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Abstract

Stationary-action formulations of dynamical systems are considered. Use of stationary-action formulations allow one to generate
fundamental solutions for classes of two-point boundary-value problems (TPBVPs). One solves for stationary points of the
payoff as a function of inputs rather than minimization/maximization, a task which is significantly different from that in
optimal control problems. Both a dynamic programming principle (DPP) and a Hamilton-Jacobi partial differential equation
(HJ PDE) are obtained for a class of problems subsuming the stationary-action formulation. Although convexity (or concavity)
of the payoff may be lost as one propagates forward, stationary points continue to exist, and one must be able to use the DPP
and/or HJ PDE to solve forward to such time horizons. In linear/quadratic models, this leads to a requirement for propagation
of solutions of differential Riccati equations past finite escape times. Such propagation is also required in (nonlinear) n-body
problem formulations where the potential is represented via semiconvex duality. The dynamic programming tools developed
here are applicable.
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1 Introduction

The classical approach to solution of energy-conserving
dynamical systems is integration of Newton’s second
law. An alternative viewpoint is that a system evolves
along a path which makes the action functional sta-
tionary, i.e., such that the first-order differential around
the path is the zero element. This latter viewpoint
appears particularly useful in some applications in
modern physics, including gravitational systems where
relativistic effects are non-negligible and systems in
the quantum domain (cf. [9–11,17]). Our interests are
more pedestrian; the stationary-action formulation has
recently been found to be quite useful for generation
of fundamental solutions to two-point boundary-value
problems (TPBVPs) for conservative dynamical sys-
tems. For sufficiently short time horizons, stationarity
of the action typically corresponds to minimization of
the action. That is, the stationary point is a global
minimum of that action (cf., [6,14,15]). For longer time
horizons, the stationary point is more typically a saddle.
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As our motivating interest is in solution of TPBVPs for
conservative dynamical systems, we note that this specif-
ically includes mass-spring, wave equation and n-body
problems [6,14,15]. By appending a min-plus delta func-
tion terminal cost to the action functional, we obtain
a fundamental solution object for such TPBVPs. Min-
plus convolutions of this object with functionals associ-
ated to specific terminal conditions yield the solutions of
the specific TPBVPs. As a change in the boundary data
only requires convolution with a different functional, our
object may best be termed a fundamental solution for
TPBVPs, corresponding to the given time horizon. It
is worth remarking that, further, one can populate the
fundamental solution semigroup by convolving the fun-
damental solution with itself, enabling solution of the
TPBVP for all strictly positive horizons.

As noted above, for sufficiently short time horizons, one
may obtain the stationary action solution by minimiza-
tion of the action functional, in which case it is obvious
that the fundamental solution is derived from the value
function for an optimal control formulation. However, for
longer horizons, we must find the stationary point, and
this requires a new set of tools. We define stationarity
and value for such problems. Surprisingly, for a specific
class of terminal costs, one may obtain a dynamic pro-
gramming principle (DPP) for stationarity, where this is
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directly analogous to standard DPPs (for optimization).
We do not look for the absolute weakest assumptions,
but only a reasonable first-foray set. We also formally
write the corresponding Hamilton-Jacobi partial differ-
ential equation (HJ PDE), and then obtain a verification
result, which is also quite similar to that found for clas-
sical optimal control problems. We remark that a veri-
fication result implies that any solution of the HJ PDE
in the specified class must be the value function. This
validates the approach of solving a stationarity problem
(and hence the related TPBVP if the stationarity prob-
lem is generated by such) by solving the associated HJ
PDE problem.

In the mass-spring case (which appears in Section 3 as
a motivating example), the stationary-action problem is
linear-quadratic, and the HJ PDE reduces to a differen-
tial Riccati equation (DRE). By the above-noted verifi-
cation result, we see that solution of the DRE yields so-
lution of the stationarity problem, and any correspond-
ing TPBVP. The wave equation [6] also yields a DRE,
albeit infinite dimensional. The n-body problem may be
reduced to a parameterized set of time-dependent DREs
[14,15]. We see that in all cases, solutions of DREs form
a critical building block. Of course, DREs can exhibit
finite escape times, and do so in these cases. In clas-
sical optimal control, one is not interested in propaga-
tion of the solution past such escape times. However, in
stationarity problems, these may correspond to points
where one loses convexity [concavity] of the payoff. Al-
though the minimum [maximum] may go to −∞ [+∞],
the stationary value may be well-defined and finite past
such asymptotes, and one must propagate the solution
beyond them. The DPP yields a means for propagation
through escape times, and this will be indicated.

Although stationary action is the motivating problem
class, the theory developed below is applicable to wider
classes of problems, where one is seeking a stationary
point. An obvious example is that of certain differential
games. Extensions to stochastic cases appear possible as
well, but are not considered here.

Section 2 contains relevant definitions. Section 3 presents
a simple mass-spring TPBVP motivating example. Sec-
tion 4 contains the main results – the DPP and HJ
PDE verification theorem. Section 5 reduces to the lin-
ear/quadratic case, and indicates a means for propaga-
tion of DREs past escape times. Section 6 very briefly
indicates some application areas.

2 Stationarity definitions

Recall that we are seeking stationary points of payoffs,
which is unusual in comparison to the standard classes of
problems in optimization. In analogy with the language
for minimization and maximization, we will refer to the
search for stationary points as staticization, with these

points being statica (in analogy with minima/maxima)
and a single such point being a staticum (in analogy
with minimum/maximum). Prior to the development,
we make the following definitions. Suppose Y is a generic
normed vector space with GY ⊆ Y, and suppose F :
GY → IR. We say ȳ ∈ argstat{F (y) | y ∈ GY} if ȳ ∈ GY
and either

lim sup
y→ȳ,y∈GY\{ȳ}

|F (y)− F (ȳ)|
|y − ȳ|

= 0, (1)

or there exists δ > 0 such that GY ∩ Bδ(ȳ) = {ȳ}
(where Bδ(ȳ) denotes the ball of radius δ around ȳ). If
argstat{F (y) | y ∈ GY} 6= ∅, we define

stat
y∈GY

F (y)
.
= stat{F (y) | y ∈ GY}

.
=
{
F (ȳ)

∣∣ ȳ ∈ argstat{F (y) | y ∈ GY}
}
. (2)

If argstat{F (y) | y ∈ GY} = ∅, staty∈GY F (y) is unde-
fined. Throughout, we will abuse notation by writing
ȳ = argstat{F (y) | y ∈ GY} in the event that the argstat
is the single point, {ȳ}, and similarly for stat.

In the case where Y is a Hilbert space, and GY ⊆ Y is
an open set, F : GY → IR is Fréchet differentiable at
ȳ ∈ GY with Fréchet derivative Fy(ȳ) ∈ Y if

lim
v→0, ȳ+v∈GY\{ȳ}

|F (ȳ + v)− F (ȳ)− 〈Fy(ȳ), v〉|
|v|

= 0.

(3)
The following is immediate from the above definitions.

Lemma 1 Suppose Y is a Hilbert space, with open set
GY ⊆ Y and ȳ ∈ GY . Then, ȳ ∈ argstat{F (y) | y ∈ GY}
if and only if Fy(ȳ) = 0.

3 Motivational examples

As indicated in the introduction, an important problem
class which motivates this effort is that of TPBVPs for
conservative systems.

3.1 A simple mass-spring problem

We first examine the classic one-dimensional mass-
spring example in a substantial detail in order to provide
motivation and insight. Although the problem is essen-
tially trivial, it provides a nice means for obtaining a
sense of the stationary action principle as a tool for un-
derstanding system dynamics and TPBVPs. Further, as
remarked above, the stationary action viewpoint is the
accepted viewpoint in modern physics (cf., [9–11,17]),
and as such, it will be ultimately necessary for advanced
applications. It also provides exceptional computational
advantages for difficult classes of problems, such as
TPBVPs in the gravitational n-body case [14,15].

2



Remark 2 Although the mass-spring model has an an-
alytically solvable form due to the quadratic potential,
this potential is not physically reasonable (the potential
approaches +∞ as |x| → ∞), and induces degeneracies,
particularly at half-period times. Nonetheless, it is useful
for building intuition.

Consider the mass-spring problem with mass, m, and
spring-constant, K (typically given as ξ̈ = −(K/m)ξ).
The associated stationary action TPBVP payoff, J∞ :
T̂×IR×U∞×IR→ IR∪{∞} with T̂

.
= {(s, t) ∈ IR2 | 0 ≤

s ≤ t <∞} and U∞
.
= Lloc2 (0,∞), is given by

J∞(s, t, x, u, z)=

∫ t

s

m

2
u2(r)−K

2
ξ2(r) dr+ ψ∞(ξ(t), z),

(4)

where ξ̇(r) = u(r), r ∈ (s, t), ξ(s) = x, (5)

ψ∞(x, z)
.
=

{
0 if x = z,

+∞ otherwise.
(6)

Solution of this stationary-action problem will yield
solution of the TPBVP given by dynamics mξ̈(r) =
−∇V (ξ(r)) with initial position x ∈ IRn and terminal
position z ∈ IRn for the given duration t and given
potential function [14,15], where in this example the
potential is V (x) = (K/2)x2.

