms of the operator-valued functions PH:¢, Q¢ RH-c.

THEOREM 3.8. The functionals WH< of (3.3) and W< of (3.88) are equivalent. That is,

WHE(t,, 2) = WHE(t, @, 2) (3.38)
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for allt € 0,t"), x,z € 2.

Proof. As indicated above, it is sufficient to demonstrate that W< of (3.33) satisfies the conditions of
Theorem 3.6. To this end, fix ¢t € [0,t#), z, z € %%. Firstly, in order to show that W*¢ satisfies (3.27), note

that VT/“’C(~, x, z) and W“’C(t, -, z) are Fréchet differentiable. In particular,

AW e : . :
S (6,,2) = 3 (PR )y + (o 945(0) 2)y + b LRI )4 (3.39)
V. WE(t,z, 2) = PH(t) & + QH<(t) z. (3.40)
With a view to verifying that (3.27) holds, further note that
5|3 = Lz, wTa), (3.41)

= L{a, LPre(t) A% T, A3 PRe(t) o)) + (w, & PPe(t) A3 T, A Q<(1) 2),
+ 5z, (QMe() AP T, A2 QPO(t) 2)

NN o=
|

1 V]
S |1 ZE A2 VWt 2, 2|
, (3.42)

1
2

where the second equality also exploits the fact that P#<(t) is self-adjoint. Hence, substitution of (3.39) (3.40),
(3.41), (3.42) in the right-hand side of (3.27) yields the bi-quadratic functional (in  and z2)

3 (@, XM @)y + (2, V() 2)1 + 5 (2 2(1)2)

in which X(t) = —Pre(t ) +RT A+ L Pre(t) A3 T, Az PRo(t), V(1) = —OR(t) + £ Pre(t) A2 T, A7 QR<(t),
and Z(t) = —RM°(t) + L(omre(t )) Az T, Az Q#<(t). However, (3.34), (3.35), (3.36) imply that these three
operator-valued functions are identically zero, so that (3.43) must be zero. Hence, the explicit functional we
of (3.33) satisfies (3.27). y

Secondly, (3.40), in which P#<(t), Q<(t) : 1 — 2, implies that Vo WHe(t,z,2) € 2.

Finally, in order to show that W< satisfies the initial condition (3.28), note by inspection of (3.33), the
initial conditions of (3.34), (3.35), (3.36), and the identities J A2 = Z and M,, = (K,,)’ K, that

(3.43)

1
2

@02y + (- R0,

W“’C(O,x,Z):%@ Pre(0) z) s + (x,
1 +(z, (FeMy) 2)1 + 5 (2, (e M,,) 2)

(z, (ze M) ) =5 Ky (z = 2)Il3 = 9"(a,2),

1 1
2 2

as required by (3.28). That is, the explicit functional W€ of (3.33) satisfies the conditions (3.27), (3.28) of
Theorem 3.5. Consequently, W“’C(t, x,z) =WHe(t x,2). O

Theorem 3.8 provides a representation for W< of (3.3), via WHe of (3.33), in terms of operator-valued
functions PHc, Qe RM¢ satisfying (3.34), (3.35), (3.36). Candidate definitions for these functions are Riesz-
spectral operator-valued functions of the form (C.1), see Appendix C. In particular, define an operator-valued
function P*¢ of the form (C.1) by

Pt x—zp (@, @n)s Pn s (3.44)

where {p/¢(t)}nen denotes the set of eigenvalues of PHc(t) corresponding to its eigenvectors {¢y, fnen defined
by the Riesz basis (2.6) for 271. Motivated by the initial condition P*(0) = —c M, specified in (3.34), restrict
M,, to be a Riesz-spectral operator of the form (B.1), with simple (i.e. non-repeated) eigenvalues {m# },ecn.
Note in particular that p#©(0) = —cmk. Analogously define operator-valued functions Q¢ and R*¢. Select
the respective eigenvalues of the operators in the range of these three operator-valued functions to be

1 1 B 1
() = — 1 HaC () = 1 3.45
pn ( ) anﬁ tan (w,:ll. t + 05,6) Y QH ( ) +anﬂ (1 + (a m c)2> Sin (wﬁ t + 05,6) ? ( )
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1 1
me(t) = — 2 i 3.46
= o <1+<—m >2> e ) (340

Qi My €

for all p € (0,1], t € [0,#"), ¢ € Rs(, where

aﬁzi L)‘ﬁéu )‘Zziu EHiMLéu
(eked 14+ p2 N, %) (3.47)
W= [(B)A]E, N, = (BE)2 01 = tan ™! (oprdo)

Note by inspection that {\,}, {\}, {a#}, {wh} define strictly increasing sequences in n € N. In particular,
A<M SN <N =, (3.48)

with corresponding inequalities holding for o, wk.

In order to establish that the Riesz-spectral operator-valued functions 75“70, Q”’C, RH< defined by (3.44)—
(3.46) satisfy the respective operator-valued initial value problems (3.34)—(3.36), it is important to first establish
differentiability of these operator-valued functions, given a specific choice of initial condition operator M,.
This can be achieved by application of Lemma C.1. In particular, motivated by condition (i) of Lemma
C.1 (concerning strict monotonicity of sequences {p°(t)}, {¢/°(t)}, {r>°(t)}, n € N), it is convenient by
inspection of (3.45)—(3.47) to select M,, to be a Riesz-spectral operator of the form (B.1) with eigenvalues

{mh}nen satisfying ——r = \/mr = ”O;IZ. That is,

T —
ah my,

[V

oo 1
_ w = = wo —
Myx= g mn<x,<pn>%<pn, mn—m—(

(Note that M,, € £L(271) as {uf;}nen is bounded.) The eigenvalues (3.45)—(3.46) subsequently simplify to

1+,u2/\n>

5 x € dom (M) = 271 . (3.49)

n=1

[SE

1 1 1
PR =~ — . dC() =43 — ,
" tan (w#t—l—tan*l ( 7:”)) LA ()2 sin (wﬁt—l—tan*l (‘/ZW))
(3.50)
1 N 1
ric(t) = -t — oy (3.51)
! <1+( TK)2> tan(wﬁt—l—tan*l(vm“))

c

For convenience, define

¢=\/mr tanv2. (3.52)

LEMMA 3.9. Given p € (0,1], ¢ € (¢,00), ¢ € Rxo as per (3.52), and M, € L(Z}) as per (3.49),
the Riesz-spectral operator-valued functions Prac Que e of the form (38.44) and defined by the respective
eigenvalues (3.50)(3.51) satisfy P*<(t), QM (t), RC(t) € L(Z) for every t € (0,74, while PHc, Qre, RIC .
[O,t_“)—>£(3?f%) are Fréchet differentiable and satisfy the initial value problems (3.34)-(3.36).

Proof. The proof proceeds by demonstrating that the conditions of Lemma C.1 hold for each of the
Riesz-spectral operator-valued functions ’ﬁ”’c, Q“’c, ﬁ”’c, thereby demonstrating their Fréchet differentiability.
Satisfaction of the initial value problems (3.34)—(3.36) then follows by inspection.

