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Abstract

The matrix differential Riccati equation (DRE) is ubiquitous in control and systems
theory. The presence of the quadratic term implies that a simple linear-systems
fundamental solution does not exist. Of course it is well-known that the Bernoulli
substitution may be applied to obtain a linear system of doubled size. Here how-
ever, tools from max-plus analysis and semiconvex duality are brought to bear on
the DRE. We consider the DRE as a finite-dimensional solution to a deterministic
linear/quadratic control problem. Taking the semiconvex dual of the associated
semigroup, one obtains the solution operator as a max-plus integral operator with
quadratic kernel. The kernel is equivalently represented as a matrix. Using the
semigroup property of the dual operator, one obtains a matrix operation whereby
the kernel matrix propagates as a semigroup. The propagation forward is through
some simple matrix operations. This time-indexed family of matrices forms a new
fundamental solution for the DRE. Solution for any initial condition is obtained
by a few matrix operations on the fundamental solution and the initial condition.
In analogy with standard-algebra linear systems, the fundamental solution can be
viewed as an exponential form over a certain idempotent semiring. This funda-
mental solution has a particularly nice control interpretation, and might lead to
improved DRE solution speeds.
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1 Introduction

In recent years, max-plus analysis and semiconvexity/semiconcavity-based methods have
expanded greatly, finding wide application in control (c.f., [3], [5], [11], [13], [17], [14]).
Much of the work on applications of max-plus analysis in control has focused on discrete-
event systems. However, there were recent breakthroughs in the solution of Hamilton-
Jacobi-Bellman (HJB) PDEs (c.f., [1], [2], [10], [17], [18], [21]). Now, surprisingly, we see
that this theory is yielding a fundamental new result in the area of Riccati equations.

The matrix differential Riccati equation (DRE) is ubiquitous in control and systems
theory. We consider time-invariant DREs of the form

Ṗt = F (Pt)
.
= A′Pt + PtA + C + PtΣPt (1)

where C is symmetric and Σ = σσ′ is symmetric, nonnegative definite with at least one
positive eigenvalue. (The non-positive definite case is equivalent.) Throughout, we assume
that all of the matrices are n×n. We suppose one has initial condition, P0 = p0 where p0

is also symmetric. This DRE has an interpretation as the matrix defining a control value
function. Numerous numerical methods have been used to solve such problems, including
direct Runge-Kutta methods, the Chandrasekhar decomposition approach, and variations
of the Davison-Maki approach (c.f., [12]). The Daivson-Maki approach uses the Bernoulli
substitution to create a linear system of two matrices, each of the same size as Pt. We
denote these matrices as V 1

t and V 2
t . The linear system is
(
V̇ 1
t

V̇ 2
t

)
= A

(
V 1
t

V 2
t

)

where A = A(A,C,Σ) is 2n× 2n. The solution of the DRE is recovered by letting

Pt = V 2
t (V 1

t )−1, (2)

where in particular, one uses initial conditions V 1
0 = I, V 2

0 = p0. So, one obtains the so-
lution of the Riccati equation from fundamental solution exp(At). That is, Pt is obtained
from (2) where (

V 1
t

V 2
t

)
= exp(At)

(
I
p0

)
.

Although the Davison-Maki approach is quite nice, we will obtain another funda-
mental solution, and this fundamental solution has a particularly clear control-theoretic
motivation. This new approach will also generate a 2n × 2n object as the fundamental
solution. In this approach, the matrix object is separated into four blocks, and the opera-
tions are actually more naturally viewed as operations on the four n×n blocks, which are
not obviously equivalent to simple operations on the overall matrix. The new approach
will be constructed through a finite-dimensional semigroup defined by this fundamental
solution. The forward propagation of the fundamental solution is naturally defined by
this operation with the semigroup property.

2



We now give some sense of the tools which will be applied in the technical development.
First, we will consider linear/quadratic control problems parameterized by z ∈ IRn, and
the value functions associated with these control problems take the form

V z(t, x) = 1
2
(x− Λtz)

′Pt(x− Λtz) + rt.

