
Static Duality and a Stationary-Action Application ∗

William M. McEneaney † Peter M. Dower ‡

Abstract

Conservative dynamical systems propagate as stationary points of the action func-
tional. Using this representation, it has previously been demonstrated that one may
obtain fundamental solutions for two-point boundary value problems for some classes of
conservative systems via solution of an associated dynamic program. Further, such a fun-
damental solution may be represented as a set of solutions of differential Riccati equations
(DREs), where the solutions may need to be propagated past escape times. Notions of
“static duality” and “stat-quad duality” are developed, where the relationship between
the two is loosely analogous to that between convex and semiconvex duality. Static du-
ality is useful for smooth functionals where one may not be guaranteed of convexity or
concavity. Some simple properties of this duality are examined, particularly commutativ-
ity. Application to stationary action is considered, which leads to propagation of DREs
past escape times via propagation of stat-quad dual DREs.

Key words. dynamic programming, stationary action, convex duality, semiconvexity,
staticization, two-point boundary value problem, optimal control.

1 Introduction

The classical approach to solution of energy-conserving dynamical systems is integration
of Newton’s second law. An alternative postulate is that a system evolves along a path
that makes the action functional stationary, i.e., such that the first-order differential around
the path is the zero element. This latter viewpoint appears particularly useful in some
applications in modern physics, including systems where relativistic effects are non-negligible
and systems in the quantum domain (cf. [7, 8, 10, 23, 26]). The stationary-action formulation
has also recently been found to be quite useful for generation of fundamental solutions to
two-point boundary-value problems (TPBVPs) for conservative dynamical systems (cf. [3, 4,
17, 18, 20]).

To give a sense of this latter application domain, consider a finite-dimensional action-
functional formulation of such a TPBVP. Let the path of the conservative system be denoted
by ξr for r ∈ [0, t] with ξ0 = x̄, in which case the action functional, with an appended terminal
cost, may take the form

J(x̄, t, u)
.
=

∫ t

0
T (ur)− V (ξr) dr + ψ(ξt), (1)
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where ξ̇ = u, u ∈ U .
= L2(0, t), T (·) denotes the kinetic energy associated to the momentum

(specifically taken to be T (v)
.
= 1

2v
TMv throughout, with M positive-definite and symmet-

ric), and V (·) denotes a potential energy field. If, for example, one takes ψ(x)
.
= −v̄TMx, a

stationary-action path satisfies the TPBVP with ξ0 = x̄ and ξ̇t = v̄; if one takes ψ to be a
min-plus delta function centered at z (see Section 5.1), then a stationary-action path satisfies
the TPBVP with ξ0 = x̄ and ξt = z, cf. [4]. In the early work of Hamilton, it was formulated
as the least-action principle [11], which states that a conservative dynamical system follows
the trajectory that minimizes the action functional. However, this is typically only the case
for relatively short-duration cases, cf. [10] and the references therein. In such short-duration
cases, optimization methods and semiconvex duality are quite useful [3, 4, 20, 21]. However,
in order to extend to longer-duration problems, it becomes necessary to apply concepts of
stationarity [17, 19].

It is worth noting that if one defines statx∈X φ(x) to be the critical value of φ (defined
rigorously in Section 2), then a gravitational potential given as V (x) = −µ/|x| for x 6= 0

and constant µ > 0, has the representation V (x) = −(3
2)3/2µ statα>0{α[1 − α2|x|2

2 ]}, where
we note that the argument of the stat operator is polynomial. Although stationarity-based
representations for spherical-body gravitational potentials are inside the integral in (1), they
may be moved outside through the introduction of α-valued processes, cf. [12, 20]. In
particular, not only does one seek the stationary path for action J , but the action functional
itself can be given as a stationary value of an integral of a polynomial, leading to an iterated-
stat problem formulation for such TPBVPs. This may be exploited in the solution of TPBVPs
in gravitational systems, cf. [12, 17, 20].

It has also been demonstrated that this stationary-action approach may be applied to
TPBVPs for infinite-dimensional conservative systems described by classes of lossless wave
equations, see for example [3, 4]. There, stat is used in the construction of fundamental
solution groups for these wave equations by appealing to stationarity of action on longer
horizons.

Lastly, it has recently been demonstrated that stationarity may be employed to obtain
a Feynman-Kac type of representation for solutions of the Schrödinger initial value problem
(IVP) for certain classes of initial conditions and potentials [16, 18]. As with the conservative-
system cases above, these representations are valid for indefinitely long duration problems,
whereas with only the minimization operation, such representations are valid only on time
intervals such that the action remains convex, which is always a bounded duration and
potentially zero.

Important to this stationary-action approach for solution of conservative-system TPB-
VPs and Schrödinger IVPs is the ability to propagate the stationary-action value function
forward in time for indefinitely long durations. Further, for the harmonic oscillator, the
quantum harmonic oscillator, the wave equation and the above stat-based representations for
the gravitational and Coulomb potentials, propagation forward in the case of linear-quadratic
action functionals is a key tool. This is the underlying motivation for the effort at hand.

Convex duality and semiconvex duality have proven to be quite useful in solution of
optimization problems. In addressing stationary-action problems, we have found a need for
what will be termed static duality in this context, and which is obtained via the Legendre
transform. The transform will be specifically applied in the case where the functionals are C1

but not necessarily convex, and this case has been well-discussed in [6], which also considered
similar issues of stationarity. In particular, we will find a minor generalization of this that is
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analogous to the generalization of convex duality to semiconvex duality (cf. [9, 22]), where
this generalization will be referred to as static-quadratic, or more compactly, “stat-quad”
duality. In a certain class of smooth cases, static duality generalizes both convex and concave
duality. However, as currently conceived, static duality is not applicable to general nonsmooth
examples. Nonetheless, it appears to be a useful aid in solution of some stationary-action
problems, specifically the TPBVPs indicated above.

2 Stationarity definitions

As noted above, the motivation for this effort is the computation and propagation of station-
ary points of payoff functionals, which is unusual in comparison to the standard classes of
problems in optimization (although one should note for example, [6, 24]). In analogy with
the language for minimization and maximization, we will refer to the search for stationary
points as “staticization”, with these points being statica, in analogy with minima/maxima,
and a single such point being a staticum in analogy with minimum/maximum. One might
note that here that the term staticization is being derived from a Latin root, staticus (pre-
sumably originating from the Greek, statikós), in analogy with the Latin root, maximus, of
“maximization”. We note that Ekeland [6] employed the term “extremization” for what is
essentially the same notion that is being referred to here as staticization. We make the fol-
lowing definitions. Suppose U is a normed vector space with G ⊆ U , and suppose F : G → IR.
We say v̄ ∈ argstat{F (v) | v ∈ G} if v̄ ∈ G and either

lim sup
v→v̄,v∈G\{v̄}

|F (v)− F (v̄)|
|v − v̄|

= 0, (2)

or there exists δ > 0 such that G ∩ Bδ(v̄) = {v̄} (where Bδ(v̄) denotes the ball of radius δ
around v̄). If argstat{F (v) | v ∈ G} 6= ∅, we define the possibly set-valued stats operation by

stats
v∈G

F (v)
.
= stats{F (v) | v ∈ G} .=

{
F (v̄)

∣∣ v̄ ∈ argstat{F (v) | v ∈ G}
}
. (3)

If argstat{F (v) | v ∈ G} = ∅, statsv∈G F (v) is undefined. Where applicable, we are also
interested in a single-valued stat operation (note the absence of superscript s). In particular,
if there exists a ∈ IR such that statsv∈G F (v) = {a}, then statv∈G F (v)

.
= a; otherwise,

statv∈G F (v) is undefined. At times, we may abuse notation by writing v̄ = argstat{F (v) | v ∈
G} in the event that the argstat is the single point {v̄}.

In the case where U is a Hilbert space, and G ⊆ U is an open set, F : G → IR is Fréchet
differentiable at v̄ ∈ G with Riesz representation DF (v̄) ∈ U if

lim
w→0, v̄+w∈G\{v̄}

|F (v̄ + w)− F (v̄)− 〈DF (v̄), w〉|
|w|

= 0. (4)

The following is immediate from the above definitions.

Lemma 1 Suppose U is a Hilbert space, with open set G ⊆ U , and that F is Fréchet differ-
entiable at v̄ ∈ G. Then, v̄ ∈ argstat{F (y) | y ∈ G} if and only if DF (v̄) = 0.
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3 The Legendre transform and stat-quad duality

Throughout this section, we let U denote a real Hilbert space. Also, henceforth, for functions
on real Hilbert spaces, we do not distinguish between Fréchet derivatives and their Riesz
representations, denoted by D, which may be subscripted when necessary to avoid confusion.
The following Legendre-transform result in the case of C1, but possibly nonconvex, functionals
on U = IRn appeared in [6]. (See also [2, 24], and in a somewhat different direction, [25].)
Although the extension is essentially trivial, a proof in the Hilbert-space case is included in
the appendix.