The stationary action solution, u∗, is such that
J∞u (s, t, x, u∗, z) = 0, where J∞u denotes the Fréchet
derivative of J∞ with respect to u as per (3). Here,
we take K = m = 1. In [14,15], one notes that if
t−s < π/2, then J∞ is strictly convex in u, and defining
W∞(t− s, x, z) .

= infu∈U∞ J
∞(s, t, x, u, z), one finds

W∞(t− s, x, z) = 1
2

[
P (t)x2 + 2Q(t)xz +R(t)z2

]
, (7)

where, formally, P (s) = R(s) = −Q(s) = +∞, Ṗ =

−1− P 2, Q̇ = −PQ, and Ṙ = −Q2. Letting

ψc(x, z)
.
=
c

2
|x− z|2 (8)

for c ∈ (0,∞), and noting that ψc → ψ∞ as c→∞, one
may show that the solution does, in fact, have this form,
and further that the solution is given by [14,15]

P (t) = R(t) = cot(t− s), Q(t) = −1/ sin(t− s), (9)

which is guaranteed by the aforementioned convexity to
be valid on at least t − s ∈ (0, π/2). From here, one
may obtain the control and state trajectories solving the
TPBVP, which are given, in the case s = 0 as u∗(r) =

P (t−r)ξ∗(r)+Q(t−r)z = cos(t−r)
sin(t−r) ξ

∗(r)− 1
sin(t−r)z, and

ξ∗(r) = x cos(r) + z−x cos(t)
sin(t) sin(r). However, at t = π/2,

one loses convexity of J∞ in u, and one must seek a
staticum rather than a minimum.

One method for extending past π/2 to the stationary-
over-u case is to break the interval into multiple seg-
ments of duration less than π/2, and then concatenate
these. Suppose we wish to find the solution to TPBVPs
for this mass-spring example with duration 3π/4. As an
illustration of this approach, let us break the interval
up into two halves, where the payoff is then convex on
each half-interval. Suppose we introduce an intermedi-
ate point, ζ ∈ IR. Then, the stationary action problem
with s = 0 is given by

W∞(3π/4, x, z)
.
= stat
u∈L2(0, 3π4 )

J∞(0, 3π/4, x, u, z)

= stat
ζ∈IR

{
stat

u∈L2(0, 3π8 )
J∞(0, 3π/8, x, u, ζ)

+ stat
u∈L2( 3π

8 ,
3π
4 )
J∞(3π/8, 3π/4, ζ, u, z)

}
= stat
ζ∈IR

{
stat

u∈L2(0, 3π8 )
J∞(0, 3π/8, x, u, ζ)

+ stat
u∈L2(0, 3π8 )

J∞(0, 3π/8, ζ, u, z)
}
,

where the second equality follows from time-invariance.

Next, noting the convexity of each subsegment,

W∞(3π/4, x, z)= stat
ζ∈IR

{
W∞(3π/8, x, ζ)

+W∞(3π/8, ζ, z)
}

= 1
2 stat
ζ∈IR

{
P (3π/8)x2 + 2Q(3π/8)xζ +R(3π/8)ζ2

+ P (3π/8)ζ2 + 2Q(3π/8)ζz +R(3π/8)z2
}
,

and setting the derivative with respect to ζ equal to zero,

we find this is

= 1
2

{
[P (3π/8)−Q2(3π/8)/(P (3π/8) +R(3π/8))]

· (x2 + z2)

− 2Q2(3π/8)/(P (3π/8) +R(3π/8))xz
}
,

which by (9) and trigonometric identities,

= 1
2

{
cot(3π/4)(x2 + z2)− (2/ sin(3π/4))xz

}
= 1

2

{
P (3π/4)x2 + 2Q(3π/4)xz +R(3π/4)z2

}
. (10)

That is, surprisingly, one finds that the solution is iden-
tical to that which one would obtain if one had näıvely
propagated the analytical solution of the DRE forward.
In fact, introducing additional intermediary points for
increasingly long time durations, one continues to find
that the solution is identical to that found by näıve ap-
plication of the above analytical solution (7),(9) for ar-
bitrarily long periods. We will see that this is not a coin-
cidence, and solution of stationary action problems may
be obtained in the linear-quadratic case by proper prop-
agation of the DRE past escape times.
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3.2 Other example problem classes

Although the motivational mass-spring example is suffi-
ciently simple to be presented in near entirety, staticiza-
tion tools are applicable to a wide variety of problems,
specifically including our main motivating class: TPB-
VPs for conservative systems. As indicated in the in-
troduction, one may solve such problems by minimizing
the action functional if the time horizon is sufficiently
short. For general system durations, it is necessary to
develop the staticization method so as to find station-
ary points of the action functional. Major problem sub-
classes include the wave equation and the n-body prob-
lem. In both cases, least action has been applied to ob-
tain fundamental solutions of TPBVPs, and this is be-
ing extended to arbitrarily long-duration problems with
the aid of the theory developed here.

Least action for the wave equation is discussed in [4–
6]. One TPBVP in this class, with underlying domain
[0, L], L > 0, and known initial/terminal position data,
is expressed as

ẍ = −Ax , (11)

x(0, ·) = y(·) , x(t, ·) = z(·) , t > 0 , (12)

where A is a positive, self-adjoint, unbounded linear op-
erator densely defined on X = L2[0, L] by

A y = −∂2y , y ∈ dom (A) , (13)

dom (A) = X0 =

{
y ∈ X

∣∣∣∣∣ y, ∂y abs. cts., ∂2y ∈ X ,
y(0) = 0 = y(L)

}
,

in which ∂ is the (spatial) differentiation operation.

A fundamental solution for TPBVP (11), (12) is con-
structed in [4–6]. For short time horizons t > 0, this
construction proceeds via the optimal control problem

W∞,µ(t, y, z) = inf
u∈U

{∫ t

0

Tµ(u(r))− V (ξ(r)) dr

+ ψ∞(ξ(t), z)

}
, (14)

ξ̇(r) = u(r) , ξ(0) = y , y, z ∈ X 1
2
, µ ∈ R ,

Tµ(u) = 1
2 ‖u‖

2 + µ2

2 ‖u‖
2
1
2
, V (y) = 1

2 ‖y‖
2
1
2
,

〈y, z〉 1
2

= 〈A 1
2 y, A 1

2 z〉 , ‖y‖21
2

= 〈y, y〉 1
2
,

in which the controlled state ξ(r) evolves in a Hilbert

space X 1
2

= dom (A 1
2 ) as a consequence of an applied

input u ∈ U = L2([0, t];X 1
2
). Here, X 1

2
is equipped

with an inner product 〈 , 〉 1
2

that is defined with respect

to the unique, positive, self-adjoint, unbounded square-
root A 1

2 of A, and the standard inner product 〈 , 〉 on X ,
as indicated above.

The Hamiltonian associated with the optimal control
problem (14) defines a pair of characteristic equations
that together take the abstract Cauchy form [2](

ξ̇(r)

π̇(r)

)
= Aµ

(
ξ(r)

π(r)

)
, r ∈ [0, t] , (15)

in which Aµ ∈ L(X 1
2
⊕X ) is known. The uniformly con-

tinuous semigroup of bounded linear operators gener-
ated byAµ defines approximations for all solutions of the
wave dynamics (11). In particular, given any r ∈ [0, t],
the corresponding element Tµ(r) ∈ L(X 1

2
⊕ X ) of this

semigroup converges strongly as µ → 0 to an operator
T0(r) ∈ L(X 1

2
⊕X ) that describes precisely all solutions

of (11) on [0, r]. Consequently, as any solution of TP-
BVP (11), (12) can be represented in terms of T0(t), the
optimal control problem (14) can be used to construct
any TPBVP solution via the corresponding character-
istics (15), and the aforementioned strong convergence
property of the associated semigroup. That is, this con-
struction yields a fundamental solution semigroup for
TPBVP (11), (12), see [4–6].

For longer time horizons, convexity of the cost in (14)
is lost, rendering the optimal control problem unde-
fined. However, the fundamental solution semigroup,
constructed as indicated above for a sufficiently short
horizon, may be propagated to arbitrarily long time
horizons without modification. This propagation is
enabled by a weakening of the least-action approach
described to one of stationary-action, again see [4–6].