We note that V z(t + τ, x) = Sτ [V
z(t, ·)](x) where Sτ is a max-plus linear semigroup.

Semiconvex duality, introduced in [10], [17], is a small perturbation of convex duality.
However, semiconvexity is a typical property for value functions [5], [17]. Further, the
space of semiconvex functions is a max-plus vector space [17], [10], [3], [6], [15]. Working
in the semiconvex-dual space, Sτ has a semiconvex-dual operator, Bτ which takes the form
of a max-plus integral operator with kernel, Bτ = Bτ (x, y), taking the form of a quadratic
function. The matrix, βτ , defining this quadratic kernel function will be the fundamental
solution of the DRE. We will define a multiplication operation (⊛-multiplication) with
the semigroup property, specifically

βt+τ = βt ⊛ βτ

where the ⊛ operation involves inverse, multiplication and addition n× n-matrix opera-
tions (in the standard algebra). The definition of ⊛ appears just below (28). We will also
define an exponentiation operation (⊛-exponentiation) such that βt = β⊛t

1 . The solution
of (1) will be obtained by

Pt = D−1
ψ βtDψp0

where the Dψ and D−1
ψ operators are descended from the semiconvex dual and its inverse.

These operations are also implemented through some n × n (standard algebra) matrix
operations. It is important to note that the fundamental solution approach has the
benefit that one only solves once for βt, even if one wishes to solve the DRE for a variety
of initial conditions.

Although the fundamental solution is of theoretical interest, it can also be useful
in numerical solution of differential equations. For example, in [12], the Davison-Maki
fundamental solution is used in two numerical methods which are investigated there for
numerical speed. There are many issues to be considered in construction of numerical
methods, and these are beyond the scope of this paper. Nevertheless, we do indicate
some initial steps in the direction of computational solution of DREs using the new
fundamental solution.

In summary, the structure of the paper is as follows. First, we obtain the solution of the
DRE for a particular initial condition in terms of the fundamental solution and the initial
condition (Theorems 3.3 and 3.5). Next, we show how the fundamental solution may be
obtained from an arbitrarily small segment of a particular solution of the DRE (Theorem
4.7). Next we develop a natural exponential representation of the fundamental solution,
and briefly discuss an associated semiring (Sections 5 and 6). Lastly, an exponential-
order numerical method based on the fundamental solution is developed and applied in
an example.
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2 The linear-quadratic control problem

As indicated above, the fundamental solution to the DRE will be obtained through an
associated optimal control problem. Recall that we are considering the DRE given by
(1). Since we will be employing semiconvex duality (see below and [10, 17, 18]), we will
choose some (duality-parametrizing) symmetric matrix, Q, such that

F (Q) > 0, (3)

where we note that, for any square matrix D, we will use the notation D > 0 to indicate
that matrix D is positive definite throughout. We will need to consider the specific
solution of DRE (1) with initial condition

P̃0 = Q. (4)

We assume:

There exists a solution of DRE (1), P̃t, with initial condition (4), satisfying

P̃t > Q (i.e., P̃t − Q positive-definite) for t ∈ (0, T ) with T > 0, and we
note specifically, that we may have T = +∞.

(A.e)

This is the last assumption until Section 7, where numerical methods are discussed.

We will be obtaining the fundamental solution βt for solutions with initial conditions,
P0 = p0 > Q. Note that we do not assume stability of the DRE, and finite-time blow-up
is possible. We will let

T̃ = T̃ (p0) = sup{t ≥ 0 | Pt exists, and Pt > Q}, (5)

and we let
T̂ = T̂ (p0)

.
= T ∧ T̃ (6)

where ∧ indicates the minimum operation.

Remark 2.1 Note that with Σ > 0, we may take Q = −kI for arbitrarily large k, so
that one can ensure (3) will hold for such Q (as well as for any p0 > Q).