In order verify that condition (%) of Lemma C.1 holds for each of the Riesz-spectral operator-valued functions
75“"3, Q“’C, 7@“‘3, strict monotonicity of their respective eigenvalues must be demonstrated. To this end, by
inspection of the eigenvalues (3.49) of M, it is straightforward to show via (3.47) that

C

Wt E[0,V2), wht+ore e (tan_l (@) . V2 +tan™! (@)) c(0,%) (3.53)
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for all u € (0,1], t € [0,), ¢ € (¢,00), where ¢ € Rsq is as per (3.52). Hence, by inspection of (3.50)—(3.51),
the eigenvalues of operators PH<(t), QM<(t), QM(t) are well-defined for all u € (0,1], t € [0,#4), ¢ € (&, 0),
and n € N. Furthermore, strict monotonicity of the sequences {a#} and {w#} in n € N, and strict monotonicity
of the trigonometric functions tan and sin on [0, 7), implies that the sequences {ph°(t)}, {gh°(t)}, {rk°(t)}
are strictly monotone in n € N for all u € (0,1], t € [0,*), ¢ € (¢,00). It is straightforward to see that the
respective closures of these sets of eigenvalues are totally disconnected. Hence, condition (i) of Lemma C.1
holds for each of the Riesz-spectral operator-valued functions PH:¢, Qe RH-C.

In order verify that condition (%) of Lemma C.1 holds for each of the Riesz-spectral operator-valued functions
Proc Qe RiC first recall that by (3.53) that the functions pic, g/, ri:¢ of (3.50)(3.51) are continuous on
[0,%#), for every u € (0,1], ¢ € (¢,00), and n € N. These functions are (twice) differentiable, with

PLC(E) = NSRS, () = 2 Nt Pe). Pe(0) = —emlt, (3.54)
JU() = S NP (), ) = A () @)+ P @ (0) . g (0) = +eml, (355)
() = B MO, ) = 2 Al () @), HS(0) = el (3.56)

for all € (0,1], t € [0,¢"), ¢ € (¢,00), and n € N. Hence, the first and second derivatives (3.54)—(3.56) must
also be continuous by inspection. That is, condition (ii) of Lemma C.1 holds for each of the Riesz-spectral
operator-valued functions 75“70, Q“’c, RHe.

In order verify that condition (%) of Lemma C.1 holds for each of the Riesz-spectral operator-valued
functions PHc, Qe R note by inspection of (3.48) and (3.50)(3.56) that

PAC)] < e — = M < oo, [PAC)] < kL N (MP9)? = M < oo,

me(O)] < 2 N Me MY = MY < oo,

for all 4 € (0,1], t € [0,t"), ¢ € (¢,00), and uniformly in n € N, with analogous bounds holding for ¢/(t)
and r#°(t), and their first and second derivatives. That is, condition (iii) of Lemma C.1 holds for each of the
Riesz-spectral operator-valued functions ’ﬁ”’c, Q”’C, RHe,

In summary, Lemma C.1 thus implies that the Riesz-spectral operator-valued functions Prac Qrc e
[O,f“)%ﬁ(%%) of the form (3.44) and defined by the eigenvalues (3.50)—(3.51) are Fréchet differentiable. Fur-
thermore, their Fréchet derivatives are also Riesz-spectral operators, and take the form (C.2). Hence, combining
(C.2) and (3.54), and recalling Lemma B.2,

n=1 n=1
=ﬁIw+%Z(pﬁ’c(f)\/E(1+u M)V A Pl (t ) Z, $n)1 Bn
n=1
- (ﬁz+ L prc(t) A3 T, Ab 75%0@)) x, (3.57)

for all 11 € (0,1], ¢ € (0,"), c € (¢,00), x € 2. Recalling the definition (3.49) of the eigenvalues of M*,

P“C x*Zp (, Pn)1 @ Z mhb (x, Pn %Q)n:—c./\/l#:r, (3.58)

2
n=1

forall 1 € (0,1}, ¢ € (¢,00), € 271 That is, (3.57) and (3.58) imply that PHc satisfies the initial value problem

(3.34). Analogous calculations similarly imply that Q"¢ and R satisfy (3.35) and (3.36) respectively. 0
Given the role of the eigenvalues (3.49) of the operator M,, in the definition of operators 75“"3, Q“’C, 7@“‘,
it is convenient to construct a closed-form for M,,, and subsequently /C,, of (3.37).
LEMMA 3.10. M,,, K, of (3.87), (3.49) are bounded, self-adjoint, positive, and boundedly invertible, with

Mz = (A" +ILL2I)%:17, x € dom(M,) = 27, (3.59)
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x, z € dom(K,) = Z1. (3.60)

2

T ol

Kprz=M

Proof. Recall that A of (2.2) is a Riesz-spectral operator of the form (B.1), with eigenvalues {)\n}neN (see
Lemmas A.2 and B.6). Consequently, noting the form (B.2) of the identity Z, it follows that Z, =T +p2Ais
also a Riesz-spectral operator of the same form (B.1), defined on 2 via (3.26), with e1genvalues {1412 X\ bren.
Furthermore, as Z,; L is self-adjoint and positive (by Lemma A.1), it also has a unique self-adjoint and positive
square root Z,, 3 s Zo—> A 1, which is also a Riesz-spectral operator of the form (B.1) by Corollary B.5. Similarly,

A2 and hence J = (A2)~! are Riesz-spectral operators of the same form (see Lemma B.6). In particular,

1

(1+p®A\y)2 (, Pn)1 Pn xedom(I;%):%O, ran(I;%):%%, (3.61)

-
72

Pn s z€dom(J) =21, ran(J) = Zo. (3.62)

mb—t
l\)\)—l

—~ 1
Applying Lemma B.2, the composition M, =7, > J : Z- 1 —Z 1 is also a Riesz-spectral operator, with

— 1 0 1+ 2)\11 3
o ()

n=1

M\)—l

:Z my (T, Pn)1 Gn = My, :vedom(./\//h)zf%”é,
- (3.63)

where the third and fourth equalities follow by definition (3.49) of the eigenvalues {m/ },cn of M,,. Furthermore,
again applying Lemma B.2, and the fact that J and A are Riesz-spectral operators,

M2ZE—MM{E—i<M><I¢>1¢ _°°( ! (1+p* ) 1 )(x@)uﬁ
I H H — )\n ¥n/ g ¥n o \/E n \/E ¥n/ g ¥n
=TT+ A Tr=AU" "+ D), xedom(./\/li):%%. (3.64)

_ -1 -1
(Note that this equivalently follows from (3.63) via commutation of Z,, % and Jin M2 = ./\/l2 7,*JI.*J.)
Applying Lemma A.1, A~! 4+ u2 T is bounded, self-adjoint, and positive, and so has a unique, bounded self-
adjoint, and positive square root defined on 3&” 1 That is, M, is equivalently defined by (3.59), and it is

bounded, self-adjoint, and positive. Consequently, a unique &, = ./\/lé € E(B?f%) exists as per (3.37) and (3.60),
with the additional properties that it is also self-adjoint and positive.