TPBVPs in the class of n-body problems are discussed in
[12,14,15]. In [12], the problem of one small body (e.g., a
spacecraft or asteroid) moving among n−1 large bodies
on predetermined orbits is considered, while in [14,15],
the general case is discussed. A typical problem in this
class is given as follows. Suppose the set of positions of
the n bodies at any time r ∈ [0, t] is denoted by ξ̄(r) =
(ξ1(r), ξ2(r), . . . ξn(r)) ∈ IR3n. Suppose the initial and
terminal positions are specified as ξ̄(0) = x ∈ IR3n and
ξ̄(t) = z ∈ IR3n. Classically, the problem is given as

ξ̈i(r) =
∑
j 6=i

−Gmj
ξj(r)− ξi(r)
|ξj(r)− ξi(r)|3

, i ∈ {1, 2, . . . n}

ξ̄(0) = x, ξ̄(t) = z.

Alternatively, the least-action formulation for the fun-
damental solution is given as [14,15]

W∞(t, x, z) = max
α∈A

min
u∈U

{∫ t

0

T (u(r))− V α(r, ξ̄(r)) dr

+ ψ∞(ξ̄(t), z)
}
,

˙̄ξ(r) = u(r), ξ̄(0) = x,
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V α(r, x) = −
∑
j>i

µi,jαi,j(r)

[
1− (αi,j(r)|xi − xj |)2

2

]
,

where µi,j = (3/2)(3/2)Gmimj , T (v) =
∑n
i=1mi|vi|2,

and U and A are appropriately dimensioned L2 and
L∞ spaces, respectively. Applying a Riccati differential
equation method as an aid for solving the inner (min-
imizing) player subproblem, one finds that there exists
a convex, finite-dimensional set, Ω, such that for any
x, z, the value, W∞(t, x, z) is given by the maximiza-
tion of an affine functional over Ω. That is, the set Ω
functions as a fundamental solution. A numerical ex-
ample in the case of a small body moving among a set
of large bodies appears in [12]. There, the staticization
was only performed over intermediary points on the tra-
jectories, where the subsegments were sufficiently short
to allow for least-action to be used in place of station-
ary action. The theory developed here will allow for a
stationary-action approach, and hence simpler analysis
of arbitrary-duration TPBVPs in astrodynamics.

4 Dynamic programming for staticization

In this section, we will obtain a dynamic programming
principle as well as a verification result for the appropri-
ate Hamilton-Jacobi PDE.

Remark 3 For clarity, we provide several definitions.
Let Y,Z be Hilbert spaces, and let F : Y × Z → IR. We
say F is strictly uniformly convex on Y with respect to
z ∈ Z, if there exists CF > 0 such that for all y, v ∈ Y,
z ∈ Z, |F (y − v, z)− 2F (y, z) + F (y + v, z)| ≥ CF |v|2.
We say F is coercive on Y if given R̄,M < ∞, there
exists R̂ < ∞ such that F (y, z) ≥ F (0, z) + M for all

|y| ≥ R̂, |z| ≤ R̄. We say F has bounded second-order
differences, if there exists MF <∞ such that

|F (y + δy1 + δy2 , z + δz1 + δz2)− F (y + δy1 , z + δz1)

− F (y + δy2 , z + δz2) + F (y, z)| ≤MF

[
|δ1|2 + |δ2|2

]
for all z, δz1 , δ

z
2 ∈ Z, and all y, δy1 , δ

y
2 ∈ Y where δk

.
=

(δyk , δ
z
k) for k = 1, 2.

We assume the time-invariant dynamics are given as

ξ̇(r) = f(ξ(r), u(r)), ξ(s) = x ∈ IRn,

where f ∈ C2(IRn × IRm; IRn) is globally Lipschitz. For

(s, t) ∈ T̂ , let Us,t
.
= L2([s, t); IRm). The inclusion of the

left endpoint in the domain of elements of Us,t, albeit
a set of measure zero, will be helpful in definitions and
discussions below. Then, for x, z ∈ IRn and u ∈ Us,t, we

consider payoff J : T̂ × IRn × Us,t × IRn → IR given by

J(s, t, x, u, z)
.
=

∫ t

s

L(ξ(r), u(r)) dr + ψ(ξ(t), z), (16)

where L ∈ C2(IRn × IRm), ψ ∈ C2(IRn × IRn) with ψ
convex and coercive in x. We also allow ψ = ψ∞ given
by (6), generalized to domain IRn. Define

W (t− s, x, z) = stat
u∈Us,t

J(s, t, x, u, z). (17)

Conditions guaranteeing the existence of W for specific
classes of problems, particularly n-body problems, are
given in [14,15]. (These conditions were not satisfied by
the mass-spring example.) The next step will be to ob-
tain the DPP for W .

We make the following assumptions.

For any (s, t) ∈ T̂ and x, z ∈ IRn, there
exists a unique staticum of J(s, t, x, ·, z),
u∗ = u∗(s, t, x, z), that is, {u∗} =
argstatu∈Us,t J(s, t, x, u, z).

(A.1)

Given x, z ∈ IRn, there exists δc > 0 such that
if 0 ≤ s ≤ t < s + δc, then for any ζ ∈ IRn,
J(s, t, ζ, ·, z) is strictly uniformly convex on
Us,t with respect to ζ ∈ IRn and coercive on
Us,t.

(A.2)

Remark 4 We note that Assumption (A.2) is motivated
by the fact that for the standard stationary-action prob-
lems (cf., [14,15] and the references therein), the ac-
tion is strictly uniformly convex and coercive over suf-
ficiently short time-horizons. Moreover, the stationary-
action model is

ξ̇(r) = u(r), ξ(s) = x ∈ IRn,

ψ(x, z) = ψ∞(x, z) and L(x, v) = T (v)− V (x),

where T (u(r)) = T (ξ̇(r)) denotes the kinetic energy at
time r ∈ [s, t], and V (ξ(r)) denotes the potential energy.

Let (s, t) ∈ T̂ and x, z ∈ IRn. For u0 ∈ U0,s and u1 ∈ Us,t,
let

Jd(s, t, x, u
0, u1, z)

.
=

∫ s

0

L(ξ0(r), u0(r)) dr

+

∫ t

s

L(ξ1(r), u1(r)) dr + ψ(ξ1(t), z), (18)

where ξ̇0(r) = u0(r) on (0, s) with ξ0(0) = x and ξ̇1(r) =
u1(r) on (s, t) with ξ1(s) = ξ0(s−). Define the concate-
nation C : U0,s × Us,t → U0,t by

[C(u0, u1)](r)
.
=

{
u0(r) if r ∈ [0, s),

u1(r) if r ∈ [s, t),

where we suppress the detail that these are equivalence
classes of functions equal almost everywhere. One im-
mediately sees that, letting u0 ∈ U0,s, u

1 ∈ Us,t and
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ū
.
= C(u0, u1), one has ū ∈ U0,t and

J(0, t, x, ū, z) = Jd(s, t, x, u
0, u1, z). (19)

Analogously, letting ū ∈ U0,t, u
0(r) = ū(r) for r ∈ [0, s)

and u1(r) = ū(r) for r ∈ [s, t), one again has (19). We
take the norm on U0,s × Us,t to be |(u0, u1)| = {|u0|2 +

|u1|2}1/2, where the norms on the right-hand side are the
respective L2 norms on [0, s) and [s, t). The following is
easily obtained from the above.

Lemma 5 For (s, t) ∈ T̂ , C : U0,s × Us,t → U0,t is
a linear bijection. Further, the induced operator norm
satisfies |C| = |C−1| = 1.

Lemma 6 Let (s, t) ∈ T̂ and x, z ∈ IRn. Then,

W (t, x, z) = stat
ū∈U0,t

J(0, t, x, ū, z)

= stat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z).

Proof: The left-hand equality is simply (17) with s =
0, where existence and uniqueness are guaranteed by
Assumption (A.1). In particular,

W (t, x, z) = J(0, t, x, ū∗, z), (20)

where ū∗ = argstatū∈U0,t J(0, t, x, ū, z). Let (s, t) ∈ T̂

and x, z ∈ IRn. By (1),

0 = lim
ū→ū∗

|J(0, t, x, ū, z)− J(0, t, x, ū∗, z)|
|ū− ū∗|

. (21)

For any ū ∈ U0,t, let (u0, u1) = C−1(ū), and in particular,
let (u0,∗, u1,∗) = C−1(ū∗). By (19), (21) and Lemma 5,

0 = lim
(u0,u1)→(u0,∗,u1,∗)

|Jd(s, t, x, u0, u1, z)−Jd(s, t, x, u0,∗, u1,∗, z)|
|(u0, u1)− (u0,∗, u1,∗)|

,

which implies

(u0,∗, u1,∗) ∈ argstat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z). (22)

Similarly, (û0, û1) ∈ argstat Jd(s, t, x, u
0, u1, z) implies

that C(û0, û1) ∈ argstatū∈U0,t J(0, t, x, ū, z) = ū∗. Con-

sequently, (u0,∗, u1,∗) is the unique staticizer, and

Jd(s, t, x, u
0,∗, u1,∗, z) = stat

(u0,u1)∈U0,s×Us,t
Jd(s, t, x, u

0, u1, z).