We will be using a control value function to motivate and develop the fundamental
solution. Consider the Hamilton-Jacobi-Bellman partial differential equation (HJB PDE)
problems on [0, T ) × IRn, indexed by z ∈ IRn, given by

V z
t = H(x,∇V z) (7)

V z(0, x) = ψ(z, x) (8)

where ∇ indicates the gradient with respect to x, and
H(x, p) = (Ax)′p+ 1

2
x′Cx+ 1

2
p′Σp (9)

ψ(x, z) = 1
2
(x− z)′Q(x− z). (10)
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Theorem 2.2 For any z ∈ IRn, there exists a solution to (7),(8) in C∞((0, T ) × IRn) ∩
C([0, T ) × IRn), and this is given by

V z = 1
2
(x− Λtz)

′P̃t(x− Λtz) + z′Rtz (11)

where P̃ satisfies (1),(4), and Λ, r satisfy Λ0 = I, R0 = 0,

Λ̇ = −
[
P̃−1C + A

]
Λ and Ṙ = Λ′CΛ. (12)

The proof is immediate by substitution into (1),(4). Next we need a verification
theorem in order to connect the HJB PDE to the control value function and semigroup.
For any z ∈ IRn, let

W z(−t, x)
.
= V z(t, x) ∀ (t, x) ∈ [0, T ) × IRn, (13)

Note that W z(0, x) = ψ(z, x) and W z
r = −H(r,∇W z) on (−T , 0) × IRn. For x, z ∈ IRn,

r ∈ (−T , 0] and w ∈ L2(r, 0), let

Jz(r, x, w)
.
=

∫ 0

r

1
2
ξ′ρCξρ −

1
2
|wρ|

2 dρ+ ψ(z, ξ0) (14)

where ξ satisfies
ξ̇ρ = Aξρ + σwρ (15)

ξr = x. (16)

The optimal control problem value function is defined to be

W
z
(r, x) = sup

w∈L2(r,0)

Jz(r, x, w) (17)

for all x, z ∈ IRn and r ∈ (−T , 0]. By standard methods, one obtains the following
verification theorem.

Theorem 2.3 Let x, z ∈ IRn and r ∈ (−T , 0]. One has

W z(r, x) ≥ Jz(r, x, w) ∀w ∈ L2(r, 0)

and
W z(r, x) = Jz(r, x, w̃)

where w̃ρ = w̄(ρ, ξρ)
.
= σ′∇W z(ρ, ξρ) = σ′P̃−ρ(ξρ − Λ−ρz), which implies W

z
= W z.

Proof. For completeness, we include a sketch of the proof. Let w ∈ L2(r, 0).

Jz(r, x, w) =

∫ 0

r

1
2
ξ′ρCξρ −

1
2
|wρ|

2 + (Aξρ + σw)′∇W z(ρ, ξρ) dρ+ ψ(z, ξ0)

−

∫ 0

r

(Aξρ + σw)′∇W z(ρ, ξρ) dρ

which by definition of H ,
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≤

∫ 0

r

H(ξρ,∇W
z(ρ, ξρ)) dρ+ ψ(z, ξ0) −

∫ 0

r

(Aξρ + σw)′∇W z(ρ, ξρ) dρ

which by (7), (13) and (15),

=

∫ 0

r

−W z
ρ (ρ, ξρ) − ξ̇′ρ∇W

z(ρ, ξρ) dρ+ ψ(z, ξ0)

= −

∫ 0

r

d

dρ
[W z(ρ, ξρ)] dρ+ ψ(z, ξ0)

= W z(r, x) −W z(0, ξ0) + ψ(z, ξ0) = W z(r, z).

The second assertion follows by the choice of w̄ and a similar argument.

For φ : IRn → IR given by φ(x) = 1
2
(x − z)′p0(x − z) (and actually for a much larger

set of functions), we define the semigroup, Sτ , by

Sτ [φ](x) = V z(τ, x) (18)

= 1
2
(x− Λτz)

′P̃τ (x− Λτz) + z′Rτz (19)

where Λ0 = I and R0 = 0. Recall that Sτ is a max-plus linear operator. (This is discussed
in more detail in [10, 16, 17], among others.)