Theorem 2 Let A,B ⊆ U be open. Suppose φ ∈ C1(A; IR) and [Dφ]−1 ∈ C1(B;A). Then,

φ(u) = stat
v∈B

[a(v) + 〈v, u〉] ∀u ∈ A,

where a(v) = stat
u∈A

[φ(u)− 〈v, u〉] ∀ v ∈ B.

We will refer to a as the static dual of φ.

Remark 3 As an example, let A = B = IRn \ {0} and φ(u) = 1/|u|, where |u| denotes the
Euclidean norm of u. Then, Dφ = −u/|u|3, [Dφ]−1(v) = −v/(|v|3/2) and a(v) = 2|v|1/2.

Let S 6=0 denote the space of the space of symmetric, invertible elements of L(U ;U). In
analogy to the semiconvex [semiconcave] generalization of convex [concave] duality, static
duality may be generalized to stat-quad duality. In particular, we have the following.

Theorem 4 Let A, B̂ ⊆ U be open. Let C ∈ S 6=0. Suppose φ ∈ C1(A; IR). Letting η(u)
.
=

Dφ(u)− Cu for all u ∈ A, suppose η−1 ∈ C1(B̂;A). Then,

φ(u) = stat
v∈B

[
a(v) + 1

2〈v − u,C(v − u)〉
]
∀u ∈ A,

where a(v) = stat
u∈A

[
φ(u)− 1

2〈v − u,C(v − u)〉
]
∀ v ∈ B,

and where B .
= {v ∈ U | − Cv ∈ B̂}.

We will refer to a as the stat-quad dual of φ (with respect to duality operator, C).

Proof: Let φ̄(u)
.
= φ(u)− 1

2〈u,Cu〉 for all u ∈ A. By assumption, [Dφ̄]−1 = η−1 ∈ C1(B̂;A).
Therefore, by Theorem 2, we have the static duality relationship

φ̄(u) = stat
z∈B̂

[ā(z) + 〈z, u〉] ∀u ∈ A, ā(z) = stat
u∈A

[φ̄(u)− 〈z, u〉] ∀ z ∈ B̂.

That is,

φ̄(u) = stat
v∈B

[ā(−Cv)− 〈Cv, u〉] ∀u ∈ A, ā(−Cv) = stat
u∈A

[φ̄(u) + 〈Cv, u〉] ∀ v ∈ B,

or equivalently,

φ(u) = stat
v∈B

[ā(−Cv) + 1
2〈u,Cu〉 − 〈v, Cu〉] ∀u ∈ A,

ā(−Cv) = stat
u∈A

[φ(u)− 1
2〈u,Cu〉+ 〈v, Cu〉] ∀ v ∈ B.

Letting a(v)
.
= ā(−Cv)− 1

2〈v, Cv〉 for all v ∈ B, one obtains the asserted result.
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Remark 5 As an example, let A = B = U = IRn, P,C ∈ S 6=0, and suppose P − C is
nonsingular. Let φ ∈ C1(IRn; IR) be given by φ(u) = 1

2u
′Pu. Then, φ has the stat-dual (with

respect to C) given by

a(v) = 1
2v
′C(C − P )−1Pv = 1

2v
′P (C − P )−1Cv. (5)

4 Nested statica

For the application to follow, we will need to demonstrate an invariance to order in nested
staticization of quadratic functionals. We note that nested staticization appears in the use
of the dynamic programming principle for the control problems that yield solution of the
TPBVPs for conservative systems, where this may be seen in the proof of Theorem 17 below.
It may also be seen in the development at the start of Section 5.2 and in the approach to
gravitational problems indicated in the introduction (although not for quadratic functionals
in this last case).

4.1 Definitions and examples

Let U ,V be normed vector spaces, G ⊆ U , H ⊆ V, and F : G × H → IR. Given v ∈ H, let
fv : G → IR be given by

fv(u) = F (u, v) ∀u ∈ G. (6)

Let

HsF
.
=
{
v ∈ H

∣∣ stats
u∈G

fv(u) 6= ∅
}

and HF
.
=
{
v ∈ H

∣∣ stat
u∈G

fv(u) exists
}
.

We also let statsu∈G F (u, ·) : HsF → P(IR) and statu∈G F (u, ·) : HF → IR be given by

[stats
u∈G

F (u, ·)](v)
.
= stats

u∈G
fv(u) and [stat

u∈G
F (u, ·)](v)

.
= stat

u∈G
fv(u),

for all v ∈ HsF , where P(IR) denotes the power set of IR. We define the analogs fu(v)
.
= F (u, v)

for all v ∈ H, GsF , GF , statsv∈H and statv∈H similarly, and do not include the details. Also,
we will abuse notation slightly by writing argstatu∈U F (u, v) for argstatu∈U f

v(u) et cetera,
where convenient.

Remark 6 It is worth noting that dom
(
statsu∈G F (u, ·)

)
= {v ∈ H | argstatu∈G f

v(u) 6= ∅},
while

dom
(
stat
u∈G

F (u, ·)
)

=
{
v ∈ dom

(
stats
u∈G

F (u, ·)
) ∣∣∣ stats

u∈G
F (u, ·) is single-valued

}
= HF ,

with analogous domain definitions for stat over v ∈ H.

The term, nested statica, refers to expressions such as statv∈HF {[statu∈G F (u, ·)](v)} and
statu∈GF {[statv∈H F (·, v)](u)}, whereas the corresponding stat operation over the product
space is stat(u,v)∈G×H F (u, v), and the natural questions regard conditions guaranteeing ex-
istence of, and/or equivalences between, these objects.
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We will find that the ordering of nesting is irrelevant when the function under consid-
eration is quadratic, whereas this invariance to ordering does not hold more generally. We
begin with a simple quadratic example that illustrates the invariance regardless of a certain
degeneracy. This is followed by a similarly simple cubic example where the invariance does
not hold.

Example 1: Let U = V = IR. Let F : U × V → IR be given by F (u, v) = uv + v2/2.
Using Lemma 1, we see that argstat(u,v)∈U×V F (u, v) = {(0, 0)} and

stat
(u,v)∈U×V

F (u, v) = 0. (7)

Considering nested statica for this same function, note that when v = 0, fv(u) = f0(u) =
F (u, 0) = 0 for all u ∈ IR, which implies argstatu∈IR f

0(u) = IR and statu∈IR f
0(u) = 0. Alter-

natively, if v 6= 0, then argstatu∈IR f
v(u) = ∅. Consequently, HF = {0} and statu∈IR F (u, ·) :

{0} → IR is given by statu∈IR F (u, 0) = 0. Then, by definition,

stat
v∈HF

{[stat
u∈IR

F (u, ·)](v)} = 0. (8)

Next, we reverse the order of the statica in the example. Given u ∈ IR, let fu(v)
.
=

F (u, v) for all v ∈ IR. We find argstatv∈IR f
u(v) = {−u} and statv∈IR f

u(v) = −u2/2. This
implies dom(statv∈IR F (·, v)) = GF

.
= IR, and on this domain, [statv∈IR F (·, v)](u) = −u2/2.

Consequently, using Lemma 1, statu∈GF {[statv∈IR F (·, v)](u)} = 0. Comparing this with (7)
and (8), we see that both orderings of the nesting yield the full stat over the product space
in this example.

Example 2: In order to see that the ordering of nesting can be relevant in non-quadratic
cases, again let U = V = IR, but now take F (u, v) = u(v2 − 1). In this case, we find that
statu∈U F (u, v) = 0 if v = ±1, and does not exist otherwise, while statv∈V F (u, v) = −u
for all u ∈ U . Hence, HF = {−1, 1} and GF = IR = U . Using this, we easily find that
statv∈HF statu∈U F (u, v) = 0 = stat(u,v)∈U×V F (u, v), while statu∈GF statv∈V F (u, v) does not
exist.

4.2 Nesting with Quadratics

In order to obtain a general result regarding independence of nesting order for quadratic
functionals, we first indicate the form of quadratics that will be considered. Let U ,V be
Hilbert spaces. Let F : U × V → IR have the quadratic form

F (u, v) = c
2 + 〈w, u〉U + 〈y, v〉V + 1

2〈B̄1u, u〉U + 〈B̄2v, u〉U + 1
2〈B̄3v, v〉V (9)

= c
2 + 〈w, u〉U + 〈y, v〉V + 1

2〈B̄1u, u〉U + 〈B̄′2u, v〉V + 1
2〈B̄3v, v〉V ,

for all u ∈ U and v ∈ V, where B̄1 ∈ L(U), B̄2 ∈ L(V,U), B̄3 ∈ L(V), w ∈ U , y ∈ V, c ∈ IR,
and 〈·, ·〉X denotes the inner product in space

(
X , 〈·, ·〉X

)
throughout.

Throughout the remainder of this section, F will refer to a quadratic functional of the form
in (9), and we assume there exists (ū, v̄) ∈ U×V such that {(ū, v̄)} = argstat(u,v)∈U×V F (u, v),
which implies

stat
(u,v)∈U×V

F (u, v) = F (ū, v̄). (10)
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Lemma 7 Let v̂ ∈ V. Then û ∈ argstatu∈U F (u, v̂) if and only if B̄1û+ B̄2v̂ + w = 0.