It remains to be shown that M, and K,, are boundedly invertible. To this end, note that ./\/l2 Z, LA~ by
commuting the left- hand J with I + u? A in the fourth equality of (3.64). Hence, M2 is boundedly 1nvert1b1e
as M> = AT, = 2 (IT-17,) € E(ﬁ&”%) by Lemma A.4. Also, as M2, is positive and self-adjoint, so is M 2.

Consequently, M #2 has a unique, bounded, positive, and self-adjoint square-root and fourth root, namely M;l

and M;% = lC;l. That is, M, and K, are boundedly invertible as required. O

With Lemma 3.10 in place, K, of (3.59) satisfies the properties required by definition (3.1) and the proof
of Lemma 3.3. Consequently, an explicit form for the fundamental solution (3.4) may be established.

THEOREM 3.11. With K, as per (3.60) in (3.1), p € (0,1], and ¢ € (¢,00), ¢ € Rso as per (3.52), the
value functional W< of (3.3) takes the explicit form of WH< of (3.33) with the operator-valued functions P*-,
Qe R given by the Riesz-spectral operator-valued functions Proc Qrac RHC [O,t_”)—>£(e%”%) of the form
(3.44) with respective eigenvalues defined by (3.45)-(3.46). Furthermore, the value functional W of (3.4)
defining the fundamental solution of the approzimating optimal control problem (2.16) via (3.5) is given by

WH(t, 2, 2) = lim WHe(t,z,2) = i (x, P (t) )1+ (z, QM (t) z)1 + + 3 (2, RIS(t) 2) 1, (3.65)

c—00

NG
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for allt e (6, ), z,z € 2y, given any 6 € (0,8), with P, Q00 RIS« (§, f“)—)ﬁ(%%) defined by

PRt e =Y phe™ () (@, $n)s Gn x € dom (PM>(t)) = 21, (3.66)

n=1
QP (t) 2 = i @ (t) (2, Pn)y Pn z € dom (Q">(t)) = 27 , (3.67)

n=1
R (t) 2 = 3 Pl (t) (2, Gn)1 Bn z € dom (RM™(t)) = 273, (3.68)

n=1

and

PE() = —de L ) S e () = e 1 (3.69)

o tan(wh t)

Proof. The first assertion concerning the explicit form of W#< follows by Theorem 3.8, Lemma 3.9, and
the specified functional W< In order to prove the second assertion concerning the explicit form (3.65) of the
limit value function W of (3.4), the operator-valued functions P, Q- R : [O,f“)%ﬁ(e%”%) must be
shown to converge (either strongly or uniformly) to their respective candidate limits defined by (3.66)—(3.68),
whereupon Theorem 3.2 can be used to complete the proof. To this end, fix i € (0,1] and § € (0,%*), and note
that the eigenvalues of P*<(t), QM<(t), RM“(t) € L(Z1), given by (3.50)—(3.51), satisfy (after straightforward

calculation of the respective Taylor series expansions with respect to 1/¢)

v/ 1
() — oo () < L AR(S N0 E AL —
pe(t) — P (0] < 2 AL), 5O =Y Srrs
v/ 1 N 1
7N _ MO0 < L AH © - mk
(1) — 4> ()] = 2 Ag(9), Aq09) of  sin(w!' 9) c + tan(wl’ d) |’
Vi 1 1
HsC (4 _ gulby00 < 1L AHM Iz - mek
|rn (t) rn (t)| = ¢ A’I" (5)7 Ar (6) OAT 1 + tan(wit 6) + sinQ(w{L 5)

for alln € N, t € (6,t*), ¢ € (¢,00). Hence, (3.44), (3.50)-(3.51), (3.66)—(3.68), (3.69), and (B.2) imply that

[Pre) - PRl < LALE), 107(t) - 0 < (W)lly < LALE), RN — REZ@)]y < LALE),

3
for all u € (0,1], 6 € (0,t"), t € (6,t"), and ¢ € (¢,00), where || - |3 denotes the induced operator norm
in 27. Consequently, Lemma 3.9 and the triangle inequality imply that P>, Qo R (6, f“)—)ﬁ(%%).
Furthermore, the Riesz-spectral operator-valued functions P#¢, Q¢ R : (8, t")—L( X 1 ) converge uniformly
to PHoe, QIee RIS L (§,14)—=L(2) as ¢ — o0. [0

COROLLARY 3.12. Under the conditions of Theorem 3.11, the state feedback characterization of the optimal

input w* of (3.80) corresponding to the fundamental solution WH°(t, x,y) of (3.4) of the approximating optimal
control problem (2.16) is given by

w*(s) = k(s,&°(s)), k(s,z) =+ Az 7, Az (’ﬁ”"’o(t —s)x+ OOt — s) y) (3.70)

for all p € (0,1], § € (0,¢"), t € (6,t"), s € [0,t — ), and z,y € 3{%, where £* is the corresponding optimal
trajectory generated by the open-loop dynamics (2.8) in feedback with policy k of (3.70).
Proof. Immediate by Theorems 3.2, 3.5, and 3.11. O

3.4. Application of the fundamental solution to solve optimal control problem (2.16). The
fundamental solution (3.4), (3.65) can be applied via (3.7) and Theorems 3.1 and 3.11 to solve the approximating
optimal control problem (2.16) for any concave terminal payoff ¢ : 2~ 1—RU {—o0} for which the associated
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value function W* is finite. In particular, given ¢t € (0,#"), = € 23, the optimal control w* € #[0,1] that
maximizes the payoff J,, (¢, ,-) in (2.16) is given by (3.70) with y = z*, where

2 € argmax {W*(t,z,¢) + 1(¢)} - (3.71)
Ce%%

For the specific terminal payoff ¢ = ¢*>°(-,z2), z € 21, given by (3.1), 2* = z by inspection of (3.71). In that
case, the value functional W*#(t,-) of (2.16) and fundamental solution W#*°(t, -, z) of (3.4) coincide, as do their
corresponding optimal inputs, see (3.70). Furthermore, by substituting the series representations (3.66), (3.67)
for P (t), QM>°(t) in (3.70), a state feedback characterization of the optimal control w* is given by

(o9}

IOEEDY ﬁ (Pa=( =) (€ (), Gu)y + @bt =5) (=", Bu)y) . E(9) =w'(s),  (3.72)

n=1

for all s € [0, — 6), where § € (0,¢) is as per Theorem 3.11, £*(0) =2 € 21, and 2" =z € 2.
Alternatively, with ¢ = 1), as per (2.22), v € 32/”%, Theorem 3.11 and (3.71) imply that

N

L= (7”zm°°(t)) -1 [qu“(t)’ T+ mjjv} = ni rﬁ%ﬁ) [qﬁ*"’(t) (z, Pn)1 + % (v, Gn)1] (3.73)

where the series representation follows by substitution of (3.67), (3.68) for the Riesz-spectral operators Q" (t),
ﬁ“’w(t) respectively. (Note that existence of the inverse involved, and a representation for it, follows by
Corollary B.5.) The optimal control w* is again given by (3.72), with z* € Ez“f% given by (3.73).