Also, by (19), Jd(s, t, x, u
0,∗, u1,∗, z) = J(0, t, x, ū∗, z).

Combining these last two equalities with (20) completes
the proof. 2

The DPP is obtained as follows:

Theorem 7 Let (s, t) ∈ T̂ , t − s < δc (where δc is
given in Assumption (A.2) ) and x, z ∈ IRn. Suppose that
for any ζ ∈ IRn, J(0, t − s, ζ, ·, z) ∈ C2(U0,t−s). Sup-
pose J(0, t, x, C(·, ·), z) ∈ C2(U0,s×Us,t), and that it has
bounded second-order differences. Then,

W (t, x, z) = stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ξ0(s), z)

}
,

where ξ̇0(r) = f(ξ0(r), u0(r)) for r ∈ (0, s), with ξ0(0) =
x.

Proof: Let (s, t) ∈ T̂ and x, z ∈ IRn. By Lemma 6,

W (t, x, z) = stat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z),

which by (18),

= stat
(u0,u1)∈U0,s×Us,t

{∫ s

0

L(ξ0(r), u0(r)) dr

+

∫ t

s

L(ξ1(r), u1(r)) dr + ψ(ξ1(t), z)

}
= stat

(u0,u1)∈U0,s×Us,t

{∫ s

0

L(ξ0(r), u0(r)) dr

+ J(s, t, ξ0(s), u1, z)

}
= stat

(u0,û1)∈U0,s×U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+ J(0, t− s, ξ0(s), û1, z)

}
. (23)

By the assumptions, the term in curly brackets on the
right-hand side of (23), as a function of u0, û1 over U0,s×
U0,t−s satisfies the conditions of Lemma 17 (with û1 tak-
ing the role of y, and u0 taking the role of z there). Con-
sequently,

stat
(u0,û1)∈U0,s×U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+ J(0, t− s, ξ0(s), û1, z)

}
= stat
u0∈U0,s

min
û1∈U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+ J(0, t− s, ξ0(s), û1, z)

}
= stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr
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+ min
û1∈U0,t−s

J(0, t− s, ξ0(s), û1, z)

}
,

which by the assumed differentiability of J(0, t −
s, ξ0(s), ·, z) and the definition of W ,

= stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr +W (t− s, ξ0(s), z)

}
.

(24)

Combining (23) and (24) yields the desired result. 2

In addition to the above DPP, we now obtain a verifica-
tion theorem for the associated HJ PDE. The HJ PDE
problem, for each z ∈ IRn, is

0 = stat
v∈IRm

{
L(x, v)−Wr(r, x, z) (25)

+Wx(r, x, z) ·f(x, v)
}
, (r, x) ∈ (0, t)×IRn,

W (0, x, z) = ψ(x, z), x ∈ IRn. (26)

Theorem 8 Let t ∈ (0,∞). Suppose W ∈ C3((0, t) ×
IR2n)∩C([0, t]×IR2n) satisfies (25), (26). Suppose there
exist KL,Kf <∞ such that

|Lxx(x, v)|, |Lxv(x, v)|, |Lvv(x, v)| ≤ KL,

|fx(x, v)|, |fv(x, v)| ≤ Kf ,

|fxx(x, v)|, |fxv(x, v)|, |fvv(x, v)| ≤ Kf ,

for all (x, v) ∈ IRn×IRm. Suppose there exists ũ : [0, t]×
IRn → IRn satisfying ũ(r, x) ∈ argstatv∈IRm [W x(t −
r, x, z) · f(x, v) + L(x, v)], such that ũ is bounded on

bounded sets, and such that there exists K̃f < ∞ such

that |f(x, ũ(r, x)) − f(y, ũ(r, y))| ≤ K̃f |x − y| for all

x, y ∈ IRn and r ∈ [0, t]. Then, W (t, x, z) = W (t, x, z) =
statu∈U0.t J(0, t, x, u, z).

Proof: Let t, x, z,W , ũ be as assumed. By standard
results, there exists unique absolutely continuous

ξ̃ : [0, t] → IRn satisfying
˙̃
ξ(r) = f(ξ̃(r), ũ(r, ξ̃(r))),

ξ̃(0) = x such that ũ(·, ξ̃(·)) ∈ U0,t. By the Fundamental
Theorem of Calculus,

W (t, x, z) = W (0, ξ̃(t), z) +

∫ t

0

W r(r, ξ̃(t− r), z)

−W x(r, ξ̃(t− r), z) · f(ũ(t− r, ξ̃(t− r))) dr,

which by (25),(26) and the choice of ũ,

= ψ(ξ̃(t), z) +

∫ t

0

L(ξ̃(t− r), ũ(t− r, ξ̃(t− r))) dr

=

∫ t

0

L(ξ̃(r), ũ(r, ξ̃(r))) dr + ψ(ξ̃(t), z). (27)

Let u∗(r)
.
= ũ(r, ξ̃(r)), ξ∗(r) = ξ̃(r) for all r ∈ [0, t].

Then, (27) may be rewritten as

W (t, x, z) (28)

=

∫ t

0

L(ξ∗(r), u∗(r)) dr + ψ(ξ∗(t), z) = J(0, t, x, u∗, z).

Now we must demonstrate that u∗ is the argstat of
J(0, t, x, ·, z). Let û ∈ U0,t, δ

.
= û − u∗ ∈ L2((0, t); IRn)

with |δ| ≤ 1, and let ξ̂ be the corresponding trajectory

(i.e., ξ̂(r) = x +
∫ r

0
f(ξ̂(r), û(r)) dr). By (28) and the

Fundamental Theorem of Calculus again,

J(0, t, x, u∗, z) = W (t, x, z)

= W (0, ξ̂(t), z) + [W (t, x, z)−W (0, ξ̂(t), z)]

= W (0, ξ̂(t), z) +

∫ t

0

W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r)) dr,

which by (25),(26) (implying that the last term in brack-

ets below is zero),

= ψ(ξ̂(t), z) +

∫ t

0

L(ξ̂(t− r), û(t− r) dr

+

∫ t

0

[
− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)
−W x(r, ξ∗(t− r), z) · f(ξ∗(t− r), u∗(t− r))

]
dr,

and noting that the first and second terms comprise the

payoff for û,

= J(0, t, x, û, z)

+

∫ t

0

[
− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)
−W x(r, ξ∗(t− r), z) · f(ξ∗(t− r), u∗(t− r))

]
dr.

That is,

|J(0, t, x, û, z)− J(0, t, x, u∗, z)| (29)

≤
∫ t

0

∣∣∣[− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)

−W x(r, ξ∗(t− r, z)) · f(ξ∗(t− r), u∗(t− r))
]∣∣∣ dr.
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For compactness of presentation, let |Ξ| denote the in-
tegrand in (29), and let

G(r, x, v) = G(r, x, v; z)
.
= W x(r, x, z) · f(x, v), (30)

for x, z ∈ IRn, v ∈ IRm and r ∈ (0, t). Using the assumed
smoothness, at any r ∈ (0, t), and where also for com-
pactness of presentation, we drop the z argument of W
where confusion will not occur, the integrand in (29) is

|Ξ| =
∣∣− Lx(ξ∗(t− r), u∗(t− r))∆t−r

− Lv(ξ∗(t− r), u∗(t− r))δt−r
− 1

2

[
∆′t−rLxx(x̃0

t−r, ũ
0
t−r)∆t−r

+ 2∆′t−rLxv(x̃
0
t−r, ũ

0
t−r)δt−r+δ

′
t−rLvv(x̃

0
t−r, ũ

0
t−r)δt−r

]
+W rx(r, ξ∗(t− r))∆t−r + 1

2∆′t−rW rxx(r, x̃1)∆t−r

−Gx(r, ξ∗(t− r), u∗(t− r))∆t−r
−Gv(r, ξ∗(t− r), u∗(t− r))δt−r
− 1

2

[
∆′t−rGxx(r, x̃2

t−r, ṽ
2
t−r)∆t−r

+ 2∆′t−rGxv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

+ δ′t−rGvv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

]∣∣, (31)

where δt−r
.
= δ(t− r), ∆t−r

.
= ξ̂(t− r)− ξ∗(t− r), and

for all r ∈ (0, t), (x̃0
t−r, ũ

0
t−r), (x̃

1
t−r, ũ

1
t−r), (x̃

2
t−r, ũ

2
t−r)

lie on the line segment from (ξ∗(t − r), u∗(t − r)) to

(ξ̂(t − r), û(t − r)) (where the use of subscript t − r for
time-dependence is helpful in saving space). Using the
assumed bounds on the second derivatives of L, (31)
yields

|Ξ| ≤
∣∣∣− Lx(ξ∗(t− r), u∗(t− r))∆t−r

− Lv(ξ∗(t− r), u∗(t− r))δt−r
+W rx(r, ξ∗(t− r))∆t−r + 1

2∆′t−rW rxx(r, x̃1)∆t−r

−Gx(r, ξ∗(t− r), u∗(t− r))∆t−r
−Gv(r, ξ∗(t− r), u∗(t− r))δt−r
− 1

2

[
∆′t−rGxx(r, x̃2

t−r, ṽ
2
t−r)∆t−r

+ 2∆′t−rGxv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

+ δ′t−rGvv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

]∣∣∣
+ C̄1

(
|∆t−r|2 + |δt−r|2

)
∀ r ∈ (0, t) (32)

for an appropriate choice of C̄1 <∞.

