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Abstract

The use of stationary-action formulations for dynamical

systems allows one to generate fundamental solutions for

classes of two-point boundary-value problems (TPBVPs).

One solves for stationary points of the payoff as a function

of inputs, a task which is significantly different from that

in optimal control problems. Both a dynamic programming

principle (DPP) and a Hamilton-Jacobi partial differential

equation (HJ PDE) are obtained for a class of problems

subsuming the stationary-action formulation. Although

convexity (or concavity) of the payoff may be lost as one

propagates forward, stationary points continue to exist, and

one must be able to use the DPP and/or HJ PDE to solve

forward to such time horizons. In linear/quadratic models,

this leads to a requirement for propagation of solutions

of differential Riccati equations past finite escape times.

Such propagation is also required in (nonlinear) n-body

problem formulations where the potential is represented via

semiconvex duality.

1 Introduction

The classical approach to solution of energy-conserving
dynamical systems is integration of Newton’s second
law. An alternative viewpoint is that a system evolves
along a path that makes the action functional station-
ary, i.e., such that the first-order differential around
the path is the zero element. This latter viewpoint ap-
pears particularly useful in some applications in mod-
ern physics, including gravitational systems where rel-
ativistic effects are non-negligible, and systems in the
quantum domain (cf. [6, 7, 8, 13]). Our interests are
more pedestrian; the stationary-action formulation has
recently been found to be quite useful for generation
of fundamental solutions to two-point boundary-value
problems (TPBVPs) for conservative dynamical sys-
tems. For sufficiently short time horizons, stationarity
of the action typically corresponds to minimization of
the action. That is, the stationary point is a global min-
imum of that action (cf., [4, 10, 11]). For longer time
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horizons, the stationary point is more typically a saddle.
Our motivating interest is solution of TPBVPs for

conservative dynamical systems, specifically including
wave equations and n-body problems [4, 10, 11]. By
appending a min-plus delta function terminal cost to
the action functional, we obtain a fundamental solution
object for such TPBVPs. Min-plus convolutions of this
object with functionals associated to specific terminal
conditions yield the solutions of the specific TPBVPs.
As a change in the boundary data only requires convo-
lution with a different functional, our object may best
be termed a fundamental solution for TPBVPs, corre-
sponding to the given time horizon.

As noted above, for sufficiently short time horizons,
one may obtain the stationary action solution by min-
imization of the action functional, in which case it is
obvious that the fundamental solution is derived from
the value function for an optimal control formulation.
However, for longer horizons, we must find the station-
ary point, and this requires a new set of tools. We define
stationarity and value for such problems. Surprisingly,
for a specific class of terminal costs, one may obtain
a dynamic programming principle (DPP) for stationar-
ity, where this is directly analogous to standard DPPs
(for optimization). We also formally write the corre-
sponding Hamilton-Jacobi partial differential equation
(HJ PDE), and then obtain a verification result.

In the mass-spring case, which appears in Section 3
as a motivating example, the stationary-action problem
is linear-quadratic, and the HJ PDE reduces to a
differential Riccati equation (DRE). The wave equation
[3, 4] also yields a DRE, albeit infinite dimensional. The
n-body problem may be reduced to a parameterized set
of time-dependent DREs [10, 11]. We see that in all
cases, solutions of DREs form a critical building block.
Of course, DREs can exhibit finite escape times, and
do so in these cases. In classical optimal control, one is
not interested in propagation of the solution past such
escape times. However, in stationarity problems, these
may correspond to points where one loses convexity
[concavity] of the payoff. Although the minimum
[maximum] may go to −∞ [+∞], the stationary value
may be well-defined and finite past such asymptotes,
and one must propagate the solution beyond them.

Although stationary action is the motivating prob-



lem class, the theory developed below is applicable to
wider classes of problems, where one is seeking a sta-
tionary point. An obvious example is that of certain
differential games. Extensions to stochastic cases ap-
pear possible as well, but are not considered here. This
last extension would be of particular note due to the
applicability to solution of the Maslov dequantization
of the Schrödinger equation [9], which is the second-
order HJ PDE for S̄

.
= −i~ log ψ̄ where ψ̄ satisfies the

Schrödinger equation.
Section 2 contains relevant definitions. Section

3 presents a simple mass-spring TPBVP motivating
example. Section 4 contains the main results – the DPP
and HJ PDE verification theorem. Section 5 reduces
to the linear/quadratic case, and indicates a means for
propagation of DREs past escape times.