Finally, it is important to note that the optimal input defined by (3.70) and (3.71) is not defined everywhere
on the time interval [0, ¢]. In particular, by inspection of (3.65), this input is not defined on a time interval [t—4, t]
containing the final time, where § € (0,t) is arbitrarily small. While this might appear to be a problematic
limitation, it is the initial input w*(0) that is required for the approximate solution of TPBVPs such as (1.3)
via the approximating optimal control problem (2.16).

4. Approximate solution of two-point boundary value problems. For sufficiently short time hori-
zons, Theorem 2.1 guarantees that stationarity of the action functional (2.12) is achieved as a maximum. In
particular, for horizons t € [0,##), t* € Rsq as per (2.15), the value function W#(¢,-) of (2.16) is finite, and
the corresponding optimal trajectory defined by (2.8), (3.70), and (3.71) renders the action functional (2.12)
stationary in the calculus of variations sense. However, as the action principle only requires stationarity of the
action functional with respect to trajectories, concavity of the action functional (2.12) may be lost for longer
horizons. This implies a loss of concavity of the associated payoff Jf:hw of (2.10), and hence an infinite corre-
sponding value function (2.16). In that case, the stationary action trajectory is no longer the optimal trajectory
defined by (2.8), (3.70), and (3.71), so that more analysis is required. Below, the short horizon case is discussed
first, i.e. where the stationary and maximal action coincide. An indication of an extension to longer horizons is
provided subsequently.

4.1. Short horizons. On shorter time horizons, i.e. those satisfying ¢ € [0,7*), the optimal trajectory
defined by (2.8), (3.70), and (3.71) is described by the characteristic equations corresponding to the Hamiltonian
H of (3.29) for HIB (3.27). These characteristic equations together define the abstract Cauchy problem

() -(40): (g ) wmisroo

where @% is the Hilbert space defined in (2.4). Here, the augmented state is constructed from the (position) state
£(s) € 2 of the dynamics (2.8) driven by the optimal input w*(s) of (3.70), (3.71), together with a transformed

(momentum) costate m(s) = I;% p(s) = mI;% w*(s) = A2 Ié Az (Proo(t — 5) £(s) + QP (t — s) 2*) € 2 for
all s € [0,t —90), z € 2, where § € (0,%") is as per Theorem 3.11, and z* € 2 is as per (3.71). (Note that
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Az Ié Az € E(ﬁ?f%; Z) by Lemma A.4.) Meanwhile, the wave equation (1.1) defines an analogous abstract
Cauchy problem, namely,

(29)=ae (), o= 0, RT) @meer=m e

where % is the set defined in (2.5). As noted in the following lemma, operators A;‘f and A® generate respective
semigroups of bounded linear operators defined on all time horizons. Crucially, these operators converge in an
appropriate sense as y — 0. Furthermore, the subsequent theorem shows that the generated semigroups also
converge, implying that any solution of the abstract Cauchy problem (2.17) converges to an analogous solution
of the abstract Cauchy problem (2.20). This naturally includes respective trajectories corresponding to the
approximate and exact solution of TPBVPs such as (1.3).
LEMMA 4.1. Given p € (0, 1], the operators Aj‘f and A® of (2.17) and (2.20) satisfy the following properties:

(i) Af‘f € E(@%);

(i) AP generates a uniformly continuous semigroup of bounded linear operators T,2(t) € L(D1), t € Rxo;
(iii) A® is unbounded, closed, and densely defined on % (with % = Y1)

(iv) A® generates a strongly continuous semigroup of bounded linear operators T®(t) € E(@%), t € Rxp;

(v) AZ converges strongly to A% as p — 0, i.e. limy, o [|AZ y — A% y[lg = 0 for ally € %.

Proof. (i) Fix any y = ( f_ ) € %, . Applying definitions (2.4) and (2.17) of || - | and AT,

1 73
148 g% = mIa ™
-k A2 T3 A2 ¢

2

3=

1 2 1L 2 1,1 2 1,1 1 2
o], bzt st - g bzt o b o]
@ 2

<

3=

132 2 112 2 20,112
[ Az || 2+ s b 2| 13 = a2 w2

where M = (%)% HA% Ié ‘ < 00 by assertion (A.16) of Lemma A.4, as required.
(7) Immediate by (i) and [19, Theorem 1.2, p.2].
(#i) and (iv) Follows by an analogous argument to [3, Example 2.2.5, p.34].

(v) Fix any y = ( fr ) € dom (A®) =% = 20 @ 21 Recalling (2.4), (2.17) and (2.20),

2

0 173 0 —I)w
AEB _’A® : = oo " . _< 1
H i Yy y||@ < —[{Af IE A§ 0 ) Y —K/A _K/AQ I2 _ )Afé_ o
= L@ - D)7l + 1A (T - D) Abg)P = ) A¥ 7?45 (T - T) AL,
(4.1)

where the last equality follows by definition of || - || 1 and assertion (A.15) of Lemma A.4. Note further that

1
Az m, A € X by definition of y € %. Consequently, it remains to be shown that Z; converges strongly
1
to Z on 2 as p — 0. To this end, fix any = € %0, and note that ||Az| < oo. Note also that Z3 — 7 is a
1
Riesz-spectral operator on 2, with dom (Zz —Z) = 27, so that

@ -2 = 3= 8.0 o, . (42)
n=1

2. Taylor’s theorem implies that for any

]
€ € R>o, there exists an c. € (0,¢€) such that Gx(¢) = [dsg* (c)lG < 2A2e? [% (T4cA) 3 +2(14c N3 <




1
IN?e? for all A € Rsg. Substitution in (4.2) yields that [|(Z? — Z)z[* < Zp* 307, |/\n|21|<x, on)|? =
2 p* | Az|. Recalling that 2 € 2y, so that ||Az|| < oo, it follows immediately that lim, o [|(Z? —Z) z| = 0
for any z € Zp. As I,% € L(Z) by Lemma A.4, and Zp is dense in £, it may also be concluded that

lim,, o ||(Ié —TI)z|| =0 for any z € Z". Applying this fact in (4.1) completes the proof. O

THEOREM 4.2. T;2(t) converges strongly to T®(t) as u — 0, uniformly for t € Rsq in compact intervals.
In particular, lim,_q H'Y;fe(t) y—Te() yH@ =0forallye &, teQ, QCRsy compact.

Proof. The proof follows by application of the First Trotter-Kato Approximation Theorem (see for example
[9, Theorem 4.8, p.209]), via Lemma 4.1. O

With the convergence property of all solutions of (2.17) and (2.20) provided by Theorem 4.2, and formu-
lae (3.70), (3.71) for the optimal input that generates the corresponding optimal trajectory that renders the
approximate action functional stationary, a recipe for approximating the solution of TPBVPs such as (1.3) on
short time horizons may be enumerated.

Recipe for the approximate solution of TPBVPs for horizons ¢ € (0,t")

O Select the approximation parameter u € (0,1], and a truncation order N € N for the Riesz-
spectral operator representations.

O Fix ¢ € (0,¢"), where t* € Ry is as per (2.15).

O Select a terminal payoff ¢ : 2~ 1 —RU{—00} that encapsulates the terminal condition of interest,
e.g. (2.22), and apply (3.71) via the fundamental solution (3.65) to determine the corresponding
terminal state z* € 27, see for example (3.73).