3 Solution via the semiconvex dual semigroup

We let ⊕,⊗ denote the max-plus addition and multiplication operations. We say that
φ : IRn → IR− .

= IR∪ {−∞} is semiconvex if given R <∞, there exists finite, symmetric
CR > 0 such that φ(x)+1

2
x′CRx is convex onBR(0). We say that φ is uniformly semiconvex

with (symmetric matrix) constant K if φ(x) + 1
2
x′Kx is convex on IRn, and we denote

this space as SK(IRn). Recall that SK(IRn) is a max-plus vector space (c.f., [17]).

Semiconvex duality is parameterized by quadratic functions. We will use the quadratic
ψ given in (10) to define our semiconvex duality. The main duality result (c.f., [17], [10],
where proofs may be found) is

Theorem 3.1 Let φ ∈ SK(IRn) where −K > Q. Then, for all x ∈ IRn,

φ(x) = max
z∈IRn

[ψ(x, z) + a(z)]

.
=

∫ ⊕

IRn

ψ(x, z) ⊗ a(z) dz
.
= ψ(x, ·) ⊙ a(·)

.
= D−1

ψ [a] (20)

where for all z ∈ IRn

a(z) = − max
x∈IRn

[ψ(x, z) − φ(x)]

= −

∫ ⊕

IRn

ψ(x, z) ⊗ [−φ(x)] dx = −{ψ(·, z) ⊙ [−φ(·)]} (21)

which using the notation of [6]
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=
{
ψ(·, z) ⊙ [φ−(·)]

}− .
= Dψ[φ]. (22)

Recall that P̃t > Q for all t ∈ (0, T ), and consequently, for any t ∈ (0, T ), there exists

Kt such that P̃t > −Kt > Q (i.e., such that P̃t + Kt > 0 and −Q − Kt > 0), and such
that (noting (19))

St[ψ(·, z)](·) ∈ SKt ∀ z ∈ IRn.

Therefore, by Theorem 3.1, for all t ∈ (0, T ) and all x, z ∈ IRn

St[ψ(·, z)](x) =

∫ ⊕

IRn

ψ(x, y) ⊗Bt(y, z) dy = ψ(x, ·) ⊙ Bt(·, z) (23)

where for all y ∈ IRn

Bt(y, z) = −

∫ ⊕

IRn

ψ(x, y) ⊗ {−St[ψ(·, z)](x)} dx = {ψ(·, y) ⊙ [St[ψ(·, z)](·)]−}−. (24)

Lemma 3.2 There exists symmetric dt < −Q such that Bt(y, z) −
1
2
y′dty is strictly con-

cave for all z ∈ IRn.

Proof. Note that since P̃t > Q, there exists δt > 0 such that St[ψ(·, z)](x) ∈
S−(Q+δt) (as a function of x) for any z ∈ IRn. The proof then follows from [17], Theorem
7.12.

In analogy to the spaces of uniformly semiconvex functions, we say that φ : IRn →
IR+ .

= IR∪{+∞} is uniformly semiconcave with (symmetric matrix) constant d if φ(x)−
1
2
x′dx is concave on IRn, and we denote this space as Sd−(IRn). We define the time-indexed

max-plus linear operators Bt by

Bt[a](z)
.
= Bt(·, z) ⊙ a(·) =

∫ ⊕

IRn

Bt(y, z) ⊗ a(y) dy. (25)

In Section 4, we will see that the Bt satisfy the semigroup property. (Below, we will also
see that we may use a space of uniformly semiconcave functions as the domain.) We say
that Bt is the kernel of max-plus integral operator Bt.

Theorem 3.3 Let φ(x)
.
= 1

2
x′p0x and a(z) = Dψ[φ]. Then, for t ∈ (0, T̂ ),

St[φ](x) = ψ(x, ·) ⊙ Bt[a](·) = D−1
ψ Bt[a](x) = D−1

ψ BtDψ[φ](x) (26)

for all x ∈ IRn.