Lemma 8 Given ū, v̄ as per (10), ū ∈ argstatu∈U F (u, v̄) and v̄ ∈ argstatv∈V F (ū, v).

Proof: We only prove the first assertion. By (10) and the definition of argstat for the case
dom

(
F (·, v̄)) ≡ U , given ε > 0, there exists δ > 0 such that |F (u, v̄) − F (ū, v̄)|/|u − ū| < ε

for all u ∈ Bδ(ū), and this yields the assertion.

Lemma 9 Let ū, v̄ as per (10). Both statsu∈U F (u, v̄) and statsv∈V F (ū, v) are single-valued.
In addition, v̄ ∈ dom

(
statu∈U F (u, ·)

)
and ū ∈ dom

(
statv∈V F (·, v)

)
.

Proof: We prove only the first and third assertions, as the other two follow by symmetry. By
Lemma 8, using the notation of (6), ū ∈ argstatu∈U F (u, v̄) = argstatu∈U f

v̄(u). Therefore,
by Remark 6, we need only demonstrate that

stats
u∈U

F (u, v̄) is single-valued (11)

in order to show both the first and third claims. Let û ∈ argstatu∈U F (u, v̄). By (11), it is
sufficient to show that F (û, v̄) = F (ū, v̄). Let ν̂ ∈ U . Then by Lemma 7, 〈B̄1û+B̄2v̄+w, ν̂〉U =
0. Combining this with (9), we find

F (u, v̄)− F (û, v̄) = 1
2〈B̄1(u− û), u− û〉U ∀u ∈ U . (12)

Similarly, as ū ∈ argstatu∈U F (u, v̄),

F (u, v̄)− F (ū, v̄) = 1
2〈B̄1(u− ū), u− ū〉U ∀u ∈ U . (13)

Taking u = ū in (12) and u = û in (13), we see that F (ū, v̄) − F (û, v̄) = F (û, v̄) − F (ū, v̄),
and hence, F (û, v̄)− F (ū, v̄) = 0.

Lemma 10 Let v̂ ∈ V, û ∈ U , G̃(v̂)
.
= argstatu∈U F (u, v̂) and H̃(û)

.
= argstatv∈V F (û, v).

Then G̃(v̂) is an affine subspace of U , and F (·, v̂) is constant on G̃(v̂). Similarly, H̃(û) is an
affine subspace of V, and F (û, ·) is constant on H̃(û). Further, if G̃(v̂) 6= ∅, then v̂ ∈ HF ,
and if H̃(û) 6= ∅, then û ∈ GF .

Proof: That G̃(v̂) and H̃(û) are affine subspaces is standard and easily demonstrated, while
the second and fourth assertions follow from Lemma 9.

Theorem 11 Let U ,V be Hilbert spaces, and let F : U × V → IR have quadratic form (9).
Then, statu∈GF

{[
statv∈V F (·, v)

]
(u)
}

= F (ū, v̄) = statv∈HF
{[

statu∈U F (u, ·)
]
(v)
}

.

Proof: We prove only the second equality. Suppose v̂ ∈ HF . Then, by definition, there exists
ũ ∈ G̃(v̂)

.
= argstatu∈U F (u, v̂). By Lemma 7, this is equivalent to u = ũ being a solution of

B̄1u+ B̄2v̂ + w = 0. (14)

By Lemma 9, G̃(v̄) 6= ∅, and in particular,

ū ∈ G̃(v̄). (15)
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Also by Lemma 9, we have v̄ ∈ HF .
Two cases must be considered, namely, HF = {v̄} and HF 6= {v̄}. First, suppose HF =

{v̄}. Then, by the definition of stat, {v̄} = argstatv∈V
{[

statu∈U F (u, ·)
]
(v)
}

, and

stat
v∈V

{[
stat
u∈U

F (u, ·)
]
(v)
}

=
[

stat
u∈U

F (u, ·)
]
(v̄),

which by (15) and Lemma 10,

= F (ū, v̄),

thereby yielding the right-hand equality in the theorem statement for the first case.
Now we proceed to the second case. Suppose HF 6= {v̄}, that is, there exists v̂ ∈ HF \{v̄}.

By Lemma 10, G̃(v̂) is an affine subspace, and statu∈U F (u, v̂) = F (ũ, v̂) where ũ is any
element of the subspace, which is nonempty by the fact that v̂ ∈ HF . Noting (14), we take

the element of the space given by ũ = −B̄#
1 (B̄2v̂ + w), where the # superscript indicates

the Moore-Penrose pseudo-inverse, cf. [1]. For v ∈ HF , define the affine transformation

Av + ŵ
.
= −B̄#

1 (B̄2v +w). (The authors remark that the Moore-Penrose pseudo-inverse was
employed only for the convenience of selecting a specific affine transformation from the space;
the minimum-norm property is not used.) Subsequently, define

F̄ (v)
.
= stat

u∈U
[F (u, ·)](v) = F (Av + ŵ, v),

which using (9),

= c
2 + 〈w,Av + ŵ〉U + 〈y, v〉V + 1

2〈B̄1(Av + ŵ), Av + ŵ〉U + 〈B̄2v,Av + ŵ〉U + 1
2〈B̄3v, v〉V ,

= c̄
2 + 〈ȳ, v〉V + 1

2〈B̄4v, v〉V ∀ v ∈ HF , (16)

where c̄ = c + 2〈w, ŵ〉 + 〈B̄1ŵ, ŵ〉, ȳ = y + A′w + (A′B̄1 + B̄′2)ŵ, and B̄4 = A′B̄1A +
2A′B̄2 + B̄3. Note that F̄ is a quadratic form, dom(F̄ ) = HF and v̄, v̂ ∈ HF . Let ĤF

.
=

argstatv∈HF
{[

statu∈U F (u, ·)
]
(v)
}

.

Now let δ ∈ V be such that v̄ + δ ∈ HF . By Lemma 7, ũ ∈ G̃(v̄ + δ) if and only if
B̄1ũ + B̄2(v̄ + δ) + w = 0. Recalling from above that v̄ ∈ HF with ū ∈ G̃(v̄), by Lemma 7
again, B̄1ū + B̄2v̄ + w = 0. Combining these last two equalities yields B̄1(ũ − ū) + B̄2δ = 0

and we may take ũ = ū − B̄#
1 B̄2δ. Then, recalling Lemma 10 and noting that (ū, v̄) ∈

argstat(u,v)∈U×V F (u, v),∣∣[stat
u∈U

F (u, ·)](v̄ + δ)− [stat
u∈U

F (u, ·)](v̄)
∣∣ =

∣∣F (ū− B̄#
1 B̄2δ, v̄ + δ)− F (ū, v̄)

∣∣ ≤ O(|δ|2V),
which implies v̄ ∈ ĤF .

Suppose v̆ ∈ ĤF \ {v̄}. By Lemma 10 applied to F̄ , and then using (16),

F̄ (v̆) = F̄ (v̄) = stat
u∈U

[F (u, ·)](v̄),

which by (15) and Lemma 10,

= F (ū, v̄).

As this is true for all v̆ ∈ ĤF , statu∈U [F (u, ·)](v) = F (ū, v̄) ∀ v ∈ ĤF . Consequently,
statv∈HF

{[
statu∈U F (u, ·)

]
(v)
}

exists, and in particular, statv∈HF
{[

statu∈U F (u, ·)
]
(v)
}

=
F (ū, v̄).

8



5 Application to Stationary Action

As indicated in the introduction, a primary motivation for this effort has been the solution
of TPBVPs in stationary action, and we now indicate the approach to this application.
Applying staticization and stat-quad duality in both the harmonic oscillator and quantum
harmonic oscillator problems [20, 21, 16, 18] as well as wave-equation problem classes [3, 4],
a linear-quadratic problem formulation is possible. Further, as noted in the introduction,
in the n-body problem class, linear-quadratic problems appear through a numerically useful
duality-based representation of the gravitational potential [12, 20, 21]. In all these cases,
one is interested in a quadratic functional of the control variable. Further, staticization
over the control yields a functional that is quadratic over space, where the time-dependent
coefficients satisfy differential Riccati equation (DREs) [4, 20, 21]. At times where the action
functional has changes in convexity/concavity along subspaces, the norm of the DRE solution
typically escapes to infinity. Now, for DREs associated to optimal control and estimation,
it is meaningless to attempt to propagate past such asymptotes. However, in the case of
stationary action, propagation past such points is required for solution of the dynamical
system problems. We will find that by propagating both the solutions of the DREs for the
static value and the solutions of the DREs for the stat-quad duals of the static value, we may
propagate past these escape times.

5.1 Action Problem Formulation

We consider dynamics
ξ̇r = ur, (17)

where ξr ∈ IRn denotes the state at time r ∈ (−∞, 0], evolved forward from an initial state
ξs = x, s ∈ (−∞, 0], via input u ∈ L2

(
(s, 0); IRn

)
. Let T .