O Truncate the Riesz-spectral operator representation for the optimal input w*(0) of (3.70), with

YA
~ a5 ;LE T (e 5. %1 500 * Dp )1
== e P (p" (8) @, @n)y + (1) (27, ¢">§) ’

where pf:°°(t) and ¢#°°(t) are as per (3.69).
O Propagate the solution of the wave equation (1.1) using 2%(0, ) = @*(0).

With particular reference to step [ in the case where a fixed final velocity v € 2~ 1 is specified via ¥ = 1),
as per (2.22), substitution of the left-hand equality of (3.73) in (3.70) yields the required initial velocity as

-1
w*(0) =

L A3 T, A2 <[75“*°°(t) — QP (¢) (7@“’0(0)_1 Qv“’“(t)’} & —m QM°(t) (ﬁ“’m(t)) jj”) :

(4.3)

A series form for w*(0) follows by substitution of the Riesz-spectral operator representations for PH°(¢),
Qoo (t), RM>(t), A2, T, and J into (4.3), with the details omitted for brevity.

4.2. Longer horizons. As noted previously, the correspondence between stationary action and optimal
control exploited for shorter horizons via (2.16) may break down for longer time horizons due to loss of concavity
of the associated payoff (2.10), see Theorem 2.1. Consequently, for longer time horizons, a modified approach
is required. Two such approaches have been developed for finite dimensional problems, see [17, 18], based
on replacing the supremum in the definition (2.16) of the associated optimal control problem with a stat
operation. This stat operation yields the stationary payoff (and hence the stationary action functional) without
assuming that it is achieved at a maximum. In particular, in [17], longer time horizons are accumulated via the
concatenation of sufficiently many sufficiently short time horizons, with the stat operation used to characterize
the intermediate states joining adjacent short time horizons. More generally, the supremum over inputs in
(2.16) may be completely replaced with the stat operation, see [18]. Using either approach here requires a
corresponding extension to infinite dimensions. For brevity, such an extension is postponed to later work.
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Instead, for the purpose of presenting an illustrative example in Section 5, an outline of the development of the
former (concatenation) approach is provided, in a formal setting only. This outline is as follows.

Given a fixed longer time horizon ¢ € (£#,00) of interest, select a sufficiently large number n; € N of shorter
horizons 7 = t/n; such that 7 € (0,#"). By definition of 7, Theorem 2.1 implies that the payoft J/, (7, z,)
defined by (2.10), and hence the action functional of (2.12), is concave for any x € 3&”%. That is, the action
functional is concave on each of the subintervals [(k — 1)7,k7], & € [1,n,] NN, with any loss of concavity
occurring in the dependence on the intermediate states ¢ = &(k7) € Ez“f%.

Motivated by this observation, a correspondence between stationary action and optimal control can be
established for longer horizons for finite dimensional problems by relaxing the supremum in the associated
optimal control problem, see [17]. In the infinite dimensional case considered here, it is conjectured that the
fundamental solution W#>°(t, -, -) of the approximating optimal control problem defined by (2.16), as appearing
in (3.5), is defined on longer time horizons by

WHO(t,z,2) =  stat {Z WH(T, Ch—1, k)

ny—1
ce@pm o

Co =1, (o, = z} (4.4)

forall z,z € 2~ 1 in which the stat operation is defined generally by

stat F(z) = F(Z) |T € argstat F(x) p, argstatF(z) ={x € 21
163?/”% zEeEX 1 rEX 1 :
2 2

0 i [F®) = F(@) }

ey —all

for functional F' : %2 1—R. Figure 4.1 provides an illustration of the role of the intermediate states (;, € Z- 1,
k € [1,n;] N N. (Note that replacing stat with sup in (4.4) recovers the original short horizon fundamental
solution (3.4) as per (3.5), albeit applied to the longer horizon.)

S| G

X :CO :g(O)f_\\/\ <7Lt—1 5= Cn :g(nt 7_)
w w o N

€T 1 2
F1c. 4.1. Concatenations of trajectories to yield a longer time horizon.

In order to test the conjecture that (4.4) is a suitable generalization of the longer horizon fundamental
solution, recall that W#°(r, - -) takes the form of the quadratic functional given by (3.65), see Theorem 3.11.
Combining (3.65) and (4.4),

T x

ng—1
CG(%%) t z z

where (-, -), denotes an inner product on (5&”%)"”‘1, defined for all , € € (%%)"“H by (C,€), = ZZ’:{l(&, éi)%,
and II#(7) € (E(%%))(”f“)x("f“) is a matrix of Riesz-spectral operators defined by

P (r) Q> (r) 0 0 0
3> (7)) | PR (r) + RF>(7) 8> (7) 0 0
0 Qroo (Y Proe (1) 4+ R (1) 0 0
0 0 Qroo (1) 0 0
I*(r) = . . :
0 0 0 e Qr-o°(7) 0
0 0 0 S PRoS(r) + RIS (1) | OF(r)
0 0 0 - Qro (1) R (1)
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Pros(r) | W) |0
= Hlf,z(T)l ng(T) Hg,3(7) . (4.6)
0 H§73(7)’ R (T)

The existence of a solution of a TPBVP such as (1.3) on the long horizon ¢ € Ry requires (by the action
principle) that the stat in the definition (4.5) of W (¢, z, z) exist. Define ¢* € (%%)"‘_1 by

¢ = argstat ©H(t,z,(,2),
Ce(g//‘%)nt—l

and note that 0 = V0" (¢, z, ("*, z), where V. O"(t,z,(, z) € (3?,”% )mt~1is the Fréchet derivative of O (¢, z, -, 2)
at ¢ € (3&”%)’”’1. Applying (4.6) yields

I o(7) ¢ = =TIy 5 (7)" & — T 5(7) 2. (4.7)

Hence, on the longer horizon ¢ € [t#,21") (for example), the fundamental solution (3.4) generalizes as per (4.4)
to WH(t, x, (H*) + WH(t, ("™, z), where (** solves (4.7) for n; = 2, 7 = t/2. This approach generalizes
to any fixed longer horizon ¢ € R+, and taking yu — 0 corresponds to sending n; — oo in (4.4). Furthermore,
in this limit, it may be shown that evaluating (4.4) via (4.5) and (4.7) yields the same explicit quadratic
representation for the fundamental solution W (¢, x, z), but with p = 0, as presented in Theorem 3.11.

5. Example. For sufficiently short time horizons, as considered in Section 4.1, the action principle cor-
responding to the wave equation (1.1) may be approximated by the optimal control problem (2.16). This
approximation may be extended to longer horizons via the concatenation approach outlined in Section 4.2, and
becomes exact in the limit of the perturbation parameter ;1 € R tending to zero (see Theorem 4.2). Consequently,
as the action principle describes all possible solutions to the wave equation (1.1), including those constrained
by any specific combination of boundary data, TPBVPs involving this wave equation may be solved via the
optimal control problem (2.16). The initial velocity w*(0) that solves such a TPBVP may be found via the
recipe enumerated in Section 4.1, with p = 0. In particular, step O of that recipe yields the initial velocity that
solves a TPBVP as

[SE

v =w*(0) = VWOt w,2) = LA PO @ + QO (t) 2

1
m

8

1
m

A2 Ty A>
[

X (DU (0) (@, @a)y + a2 (8) (2, Bu)y ] En (5.1)
1

n

where p¥>°, ¢%°° are as per (3.69) and z* is as per (3.71), after sending p — 0.