Proof. By assumption, St[φ] ∈ SKt with Q < −Kt. The proof then follows by the
proof of Proposition 7.17 in [17].
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Now, note that by (19) and (24),

Bt(y, z) = − max
x∈IRn

{
1
2
(x− y)′Q(x− y) −

[
1
2
(x− Λtz)

′P̃t(x− Λz) + 1
2
z′Rtz

]}
(27)

where t < T guarantees strict concavity of the argument of the maximum. Note also, that
Bt(x, y) is a quadratic function; this supports the above assertion regarding the domain
of Bt.

Prior to computing Bt from (27), we introduce the ⊛-multiplication operation and a
result regarding a more general version of (27), which we will use later as well. Let η and
α be 2n× 2n matrices with n× n block structure denoted as

η =

[
η1,1 η1,2

η1,2′ η2,2

]
and α =

[
α1,1 α1,2

α1,2′ α2,2

]
. (28)

We define the ⊛ multiplication operation by

η ⊛ α =

[
γ1,1 γ1,2

γ1,2′ γ2,2

]

where

γ1,1 = η1,1 − η1,2S−1η1,2′,

γ1,2 = −η1,2S−1α1,2,

γ2,1 = γ1,2′,

γ2,2 = α2,2 − α1,2′S−1α1,2,

and S
.
= η2,2 + α1,1.

Lemma 3.4 Let η and α be 2n× 2n matrices with block structure given in (28). Let

F (x, y)
.
= max

z∈IRn

{
1
2

(
x
z

)′

η

(
x
z

)
+ 1

2

(
z
y

)′

α

(
z
y

)}
.

Then,

F (x, y) = 1
2

(
x
y

)′

γ

(
x
y

)

where γ = η ⊛ α.

Combining (27) and Lemma 3.4, one obtains the following.

Theorem 3.5

Bt(x, y) = 1
2

(
x
y

)′

βt

(
x
y

)
(29)
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where βt has the same block structure as η above, and in particular,

β1,1
t = Q∆−1

t Q−Q = Q∆−1
t P̃t,

β1,2
t = −P̃t∆

−1
t QΛt = −Q∆−1

t P̃tΛt,

β2,1
t = β1,2

t

′
,

β2,2
t = Λ′

tP̃tΛt +Rt + Λ′
tP̃t∆

−1
t P̃tΛt = Rt + Λ′

tQ∆−1
t P̃tΛt,

(30)

and ∆t
.
= Q− P̃t.

4 The DRE fundamental solution semigroup

Now we will use the semigroup nature of the St operators to obtain the semigroup nature
of the Bt operators, and consequently the propagation of the Bt and βt. The propagation
of βt = (β1)

⊛t will be the dynamics of the fundamental solution of the DRE.

The next two lemmas are straightforward, and proofs are not included. The first is a
statement about continuity of solutions with respect to initial conditions.

Lemma 4.1 Let Pt satisfy (1) with initial condition P0 = p0. In the case where T <∞,

given ε > 0, there exists δ > 0 such that |p0 − Q| < δ implies T̂ > T − ε. In the case

where T = +∞, given M <∞, there exists δ > 0 such that |p0 −Q| < δ implies T̂ > M .

Lemma 4.2 Let a(z) = 1
2
(z − z)′qa(z − z) + ra with qa < −Q, and let φ = D−1

ψ a. Then,

φ(x) = 1
2
(x− z)′

[
QU−1qa

]
(x− z) + ra (31)

where U = Q+ qa. Alternatively, let φ(x) = 1
2
(x− x)′qp(x− x) + rp with qp > Q, and let

a = Dψφ. Then,
a(z) = 1

2
(z − x)′

[
Q∆−1qp

]
(z − x) + rp (32)

where ∆ = Q− qp.

Based on this lemma, it is natural to make the following definitions, which inherit
notation from Dψ and D−1

ψ . For symmetric qp > Q, define Dψ[qp]
.
= Q(Q − qp)

−1qp, and

for symmetric qa < −Q, define D−1
ψ [qa] = Q(Q+ qa)

−1qa.