2 Stationarity definitions

Recall that we are seeking stationary points of payoffs,
which is unusual in comparison to the standard classes
of problems in optimization. In analogy with the lan-
guage for minimization and maximization, we will re-
fer to the search for stationary points as staticization,
with these points being statica (in analogy with min-
ima/maxima) and a single such point being a staticum
(in analogy with minimum/maximum). Prior to the de-
velopment, we make the following definitions. Suppose
Y is a generic normed vector space with GY ⊆ Y, and
suppose F : GY → IR. We say ȳ ∈ argstat{F (y) | y ∈
GY} if ȳ ∈ GY and either

(2.1) lim sup
y→ȳ,y∈GY\{ȳ}

|F (y)− F (ȳ)|
|y − ȳ|

= 0,

or there exists δ > 0 such that GY ∩Bδ(ȳ) = {ȳ} (where
Bδ(ȳ) denotes the ball of radius δ around ȳ). Further,
we define

stat
y∈GY

F (y)
.
= stat{F (y) | y ∈ GY}

.
=
{
F (ȳ)

∣∣ ȳ ∈ argstat{F (y) | y ∈ GY}
}

(2.2)

if argstat{F (y) | y ∈ GY} 6= ∅. Throughout, we will
abuse notation by writing ȳ = argstat{F (y) | y ∈ GY}
in the event that the argstat is the single point, {ȳ},
and similarly for stat.

In the case where Y is a Hilbert space, and GY ⊆ Y
is an open set, F : GY → IR is Fréchet differentiable at
ȳ ∈ GY with Riesz representation Fy(ȳ) ∈ Y if

(2.3)

lim
v→0, ȳ+v∈GY\{ȳ}

|F (ȳ + v)− F (ȳ)− 〈Fy(ȳ), v〉|
|v|

= 0.

The following is immediate from the above definitions.

Lemma 2.1. Suppose Y is a Hilbert space, with open
set GY ⊆ Y, and ȳ ∈ GY , GY 6= {ȳ}. Then, ȳ ∈
argstat{F (y) | y ∈ GY} if and only if Fy(ȳ) = 0.

3 Motivational example

We examine the classic mass-spring example to provide
motivation. Although the problem is essentially trivial,
it provides a nice means for obtaining a sense of the
stationary action principle as a tool for understanding
system dynamics and TPBVPs. Further, as remarked
above, the stationary action viewpoint is the accepted
viewpoint in modern physics (cf., [6, 7, 8, 13]), and
as such, it will be ultimately necessary for advanced
applications. It also provides exceptional computational
advantages for difficult classes of problems, such as
TPBVPs in the gravitational n-body case [10, 11].

Remark 3.1. Although the mass-spring model has an
analytically solvable form due to the quadratic potential,
this potential is not physically reasonable (the potential
approaches +∞ as |x| → ∞), and induces degeneracies.
Nonetheless, it is useful for building intuition.

Consider the mass-spring problem with mass, m,
and spring-constant, K (typically given as ξ̈ =
−(K/m)ξ). The associated stationary action TPBVP
payoff, J∞ : T̂ × IR × U∞ × IR → IR ∪ {∞} with T̂

.
=

{(s, t) ∈ IR2 | 0 ≤ s ≤ t < ∞} and U∞
.
= Lloc2 (0,∞), is

given by

J∞(s, t, x, u, z) =

∫ t

s

m

2
u2(r)−K

2
ξ2(r) dr

+ψ∞(ξ(t), z),

where ξ̇(r) = u(r), r ∈ (s, t), ξ(s) = x,

ψ∞(x, z)
.
=

{
0 if x = z,

+∞ otherwise.
(3.4)

Solution of this stationary-action problem will yield
solution of the TPBVP given by dynamics mξ̈(r) =
−∇V (ξ(r)) with initial position x ∈ IRn and terminal
position z ∈ IRn for the given duration t and given
potential function [10, 11], which in this example is
given by V (x) = (K/2)x2.

The stationary action solution, u∗, is such that
J∞u (s, t, x, u∗, z) = 0, where J∞u denotes the Fréchet
derivative of J∞ with respect to u as per (2.3). Here,
we take K = m = 1. In [10, 11], one notes that if
t−s < π/2, then J∞ is strictly convex in u, and defining
W∞(t− s, x, z) .

= infu∈U∞ J
∞(s, t, x, u, z), one finds

(3.5)
W∞(t− s, x, z) = 1

2

[
P (t)x2 + 2Q(t)xz +R(t)z2

]
,



where, formally, P (s) = R(s) = −Q(s) = +∞, Ṗ =
−1− P 2, Q̇ = −PQ, and Ṙ = −Q2. Letting

(3.6) ψc(x, z)
.
=
c

2
|x− z|2

for c ∈ (0,∞), and noting that ψc → ψ∞ as c → ∞,
one may show that the solution does, in fact, have this
form, and further that the solution is given by [10, 11]
(3.7)

P (t) = R(t) = cot(t− s), Q(t) = −1/ sin(t− s),

which is guaranteed by the aforementioned convexity to
be valid on at least t − s ∈ (0, π/2). From here, one
may obtain the control and state solving the TPBVP,
which are given, in the case s = 0 as u∗(r) = P (t −
r)ξ∗(r) + Q(t − r)z = cos(t−r)

sin(t−r) ξ
∗(r) − 1

sin(t−r)z, and

ξ∗(r) = x cos(r)+ z−x cos(t)
sin(t) sin(r). However, at t = π/2,

one loses convexity of J∞ in u, and one must seek a
staticum rather than a minimum.