Now, by the choice of u∗, Lemma 1 and (25),

Lv(ξ
∗(t− r), u∗(t− r)) +Gv(r, ξ

∗(t− r), u∗(t− r))

=
∂

∂v

{
L(ξ∗(t− r), v) (33)

+W x(r, ξ∗(t− r)) · f(ξ∗(t− r), v)
}∣∣∣
v=u∗(t−r)

= 0.

Next, note that

Lx(ξ∗(t− r), u∗(t− r))−W rx(r, ξ∗(t− r))
+Gx(r, ξ∗(t− r), u∗(t− r))

=
∂

∂x

{
L(x, u∗(t− r))−W r(r, x)

+W x(r, x) · f(x, u∗(t− r))
}∣∣∣
x=ξ∗(t−r)

=
d

dx

{
L(x, ũ(t− r, x))−W r(r, x)

+W x(r, x) · f(x, ũ(t− r, x))
}∣∣∣
x=ξ∗(t−r)

− ∂

∂v

{
L(x, v)−W r(r, x)

+W x(r, x) · f(x, v)
}∣∣∣∣
x = ξ∗(t− r)

v = ũ(t− r, ξ∗(t− r))

· dũ
dx

(r, ξ∗(t− r)),

where the total derivative notation d
dx outside the first

curly bracket is abused to denote the derivative with

respect to all x explicitly appearing in the bracketed

expression. By (33), this is

=
d

dx

{
L(x, ũ(t− r, x))−W r(r, x)

+W x(r, x) · f(x, ũ(t− r, x))
}∣∣∣
x=ξ∗(t−r)

= 0, (34)

where the last equality follows by (25) as the previous
right-hand side is the derivative of zero. Substituting
(33) and (34) in (32), we find

|Ξ| ≤
∣∣∣ 12∆′t−rW rxx(r, x̃1)∆t−r

− 1
2

[
∆′t−rGxx(r, x̃2

t−r, ṽ
2
t−r)∆t−r

+ 2∆′t−rGxv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

+ δ′t−rGvv(r, x̃
2
t−r, ṽ

2
t−r)δt−r

]∣∣∣
+ C̄1

(
|∆t−r|2 + |δt−r|2

)
∀ r ∈ (0, t). (35)

In order to proceed, we need L∞ bounds on the trajec-

tories, ξ∗ and ξ̂. Note that for r ∈ (0, t),

|ξ∗(r)− ξ̂(r)| ≤
∫ r

0

|f(ξ̂(ρ), û(ρ))− f(ξ∗(ρ), û(ρ))|

+ |f(ξ∗(ρ), û(ρ))− f(ξ∗(ρ), u∗(ρ))| dρ,

which by the assumed bounds on the derivatives of f ,

≤ Kf

∫ r

0

|ξ̂(ρ)− ξ∗(ρ)|+ |û(ρ)− u∗(ρ)| dρ,

which upon application of the Hölder’s inequality,
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≤ Kf

∫ r

0

|ξ̂(ρ)− ξ∗(ρ)| dρ+Kf |δ|
√
r.

Applying Gronwall’s inequality to this, one finds that
there exists C̄2 = C̄2(t) <∞ such that

|ξ∗(r)− ξ̂(r)| ≤ C̄2|δ| ≤ C̄2 ∀ r ∈ (0, t). (36)

Similarly, using

|ξ∗(r)− x| ≤
∫ r

0

|f(ξ∗(ρ), ũ(ρ, ξ∗(ρ))− f(x, ũ(ρ, x))| dρ

+

∫ r

0

|f(x, ũ(ρ, x))| dρ,

one may show there exists C̄3 = C̄3(t, |x|) <∞ such that

|ξ∗(r)| ≤ C̄3 ∀ r ∈ (0, t), (37)

where we do not include the details. Using (36) and (37),
one finds there exists C̄4 = C̄4(t, |x|) <∞

|ξ̂(r)|, |ξ∗(r)| ≤ C̄4 ∀ r ∈ (0, t). (38)

By (38), the assumed smoothness of W and f , and the
assumed bounds on derivatives of f , there exists C̄5 =
C̄5(t, |x|) <∞ such that

|W rxx(r, x̃1)|, |Gxx(r, x̃2
t−r, ṽ

2
t−r)|, |Gxv(r, x̃2

t−r, ṽ
2
t−r)|,

|Gvv(r, x̃2
t−r, ṽ

2
t−r)| ≤ C̄5 ∀ r ∈ (0, t). (39)

Finally, combining (35) and (39), there exists C̄6 =
C̄6(t, |x|) <∞ such that

|Ξ| ≤ C̄6

(
|∆t−r|2+|δt−r|2

)
∀ r ∈ (0, t). (40)

Applying (40) in (29), we have

|J(0, t, x, û, z)− J(0, t, x, u∗, z)|

≤ C̄6

∫ t

0

(
|∆t−r|2+|δt−r|2

)
dr = C̄6

(
|∆|2+|δ|2

)
which by (36),

≤ C̄7|δ|2,

for appropriate choice of C̄7 = C̄7(t, |x|) <∞. Recalling
(1), we see that this implies that u∗ is the argstat of
J(0, t, x, ·, z). 2

5 Linear-quadratic example

We consider the linear-quadratic problem given by

L(x, v) = 1
2v
′Dv − 1

2x
′Bx, f(x, v) = v, (41)

ψ(x, z) = ψc(x, z), (42)

for all x, v, z ∈ IRn, where D � dI (where we write
A � B if A−B is positive definite), d > 0, B and D are
symmetric, and c ∈ (0,∞). We look for W of the form

W (t, x, z) = 1
2

[
x′P (t)x+ 2x′Q(t)z + z′R(t)z

]
. (43)

With the above quadratic cost and given dynamics, the
HJ PDE (25) takes the form

0 = stat
v∈IRn

[
1
2v
′Dv − 1

2x
′Bx−W r(r, x, z)

+W x(r, x, z) · v
]

= min
v∈IRn

[
1
2v
′Dv − 1

2x
′Bx−W r(r, x, z)

+W x(r, x, z) · v
]

(44)

= − 1
2x
′Bx−W r(r, x, z)

− 1
2W

′
x(r, x, z)D−1W x(r, x, z)

]
. (45)

Remark 9 That (44) is a minimum, in spite of the fact
that, for sufficiently long duration problems, the value is
obtained as a staticum, may appear at first glance to be
contradictory. The consistent minimum in the HJ PDE
is due to the infinitesimal limit implicit there. If one ex-
amines the DPP (Theorem 7), we see that there are two
terms inside the outer staticization, where for sufficiently
short durations, t − s, the payoff underlying the second
term is convex with respect to the input in Us,t. It is also
worth noting that at the outset of the proof of the DPP,
one is already working with a value, W , which is defined
as a staticum rather than a minimum.

Substituting form (43) in (45), one obtains

0 =− 1
2x
′Bx− 1

2

[
x′Ṗ (t)x+ 2x′Q̇(t)z + z′Ṙ(t)z

]
− 1

2 (P (t)x+Q(t)z)′D−1(P (t)x+Q(t)z).

Equating like terms yields

Ṗ (t) = −B − P (t)D−1P (t), (46)

Q̇(t) = −P (t)D−1Q(t), (47)

Ṙ(t) = −Q′(t)D−1Q(t), (48)

and the initial condition (i.e., (42), (26) and (8)) imply

P (0) = R(0) = cI = −Q(0). (49)

Note that if P,Q,R are well-defined on (0, t), then the
optimal control is given by u∗(r) = P (t−r)x+Q(t−r)z
for r ∈ (0, t), and one has u∗ ∈ U0,t. Further, one can
verify that the assumptions of verification Theorem 8
are valid on this interval. Consequently, W is the value
function on this interval.

We are now faced with the prospect that P , Q and R
may exhibit finite escape times, while there may exist
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an argstat remaining finite (a.e.) indefinitely. In fact,
one finds that W continues to have form (43) past such
escape times, and one must obtain the means to correctly
propagate the solution of (46)–(48) past such times. The
means for this was indicated in the specific mass-spring
example above, and we proceed to obtain this in a more
general context.