= {(s, t) ∈ IR2 | −∞ < s ≤ t ≤ 0}.
For (s, t) ∈ T , we also define

Us,t
.
= L2

(
(s, t); IRn

)
, (18)

and we let 〈·, ·〉Us,t denote the inner product on Us,t. For (s, t) ∈ T , we define the basic action
functional, J0(s, t, ·, ·) : IRn × Us,t → IR, by

J0(s, t, x, u)
.
=

∫ t

s
T (ur)− V (r, ξr) dr, (19)

where ξ satisfies (17) with initial condition ξs = x ∈ IRn, T denotes the kinetic energy and
V denotes the potential. Further, we will assume that the kinetic energy takes the form

T (v)
.
= 1

2v
′Mv ∀ v ∈ IRn, (20)

where M ∈ S>0
n and S>0

n [S≥0
n ] denotes the space of positive-definite [positive-semidefinite],

symmetric n × n matrices. Recalling, for example, the duality-based representation for the
gravitational potential [20, 21], we let

−V (r, x)
.
= 1

2ωr −
1
2x
′Ωrx ∀ r ∈ (−∞, 0], x ∈ IRn, (21)

where ω ∈ C
(
IR; IR

)
and Ω ∈ C

(
IR;S≥0

n ).
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We will append a terminal cost to the functional J0 for the purposes of using the action
to solve TPBVPs; see [4, 5, 12, 20, 21] for more information on how this allows solution of
TPBVPs.

For C ∈ S>0
n and c ∈ (0,∞), let ψ̂C , ψc : IRn × IRn → IR be given by

ψ̂C(x, z)
.
= 1

2

(
x
z

)′(
C −C
−C C

)(
x
z

)
, ψc(x, z)

.
= ψ̂cI(x, z), (22)

while for the c =∞ case, we take

ψ∞(x, z)
.
=

{
0 if x = z,

∞ otherwise,
(23)

which is the min-plus delta function (cf. [13]). Throughout, for a ∈ IR, we let [a,∞] denote
[a,∞) ∪ {∞}. For C ∈ S>0

n and c ∈ (0,∞], the (appended) action functionals are

ĴC(s, t, x, u, z)
.
= J0(s, t, x, u) + ψ̂C(ξt, z), Jc(s, t, x, u, z)

.
= J0(s, t, x, u) + ψc(ξt, z). (24)

For C ∈ S>0
n and c ∈ (0,∞], the static value functionals are ŴC ,W c : [0,∞)×IRn×IRn → IR

given by

ŴC(t, x, z)
.
= stat

u∈U−t,0
ĴC(−t, 0, x, u, z), W c(t, x, z)

.
= stat

u∈U−t,0
Jc(−t, 0, x, u, z), (25)

where existence is addressed in the assumptions to follow.
For fixed x, z ∈ IRn, (s, t) ∈ T , c ∈ (0,∞], we say Jc(s, t, x, ·, z) is uniformly strictly convex

on Us,t if there exists k > 0 such that Jc(s, t, x, u+û, z)+Jc(s, t, x, u−û, z)−2Jc(s, t, x, u, z) ≥
k|û|2 for all u, û ∈ Us,t.

As our concern regards propagation of the static value past points where the DRE solu-
tions escape, we assume:

For any t̄ > 0, there exists δ̂ = δ̂(t̄) > 0 such that W c exists on (max{t̄ −
δ̂, 0}, t̄) ∪ (t̄, t̄+ δ̂)× IRn × IRn. (A.1)

We remark that Assumption (A.1) requires only that the stationary value exist outside of a
nowhere dense set of times. One can look to the example in Section 5.3 for a sense of the
motivation for the particular assumption.

Using a straightforward adaptation of [20] Lemma 4.17, we have the following.

Lemma 12 There exists δ̄ > 0 and c̄ ∈ (0,∞) such that for all x, z ∈ IRn, s ∈ (−∞, 0),
δ ∈ (0, δ̄) such that s+ δ ≤ 0, C � c̄I and c ∈ [c̄,∞], ĴC(s, s+ δ, x, ·, z) and Jc(s, s+ δ, x, ·, z)
are uniformly strictly convex and coercive on Us,s+δ.

Theorem 13 Let c ∈ [0,∞); x, z ∈ IRn; (s, t) ∈ T . There exist ν̄ = ν̄(x, z) ∈ IR, ¯̄B ∈ L(Us,t)
and B̃1, B̃2 ∈ L(IRn;Us,t) such that

Jc(s, t, x, u, z) = ν̄
2 + 〈 ¯̄Bu, u〉Us,t + 〈B̃1x+ B̃2z, u〉Us,t

for all u ∈ Us,t, where in particular, ν̄ = ν1 + c|x− z|2IRn with ν1
.
=
∫ t
s ωρ dρ.
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Remark 14 For brevity of expressions, we do not explicitly indicate, in the notation, the
dependence on c of objects such as ν̄, ¯̄B, B̃1, B̃2. This policy is continued where appropriate
throughout.

Proof: We examine each of the terms on the right-hand side of the definition of Jc in (24)
separately. Letting [B̂1u]r

.
=Mur for all r ∈ (s, t), we see B̂1 ∈ L(Us,t), and∫ t

s
T (ur) dr = 〈B̂1u, u〉Us,t ∀u ∈ Us,t. (26)

Next, using (21), we have∫ t

s
−V (r, ξr) dr = ν1

2 −
1
2

∫ t

s
ξ′rΩrξr dr, (27)

where ν1
.
=
∫ t
s ωρ dρ. For u ∈ Us,t and r ∈ (s, t), let [A1u]r

.
=
∫ r
s uρ dρ for all r ∈ (s, t), and

note that A1 ∈ L(Us,t). Further, ξr = x+[A1u]r for all r ∈ (s, t). Also define A0 ∈ L(IRn;Us,t)
by [A0x]r

.
= x for all r ∈ (0, t) and x ∈ IRn. With these definitions, ξ = A0x + A1u for all

x ∈ IRn and u ∈ Us,t. Recalling Ω ∈ C(IR;S≥0
n ), we let [B̂2ξ]r

.
= Ωrξr for all r ∈ (s, t), and

note that B̂2 ∈ L(Us,t). With these definitions, (27) becomes∫ t

s
−V (r, ξr) dr = ν1

2 + 1
2〈B̂2A0x+ B̂2A1u,A0x+A1u〉Us,t . (28)

Lastly, we turn to ψc(ξt, z). Note that

ψc(ξt, z) = c
2

∣∣∣x− z +

∫ t

s
uρ dρ

∣∣∣2
IRn

= c
2 |x− z|

2
IRn + c

2〈A1u, u〉Us,t + c〈(x− z)̃i, u〉Us,t , (29)

where [A1u]r
.
=
∫ t
s uρ dρ and ĩr

.
= 1 for all r ∈ (s, t). Combining (24), (26), (28) and (29),

and performing straight-forward manipulations, one obtains the result.

Let x, z ∈ IRn; t̄ > 0; δ ∈ (0, t̄); U0 .
= U−(t̄+δ),−(t̄−δ) and U1 .

= U−(t̄−δ),0. For any u0 ∈ U0

and u1 ∈ U1, let

F (u0, u1) = F (u0, u1; t̄, δ, x, z, c) (30)
.
= J0(−(t̄+ δ),−(t̄− δ), x, u0) + Jc(−(t̄− δ), 0, ξ0

−(t̄−δ), u
1, z)

=

∫ −(t̄−δ)

−(t̄+δ)
T (u0

r)− V (r, ξ0
r ) dr +

∫ 0

−(t̄−δ)
T (u1

r)− V (r, ξ1
r ) dr + ψc(ξ1

0 , z), (31)

where
ξ̇0
r = u0

r , ξ
0
−(t̄+δ) = x, ξ̇1

r = u1
r and ξ1

−(t̄−δ) = ξ0
−(t̄−δ). (32)

Theorem 15 Let x, z ∈ IRn; t̄ > 0 and δ ∈ (0,min{δ̄/2, δ̂, t̄}). There exist η ∈ IR, y0 ∈ U0,
y1 ∈ U1, B̄1 ∈ L(U0), B̄2 ∈ L(U1,U0) and B̄3 ∈ L(U1) (where these depend on x, z, δ, t, c)
such that

F (u0, u1) = η
2 + 〈y0, u0〉U0 + 〈y1, u1〉U1 + 1

2〈B̄1u
0, u0〉U0 + 〈B̄2u

1, u0〉U0 + 1
2〈B̄3u

1, u1〉U1

(33)

for all u0 ∈ U0 and u1 ∈ U1.
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Proof: The right-hand side of (31) is a sum of five terms, and we may address each term in a
similar way as was done in the proof of Theorem 13. There is some additional complication
due to the dependence of ξ1 on u0 (as well as u1). Because of the similarities, we examine only
the

∫ 0
−(t̄−δ)−V (r, ξ1

r ) dr term; the other terms are similar and simpler. For r ∈ (−(t̄− δ), 0],

define A1
1 : U1 → U1 by [A1

1u
1]r

.
=
∫ r
−(t̄−δ) u

1
ρ dρ. By the same method as used in the proof

of Theorem 13 (for A1), we find A1
1 ∈ L(U1). Next, define A1

0 : U0 → U1 by [A1
0u

0]r
.
=∫ −(t̄−δ)

−(t̄+δ)
u0
ρ dρ for all r ∈ (−(t̄− δ), 0]. A similar argument to that for A1

1 implies that A1
0 ∈

L(U0,U1). Using the same A0 definition as in the proof of Theorem 13, we have ξ1 = A0x+
A1

0u
0 +A1

1u
1. Also as in the proof of Theorem 13, let [B̂1

2ξ]r
.
= Ωrξr for all r ∈ (−(t̄− δ), 0).