One method for extending past π/2 to the
stationary-over-u case is to break the interval into mul-
tiple segments of duration less than π/2, and then con-
catenate these. Suppose we wish to find the solution
to TPBVPs for this mass-spring example with duration
3π/4. As an illustration of this approach, let us break
the interval up into two halves, where the payoff is then
convex on each half-interval. Suppose we introduce an
intermediate point, ζ ∈ IR. Then, the stationary action
problem with s = 0 is given by

W∞(3π/4, x, z)
.
= stat
u∈L2(0, 3π4 )

J∞(0, 3π/4, x, u, z)

= stat
ζ∈IR

{
stat

u∈L2(0, 3π8 )
J∞(0, 3π/8, x, u, ζ)

+ stat
u∈L2( 3π

8 ,
3π
4 )
J∞(3π/8, 3π/4, ζ, u, z)

}
= stat
ζ∈IR

{
stat

u∈L2(0, 3π8 )
J∞(0, 3π/8, x, u, ζ)

+ stat
u∈L2(0, 3π8 )

J∞(0, 3π/8, ζ, u, z)
}
,

where the second equality follows from time-invariance.
Next, noting the convexity of each subsegment,

W∞(3π/4, x, z)= stat
ζ∈IR

{
W∞(3π/8, x, ζ)

+W∞(3π/8, ζ, z)
}

= 1
2 stat
ζ∈IR

{
P (3π/8)x2 + 2Q(3π/8)xζ +R(3π/8)ζ2

+P (3π/8)ζ2 + 2Q(3π/8)ζz +R(3π/8)z2
}

and setting the derivative with respect to ζ equal to
zero, we find this is

= 1
2

{
[P (3π/8)−Q2(3π/8)/(P (3π/8) +R(3π/8))]

·(x2 + z2)

−2Q2(3π/8)/(P (3π/8) +R(3π/8))xz
}

which by (3.7) and trigonometric identities,
= 1

2

{
cot(3π/4)(x2 + z2)− (2/ sin(3π/4))xz

}
= 1

2

{
P (3π/4)x2 + 2Q(3π/4)xz +R(3π/4)z2

}
.

That is, surprisingly, one finds that the solution is iden-
tical to that which one would obtain if one had näıvely
propagated the analytical solution of the DRE forward.
In fact, introducing additional intermediary points for
increasingly long time durations, one continues to find
that the solution is identical to that found by näıve ap-
plication of the above analytical solution (3.5),(3.7) for
arbitrarily long periods. We will see that this is not a
coincidence, and solution of stationary action problems
may be obtained in the linear-quadratic case by proper
propagation of the DRE past escape times.

4 Dynamic programming for staticization

In this section, we will obtain a dynamic programming
principle as well as a verification result for the appro-
priate Hamilton-Jacobi PDE.

Remark 4.1. For clarity, we provide several defini-
tions. Let Y,Z be Hilbert spaces, and let F : Y × Z →
IR. We say F is strictly uniformly convex on Y with
respect to z ∈ Z, if there exists CF > 0 such that for all
y, v ∈ Y, z ∈ Z, |F (y− v, z)− 2F (y, z) +F (y+ v, z)| ≥
CF |v|2. We say F is coercive on Y if given R̄,M <∞,
there exists R̂ <∞ such that F (y, z) ≥ F (0, z) +M for
all |y| ≥ R̂, |z| ≤ R̄. We say F has bounded second-
order differences, if there exists MF <∞ such that

|F (y + δy1 + δy2 , z + δz1 + δz2)− F (y + δy1 , z + δz1)

−F (y + δy2 , z + δz2) + F (y, z)| ≤MF

[
|δ1|2 + |δ2|2

]
for all z, δz1 , δ

z
2 ∈ Z, and all y, δy1 , δ

y
2 ∈ Y where δk

.
=

(δyk , δ
z
k) for k = 1, 2.

We assume time-invariant dynamics given as

ξ̇(r) = f(ξ(r), u(r)), ξ(s) = x ∈ IRn,

where f ∈ C2(IRn× IRm; IRn) is globally Lipschitz. For
(s, t) ∈ T̂ , let Us,t

.
= L2([s, t); IRm). The inclusion of the

left endpoint in the domain of elements of Us,t, albeit
a set of measure zero, will be helpful in definitions and
discussions below. Then, for x, z ∈ IRn and u ∈ Us,t, we

consider payoff J : T̂ × IRn × Us,t × IRn → IR given by
(4.8)

J(s, t, x, u, z)
.
=

∫ t

s

L(ξ(r), u(r)) dr + ψ(ξ(t), z),



where and L ∈ C2(IRn × IRm), ψ ∈ C2(IRn × IRn) with
ψ convex and coercive in x. We also allow ψ = ψ∞

given by (3.4), generalized to domain IRn. Define

(4.9) W (t− s, x, z) = stat
u∈Us,t

J(s, t, x, u, z).