Suppose we have successfully propagated forward to
time s ∈ (0,∞), and wish to propagate to t > s, where
t − s < δc (defined in (A.2)), and one might have an
escape in (s, t). We will use the staticization DPP (i.e.,
Theorem 7) to propagate from s up to t. For y ∈ IRn,
define

Uy0,s
.
=
{
u ∈ U0,s

∣∣∣ ∫ s

0

u(r) dr = y
}
. (50)

We need to verify that the conditions of Theorem 7 hold
for sufficiently small δc > 0 (see [14,15] for similar com-
putations). We have:

Lemma 10 Suppose δc <

√
2d/max{1, λ̂} where λ̂ is

the maximal eigenvalue of B in (41). Let τ ∈ (0, δc) and
ζ, z ∈ IRn. Let J be given by (16), where L, f are given
by (41). J(0, τ, ζ, ·, z) is a convex quadratic function on
U0,τ .

Proof: We prove only the convexity. Let u, δ ∈ U0,τ ,
u+ .

= u + δ, u−
.
= u − δ; ξ(0) = ξ+(0) = ξ−(0) = ζ;

ξ̇(r) = u(r), ξ̇+(r) = u+(r), ξ̇−(r) = u−(r) on (0, τ).
One easily sees that

J(0, τ, ζ, u+, z)− 2J(0, τ, ζ, u, z) + J(0, τ, ζ, u−, z)

= 1
2

∫ τ

0

δ(r)′Dδ(r)−
(∫ r

0
δ(ρ) dρ

)′
B
(∫ r

0
δ(ρ) dρ

)
dr

+
c

2

∣∣∣ ∫ τ

0

δ(r) dr
∣∣∣2

≥ d

2
|δ|2L2(0,τ) −

λ̂

2

∫ τ

0

∣∣∫ r
0
δ(ρ) dρ

∣∣2 dr
≥ d

2
|δ|2L2(0,τ) −

λ̂

2

∫ τ

0

r

∫ r

0

|δ(ρ)|2 dρ dr

≥
[
d

2
− λ̂τ2

4

]
|δ|2L2(0,τ). 2

The assumptions of bounded second-order differences
and C2 behavior are not difficult to verify, and we do
not include verifications of these. Uniqueness assump-
tion (A.1) does not always hold for purely quadratic
problems, and we simply assume it here. (One may note
the nonuniqueness of trajectories for the scalar mass-
spring system when x = z = 0 and the duration is a

half-period, as an example.) Applying Theorem 7, and
recalling notation (50),

W (t, x, z) = stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ξ0(s), z)
}

= stat
ζ∈IRn

stat
u0∈Uζ−x0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ζ, z)
}

= stat
ζ∈IRn

{
stat

u0∈Uζ−x0,s

[ ∫ s

0

L(ξ0(r), u0(r)) dr + ψ∞(ξ0(s), ζ)
]

+W (t− s, ζ, z)
}

= stat
ζ∈IRn

{
W (s, x, ζ) +W (t− s, ζ, z)

}
. (51)

As we have already propagated forward to s, we have

W (s, x, ζ) = 1
2

[
x′P (s)x+ 2x′Q(s)ζ + ζ ′R(s)ζ

]
. (52)

Further, as t − s < δc, we have strict convexity on the
t− s duration segment, and consequently we have

W (t− s, ζ, z) = 1
2

[
ζ ′P (t− s)ζ + 2ζ ′Q(t− s)z
+ z′R(t− s)z

]
. (53)

Combining (51)–(53), one finds staticizing point ζ∗ =
−[R(s) + P (t − s)]−1[Q′(s)x + Q(t − s)z], and conse-
quently,

W (t, x, z) = 1
2

[
x′P (t)x+ x′Q(t)z + z′Q(t)x+ z′R(t)z

]
,

(54)
where P (t), Q(t), R(t) are given by

P (t)=P (s)−Q(s)[R(s) + P (t− s)]−1Q′(s), (55)

Q(t)=Q(s)[R(s) + P (t− s)]−1Q(t− s), (56)

R(t)=R(t− s)−Q′(t− s)[R(s) + P (t− s)]−1Q(t− s).
(57)

That is, (55)–(57) allows us to propagate past the finite
escape time occurring in interval (s, t). We remark that
forward propagation by repeated application of updates
similar to (55)–(57) for general DREs is discussed in
[16] for the finite-dimensional case, and in [6–8] for the
infinite-dimensional case.

6 Applications

The initial motivation for consideration of stationarity
problems is the stationary action principle for dynam-
ical systems. However, from the above, one sees that
the main results, specifically the dynamic programming
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principle and the relation to the associated HJ PDE,
are valid on a much larger domain. One may seek the
staticum in a wide variety of problems. One obvious ad-
ditional application is in the area of zero-sum games. In
particular, when value exists, this value is a minimax
solution over the control pair, say (u(·), w(·)) where u
is the minimizing player control and w is the maximiz-
ing player control. If the payoff is continuously differen-
tiable, the minimax value function is a staticum over the
combined control, ū

.
= (u,w). Consequently the results

here may be applied for solution. Of course, there is more
structure in a game than what is assumed or discussed
here.

Returning to the original motivation domain, recall that
the stationary action may be the least action over a short
time-interval. In the least-action case, one may apply
standard techniques from optimal control to solve the as-
sociated control-problem formulation. This is discussed
in the context of the n-body problem in [12,14,15], and
in the context of the wave equation in [4–6]. The results
obtained in this paper allow such results to be extended
to arbitrary duration problems.
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7 Appendix

Some technical results related to staticization follow.
Suppose Y,Z are Hilbert spaces, and let the inner prod-
uct on Y×Z be given by 〈(y1, z1), (y2, z2)〉 .= 〈y1, y2〉y+
〈z1, z2〉z, where 〈·, ·〉y and 〈·, ·〉z denote the inner prod-
ucts on Y and Z, respectively. Suppose G ⊆ Y is open
and convex. Suppose F : G × Z → IR. We present re-
sults under subsets of the following assumptions.

F ∈ C2(G × Z; IR). (A.F1)

F is strictly uniformly convex on G. (See Re-
mark 3.) (A.F2)

Either: a) G = Y and F is coercive on Y as
defined in Remark 3; or b) G is bounded, and
for every z ∈ Z, there exists ȳ = ȳ(z) ∈ G
such that F (ȳ, z) < F (y, z) for all y ∈ G \{ȳ}.

(A.F3)

The following result is standard, and we do not include a
proof. See also [18]. Note that for r > 0, we letBr

.
= {y ∈

Y | |y| < δ}, where throughout, the relevant underlying
space will be implicitly clear.

Lemma 11 SupposeF satisfies (A.F2) and (A.F3). For
each z ∈ Z, there exists a unique ȳ(z) ∈ G such that
F (ȳ(z), z) < F (y, z) for all y ∈ G \ {ȳ(z)}. Further,
given Rz <∞, there exists Ry = Ry(Rz) <∞ such that
ȳ(z) ∈ BRy for all z ∈ BRz .
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Lemma 12 Suppose F satisfies (A.F2) and (A.F3).
Suppose that for each z ∈ Z, F (·, z) ∈ C2(G; IR). Sup-
pose that for any Ry, Rz <∞, there exists K̄0 <∞ such
that |F (y, z1)− F (y, z2)| ≤ K̄0|z1 − z2| for all y ∈ BRy ,

z1, z2 ∈ BRz . Let ȳ : Z → G be as defined in Lemma 11.
There exists K̄H = K̄H(Rz) < ∞ such that ȳ is Hölder
continuous, with |ȳ(z1) − ȳ(z2)| ≤ K̄H |z1 − z2|1/2 for
all z1, z2 ∈ BRz (0) ⊂ Z.

Proof: Let Rz < ∞, z1, z2 ∈ BRz and ȳ : Z → G
be as given. Let v̂

.
= ȳ(z2) − ȳ(z1). Suppose v̂ 6= 0;

otherwise there is nothing more to prove. By (A.F2), for
all δ̄ ∈ (−1, 1), δ ∈ (−1, 0) ∪ (0, 1),[

F (ȳ(z1) + δ̄v̂ − δv̂, z1)− 2F (ȳ(z1) + δ̄v̂, z1)

+ F (ȳ(z1) + δ̄v̂ + δv̂, z1)
]
/δ2 ≥ CF . (58)

DefineG(δ̄)
.
= F (ȳ(z1)+ δ̄v̂, z1) for all δ̄ ∈ [−1, 1], where

we note that by Assumption (A.F1), G ∈ C2. Further,
by (58),

d2G

dδ̄2
(δ̄) ≥ CF ∀ δ̄ ∈ (−1, 1). (59)

Also, by Lemma 11, G(δ̄), G(−δ̄) ≥ G(0) for all δ̄ ∈
(−1, 1), and consequently, dG

dδ̄
(0) = 0. Combining this

with (59), we see that G(δ̄) − G(0) ≥ (CF /2)δ̄2 for all
δ̄ ∈ [−1, 1]. Taking δ̄ = 1, and recalling the definition of
G,

F (ȳ(z2), z1)− F (ȳ(z1), z1) ≥ (CF /2)|ȳ(z2)− ȳ(z1)|2,

or, equivalently,

|ȳ(z2)− ȳ(z1)|2 ≤ (2/CF )
[
F (ȳ(z2), z1)− F (ȳ(z1), z1)

]
.