Recalling (27) and the above definitions, we have∫ 0

−(t̄−δ)
−V (r, ξ1

r ) dr = ν1

2 −
1
2

〈
B̂1

2(A0x+A1
0u

0 +A1
1u

1), A0x+A1
0u

0 +A1
1u

1
〉
U1
, (34)

where ν1 .
=
∫ 0
−(t̄−δ) ωr dr. Proceeding similarly with the other terms, and performing standard

manipulations, one obtains the result.

Theorem 16 Let x, z ∈ IRn; t̄ > 0; δ ∈ (0,min{δ̄/2, δ̂, t̄}); t ∈ (0, δ̄) ∪ (t̄− δ, t̄) ∪ (t̄, t̄+ δ)
and c ∈ [c̄,∞). Then, there exist ν̄ ∈ IR and Pt, Qt, Rt ∈ IRn×n such that

W c(t, x, z) = ν̄
2 + 1

2

(
x
z

)′(
Pt Qt
Q′t Rt

)(
x
z

)
∀x, z ∈ IRn,

where ν̄ = ν1 + c|x− z|2IRn with ν1
.
=
∫ t
s ωρ dρ.

Proof: Assumption (A.1) and Lemma 12 yield existence and uniqueness for W c(t, ·, ·) (defined
in (25)). Then, by Theorem 13,

W c(t, x, z) = stat
u∈U−t,0

{
ν̄
2 + 1

2〈
¯̄Bu, u〉U−t,0 + 〈B̃1x+ B̃2z, u〉U−t,0

}
,

where ν̄ = ν1 + c|x− z|2IRn . By Lemmas 1 and 10, and letting u∗
.
= −

( ¯̄B
)#[

B̃1x+ B̃2z
]
, this

implies

W c(t, x, z) = ν̄
2 + 1

2〈
¯̄Bu∗, u∗〉U−t,0 + 〈B̃1x+ B̃2z, u∗〉U−t,0

= ν̄
2 −

1
2

〈( ¯̄B
)#[

B̃1x+ B̃2z
]
,
[
B̃1x+ B̃2z

]〉
U−t,0

∀x, z ∈ IRn.

The next result is an adaption of the Dynamic Programming Principle to the staticization
class of problems. It is also specifically designed to to allow us to propagate the stat value
function across at time, t̄, where that value may not exist.

Theorem 17 Let x, z ∈ IRn; t̄ > 0; δ ∈ (0,min{δ̄/2, δ̂, t̄}) and c ∈ [c̄,∞). Then,

W c(t̄+ δ, x, z) = stat
u∈U0

[
J0(−(t̄+ δ),−(t̄− δ), x, u) +W c(t̄− δ, ξ0

−(t̄−δ), z)
]
∀x, z ∈ IRn,

where ξ0
−(t̄+δ)= x and ξ̇0(r) = u(r) for all r ∈ (−(t̄+ δ),−(t̄− δ)).
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Proof: By Lemma 6 of [17],

W c(t̄+ δ, x, z) = stat
(u0,u1)∈U0×U1

[
J0(−(t̄+ δ),−(t̄− δ), x, u0)

+ Jc(−(t̄− δ), 0, ξ0
−(t̄−δ), u

1, z)
]
, (35)

where Assumptions (A.1) and Lemma 12 replace Assumptions (A.1) and (A.2) of [17]. By
(30) and (35),

W c(t̄+ δ, x, z) = stat
(u0,u1)∈U0×U1

F (u0, u1; t̄, δ, x, z, c) = stat
(u0,u1)∈U0×U1

F (u0, u1)

which by Theorem 11,

= stat
u0∈GF

{[
stat
u1∈U1

F (·, u1)
]
(u0)

}
,

where GF = {u0 ∈ U0 | statu1∈U1 F (u0, u1) exists}. Noting that J0(−(t̄+ δ),−(t̄− δ), x, u0)

is independent of u1, this is

= stat
u0∈GF

{
J0(−(t̄+ δ),−(t̄− δ), x, u0) + stat

u1∈U1
Jc(−(t̄− δ), 0, ξ0

−(t̄−δ), u
1, z)

}
, (36)

and we note that GF = {u0 ∈ U0 | statu1∈U1 Jc(−(t̄− δ), 0, ξ0
−(t̄−δ), u

1, z) exists}.
Now, by our assumption concerning δ (in the theorem statement) and Lemma 12, GF =

U0. Combining this with (36), we have

W c(t̄+ δ, x, z) = stat
u0∈U0

{
J0(−(t̄+ δ),−(t̄− δ), x, u0) + stat

u1∈U1
Jc(−(t̄− δ), 0, ξ0

−(t̄−δ), u
1, z)

}
= stat

u0∈U0

{
J0(−(t̄+ δ),−(t̄− δ), x, u0) +W c(t̄− δ, ξ0

−(t̄−δ), z)
}
.

5.2 Stat-quad duality-based propagation

We now begin the process of obtaining Riccati differential equations for the coefficient ma-
trices in the stat-quad dual of W c.

We assume there exists C ∈ S≥0
n and δ̃ ∈ (0, δ̂) such that Pr −C is nonsingular

∀r ∈ (t̄− δ̃, t̄) ∪ (t̄ ∪ t̄+ δ̃) ∪ (0, δ̄). (A.2)

Let T̃ .
= (t̄− δ̃, t̄)∪(t̄, t̄+ δ̃)∪(0, δ̂∧ δ̄/2), where a∧b .= min{a, b} for all a, b ∈ IR. Note that by

Assumption (A.1) and Lemma 12, W c(r, x, z) exists for all r ∈ (t̄− δ̂, t̄)∪(t̄, t̄+ δ̂)∪(0, δ̄) ⊇ T̃ .
For r ∈ T̃ and z ∈ IRn, let η̄r,z(x)

.
= DxW

c(r, x, z)− Cx for all x ∈ IRn. Then, by Theorem
16 and Assumption (A.2), η̄−1

r,z ∈C1(IRn; IRn). Consequently, by Theorem 4

W c(t, x, z) = stat
y∈IRn

{
B(t, y, z) + ψ̂C(x, y)

}
∀x, z ∈ IRn, (37)

where

B(t, y, z) = stat
x∈IRn

{
W c(t, x, z)− ψ̂C(x, y)

}
∀ y, z ∈ IRn, (38)

where we note that B(t, ·, ·) is quadratic (see Remark 5).
Let δ ∈ (0, δ̃ ∧ δ̄/2). By Theorem 17 and (38)

B(t̄+ δ, y, z) = stat
x∈IRn

stat
u0∈U0

[
W c(t̄− δ, ξ0

−(t̄−δ), z) + J0(−(t̄+ δ),−(t̄− δ), x, u0)− ψ̂C(x, y)
]
,
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which by (37),

= stat
x∈IRn

stat
u0∈U0

stat
η∈IRn

[
B(t̄− δ, η, z) + ψ̂C(ξ0

−(t̄−δ), η) + J0(−(t̄+ δ),−(t̄− δ), x, u)− ψ̂C(x, y)
]
.

Note that the term in brackets is a quadratic function of x, u0, η, y, z, and that in the case of
a quadratic functional, the existence of the nested stat over u0 ∈ U0 and η ∈ IRn implies the
existence of the stat over the product space. Consequently, by Theorem 11, we can reorder
the stat operations, and this becomes (using the symmetry of ψ̂C in its arguments as well)

B(t̄+ δ, y, z) = stat
x∈IRn

stat
η∈G̃η

{
stat
u0∈U0

[
J0(−(t̄+ δ),−(t̄− δ), x, u)

+ ψ̂C(ξ0
−(t̄−δ), η)

]
+B(t̄− δ, η, z)− ψ̂C(x, y)

}
,

for some affine subspace, G̃η ⊆ IRn, and this is,

= stat
x∈IRn

stat
η∈G̃η

{
ŴC(2δ, x, η) +B(t̄− δ, η, z)− ψ̂C(x, y)

}
, (39)

where existence and uniqueness of ŴC(2δ, x, η) is guaranteed by the indicated bounds on δ
and Lemma 12.