Conditions guaranteeing the existence of W for specific
classes of problems, particularly n-body problems, are
given in [10, 11]. (These conditions were not satisfied
by the mass-spring example.) The next step will be to
obtain the DPP for W .

We make the following assumptions.

For any (s, t) ∈ T̂ and x, z ∈ IRn, there
exists a unique staticum of J(s, t, x, ·, z),
u∗ = u∗(s, t, x, z), that is, {u∗} =
argstatu∈Us,t J(s, t, x, u, z).

(A.1)

Given x, z ∈ IRn, there exists δc > 0 such that
if 0 ≤ s ≤ t < s + δc, then for any ζ ∈ IRn,
J(s, t, ζ, ·, z) is strictly uniformly convex on
Us,t with respect to ζ ∈ IRn and coercive on
Us,t.

(A.2)

Remark 4.2. We note that Assumption (A.2) is moti-
vated by the fact that for the standard stationary-action
problems (cf., [10, 11] and the references therein), the
action is strictly uniformly convex and coercive over suf-
ficiently short time-horizons. Moreover, the stationary-
action model is

ξ̇(r) = u(r), ξ(s) = x ∈ IRn,

ψ(x, z) = ψ∞(x, z) and L(x, v) = T (v)− V (x),

where T (u(r)) = T (ξ̇(r)) denotes the kinetic energy at
time r ∈ [s, t], and V (ξ(r)) denotes the potential energy.

Let (s, t) ∈ T̂ and x, z ∈ IRn. For u0 ∈ U0,s and
u1 ∈ Us,t, let

Jd(s, t, x, u
0, u1, z)

.
=

∫ s

0

L(ξ0(r), u0(r)) dr

+

∫ t

s

L(ξ1(r), u1(r)) dr + ψ(ξ1(t), z),(4.10)

where ξ̇0(r) = u0(r) on (0, s) with ξ0(0) = x and
ξ̇1(r) = u1(r) on (s, t) with ξ1(s) = ξ0(s). Define the
concatenation C : U0,s × Us,t → U0,t by

[C(u0, u1)](r)
.
=

{
u0(r) if r ∈ [0, s),

u1(r) if r ∈ [s, t),

where we suppress the detail that these are equivalence
classes of functions equal almost everywhere. One

immediately sees that, letting u0 ∈ U0,s, u
1 ∈ Us,t and

ū
.
= C(u0, u1), one has ū ∈ U0,t and

(4.11) J(0, t, x, ū, z) = Jd(s, t, x, u
0, u1, z).

Analogously, letting ū ∈ U0,t, u
0(r) = ū(r) for r ∈ [0, s)

and u1(r) = ū(r) for r ∈ [s, t), one again has (4.11).
We take the norm on U0,s × Us,t to be |(u0, u1)| =
{|u0|2 + |u1|2}1/2, where the norms on the right-hand
side are the respective L2 norms on [0, s] and [s, t]. The
following is easily obtained from the above.

Lemma 4.1. For (s, t) ∈ T̂ , C : U0,s × Us,t → U0,t is
a linear bijection. Further, the induced operator norm
satisfies |C| = |C−1| = 1.

Lemma 4.2. Let (s, t) ∈ T̂ and x, z ∈ IRn. Then,

W (t, x, z) = stat
ū∈U0,t

J(0, t, x, ū, z)

= stat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z).

Proof. The left-hand equality is simply (4.9) with s =
0, where existence and uniqueness are guaranteed by
Assumption (A.1). In particular,

(4.12) W (t, x, z) = J(0, t, x, ū∗, z),

where ū∗ = argstatū∈U0,t J(0, t, x, ū, z). Let (s, t) ∈ T̂
and x, z ∈ IRn. By (2.1),

(4.13) 0 = lim
ū→ū∗

|J(0, t, x, ū, z)− J(0, t, x, ū∗, z)|
|ū− ū∗|

.

For any ū ∈ U0,t, let (u0, u1) = C−1(ū), and in
particular, let (u0,∗, u1,∗) = C−1(ū∗). By (4.11), (4.13)
and Lemma 4.1,

0 = lim
(u0,u1)→(u0,∗,u1,∗)

|Jd(s, t, x, u0, u1, z)−Jd(s, t, x, u0,∗, u1,∗, z)|
|(u0, u1)− (u0,∗, u1,∗)|

,

which implies
(4.14)

(u0,∗, u1,∗) ∈ argstat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z).