With m = k = L = 1 (with appropriate dimensions) in (1.1), suppose that the specific problem TPBVP(¢, z, 2)
is to be solved given the (arbitrary) initial displacement x = 0 € 2, terminal displacement z € 2, as per
Figure 5.1(a), and horizon t = Tk (%)% (= 1.05). Recall in that case that the terminal payoff ¢ = *>°(-, 2)
encapsulates the required terminal displacement, and z* = z is required in (5.1), as per discussion following
(3.71). Applying (5.1) then yields the required initial velocity illustrated in Figure 5.1(b) that solves TPBVP
(1.3) via the fundamental solution (3.4). This solution may be tested by propagating the initial displacement
and velocity obtained forward to time ¢ by solving the wave equation (1.1) directly. (Here, the Cp-semigroup
TO(:) of (2.21) generated by A% is applied to this end, see for example [3].) The resulting wave equation
dynamics are illustrated in Figure 5.2(a), with the desired terminal displacement clearly achieved. Integration
over a longer time period reveals (expected) periodic behaviour, see Figure 5.2(b).

6. Conclusion. A new fundamental solution based approach to solving a two point boundary value prob-
lem for a wave equation is considered. A value functional based characterization of this fundamental solution is
formulated via the analysis of an optimal control problem that encapsulates the principle of stationary action.
This value functional is shown to enjoy an explicit Riesz-spectral operator based representation via an associ-
ated infinite dimensional Hamilton Jacobi Bellman partial differential equation. Application of the fundamental
solution obtained is illustrated via a simple example.
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(a) Terminal displacement z(\) vs A. (b) Initial velocity v(A) vs A.

Fic. 5.1. Initial velocitu required to achieve terminal disvlacement.
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(a) Wave equation solution u(s,\), s € [0,t], A € [0, L]. (b) Wave equation solution u(s,\), s € [0,4L(%)%}, A€ 0,L)].

Fic. 5.2. Solutions of wave equation (1.1).
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Appendix A. Properties of operators A and A2. Operators A and Az are key to the application of
the principle of stationary action to obtain the wave dynamics (1.1) via optimal control. The relevant properties
of these operators are largely well-known [3], and are stated without proof unless otherwise indicated.

LEMMA A.1. The following properties hold on %X :

(i) Operator A is self-adjoint, positive, boundedly invertible, and closed, with

Ax=Az, Va € dom(A) =dom(A) = 2,
ran(A) =ran(A') = 2, (A.1)
(x, Az) = ||0z|* >0, Vxedom(A):%’O,x;éO, (A.2)
= /A e A(A’O_L{(L A)c, 0<(<A<L,

Vx€dom(A) =2,
ran(A™') = dom (A) =20. (A.3)

(i) Operator A has a unique, positive, self-adjoint, boundedly invertible, and closed square root A%, with

Az € dom (A7) = 2 YV x € dom(A) = 2, (A4)
AT ATz = Az, V 2 € dom(A) = 25, (A.5)
1A% 2| = [|9z] = [l V€ dom (A) = 20, (A.6)
in(A%>7lx=(Afl)%x, Vo edom(J)=2,

ran(J) = dom (A?) = 21, (A7)
||Jw||% = ||z, Ve edom(J)=Z . (A.8)

LEMMA A.2.  Operator A of (2.2) has countably infinite simple eigenvalues given by {A\n}52,, where
eigenvalue N\, corresponds to eigenvector p, € B of (2.6) (or equivalently @, € B) and

An = (BE)2. (A.9)

Similarly, the square root Az of operator A has countably infinite simple eigenvalues given by {v/An}3>,, where
eigenvalue /A, corresponds to eigenvector ¢, € B (or equivalently in @, € [;’) and A, is as per (A.9).
LEMMA A.3. B and B of (2.6) are orthonormal Riesz bases for 2 and ﬁ&”% respectively.
LEMMA A.4. The following properties hold on Z~ for any p € Rsg:
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(i) Operator Z,, of (3.26) is bounded, linear, self-adjoint, positive, with

T,z € dom(A) = %o Vaedom(Z,) =%, (A.10)
1 sinh(2) sinh(2=¢), 0<A<(¢<L,
= ¢ a(Q)d AQ) = —— ’ 8
for= [ LOOROI RO = s {sinh<§> (i), 0= C<rel,
Vaedom(Z,)=2Z. (A.11)

1
(it) Operator I, has a unique, bounded, linear, self-adjoint, and positive square root I3, with
I ¢ € dom(A%) = 2 Yz € dom(ZZ) = 2, (A.12)

1
2

TiTia =T,z Yz € dom(Z7) = dom(Z,) = 2, (A.13)
(1ii) Operators Z,,, Ié, A, and Az commute, with
TEA e =M T e, T, Abe=AiT,0 V€ dom(A) = 2, . (A.14)
T,Ac=ATL, ¢, I} Az=ATL:x V z € dom(A) = %5, (A.15)

1
w) Selected compositions of operators Z,,, Iz, A, and Az define bounded linear operators, with
wr Li

AL, AR TE € £(2), (A.16)
AT, € L(2)), (A.17)
ASTE A% € L(23: 7). (A.18)

Proof. (i) Fix any = € dom (A) = 2. Consequently, Az € 27, and
(@, (T+p* A)z) = ||z]* + p* (2, Az) > ||z]|?,

where the inequality follows by positivity of A, see assertion (A.2) of Lemma A.1. That is, Z + u? A is
both positive and coercive [3, Definition A.3.71, p.606]. It is also self-adjoint by (A.1). Hence, Z + p? A is
boundedly invertible, see for example [3, Example A.4.2, p.609] and [13, Problem 10, p.535]. In particular,
T, = (Z+p?>A)~"' € L(Z). In order to show that Z, is also self-adjoint and positive (but not coercive),
fix any y, n € 27, and define z, £ € 2o by v = I,y and £ = Z,n. As T + p? A is self-adjoint, (y, Z,n) =
(T4 A)z, &) = (z, (T+p* A)E) = (Zuy, n). Asy, n € Z are arbitrary, it follows that Z,, is also self-adjoint.
Furthermore, with y = n, (y, Z,y) = (Z+p* A) z, z) > ||z||* = ||Z, y||*. As I, is invertible, the right-hand side
is zero if and only if y = 0. Hence, Z,, is positive. However, Z,, is not coercive, as it has eigenvalues arbitrarily
close to zero. For example, select y = 9, with 1, is as per (2.6). Note that ||| = 1. Applying Lemma

A.2, it is straightforward to show that (¢, Z,, ) = ﬁ lvnll? = W l4n]|? for all n € N. Note in
" A
particular that the coeflicient on the right-hand side may be made arbitrarily small for sufficiently large n € N.
Hence, Z,, cannot be coercive.
It remains to be shown that (A.10) and (A.11) hold. Fix any « € 2". By noting that Z — 7, € L(Z), the

definition (3.26) of Z,, implies that
00> 5 (T -Ty)all = 5z (L +p* AL, = L) ol = || AZ, =] - (A.19)