Lemma 18 Let r ∈ (0, 2δ̃ ∧ δ̄) and x, η ∈ IRn. Then,

ŴC(r, x, η) = ν̂r
2 + 1

2

(
x
η

)′(
P̂r Q̂r
Q̂′r R̂r

)(
x
η

)
, (40)

where

P̂0 = −Q̂0 = R̂0 = C, (41)

˙̂
Pr = −P̂rM−1P̂r − Ω−r−(t̄−δ),

˙̂
Qr = −P̂rM−1Q̂r, (42)

˙̂
Rr = −Q̂′rM−1Q̂r, ν̂r =

∫ r

0
ω−ρ−(t̄−δ) dρ. (43)

Proof: This is a minor application of existing results [17]. For r ∈ (0, 2δ̃ ∧ δ̄), let P̂ , Q̂, R̂, ν̂

be given by (41)–(43), where existence is guaranteed by Assumption (A.2). Let W̃ (r, x, η) be
given by the right-hand side of (40) for all r ∈ (0, 2δ̃ ∧ δ̄) and x, η ∈ IRn. One easily sees that

W̃ satisfies

0 = stat
v∈IRn

[
T (v)− V (r, x)−Wr(r, x, η) + (Wx(r, x, η))′v

]
; r ∈ (0, 2δ̃ ∧ δ̄); x, η ∈ IRn;

W (0, x, η) = ψ̂C(x, η); x, η ∈ IRn.

Then, by Theorem 8 of [17], W̃ (r, x, η) = ŴC(r, x, η) for all r ∈ (0, 2δ̃ ∧ δ̄); x, η ∈ IRn.

Similarly to Lemma 18, for all r ∈ (0, δ̄), P,Q,R, ν̄ of Theorem 16 satisfy

P0 = −Q0 = R0 = cI, (44)

Ṗr = −PrM−1Pr − Ω−r, Q̇r = −PrM−1Qr, (45)

Ṙr = −Q′rM−1Qr, ν̄r =

∫ r

0
ω−ρ dρ. (46)
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Note that without loss of generality, we may take δ̄ = 2δ̃ = 2δ̂. Combining (39) and (40), we
have

B(t̄+ δ, y, z) = stat
x∈IRn

stat
η∈G̃η

{
B(t̄− δ, η, z) + 1

2

(
x
η

)′(
P̂2δ Q̂2δ

Q̂′2δ R̂2δ

)(
x
η

)

− 1
2

(
x
y

)′(
C −C
−C C

)(
x
y

)}
+ ν̂2δ

2 , (47)

We need an expression for the coefficients of quadratic B(r, ·, ·) obtained from those of

quadratics ŴC(r, ·, ·) and/or W c(r, ·, ·) for r such that the objects exist. The following is
easily verified.

Lemma 19 Suppose

Q1(x, y)
.
= 1

2

(
x
y

)′(
Q1

1,1 Q1
1,2

(Q1
1,2)′ Q1

2,2

)(
x
y

)
∀x, y ∈ IRn,

and

Q2(y, z)
.
= 1

2

(
y
z

)′(
Q2

1,1 Q2
1,2

(Q2
1,2)′ Q2

2,2

)(
y
z

)
∀ y, z ∈ IRn,

where S̄
.
= Q1

2,2 +Q2
1,1 is nonsingular. Let Q3(x, z) = staty∈IRn

[
Q1(x, y) +Q2(y, z)

]
. Then,

Q3(x, z) = 1
2

(
x
z

)′(
Q3

1,1 Q3
1,2

(Q3
1,2)′ Q3

2,2

)(
x
z

)
∀x, z ∈ IRn,

where

Q3
1,1 = Q1

1,1 −Q1
1,2S̄

−1(Q1
1,2)′, Q3

1,2 = −Q1
1,2S̄

−1Q2
1,2,

Q3
2,2 = Q2

2,2 − (Q2
1,2)′S̄−1Q2

1,2.

The following is immediate from Theorem 4 and Lemma 19.

Lemma 20 Suppose W (r, ·, ·) has form

W (r, x, z) = 1
2

(
x
z

)′(
Pr Qr
Q′r Rr

)(
x
z

)
+ νr

2 ,

and let B(r, ·, ·) be the stat-quad dual of W given by (38). Then,

B(r, y, z) = 1
2

(
y
z

)′(
αr βr
β′r γr

)(
y
z

)
+ ν̂Br

2 ,

where the dual coefficients are given by

αr
.
= −C − C(Pr − C)−1C = −C(Pr − C)−1Pr = −Pr(Pr − C)−1C, (48)

βr
.
= −C(Pr − C)−1Qr, γr

.
= Rr −Q′r(Pr − C)−1Qr, (49)

ν̂Br
.
= νr.

Further,

Pr = C − C(αr + C)−1C = C(αr + C)−1αr = αr(αr + C)−1C,

Qr = C(αr + C)−1βr, Rr = γr − β′r(αr + C)−1βr.
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We will develop dual DREs for the α, β, γ coefficient functions of time. We begin by
applying Lemma 20 to (47), we have

B(t̄+ δ, y, z)
.
= 1

2

(
y
z

)′(
αt̄+δ βt̄+δ
β′t̄+δ γt̄+δ

)(
y
z

)
+

ν̄B
t̄+δ

2

= stat
x∈IRn

stat
η∈G̃η

{
1
2

(
η
z

)′(
αt̄−δ βt̄−δ
β′t̄−δ γt̄−δ

)(
η
z

)
+ 1

2

(
x
η

)′(
P̂2δ Q̂2δ

Q̂′2δ R̂2δ

)(
x
η

)

− 1
2

(
x
y

)′(
C −C
−C C

)(
x
y

)}
+

ν̂B
t̄−δ
2 + ν̂2δ

2 ,

which by Theorem 11,

= stat
η∈Ĝη

{
1
2

(
η
z

)′(
αt̄−δ βt̄−δ
β′t̄−δ γt̄−δ

)(
η
z

)
+ stat
x∈IRn

[
1
2

(
x
η

)′(
P̂2δ Q̂2δ

Q̂′2δ R̂2δ

)(
x
η

)

− 1
2

(
x
y

)′(
C −C
−C C

)(
x
y

)]}
+

ν̂B
t̄−δ
2 + ν̂2δ

2 ,

(50)

where Ĝη is an affine subspace of G̃η. Also, using this, (43) and (46), we see that

ν̄Bt̄+δ = ν̂Bt̄−δ + ν̂2δ =

∫ t̄−δ

0
ω−ρ dρ+

∫ 2δ

0
ω−(ρ+t̄−δ) dρ =

∫ t̄+δ

0
ω−ρ dρ. (51)

Now, applying the the expression given in Lemma 19 for the stat-quad dual (38) on
horizon 2δ, to the last two terms in the brackets in (50), we have

1
2

(
y
z

)′(
αt̄+δ βt̄+δ
β′t̄+δ γt̄+δ

)(
y
z

)
= stat

η∈Ĝη

{
1
2

(
η
z

)′(
αt̄−δ βt̄−δ
β′t̄−δ γt̄−δ

)(
η
z

)
+ 1

2

(
y
η

)′(
α̂2δ β̂2δ

β̂′2δ γ̂2δ

)(
y
η

)}
, (52)

where we note that the zeroth-order terms have cancelled and

α̂2δ = −C − C(P̂2δ − C)−1C = −C(P̂2δ − C)−1P̂2δ = −P̂2δ(P̂2δ − C)−1C, (53)

β̂2δ = −C(P̂2δ − C)−1Q̂2δ (54)

γ̂2δ = R̂2δ − Q̂′2δ(P̂2δ − C)−1Q̂2δ. (55)

Noting that the term in brackets in (52) is quadratic and defined for all η, y, z ∈ IRn, we
see that Ĝη = IRn, and consequently, we may replace statη∈Ĝη in (52) with statη∈IRn . Then

applying Lemma 19 to the right-hand side of (52) with this change in the set over which stat
is taken, and equating like terms, we have(

αt̄+δ βt̄+δ
β′t̄+δ γt̄+δ

)
=

(
α̂2δ − β̂2δ(αt̄−δ + γ̂2δ)

−1β̂′2δ −β̂2δ(αt̄−δ + γ̂2δ)
−1βt̄−δ

−β′t̄−δ(αt̄−δ + γ̂2δ)
−1β̂′2δ γt̄−δ − β′t̄−δ(αt̄−δ + γ̂2δ)

−1βt̄−δ

)
, (56)

which implies

αt̄+δ − αt̄−δ = −αt̄−δ + α̂2δ − β̂2δ(αt̄−δ + γ̂2δ)
−1β̂′2δ, (57)
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βt̄+δ − βt̄−δ = −
[
I + β̂2δ(αt̄−δ + γ̂2δ)

−1
]
βt̄−δ, (58)

γt̄+δ − γt̄−δ = −β′t̄−δ(αt̄−δ + γ̂2δ)
−1βt̄−δ. (59)

Therefore,

α̇t̄ = lim
δ↓0

1
2δ

[
− αt̄−δ + α̂2δ − β̂2δ(αt̄−δ + γ̂2δ)

−1β̂′2δ
]
, (60)

β̇t̄ = lim
δ↓0

1
2δ

[
−
(
I + β̂2δ(αt̄−δ + γ̂2δ)

−1
)
βt̄−δ

]
, (61)

γ̇t̄ = lim
δ↓0

1
2δ

[
− β′t̄−δ(αt̄−δ + γ̂2δ)

−1βt̄−δ
]
, (62)

if the limits involved exist.