(60)
Proceeding similarly, but at z2 instead of z1, one finds

|ȳ(z1)− ȳ(z2)|2 ≤ (2/CF )
[
F (ȳ(z1), z2)− F (ȳ(z2), z2)

]
.

(61)

Now, by Lemma 11, there exists Ry = Ry(Rz) < ∞
such that ȳ(z) ∈ BRy for all z ∈ BRz , and in particu-

lar, ȳ(z1), ȳ(z2) ∈ BRy . Then, using the assumed local

Lipschitz nature, there exists K̄0(Rz) <∞ such that

|F (ȳ(z1), z2)− F (ȳ(z1), z1)| ≤ K̄0|z2 − z1|, (62)

|F (ȳ(z2), z1)− F (ȳ(z2), z2)| ≤ K̄0|z2 − z1|. (63)

Summing (60) and (61), we have

2|ȳ(z2)− ȳ(z1)|2 ≤ (2/CF )
[
F (ȳ(z2), z1)− F (ȳ(z1), z1)

+ F (ȳ(z1), z2)− F (ȳ(z2), z2)
]
, (64)

which by (62),(63),

≤ 4K̄0

CF
|z2 − z1|. 2

Lemma 13 Suppose F satisfies (A.F1), (A.F2) and
(A.F3). Let ȳ : Z → G be as defined in Lemma 11. Let
Rz < ∞. There exists K̄L = K̄L(Rz) < ∞ such that
|ȳ(z1)− ȳ(z2)| ≤ K̄L|z1 − z1| for all z1, z2 ∈ BRz .

Proof: The conditions assumed in Lemma 13 are suffi-
cient to guarantee the conditions of Lemma 12. Conse-
quently, by (64), we have

|ȳ(z2)− ȳ(z1)|2 ≤ (2/CF )
[
F (ȳ(z2), z1)

− F (ȳ(z1), z1) + F (ȳ(z1), z2)− F (ȳ(z2), z2)
]
. (65)

For ya, yb ∈ G, we will let ya, yb denote the line segment
from ya to yb, and similarly on Z. By (A.F1), there

exists z3, z4 ∈ z1, z2 such that

F (ȳ(z2), z2)− F (ȳ(z2), z1) =
〈
Fz(ȳ(z2), z3), z2 − z1

〉
,

(66)

and

F (ȳ(z1), z2)− F (ȳ(z1), z1) =
〈
Fz(ȳ(z1), z4), z2 − z1

〉
,

(67)

where partial Fz(y, z) ∈ Z for each pair (y, z) ∈ G × Z.
Combining (65)–(67), we have

|ȳ(z2)− ȳ(z1)|2 (68)

≤ (2/CF )
〈
Fz(ȳ(z1), z4)− Fz(ȳ(z2), z3), z2 − z1

〉
≤ (2/CF )

∣∣Fz(ȳ(z1), z4)− Fz(ȳ(z2), z3)
∣∣|z2 − z1|.

As G is open, there exists ε > 0 such that ζ : (−ε, 1+ε)→
G ×Z, where

ζ(λ)
.
= (1− λ)

(
ȳ(z1), z4

)
+ λ

(
ȳ(z2), z3

)
.

Then, lettingG(λ)
.
= Fz(ζ(λ)), we haveG ∈ C1

(
(−ε, 1+

ε);Z
)
. With a slight abuse of notation,∣∣Fz(ȳ(z1), z4)− Fz(ȳ(z2), z3)

∣∣
= |Fz(ζ(0))− Fz(ζ(1))| = |G(0)−G(1)|. (69)

Defining M0,1
.
= maxλ∈[0,1]

∣∣dG
dλ (λ)

∣∣ <∞, and using the
Integral Mean Value Theorem (cf., [13]), (69) implies∣∣Fz(ȳ(z1), z4)− Fz(ȳ(z2), z3)

∣∣ ≤M0,1|ζ(1)− ζ(0)|
= M0,1

∣∣(ȳ(z1), z4)− (ȳ(z2), z3)
∣∣

≤M0,1

[
|ȳ(z1)− ȳ(z2)|+ |z1 − z2|

]
. (70)
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Combining (68) and (70), we have

|ȳ(z2)− ȳ(z1)|2 ≤ (2/CF )M0,1

[
|ȳ(z1)− ȳ(z2)| |z1 − z2|
+ |z1 − z2|2

]
≤ 1

2

∣∣ȳ(z1)− ȳ(z2)
∣∣2+

1

2

[
(2/CF )2M2

0,1 + (2/CF )M0,1

]
· |z1 − z2|2,

which yields the desired result. 2

Lemma 14 Suppose F satisfies (A.F1), (A.F2) and
(A.F3). Let ȳ : Z → G be as defined in Lemma 11. Then,
F (ȳ(·), ·) is Gateaux differentiable, with Gateaux deriva-
tive ∂F ((ȳ(z), z); v) = 〈Fz(ȳ(z), z), v〉 for all z, v ∈ Z,
where Fz(ŷ, z) denotes the partial (Fréchet) derivative
of F in z at ŷ ∈ G.

Proof: Let z0, v ∈ Z, |v| = 1, ω ∈ IR, y0 .
= ȳ(z0). Let

ẑ(ω)
.
= z0 +ωv. By (A.F1), given ω ∈ [0, 1], there exists

ỹ ∈ y0, ȳ(ẑ(ω)) such that

F (ȳ(ẑ(ω)), ẑ(ω)) = F (y0, z0)

+ 〈Fy(y0, z0), ȳ(ẑ(ω))− y0〉y
+ 1

2 〈ȳ(ẑ(ω))− y0, Fyy(ỹ, z0)(ȳ(ẑ(ω))− y0)〉y
+ F (ȳ(ẑ(ω)), ẑ(ω))− F (ȳ(ẑ(ω)), z0),

which by (A.F1) and the definition of y0,

= 1
2 〈ȳ(ẑ(ω))− y0, Fyy(ỹ, z0)(ȳ(ẑ(ω))− y0)〉y
+ F (y0, z0) + F (ȳ(ẑ(ω)), ẑ(ω))− F (ȳ(ẑ(ω)), z0),

which, using (A.F1) again, for appropriate choice of z̃ ∈
z0, ẑ(ω),

= F (y0, z0) + 〈Fz(ȳ(ẑ(ω)), z0), ẑ(ω)− z0〉z
+ 1

2 〈ẑ(ω))− z0, Fzz(ȳ(ẑ(ω)), z̃)(ẑ(ω)− z0)〉z
+ 1

2 〈ȳ(ẑ(ω))− y0, Fyy(ỹ, z0)(ȳ(ẑ(ω))− y0)〉y.

Equivalently,

F (ȳ(ẑ(ω)), ẑ(ω))− F (y0, z0)

= 〈Fz(ȳ(ẑ(ω)), z0), ẑ(ω)− z0〉z
+ 1

2 〈ẑ(ω))− z0, Fzz(ȳ(ẑ(ω)), z̃)(ẑ(ω)− z0)〉z
+ 1

2 〈ȳ(ẑ(ω))− y0, Fyy(ỹ, z0)(ȳ(ẑ(ω))− y0)〉y,

which implies∣∣F (ȳ(ẑ(ω)), ẑ(ω))− F (y0, z0)

− 〈Fz(y0, z0), ẑ(ω)− z0〉z
∣∣

≤
∣∣Fz(ȳ(ẑ(ω)), z0)− Fz(y0, z0)

∣∣ |ẑ(ω)− z0|
+ 1

2 |Fzz(ȳ(ẑ(ω)), z̃)| |ẑ(ω)− z0|2

+ 1
2 |Fyy(ỹ, z0)| |ȳ(ẑ(ω))− y0|2. (71)

Employing the Integral Mean Value Theorem (cf., [13]),

one finds that there exists ŷ ∈ ȳ(ẑ(ω)), y0 such that∣∣Fz(ȳ(ẑ(ω)), z0)−Fz(y0, z0)
∣∣≤∣∣Fyz(ŷ, z0)

∣∣|ȳ(ẑ(ω))−y0|.
(72)

Substituting (72) in (71), we have∣∣F (ȳ(ẑ(ω)), ẑ(ω))− F (y0, z0)

− 〈Fz(y0, z0), ẑ(ω)− z0〉z
∣∣

≤
∣∣Fyz(ŷ, z0)

∣∣ |ȳ(ẑ(ω))− y0| |ẑ(ω)− z0|
+ 1

2 |Fzz(ȳ(ẑ(ω)), z̃)| |ẑ(ω)− z0|2

+ 1
2 |Fyy(ỹ, z0)| |ȳ(ẑ(ω))− y0|2,

which by Lemma 13,

≤
[
K̄L|Fyz(ŷ, z0)|+ 1

2 |Fzz(ȳ(ẑ(ω)), z̃)|

+ 1
2K̄

2
L|Fyy(ỹ, z0)|

]
ω2. (73)