Hence, Z,, x € dom (A) = 2y for any € 2, so that (A.10) holds. Given the kernel I,, as defined in (A.11),
define the operator Z,, by

Loo= [ LQu0dc, dom(@) = 2, (A.20)
A
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and note that f# € L(Z) by inspection. Fix any z € 2 and define y = Iﬂx 6 B?fo Hence Ay € Z', and

T, Ay = [y L( Q) [~0?y(O]dC = — [, [031.(, O y(Q) dC, where B31,(A, Q) = 25 (A, Q) — 2 6(A — () is the
second weak derivative of I,,(},-), A € A fixed. Note in particular that the boundary condltlons y(O) =0=y(L)
have been used here. Consequently, Z,, Ay = _u_12 Sl (¢) = 6(- = Qy(Q) d¢ = ——(I y —y), so that

f# (Z 4+ p?> A)y = y. Recalling the definition of y, it follows immediately that I#x =Z,x. Asz e Zis
arbitrary, assertion (A.11) follows.

(7i) The existence of a unique, bounded linear, self-adjoint, and positive square root Ié follows (for example)
by [2, Theorem 4]. (Alternatively, see [3, Lemma A.3.73, p. 606].)

(i) Fix x € 2. By definition, Az z € 2 = dom (I ) and

I#A%a::(I+u2A)’1A%x:(J[I+u2A]) = (T +PP T AT A
—( T+ AT AT ) e = (T + 4 A]J) r=AT(T+p2A) o= AT,
so that right-hand equality in assertion (A.14) holds. The remaining equalities follow similarly, with z € 2
yielding assertion (A.15).
(iv) The first assertion in (A.16) follows from the proof of (i) above. In particular, Z —Z,, € £(Z") and
(A.19) imply that ||AZ,| = % IZ —Z,|| < oo, as required. In order to prove the second assertion of (A.16),
note that for any x € 3&”%, (A.15) implies that

A% T3 2| = (z, T ATi 1) = (2, ATy 2) < |2l | AT, 2] < ATl

1
Hence, the restriction R,, of Az 1 : =2 to the domain 21 C 2" is bounded and linear on that domain.
However, as T% =%, R, can be uniquely extended to an operator &, € L(Z) (see for example [13, Theorem
1
2.7-11, p.100]) that satisfies £, 2 = R,z = Az Zjix for all 2 € 2. Fix y € 2. Hence, for any x € 271,
1 1 1 1
I€uy — A2 Zi y|| < [|Euw — A2 I al| + €y — A2 i) (y — 2)l| < [|€x — A2 i || [ly — 2[|. Consequently, as
— 1 1
x € Z1 is arbitrary and 21 = 27, implies that [|€,y — A2 TZy| < |Eu — A2 I || infre o, |y — || = 0. As
2
y € & is arbitrary, &, = A%Ié. Recalling that £, € £(Z") completes the proof of assertion (A.16).

In order to prove assertion (A.17), note that Az and 7, commute on 27 by (A.14). Hence, with z € 21
JAZ ol = |43 T, Ab oy = AT, (A @)l < AL A} 2l = IAZ, | llo]l,. As AT, € £(2) by (A16),
assertion (A.17) immediately follows.

1 1
Finally, in order to prove assertion (A.18), note that (A.16) implies that || Az Z7 Az z| < ||A2 Z2|| | A2 || =
111
A2 77 A2 x|

[
2

1 1
Az Z2 || Hx||% for any x € 2. Consequently, sup,c -, |2, 20 < || A2 Z2 || < oo as required. O
2 2

Appendix B. Riesz-spectral operators. It is useful to consider self-adjoint operators of the form
o0
Fas3 o,

where the set {f,}nen C R of eigenvalues of F is simple and has a totally disconnected closure (i.e. no two
elements of this closure can be joined by a segment lying entirely within it), and B= {@n}tnen (enumerating
the corresponding eigenvectors of F ) is the orthonormal Riesz basis defined by (2.6). This type of operator is
closed and densely defined on 2 1, see [3, Example 2.1.13, p.29], and is referred to as a Riesz-spectral operator

l\)\»—t

dom (F) = {:v €2y |Fue 3{} (B.1)

on Ez“f%, see [3, Definition 2.3.4, p.41]. Operators A and A? are Riesz-spectral operators, and may be similarly
represented, see [3, Theorem 2.3.5] and Lemma B.6 below. The identity Z also takes the form (B.1), with

oo

r=Tx= (x, Gn)s Pn, dom(I)= 2. (B.2)
n=1
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However, 7 is not a Riesz-spectral operator (its eigenvalues are repeated at 1, and so are not simple). Never-
theless, ||z||3 =307 [{=, ¢n>%|2 for all z € 27, see [3, Corollary 2.3.3, p.40].
2

n=1
The remainder of this appendix documents some useful properties of Riesz-spectral operators that are
applied in the main body of the paper. Unless otherwise indicated, proofs of these properties are considered
standard and are omitted.
LEMMA B.1. The domain dom (F ) of a Riesz-spectral operator F of the form (B.1) is equivalently given by

dom (F) = {3:6 21

|Fally <oob . I1Fald =3 1al @, @u)y - (B.3)
n=1

LEMMA B.2. Let F and G denote two Riesz-spectral operators of the form (B.1), with respective point spectra

op(F) = {fn}o2, and 0,(G) = {gn}52,, and domains dom (F), dom(G) as per (B.3). Suppose additionally that

{fngn 52y is simple, and its closure is totally disconnected. Then, the composition F§ is also a Riesz-spectral
operator of the form (B.1), with

Q<

:Z ngn @n%@na dom(}v—gv):{l'EdOm(gv)C%g

G € dom (ﬁ)} : (B.4)

COROLLARY B.3. Let F and G be Riesz-spectral operators as per Lemma B.2. Then, the domain of the
composition F G of (B.4) is equivalently given by

dom (FG) = {xe 23

Z (L +1£al?) lgnl? Kz, @n) 3 < OO}- (B.5)

If additionally there exists f— € Rsq such that |fn| > f— for alln € N, then the domain dom (F G) specified via
(B.1) or (B.5) is equivalently given by

l
2

dom (F G) = {

Z|fngn| (@, @a)s|? < } (B.6)

Proof. Recalling (B.4), 2 € dom (FG) if and only if z € dom (G) and Gz € dom (F). These respective
properties hold if and only if

oo>Z|gn|2|<x, ¢n>§|27 OO>Z|fn| K G, ‘Pn Z|fn9n| (2 > 2. (B.7)
n=1
So, the domain of F G is given by

m(fg)z{xedom(gv)ce%”;