Lemma 4.3 Let a(z) = 1
2
(z − z)′qa(z − z) + ra with qa < −kI. Then, D−1

ψ [qa] → Q as

k → ∞ (i.e., given δ > 0, there exists k̄ <∞ such that k > k̄ implies |D−1
ψ [qa]−Q| < ε).
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Proof. The proof is a straightforward application of linear algebra, and so only the
main steps are included. Note that

(Q+ qa)
−1 = (I + q−1

a Q)−1q−1
a =

[
∞∑

j=0

(−1)j(q−1
a Q)j

]
q−1
a .

Consequently,

Q(Q+ qa)
−1qa = Q+Q

∞∑

j=1

(−1)j(q−1
a Q)j .

This implies, where the | · | notation indicates induced norm, that

|Q−Q(Q+ qa)
−1qa| ≤ |Q|

∞∑

j=1

|(q−1
a Q)j |

≤ |Q|
∞∑

j=1

(|Q| |q−1
a |)j ≤

|Q|2|q−1
a |

1 + |Q||q−1
a |

.

It will be handy to define the following informal closeness notion. For T = +∞ and
t ∈ (0,∞), let µ(t, T ) = 1/t, and for T, t ∈ (0,∞), let µ(t, T ) = |T − t|. We now obtain
a partial semigroup property for the Bt operators. It is likely the operator-domain over
which this is obtained can be expanded, but that is not required for attainment of our
goals here.

Lemma 4.4 Given ε > 0 and Tε ∈ (0, T ) such that µ(Tε, T ) < ε, there exists kε < ∞
such that for all a ∈ S−kεI

− ,
Bt1+t2 [a] = Bt1Bt2 [a],

and equivalently,

Bt1+t2(ζ, ·) ⊙ a(·) =

[∫ ⊕

IRn

Bt1(ζ, z) ⊗ Bt2(z, ·) dz

]
⊙ a(·) ∀ ζ ∈ IRn

for all t1, t2 ≥ 0 such that t1 + t2 < Tε.

Proof. Given such ε, Tε, Lemma 4.1 implies that there exists δ > 0 such that if
|p0 −Q| < δ, then with T̂ given by (6), T̂ > Tε.

By Lemma 4.3, there exists kε < ∞ such that for q̃a < −Q, q̃a < −kεI, one has
|D−1

ψ q̃a − Q| < δ, and so T̂ > Tε (with p0 = D−1
ψ q̃a). On the other hand, a ∈ S−kεI

−

(with specific constants given by a(z) = 1
2
(z − z)′qa(z − z) + ra) implies that qa < −kεI.

Also, for kε sufficiently large, a ∈ S−kεI
− implies qa < −Q. Combining these, one sees that

a ∈ S−kεI
− for kε sufficiently large implies T̂ > Tε (with p0 = D−1

ψ q̃a).
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Let t1, t2 > 0 with t1 + t2 < T̂ . Let a ∈ S−kεI
− and φ = D−1

ψ a. By the semigroup
property of St,

St1+t2 [φ](x) = St1St2 [φ] (33)

where existence is guaranteed by the above.

Note that

St1+t2 [φ](x) = St1+t2

[∫ ⊕

IRn

ψ(·, y)⊗ a(y) dy

]
(x)

which by max-plus linearity (where the supremum interchange is less problematic than
the standard-algebra integral intechange due to less measurability issues)

=

∫ ⊕

IRn

St1+t2 [ψ(·, y)](x) ⊗ (y) dy

which by (23)

=

∫ ⊕

IRn

∫ ⊕

IRn

ψ(x, z) ⊗Bt1+t2(z, y) dz ⊗ a(y) dy

=

∫ ⊕

IRn

ψ(x, z) ⊗

∫ ⊕

IRn

Bt1+t2(z, y) ⊗ a(y) dz dy

=

∫ ⊕

IRn

ψ(x, z) ⊗

[∫ ⊕

IRn

Bt1+t2(z, y) ⊗ a(y) dy

]
dz (34)

=

∫ ⊕

IRn

ψ(x, z) ⊗ Bt1+t2 [a](z) dz. (35)