Similarly, (û0, û1) ∈ argstat Jd(s, t, x, u
0, u1, z) implies

that C(û0, û1) ∈ argstatū∈U0,t J(0, t, x, ū, z) = ū∗. Con-

sequently, (u0,∗, u1,∗) is the unique staticizer, and

Jd(s, t, x, u
0,∗, u1,∗, z) = stat

(u0,u1)∈U0,s×Us,t
Jd(s, t, x, u

0, u1, z).

Also, by (4.11), Jd(s, t, x, u
0,∗, u1,∗, z) = J(0, t, x, ū∗, z).

Combining these last two equalities with (4.12) com-
pletes the proof.



The DPP is obtained as follows:

Theorem 4.1. Let (s, t) ∈ T̂ , t − s < δc (where δc is
given in Assumption (A.2) ) and x, z ∈ IRn. Suppose
that for any ζ ∈ IRn, J(0, t − s, ζ, ·, z) ∈ C2(U0,t−s).
Suppose J(0, t, x, C(·, ·), z) ∈ C2(U0,s×Us,t), and that it
has bounded second-order differences. Then,

W (t, x, z) = stat
u0∈U0,s

{ ∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ξ0(s), z)

}
,

where ξ̇0(r) = f(ξ0(r), u0(r)) for r ∈ (0, s), with ξ0(0) =
x.

Proof. Let (s, t) ∈ T̂ and x, z ∈ IRn. By Lemma 4.2,

W (t, x, z) = stat
(u0,u1)∈U0,s×Us,t

Jd(s, t, x, u
0, u1, z),

which by (4.10),

= stat
(u0,u1)∈U0,s×Us,t

{∫ s

0

L(ξ0(r), u0(r)) dr

+

∫ t

s

L(ξ1(r), u1(r)) dr + ψ(ξ1(t), z)

}
= stat

(u0,u1)∈U0,s×Us,t

{∫ s

0

L(ξ0(r), u0(r)) dr

+J(s, t, ξ0(s), u1, z)

}
= stat

(u0,û1)∈U0,s×U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+J(0, t− s, ξ0(s), û1, z)

}
.(4.15)

With some technical work regarding nested statica and
minima (where the details are not included for reasons
of space), one can show

stat
(u0,û1)∈U0,s×U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+J(0, t− s, ξ0(s), û1, z)

}
= stat
u0∈U0,s

min
û1∈U0,t−s

{∫ s

0

L(ξ0(r), u0(r)) dr

+J(0, t− s, ξ0(s), û1, z)

}
= stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+ min
û1∈U0,t−s

J(0, t− s, ξ0(s), û1, z)

}
,

which by the assumed differentiability of J(0, t −
s, ξ0(s), ·, z) and the definition of W ,

= stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr +W (t− s, ξ0(s), z)

}
.

Combining this with (4.15) yields the desired result.

In addition to the above DPP, we now obtain a
verification theorem for the associated HJ PDE. The
HJ PDE problem, for each z ∈ IRn, is

0 = stat
v∈IRm

{
L(x, v)−Wr(r, x, z)(4.16)

+Wx(r, x, z) ·f(x, v)
}
,

(r, x) ∈ (0, t)×IRn,
W (0, x, z) = ψ(x, z), x ∈ IRn.(4.17)

Theorem 4.2. Let t ∈ (0,∞). Suppose W ∈
C3((0, t)×IR2n)∩C([0, t]×IR2n) satisfies (4.16), (4.17).
Suppose there exist KL,Kf <∞ such that

|Lxx(x, v)|, |Lxv(x, v)|, |Lvv(x, v)| ≤ KL,

|fx(x, v)|, |fv(x, v)| ≤ Kf ,

|fxx(x, v)|, |fxv(x, v)|, |fvv(x, v)| ≤ Kf ,

for all (x, v) ∈ IRn×IRm. Suppose there exists ũ : [0, t]×
IRn → IRn satisfying ũ(r, x) ∈ argstatv∈IRm [W x(t −
r, x, z) · f(x, v) + L(x, v)], such that ũ is bounded on
bounded sets, and such that there exists K̃f < ∞
such that |f(x, ũ(r, x)) − f(y, ũ(r, y))| ≤ K̃f |x − y| for
all x, y ∈ IRn and r ∈ [0, t]. Then, W (t, x, z) =
W (t, x, z) = statu∈U0.t J(0, t, x, u, z).