—{IEE%%

as specified by (B.5). Suppose additionally that there exists f_ € R such that |f,| > f- for all n € N.
Define the domain candidate 2 as per (B.6), that is & = {x €21 S | fngnl? [z, Pn)1 | < oo } Fix any

z € dom (F G) via (B.5). By inspection, it immediately follows that # € 2. That is, dom (FG) C 2. In order
to prove the opposite direction, fix any € &, and note that the second inequality in (B.7) implies the first. In
particular,

oo>Z|fngn|2|<x, > f2 Z|gn| I(z
n=1

C;xedom(.i')} = {xedom(é) C 2

Z |fngn|2 |<£L'7 @n>%|2 < OO}

n=1

>+ 1)l o ¢n>%|2<oo},

T o> Y gl e g, (BS)

MI»—‘
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which implies that 0o > 3=7% 1 [ fn gnl* [(z, @n) 42 + 32071 gl (@, @n) 3 2 = 32021 (L4 [fal?) lgnl? ({2, @n) 112
Consequently, € 2 implies that 2 € dom (f G), or 2 C dom (F G). Combining this with the earlier conclusion
that 2 > dom (F G) yields that = dom (FG). That is, (B.6) holds as required. O

LEMMA B.4. Let ]-" Ft denote a pair of Riesz-spectral operators of the form (B.1), with point spectra

0 ¢ 0p(F) = {fulo2y and op(F¥) = {F}721. Then,

FFao=uz, Vxedom(]t'u), FtFe=gx, Vaedom(F). (B.9)

COROLLARY B.5. A Riesz operator F on 2y with point spectrum satisfying 0 ¢ op(F FY = {fa}22, is

invertible. Furthermore, its inverse F~Yisalso a Rzesz spectral operator on 3?,”%, and is given by

DI s @a)il? < oo}. (B.10)
n=1

- ZZ% D % n dom(}v—l)Z{fL'E%g

It is well known by Riesz’s Lemma that the identity Z of (B.2) is not a Riesz-spectral operator on 2~ 1

Consequently, the composition of a Riesz-spectral operator F and its inverse F ! (also a Riesz-spectral operator,
by Corollary B.5) is not itself a Riesz-spectral operator. Indeed, in attempting to apply Lemma B.2 to such
a composition F F~1 reveals that its point spectrum Up(f' F —1) = {1} is not simple, thereby violating the
definition of a Riesz-spectral operator.

LEMMA B.6. A, A%, J, Ty, Ié, I;%, and A% Iy A% are Riesz-spectral operators of the form (B.1) on
2 and 2y, with respective eigenvalues given by An, )\é, /\;%, (T4 2X)" Y A+ p2A)2, (T+u2N,) "2, and
An (L4 p2 X)L for all n € N, where X\, is as per (A.9).

Proof. Operator A is closed and linear on 2", with simple eigenvalues 0, (A) = {A\,}22; C R defined by
(A.9) and corresponding to eigenvectors B = {¢,}22, C £ as per (2.6). The closure of the point spectrum of
A, denoted by o,(A), is totally disconnected, and B forms a Riesz basis for 27, see Lemmas A.1, A.2, and A.3.
Hence, operator A is a Riesz-spectral operator on 2~ (see also[3, Definition 2.3.4, p.41]), and operator A and
its domain dom (A) = Z; may be represented as per (B.1) with the aforementioned eigenvalues. An analogous
argument for A defined in 27, with eigenvectors B as per (2.6) corresponding to the same eigenvalues { A, }nen
and forming a Riesz basis for 2" 1 yields that A is also a Riesz-spectral operator on 2 1. A similar argument

yields that Az is a Riesz-spectral operator on 2~ and 2~ 1. As A2 J = Z, Corollary B.5 implies that J is
similarly a Riesz-spectral operator on 2" and 3&” 1.

In order to show that the remaining operators are Riesz-spectral operators first note that 7 =T +u2A
defined via (3.26) is a Riesz-spectral operator, with eigenvalues {1 + 2 A\, }nen. This follows by (B 2) and the
fact that A is a Riesz-spectral operator. Consequently, Corollary B.5 implies that Z,, is also a Riesz-spectral

1
operator. Lemma A.4 states that Z, has a unique square-root Z;. Subsequently applying Lemma B.2 and
1 _1
Corollary B.5 implies that both Z; and 7, > are Riesz-spectral operators. The fact that the composition
Az 1z, Az is a Riesz-spectral operator follows by two further applications of Lemma B.2. O

Appendix C. Riesz-spectral operator-valued functions. A Riesz-spectral operator-valued function
takes the form

1
2

x—an (Z, $n)1 P, dom(f(t))i{xezg

Flt)z € %} (C.1)

where t € Q, @, € B is as per (2.6), and f, : Q—R, for all n € N, for some interval Q C R>o.
LEMMA C.1. Suppose that the Riesz-spectral operator-valued function F defined by (C.1) satisfies the
following properties with respect to a bounded open interval 2 C Rsq:
(i) {fn(t)}nen C R is a strictly monotone sequence for every t € ;
(ii) fn € C*(Q;R) for allm € N; and
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(iii) there exists an My € Rso such that max(|fn(t)], | fn(t)], |fu(t)]) < My for alln € N and t € Q.
Then, F(t) € E(f?f%) forallt € Q, and F : Q—>£(3?f%) is Fréchet differentiable with derivative F : Q—>£(3?f%)
of the form (C.1) given for allt € Q and z € Ez“f% by

x—an (x, Pn %Q)n (C.2)

Proof. Fixt e Qand z € 3&”%, x # 0. By property (i), as {fn(t)}nen C R is a strictly monotone sequence,
its closure is the union of itself and its supremum or infemum, where the latter is strictly less than or strictly
greater than every element of {f,(t)}nen. Hence, there always exists at least one open interval between any
two distinct elements of { f,,(¢) }nen, so that any two such elements cannot be joined by a segment lying entirely
within {f,(¢)}nen. That is, {fn(t)nen is totally disconnected. As B = {@p }nen is an orthonormal Riesz basis
for 271, it follows by [3, Corollary 2.3.6, p.45] that F(t) is a Riesz-spectral operator. Applying (B.3) to F(t),
and applying property (74) and (B.2), yields that

7021 < 3 I )42 < M3 Z| AL (€3)

or F(t) € L(Z) with [|[F()| < My. Define Q(t) = {s € Rso|s+1t € 02}, and fix € € (), € # 0. Define F
as per (C.2), and note by property (iii) and (C.3) that F(t) € L(27) with [[F(t)[|y < My, where |- [|1 here
denotes the induced operator norm on 2. Applying property (ii), fu(t +€) = fu(t) + € fult) + (%) fu(r) for
some 7 € (t,t + €), so that

2

|7+ - Ft) - e Fl |, = (e = £u(t) = Ful) P, 2

o0
2

(52> sup |fu(MIP (2, an)3]? < (5)2 M} ZI z, @n)3? = (5)2 M7 [J2]l} -

n—1TEN(L)

IN

Consequently, dividing through by € # 0 and ||z|| 1 #0,

|F(t+e) - F@) - e Fit) % |7+ - Ft) - e Fwla,

lim = lim sup 2 <11m||Mf—O
=0 €] =0 z]]y 0 lel Nl 4

in which the left-hand norm is again the induced operator norm on 2" 1 thereby demonstrating that F is indeed
the Fréchet derivative of F. O
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