Theorem 21 Let α, β, γ be the time-dependent coefficients in the stat-quad dual of W (i.e.,
given by (48)–(49) ). If α, β, γ are continuous at t̄, then they are differentiable there, with
derivatives given by

α̇t̄ = −αt̄
[
M−1 + C−1Ω−t̄C

−1
]
αt̄ − αt̄C−1Ω−t̄ − Ω−t̄C

−1αt̄ − Ω−t̄, (63)

β̇t̄ = −αt̄
[
M−1 + C−1Ω−t̄C

−1
]
βt̄ − Ω−t̄C

−1βt̄, (64)

γ̇t̄ = −β′t̄
[
M−1 + C−1Ω−t̄C

−1
]
βt̄. (65)

Proof: We consider each of the three assertions separately, and begin with (65). By (41) and
(42),

lim
δ↓0

1
2δ (P̂2δ − C) = lim

δ↓0
1
2δ [P̂2δ − P̂0] =

˙̂
P0 = −CM−1C − Ω−t̄. (66)

Using (53)–(55),

lim
δ↓0

1
2δ (αt̄−δ + γ̂2δ)

−1 = lim
δ↓0

(2δαt̄−δ + 2δγ̂2δ)
−1

= lim
δ↓0

[
2δαt̄−δ + 2δR̂2δ − Q̂′2δ

[
2δ(P̂2δ − C)−1

]
Q̂2δ

]−1
,

which by the assumption of continuity of α at t̄ and (41), and then using (66),

= −C−1
[

lim
δ↓0

1
2δ (P̂2δ − C)

]
C−1 =M−1 + C−1Ω−t̄C

−1. (67)

By (62) and the assumption of continuity of β at t̄, and then using (67),

γ̇t̄ = −β′t̄ lim
δ↓0

1
2δ (αt̄−δ + γ̂2δ)

−1βt̄ = −β′t̄
[
M−1 + C−1Ω−t̄C

−1
]
βt̄, (68)

which is (65).
Next, by the assumption of continuity of the dual coefficients applied to (61), and operat-

ing under the assumption that the limits exist (until reaching expressions guaranteeing their
existence),

β̇t̄ = −
{

lim
δ↓0

1
2δ

[
I + β̂2δ(αt̄−δ + γ̂2δ)

−1
]}
βt̄

= −
{

lim
δ↓0

1
2δ

[
(αt̄−δ + γ̂2δ + β̂2δ)(αt̄−δ + γ̂2δ)

−1
]}
βt̄,
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which by the continuity assumption and (67),

= −
{[
αt̄ + lim

δ↓0
(γ̂2δ + β̂2δ)

][
M−1 + C−1Ω−t̄C

−1
]}
βt̄, (69)

Now, by (53)–(55),

lim
δ↓0

(γ̂2δ + β̂2δ) = lim
δ↓0

[
R̂2δ − (Q̂′2δ + C)(P̂2δ − C)−1Q̂2δ

]
,

which by (41) and (66),

= C +
[

lim
δ↓0

1
2δ (Q̂′2δ + C)

][
lim
δ↓0

1
2δ (P̂2δ − C)

]−1
C

= C −
[

lim
δ↓0

1
2δ (Q̂′2δ + C)

][
CM−1C + Ω−t̄

]−1
C. (70)

Using (41) again,

lim
δ↓0

1
2δ (Q̂′2δ + C) =

˙̂
Q0 = CM−1C. (71)

Substituting (71) into (70), we have

lim
δ↓0

(γ̂2δ + β̂2δ) = C − CM−1C
(
CM−1C + Ω−t̄

)−1
C. (72)

Substituting (72) into (69) yields

β̇t̄ = −
{[
αt̄ + C − CM−1C

(
CM−1C + Ω−t̄

)−1
C
][
M−1 + C−1Ω−t̄C

−1
]}
βt̄

= −αt̄
(
M−1 + C−1Ω−t̄C

−1
)
βt̄ − Ω−t̄C

−1βt̄, (73)

which is (64).
Lastly, we turn to the first assertion. From (60), and again operating under the assumption

that the limits exist (until reaching expressions guaranteeing their existence),

α̇t̄ =
{

lim
δ↓0

1
2δ

[
(α̂2δ − αt̄−δ)(β̂′2δ)−1(αt̄−δ + γ̂2δ)− β̂2δ

]}[
lim
δ↓0

1
2δ (αt̄−δ + γ̂2δ)

−1
][

lim
δ↓0

2δβ̂′2δ
]
.

(74)

By (54),

lim
δ↓0

2δβ̂2δ = −C
[

lim
δ↓0

1
2δ (P̂2δ − C)

]−1
lim
δ↓0

Q̂2δ,

which by (41) and (66),

= −C(CM−1C + Ω−t̄)
−1C = −(M−1 + C−1Ω−t̄C

−1)−1. (75)

Substituting (67) and (75) into (74), we have

α̇t̄ = −
{

lim
δ↓0

1
2δ

[
(α̂2δ − αt̄−δ)(β̂′2δ)−1(αt̄−δ + γ̂2δ)− β̂2δ

]}
,

which upon expanding and applying (75) again,

= −αt̄(M−1 + C−1Ω−t̄C
−1)αt̄ + lim

δ↓0
1
2δ

[
αt̄−δ(β̂

′
2δ)
−1γ̂2δ − α̂2δ(β̂

′
2δ)
−1αt̄−δ

]
+ lim

δ↓0
1
2δ

[
β̂2δ − α̂2δ(β̂

′
2δ)
−1γ̂2δ

]
. (76)
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Applying (53)–(55) to terms in the first limit in (76), we have

lim
δ↓0

1
2δ

[
αt̄−δ(β̂

′
2δ)
−1γ̂2δ − α̂2δ(β̂

′
2δ)
−1αt̄−δ

]
= αt̄C

−1 lim
δ↓0

[
1
2δ (P̂2δ − C)

]
+ lim

δ↓0
1
2δ

[
αt̄−δC

−1Q̂2δ − P̂2δ(Q̂
′
2δ)
−1αt̄−δ

]
,

which by (66),

= −αt̄C−1(CM−1C + Ω−t̄) + lim
δ↓0

1
2δ

[
αt̄−δC

−1Q̂2δ − P̂2δ(Q̂
′
2δ)
−1αt̄−δ

]
. (77)

However, note that limδ↓0
[
αt̄−δC

−1Q̂2δ − P̂2δ(Q̂
′
2δ)
−1αt̄−δ

]
= 0, and consequently,

lim
δ↓0

1
2δ

[
αt̄−δC

−1Q̂2δ − P̂2δ(Q̂
′
2δ)
−1αt̄−δ

]
= lim

δ↓0
1
2δ

[
αt̄−δC

−1Q̂2δ − P̂2δ(Q̂
′
2δ)
−1αt̄−δ −

(
αt̄C

−1Q̂0 − P̂0(Q̂′0)−1αt̄
)]

=
d

dr

[
αt̄−r/2C

−1Q̂r − P̂r(Q̂′r)−1αt̄−r/2
]∣∣∣
r=0

= αt̄C
−1 ˙̂
Q0 +

˙̂
P0C

−1αt̄ +
˙̂
Q′0C

−1αt̄,

which by (41)–(42),

= αt̄M−1C − (CM−1C + Ω−t̄)C
−1αt̄ + CM−1αt̄. (78)

Combining (77) and (78) yields

lim
δ↓0

1
2δ

[
αt̄−δ(β̂

′
2δ)
−1γ̂2δ − α̂2δ(β̂

′
2δ)
−1αt̄−δ

]
= −αt̄C−1(CM−1C + Ω−t̄) + αt̄M−1C − (CM−1C + Ω−t̄)C

−1αt̄ + CM−1αt̄. (79)

Now we turn to the second limit in (76). Note that by (53)–(55),

β̂2δ − α̂2δ(β̂
′
2δ)
−1γ̂2δ = Q̂2δ − P̂2δ(Q̂

′
2δ)
−1R̂2δ → 0, as δ ↓ 0.

Consequently,

lim
δ↓0

1
2δ

[
β̂2δ − α̂2δ(β̂

′
2δ)
−1γ̂2δ

]
= d

dr

[
Q̂r − P̂r(Q̂′r)−1R̂r

]∣∣∣
r=0

=
˙̂
Q0 − ˙̂

P0(Q̂′0)−1R̂0 + P̂0(Q̂′0)−1 ˙̂
Q′0(Q̂′0)−1R̂0 − P̂0(Q̂′0)−1 ˙̂

R0,

which by (41)–(43),

= −(CM−1C + Ω−t̄) + CM−1C = −Ω−t̄. (80)

Substituting (79) and (80) into (76), we obtain

α̇t̄ = −αt̄(M−1 + C−1Ω−t̄C
−1)αt̄ − αt̄C−1Ω−t̄ − Ω−t̄C

−1αt̄ − Ω−t̄.

19



5.3 Propagation Example

Even simple stationary-action problems tend to exhibit finite escape times. The classical
mass-spring problem with mass, m, and spring-constant, K, is an example. As noted in [17,
19, 20], the stationary-value, with terminal payoff ψ∞, is easily calculated to be W∞(t, x, z) =
c1[cot(ω̄t)(x2 +z2)−cosec(ω̄t)xz] where c1 =

√
Km and ω̄ =

√
K/m, which has finite escape

times, t, satisfying ω̄t = k̄π, k̄ ∈ IN . Examples with time-dependent Ω· and ω· in the
potential-energy term can be found in [20, 21].