Proof. Due to space limitations, only a partial proof is
included. Let t, x, z,W , ũ be as assumed. By standard
results, there exists unique absolutely continuous ξ̃ :

[0, t] → IRn satisfying
˙̃
ξ(r) = f(ξ̃(r), ũ(r, ξ̃(r))), ξ̃(0) =

x such that ũ(·, ξ̃(·)) ∈ U0,t. By the Fundamental
Theorem of Calculus,

W (t, x, z) = W (0, ξ̃(t), z) +

∫ t

0

W r(r, ξ̃(t− r), z)

−W x(r, ξ̃(t− r), z) · f(ũ(t− r, ξ̃(t− r))) dr,
which by (4.16),(4.17) and the choice of ũ,

= ψ(ξ̃(t), z) +

∫ t

0

L(ξ̃(t− r), ũ(t− r, ξ̃(t− r))) dr

=

∫ t

0

L(ξ̃(r), ũ(r, ξ̃(r))) dr + ψ(ξ̃(t), z).(4.18)

Let u∗(r)
.
= ũ(r, ξ̃(r)), ξ∗(r) = ξ̃(r) for all r ∈ [0, t].

Then, (4.18) may be rewritten as

W (t, x, z) =

∫ t

0

L(ξ∗(r), u∗(r)) dr + ψ(ξ∗(t), z)

= J(0, t, x, u∗, z).(4.19)



Now we must demonstrate that u∗ is the argstat of
J(0, t, x, ·, z). Let û ∈ U0,t, δ

.
= û − u∗ ∈ L2((0, t); IRn)

with |δ| ≤ 1, and let ξ̂ be the corresponding trajectory

(i.e., ξ̂(r) = x +
∫ r

0
f(ξ̂(r), û(r)) dr). By (4.19) and the

Fundamental Theorem of Calculus again,

J(0, t, x, u∗, z) = W (t, x, z)

= W (0, ξ̂(t), z) + [W (t, x, z)−W (0, ξ̂(t), z)]

= W (0, ξ̂(t), z) +

∫ t

0

W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r)) dr,
which by (4.16),(4.17) (implying that the last term in
brackets below is zero),

= ψ(ξ̂(t), z) +

∫ t

0

L(ξ̂(t− r), û(t− r)) dr

+

∫ t

0

[
− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)
−W x(r, ξ∗(t− r), z) · f(ξ∗(t− r), u∗(t− r))

]
dr,

and noting that the first and second terms comprise the
payoff for û,

= J(0, t, x, û, z)

+

∫ t

0

[
− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)
−W x(r, ξ∗(t− r), z) · f(ξ∗(t− r), u∗(t− r))

]
dr.

That is,

|J(0, t, x, û, z)− J(0, t, x, u∗, z)|(4.20)

≤
∫ t

0

∣∣∣[− L(ξ̂(t− r), û(t− r)) +W r(r, ξ̂(t− r), z)

−W x(r, ξ̂(t− r), z) · f(ξ̂(t− r), û(t− r))
]

−
[
− L(ξ∗(t− r), u∗(t− r)) +W r(r, ξ

∗(t− r), z)

−W x(r, ξ∗(t− r, z)) · f(ξ∗(t− r), u∗(t− r))
]∣∣∣ dr.

We must show that this is bounded by C̄|δ|2 for
some C̄ = C̄(t, x, z) < ∞. This requires a significant
technical argument; the details are not included. Recall-
ing (2.1), we see that this implies that u∗ is the argstat
of J(0, t, x, ·, z).

5 Linear-quadratic example

We consider the linear-quadratic problem given by

L(x, v) = 1
2v
′Dv − 1

2x
′Bx, f(x, v) = v,(5.21)

ψ(x, z) = ψc(x, z),(5.22)

for all x, v, z ∈ IRn, where D � dI (where we write
A � B if A−B is positive definite), d > 0, B symmetric,
and c ∈ (0,∞). We look for W of the form

(5.23) W (t, x, z) = 1
2

[
x′P (t)x+ 2x′Q(t)z + z′R(t)z

]
.

With the above quadratic cost and given dynamics, the
HJ PDE (4.16) takes the form

0 = stat
v∈IRn

[
1
2v
′Dv − 1

2x
′Bx−W r(r, x, z)

+W x(r, x, z) · v
]

= min
v∈IRn

[
1
2v
′Dv − 1

2x
′Bx−W r(r, x, z)

+W x(r, x, z) · v
]

(5.24)

= − 1
2x
′Bx−W r(r, x, z)

− 1
2W

′
x(r, x, z)D−1W x(r, x, z)

]
.(5.25)

Remark 5.1. That (5.24) is a minimum, in spite of
the fact that, for sufficiently long duration problems,
the value is obtained as a staticum, may appear at first
glance to be contradictory. The consistent minimum in
the HJ PDE is due to the infinitesimal limit implicit
there. If one examines the DPP (Theorem 4.1), we see
that there are two terms inside the outer staticization,
where for sufficiently short durations, t − s, the payoff
underlying the second term is convex with respect to the
input in Us,t. It is also worth noting that at the outset
of the proof of the DPP, one is already working with a
value, W , which is defined as a staticum rather than a
minimum.