We will obtain bounds on the second-derivative terms,
independent of ω ∈ [0, 1]. Consider first, the |Fyy(ỹ, z0)|
term. For each ω ∈ [0, 1], there exists λ ∈ [0, 1] such that

(ỹ, z0) =
(
λy0 + (1− λ)ȳ(z0 + ωv), z0

)
. (74)

Consider

C .
= {(y, z0) ∈ G × Z | ∃λ, ω ∈ [0, 1] s.t.

y = λy0 + (1− λ)ȳ(z0 + ωv)},

and let G : [0, 1]2 → C be given by G(λ, ω)
.
=
(
λy0 +

(1−λ)ȳ(z0 +ωv), z0
)
. Let (λ, ω), (λ̂, ω̂) ∈ [0, 1]2. Then,

|G(λ, ω)−G(λ̂, ω̂)| ≤ |λ− λ̂||y0|+ |λ− λ̂||ȳ(z0 + ωv)|
+ |1− λ̂||ȳ(z0 + ω̂v)− ȳ(z0 + ωv)|,

which, noting |1− λ̂| ≤ 1, and using Lemma 13,

≤
(
2|y0|+ K̄L

)
|λ− λ̂|+ K̄L|ω − ω̂|,

which implies that G is Lipschitz. As [0, 1]2 is compact
and G is Lipschitz, we see that C is compact. Then, by
(A.F1), the restriction of |Fyy(·, ·)| to C is a continuous,
functional on a compact set, and consequently, there
exists Dyy = Dyy(v) <∞ such that

|Fyy(ỹ, z0)| ≤ Dyy ∀ω ∈ [0, 1]. (75)

By a completely analogous proof, there exists Dyz =
Dyz(v) <∞ such that

|Fyz(ŷ, z0)| ≤ Dyz ∀ω ∈ [0, 1]. (76)
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Only |Fzz(ȳ(ẑ(ω)), z̃)| remains. In a similar manner to
above, note that for each ω ∈ [0, 1], there exists λ ∈ [0, 1]
such that

(ȳ(ẑ(ω)), z̃) = (ȳ(z0 + ωv), z0 + (1− λ)ωv).

Letting

Czz
.
=
{

(y, z) ∈ G × Z
∣∣ ∃λ, ω ∈ [0, 1] s.t. y = ȳ(z0 + ωv)

and z = z0 + (1− λ)ωv
}
,

and Ĝ : [0, 1]2 → Czz be given by Ĝ(λ, ω)
.
=
(
ȳ(z0 +

ωv), z0 + (1 − λ)ωv
)
, we find that Ĝ is Lipschitz on a

compact domain, [0, 1]2, and consequently, Czz is com-
pact. Then, again similarly to the above, there exists
Dzz = Dzz(v) <∞ such that

|Fzz(ȳ(ẑ(ω)), z̃)| ≤ Dzz ∀ω ∈ [0, 1]. (77)

By (73)–(77),∣∣F (ȳ(ẑ(ω)), ẑ(ω))− F (y0, z0)

− 〈Fz(y0, z0), ẑ(ω)− z0〉z
∣∣

≤
[
K̄LDyz + 1

2Dzz + 1
2K̄

2
LDyz

]
ω2,

which yields the assertions.

Lemma 15 Suppose F satisfies (A.F1), (A.F2) and
(A.F3). Let ȳ : Z → G be as defined in Lemma
11. Suppose F has bounded second-order differences.
Then, F (ȳ(·), ·) is Fréchet differentiable with derivative
DF (ȳ(z), z) = Fz(ŷ, z) for all z, v ∈ Z, where ŷ = ȳ(z)
and Fz(ŷ, z) denotes the partial (Fréchet) derivative of
F in z.

Proof: Fix z̃ ∈ Z. For z ∈ Z,

|F (ȳ(z), z)− F (ȳ(z̃), z̃)|
≤ |F (ȳ(z), z)− F (ȳ(z̃), z)|+ |F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|
≤ |F (ȳ(z), z)− F (ȳ(z̃), z)− F (ȳ(z), z̃) + F (ȳ(z̃), z̃)|
+ |F (ȳ(z), z̃)− F (ȳ(z̃), z̃)|+|F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|,

and because F has bounded second-order differences,

there exists M1 <∞ such that this is

≤M1

[
|ȳ(z)− ȳ(z̃)|2+ |z − z̃|2

]
+ |F (ȳ(z), z̃)− F (ȳ(z̃), z̃)|+ |F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|,

and by (A.F1) and the choice of ȳ, there exists M2 <∞
such that this is

≤M1

[
|ȳ(z)− ȳ(z̃)|2 + |z − z̃|2

]
+M2

[
|ȳ(z)− ȳ(z̃)|2

]
+ |F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|,

which by Lemma 13,

≤
[
M1(1 + K̄2

L) +M2K̄
2
L

]
|z − z̃|2

+ |F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|.

This implies

|F (ȳ(z), z)− F (ȳ(z̃), z̃)|/|z − z̃|
≤
[
M1(1 + K̄2

L) +M2K̄
2
L

]
|z − z̃|

+ |F (ȳ(z̃), z)− F (ȳ(z̃), z̃)|/|z − z̃|.

Consequently, using (A.F1), the Fréchet derivative of
G(z)

.
= F (ȳ(z), z) exists and has the asserted form.

Lemma 16 Suppose F satisfies (A.F1), (A.F2) and
(A.F3), and has bounded second-order differences. Let
ȳ : Z → G be as defined in Lemma 11. Suppose (y∗, z∗) =
argstat(y,z)∈G×Z F (y, z) (where uniqueness is implicit).

Then, y∗ = ȳ(z∗) and z∗ = argstatz∈Z F (ȳ(z), z).

Proof: By Lemma 1, DF (y, z)
∣∣
(y,z)=(y∗,z∗)

= 0, where

0 denotes the zero element ofL(Y×Z;Y×Z). By (A.F1)
and standard results, this implies

DyF (y, z∗)
∣∣
y=y∗

= 0 and DzF (y∗, z)
∣∣
z=z∗

= 0, (78)

where we continue to use 0 to generically denote the zero
element of the appropriate space, and Dy, Dz denote
partial Fréchet derivatives with respect to the indicated
variables. Next, note that by (A.F1) and the definition
of ȳ,

DyF (y, z)
∣∣
y=ȳ(z)

= 0 ∀ z ∈ Z. (79)

By definition and (79),

F (ȳ(z), z) = min
y∈G

F (y, z) = stat
y∈G

F (y, z). (80)

In particular, ȳ(z∗) = argstaty∈G F (y, z∗). Combining
this with (78), we see

y∗ = ȳ(z∗), (81)

which is the first assertion. Now, by (81) and Lemma 15,
and then applying (78),

DF (ȳ(z), z)
∣∣
z=z∗

= Dz(y
∗, z)

∣∣
z=z∗

= 0. (82)

Then, by (82) and Lemma 1,

z∗ ∈ argstat
z∈Z

F (ȳ(z), z). (83)

Now suppose z† ∈ argstatz∈Z F (ȳ(z), z), which by
Lemma 1, is equivalent to

DF (ȳ(z), z)
∣∣
z=z†

= 0. (84)
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Let y†
.
= ȳ(z†). By (84) and Lemma 11,

DzF (y†, z)
∣∣
z=z†

= 0. (85)

Also, by the definition of y† and (A.F1),

DyF (y, z†)
∣∣
y=y†

= 0. (86)

By (85), (86) and (A.F1), DF (y, z)
∣∣|(y,z)=(y†,z†) =

0, which implies, using Lemma 1, that (y†, z†) ∈
argstat(y,z)∈G×Z F (y, z), which, by the lemma assump-

tions, implies (y†, z†) = (y∗, z∗), and of course, this
implies z† = z∗. Combining this with (83) yields the
desired result. 2

Lemma 17 Under the same conditions as Lemma 16,
one has

stat
(y,z)∈G×Z

F (y, z) = F (y∗, z∗) = stat
z∈Z

F (ȳ(z), z)

= stat
z∈Z

min
y∈G

F (y, z) = stat
z∈Z

stat
y∈G

F (y, z).

Proof: The first equality is simply a restatement of one
of the assumptions. Recalling (80), staty∈G F (y, z) =
miny∈G F (y, z) = F (ȳ(z), z) for all z ∈ Z. Combining
this with the existence implied by the second assertion
of Lemma 16 yields the last two equalities. Also by the
last assertion of Lemma 16, and then the first assertion
of Lemma 16,

stat
z∈Z

F (ȳ(z), z) = F (ȳ(z∗), z∗) = F (y∗, z∗). 2
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