To indicate the usage of stat-quad duality as a means for propagation of such solutions,
we consider the simple example given by T (v) = 1

2 |v|
2 for v ∈ IR2 and

−V (r, x) = −1
2x
′Ωx = −1

2

(
x1

x2

)′(
4 1
1 2

)(
x1

x2

)
.

In this case, W c(t, x, z) = 1
2x
′Ptx − x′Qtz + 1

2z
′Rtz, where, taking c = 100 in this example,

P0 = −Q0 = R0 = cI = 100I, and

Ṗ = −P 2
t − Ω, Q̇t = −PtQt, Ṙt = −Q′tQt. (81)

Fixing dualizing matrix, C ∈ S>0
n , which in this example is taken to be C = 2I, the stat-quad

dual coefficients satisfy

α̇t = −αtK̃αt − αtC−1Ω− ΩC−1αt − Ω, (82)

β̇t = −αtK̃βt − ΩC−1βt, γ̇t = −β′tK̃βt, (83)

where K̃
.
= I + C−1ΩC−1. Noting the Bernoulli substitution form (cf. [14]) for the DREs

generating P,Q,R, which is a double-dimension linear system, the solutions for P,Q,R will
be periodic. (It is worthwhile mentioning that the Benoulli substitution and symplectic
semigroup approach can be used to obtain other means for longterm propagation of solutions
to DREs, cf. [15].) Given the algebraic expressions for the coefficients of the stat-quad dual
from Lemma 20, the escape times for the DREs generating α, β, γ will be periodic as well.
Let the escape times for P,Q,R be {t̃k}∞k=1 and those for α, β, γ be {t̂k}∞k=1. Suppose we

wish to compute the solution on [0, T̂ ]. We suppose that there do not exist finite escape
times that are common to both the primal and dual space quantities (i.e., there do not exist
kP , kα such that t̃kP = t̂kα ∈ (0, T̂ )). In this case, we may propagate by (42)–(43) ((81) in the
example) away from the t̃k, and by (63)–(65) ((82)–(83) in the example) in neighborhoods
around the t̃k. One may transform back and forth between the original and dual coefficients
via the equations of Lemma 20. Representative components of the solutions for this example,
computed using this method, appear in Figures 1 and 2. The figures are intended to give a
sense of the ability to propagate across escape times.
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[2] C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First
Order, (Trans. R.B. Dean and J.J. Brandstatter), Holden-Day, San Francisco, 1965.

20



Figure 1: Three distinct components of Pt. Figure 2: Three distinct components of αt.

[3] P.M. Dower and W.M. McEneaney, “Representation of fundamental solution groups for
wave equations via stationary action and optimal control”, Proc. 2017 American Control
Conference, 2017, 2510–2515.

[4] P.M. Dower and W.M. McEneaney, “Solving two-point boundary value problems for
a wave equation via the principle of stationary action and optimal control”, SIAM J.
Control and Optim., 55 (2017), 2151–2205.

[5] P.M. Dower, W.M. McEneaney, “On existence and uniqueness of stationary action tra-
jectories”, Proc. 22nd Math. Theory Networks and Systems (2016), 624–631.

[6] I. Ekeland, “Legendre duality in nonconvex optimization and calculus of variations”,
SIAM J. Control and Optim., 15 (1977), 905–934.

[7] R.P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. of
Mod. Phys., 20 (1948) 367–387.

[8] R.P. Feynman, The Feynman Lects. on Physics, Vol. 2, Basic Books, (1964) 19-1–19-14.

[9] W.H. Fleming and W.M. McEneaney, “A max-plus based algorithm for an HJB equation
of nonlinear filtering”, SIAM J. Control and Optim., 38 (2000), 683–710.

[10] C.G. Gray and E.F. Taylor, “When action is not least”, Am. J. Phys. 75, (2007), 434–
458.

[11] W.R. Hamilton, “On a general method in dynamics”, Philosophical Trans. of the Royal
Soc., Part I (1835), 95–144; Part II (1834), 247–308.

[12] S.H. Han and W.M. McEneaney, “The principle of least action and a two-point
boundary value problem in orbital mechanics”, Applied Math. and Optim., (2016).
doi:10.1007/s00245-016-9369-x (“Online first”).

21



[13] M.R. James, “Nonlinear semigroups for partially observed risk-sensitive control and min-
max games”, Stochastic Analysis, Control, Optimization and Applications: A Volume
in Honor of W.H. Fleming, W.M. McEneaney, G. Yin and Q. Zhang, eds., Birkhauser,
(1999), 57–74.

[14] C.S. Kenney and R.B. Leipnik, “Numerical integration of the differential matrix Riccati
equation”, IEEE Trans. Auto. Control, 30 (1985), pp. 962–970.

[15] J. Lawson and Y. Lim, “The symplectic semigroup and Riccati differential equations”,
J. Dynamical and Control Systems, 12 (2006), 49–77.

[16] W.M. McEneaney, “A Stochastic Control Verification Theorem for the Dequantized
Schrödinger Equation Not Requiring a Duration Restriction”, Appl. Math. and Optim.
(to appear).

[17] W.M. McEneaney and P.M. Dower, “Staticization, its dynamic program and solution
propagation”, Automatica, 81 (2017), 56–67.

[18] W.M. McEneaney, “A Stationary-Action Control Representation for the Dequantized
Schrödinger Equation”, Proc. 22nd Math. Theory Networks and Systems (2016), 305–
310.

[19] W.M. McEneaney and P.M. Dower, “Staticization and associated Hamilton-Jacobi and
Riccati equations”, Proc. SIAM Conf. on Control and its Applics. (2015), 376–383.

[20] W.M. McEneaney and P.M. Dower, “The principle of least action and fundamental
solutions of mass-spring and n-body two-point boundary value problems”, SIAM J.
Control and Optim., 53 (2015), 2898–2933.

[21] W.M. McEneaney and P.M. Dower, “The principle of least action and solution of two-
point boundary value problems on a limited time horizon”, Proc. SIAM Conf. on Control
and Its Applics., (2013), 199–206.

[22] W.M. McEneaney, Max-Plus Methods for Nonlinear Control and Estimation, Birkhau-
ser, Boston, 2006.

[23] T. Padmanabhan, Gravitation: Foundations and Frontiers, Camb. Univ. Press, 2010.

[24] U. Passy and S. Yutav, “Pseudo duality in mathematical programming: Unconstrained
problems and problems with equality constraints”, Math. Programming, 18 (1980), 248–
273.

[25] R. Piene, “Polar Varieties Revisited”, Computer Algebra and Polynomials, J. Gutierrez;
J. Schicho & M. Weimann (eds.), Springer LNCS 8942 (2015), 139–150.

[26] W. Rindler, Introduction to Special Relativity, Oxford Sci. Pubs., Sec. Ed., 1991.

[27] R.T. Rockafellar and R.J. Wets, Variational Analysis, Springer-Verlag, New York, 1997.

22



6 Appendix: Proof of Theorem 2

Proof: Let u∗v
.
= [Dφ]−1(v) for all v ∈ B. Noting that this implies u∗v = argstatu∈A[φ(u) −

〈v, u〉], we have

a(v)
.
= stat

u∈A
[φ(u)− 〈v, u〉] = φ(u∗v)− 〈v, u∗v〉 ∀ v ∈ B. (84)

By assumption and the definition of u∗v,

Dvu
∗
v = Dv

{
[Dφ]−1(v)

}
exists ∀v ∈ B. (85)

Fix u ∈ A. Suppose v̄
.
= Dφ(u) ∈ B, and note that this implies

u∗v̄ = u. (86)

By (84), (85) and the assumptions, for any v ∈ B,

Dv[a(v) + 〈v, u〉] = Dv[φ(u∗v)− 〈v, u∗v〉+ 〈v, u〉] = [Dvu
∗
v](Dφ(u∗v)− v) + u− u∗v,

which by the definition of u∗v,

= u− u∗v. (87)

By (86) and (87), v̄ ∈ argstatv∈B[a(v) + 〈v, u〉], which implies

argstat
v∈B

[a(v) + 〈v, u〉] 6= ∅, and u− u∗ṽ = 0 ∀ṽ ∈ argstat
v∈B

[a(v) + 〈v, u〉]. (88)

Noting that (87) implies existence, and then applying (84) and then (88), yields

stats
v∈B

[a(v) + 〈v, u〉] =
{
a(ṽ) + 〈ṽ, u〉

∣∣ ṽ ∈ argstat
v∈B

[a(v) + 〈v, u〉]
}

=
{
φ(u∗ṽ)− 〈ṽ, u∗ṽ〉+ 〈ṽ, u〉

∣∣ ṽ ∈ argstat
v∈B

[a(v) + 〈v, u〉]
}

=
{
φ(u)

∣∣ ṽ ∈ argstat
v∈B

[a(v) + 〈v, u〉]
}

= φ(u).
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