Substituting form (5.23) in (5.25), one obtains

0 = − 1
2x
′Bx− 1

2

[
x′Ṗ (t)x+ 2x′Q̇(t)z + z′Ṙ(t)z

]
− 1

2 (P (t)x+Q(t)z)′D−1(P (t)x+Q(t)z).

Equating like terms yields

Ṗ (t) = −B − P (t)D−1P (t),(5.26)

Q̇(t) = −P (t)D−1Q(t),(5.27)

Ṙ(t) = −Q′(t)D−1Q(t),(5.28)

and the initial condition (i.e., (5.22), (4.17) and (3.6))
imply

P (0) = R(0) = cI = −Q(0).(5.29)

Note that if P,Q,R are well-defined on (0, t), then the
optimal control is given by u∗(r) = P (t−r)x+Q(t−r)z
for r ∈ (0, t), and one has u∗ ∈ U0,t. Further, one can
verify that the assumptions of verification Theorem 4.2
are valid on this interval. Consequently, W is the value
function on this interval.

We are now faced with the prospect that P , Q and
R may exhibit finite escape times, while there may exist



an argstat remaining finite (a.e.) indefinitely. In fact,
one finds that W continues to have form (5.23) past
such escape times, and one must obtain the means to
correctly propagate the solution of (5.26)–(5.28) past
such times. The means for this was indicated in the
specific mass-spring example above, and we now proceed
to obtain this in a more general context. There are
two ways to proceed past such escape times: via the
staticization DPP and through what will be termed
static-duality. These two approaches are discussed
below.

5.1 DPP-based propagation Suppose we have
successfully propagated forward to time s ∈ (0,∞), and
wish to propagate to t > s, where t − s < δc (defined
in (A.2)), and one might have an escape in (s, t). We
will use the staticization DPP (i.e., Theorem 4.1) to
propagate from s up to t. For y ∈ IRn, define

(5.30) Uy0,s
.
=
{
u ∈ U0,s

∣∣∣ ∫ s

0

u(r) dr = y
}
.

We need to verify that the conditions of Theorem 4.1
hold for sufficiently small δc > 0 (see [10, 11] for similar
computations). We have:

Lemma 5.1. Suppose δc <

√
2d/max{1, λ̂} where λ̂ is

the maximal eigenvalue of B in (5.21). Let τ ∈ (0, δc)
and ζ, z ∈ IRn. Let J be given by (4.8), where L, f
are given by (5.21). J(0, τ, ζ, ·, z) is a convex quadratic
function on U0,τ .

Proof. We prove only the convexity. Let u, δ ∈ U0,τ ,
u+ .

= u + δ, u−
.
= u − δ; ξ(0) = ξ+(0) = ξ−(0) = ζ;

ξ̇(r) = u(r), ξ̇+(r) = u+(r), ξ̇−(r) = u−(r) on (0, τ).
One easily sees that

J(0, τ, ζ, u+, z)− 2J(0, τ, ζ, u, z) + J(0, τ, ζ, u−, z)

= 1
2

∫ τ

0

δ(r)′Dδ(r)−
(∫ r

0
δ(ρ) dρ

)′
B
(∫ r

0
δ(ρ) dρ

)
dr

+
c

2

∣∣∣ ∫ τ

0

δ(r) dr
∣∣∣2

≥ d

2
|δ|2L2(0,τ) −

λ̂

2

∫ τ

0

∣∣∫ r
0
δ(ρ) dρ

∣∣2 dr
≥ d

2
|δ|2L2(0,τ) −

λ̂

2

∫ τ

0

r

∫ r

0

|δ(ρ)|2 dρ dr

≥
[
d

2
− λ̂τ2

4

]
|δ|2L2(0,τ).

The assumptions of bounded second-order differ-
ences and C2 behavior are not difficult to verify, and
we do not include verifications of these. Unique-
ness assumption (A.1) does not always hold for purely

quadratic problems, and we simply assume it here. (One
may note the nonuniqueness of trajectories for the scalar
mass-spring system when x = z = 0 and the duration is
a half-period, as an example.) Applying Theorem 4.1,
and recalling notation (5.30),

W (t, x, z) = stat
u0∈U0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ξ0(s), z)
}

= stat
ζ∈IRn

stat
u0∈Uζ−x0,s

{∫ s

0

L(ξ0(r), u0(r)) dr

+W (t− s, ζ, z)
}

= stat
ζ∈IRn

{
stat

u0∈Uζ−x0,s

[ ∫ s

0

L(ξ0(r), u0(r)) dr

+ ψ∞(ξ0(s), ζ)
]

+W (t− s, ζ, z)
}

= stat
ζ∈IRn

{
W (s, x, ζ) +W (t− s, ζ, z)

}
.(5.31)

As we have already propagated forward to s, we have

(5.32) W (s, x, ζ) = 1
2

[
x′P (s)x+ 2x′Q(s)ζ + ζ ′R(s)ζ

]
.

Further, as t − s < δc, we have strict convexity on the
t− s duration segment, and consequently we have

|W (t− s, ζ, z) = 1
2

[
ζ ′P (t− s)ζ + 2ζ ′Q(t− s)z
+ z′R(t− s)z

]
.(5.33)

Combining (5.31)–(5.33), one finds staticizing point
ζ∗ = −[R(s) + P (t − s)]−1[Q′(s)x + Q(t − s)z], and
consequently,
(5.34)
W (t, x, z) = 1

2

[
x′P (t)x+ x′Q(t)z + z′Q(t)x+ z′R(t)z

]
,

where P (t), Q(t), R(t) are given by

P (t)=P (s)−Q(s)[R(s) + P (t− s)]−1Q′(s),(5.35)

Q(t)=Q(s)[R(s) + P (t− s)]−1Q(t− s),(5.36)

R(t)=R(t− s)(5.37)

−Q′(t− s)[R(s) + P (t− s)]−1Q(t− s).

That is, (5.35)–(5.37) allows us to propagate past the
finite escape time occurring in interval (s, t). We remark
that forward propagation by repeated application of
updates similar to (5.35)–(5.37) for general DREs is
discussed in [12] for the finite-dimensional case, and in
[4, 5] for the infinite-dimensional case.

5.2 Static duality Another means for propagation
past escape times is through what will be termed static-
duality and stat-quad duality. At points in time where



the DRE (5.26)–(5.28) solutions escape, the stat-quad
dual DRE solutions are well-behaved and vice-versa.
Associated to solutions of the DREs at each moment
in time is the above quadratic functional, W (t, x, z) =
1
2 [x′P (t)x+ 2x′Q(t)z + z′R(t)z], and the coefficients of
the stat-quad dual of W over x form the solution to the
stat-quad dual DREs. Here, we briefly describe static
duality, and indicate the stat-quad dual DREs.

Theorem 5.1. Let A,B ⊆ IRn be open. Suppose φ ∈
C1(A; IR) and [∇φ]−1 ∈ C1(B;A). Then,

φ(u) = stat
v∈B

[a(v) + v′u] ∀u ∈ A,

where

a(v) = stat
u∈A

[φ(u)− v′u] ∀ v ∈ B.

We will refer to a as the static dual of φ. As an
example, let A = B = IRn \ {0} and φ(u) = 1/|u|,
where |u| denotes the Euclidean norm of u. Then, ∇φ =
−u/|u|3, [∇φ]−1(v) = −v/(|v|3/2) and a(v) = 2|v|1/2.

Let S 6=0
n be the space of real, symmetric, nonsin-

gular n × n matrices. In analogy to the semiconvex
[semiconcave] generalization of convex [concave] duality,
static duality may be generalized to stat-quad duality.
In particular, we have the following.

Theorem 5.2. Let A, B̂ ⊆ IRn be open. Let C ∈ S 6=0
n .

Suppose φ ∈ C1(A; IR). Letting η(u)
.
= ∇φ(u)−Cu for

all u ∈ A, suppose η−1 ∈ C1(B̂;A). Then,

φ(u) = stat
v∈B

[
a(v) + 1

2 (v − u)′C(v − u)
]
∀u ∈ A,

where

a(v) = stat
u∈A

[
φ(u)− 1

2 (v − u)′C(v − u)
]
∀ v ∈ B,

where B .
= {v ∈ IRn | − Cv ∈ B̂}.

We will refer to a as the stat-quad dual of φ (with
respect to duality matrix, C). As an example, let
P,C ∈ S 6=0

n , and suppose P − C is nonsingular. Let
A = B = IRn, and let φ ∈ C1(IRn) be given by
φ(u) = 1

2u
′Pu. Then, φ has the stat-dual (with respect

to C) given by

(5.38) a(v) = 1
2v
′C(C−P )−1Pv = 1

2v
′P (C−P )−1Cv.

With some work, one can show that the DREs satis-
fied by the stat-quad dual coefficients corresponding to
P,Q,R (satisfying (5.26)–(5.28)) with respect to duality
matrix C, say α, β, γ, are given by

α̇ = −α(D−1 + C−1BC−1)α− αC−1B −BC−1α

−B,
β̇ = −α(D−1 + C−1BC−1)β −BC−1β,

γ̇ = −β′(D−1 + C−1BC−1)β,

where, at any time t such that both are finite, one
can transform between the original and stat-quad dual
coefficients through

α(t) =−C − C(P (t)− C)−1C =−C(P (t)− C)−1P (t),

β(t) = −C(P (t)− C)−1Q(t),

γ(t) = R(t)−Q′(t)(P (t)− C)−1Q(t).
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