Also,

St1St2 [φ](x) = St1St2

[∫ ⊕

IRn

ψ(·, y) ⊗ a(y) dy

]
(x)

which by max-plus linearity

=

∫ ⊕

IRn

St1St2 [ψ(·, y)](x) ⊗ a(y) dy. (36)

However, by (23),

St2 [ψ(·, y)](x) =

∫ ⊕

IRn

ψ(x, z) ⊗Bt2(z, y) dz. (37)

Combining (36) and (37),

St1St2 [φ](x) =

∫ ⊕

IRn

St1

[∫ ⊕

IRn

ψ(·, z) ⊗ Bt2(z, y) dz

]
(x) ⊗ a(y) dy

which again by max-plus linearity

11



=

∫ ⊕

IRn

∫ ⊕

IRn

St1 [ψ(·, z)](x) ⊗Bt2(z, y) ⊗ a(y) dz dy

=

∫ ⊕

IRn

∫ ⊕

IRn

∫ ⊕

IRn

ψ(x, ζ) ⊗ Bt1(ζ, z) ⊗ Bt2(z, y) ⊗ a(y) dy dz dζ

=

∫ ⊕

IRn

∫ ⊕

IRn

ψ(x, ζ) ⊗

{[∫ ⊕

IRn

Bt1(ζ, z) ⊗ Bt2(z, y) dz

]
⊗ a(y) dy

}
dζ (38)

=

∫ ⊕

IRn

ψ(x, ζ) ⊗ Bt1Bt2 [a](ζ) dζ

= D−1
ψ Bt1Bt2 [a]. (39)

Combining (33), (35), (39) and Lemma 4.2 yields the first assertion. Combining (33),
(34), (38) and Lemma 4.2 yields the second.

Lemma 4.5 Let G, Ĝ ∈ C2
B(IRn) (continuous, uniformly bounded second derivatives).

Suppose
G(x, ·) ⊙ a(·) = Ĝ(x, ·) ⊙ a(·) ∀x ∈ IRn

for all a ∈ Sd− for some finite, symmetric d. Then, G = Ĝ.

Proof. Suppose there exists (x, y) such that G(x, y) 6= Ĝ(x, y). Then, there exist
δ, ε > 0 such that

|G(x, y) − Ĝ(x, y)| > ε ∀ (x, y) ∈ Bδ(x, y). (40)

Also, since G, Ĝ ∈ C2
B, there exist M1,M2 <∞ such that

G(x, y) ≤ G(x, y) +M1|(x, y) − (x, y)| +M2|(x, y) − (x, y)|2

Ĝ(x, y) ≤ Ĝ(x, y) +M1|(x, y) − (x, y)| +M2|(x, y) − (x, y)|2

for all (x, y) ∈ IRn × IRn. Consequently, with M3 = M2 +M1/δ,

G(x, y) ≤ G(x, y) +M3|(x, y) − (x, y)|2, Ĝ(x, y) ≤ Ĝ(x, y) +M3|(x, y) − (x, y)|2

for all (x, y) 6∈ Bδ(x, y).

Let M
.
= {⌈M3, ⌈M3 + 1, . . .}. For M ∈ M, let aM(y) = −M |y − y|2. Let

zM = G(x, ·) ⊙ aM(·) = max
y

[G(x, y) + aM(y)]

≥ G(x, y), (41)

and let yM ∈ argmaxy{G(x, y)+aM(y)}. Suppose yM 6→ y. Then, there exists δ̄ > 0 and a
subsequence such that |yMk

−y| ≥ δ̄ for all k, which implies G(x, yMk
)+aMk

(yMk
) → −∞

which contradicts (41). Consequently,

yM → y. (42)

12



Now, using the fact that aM ≤ 0,

G(x, ·) ⊙ aM(·) = [G⊗ aM ](x, yM) ≤ G(x, yM)

which by (42)
→ G(x, y). (43)

By (41) and (43),
G(x, ·) ⊙ aM(·) → G(x, y).

Similarly,
Ĝ(x, ·) ⊙ aM(·) → Ĝ(x, y).

Conequently, there exists M̄ <∞ such that for all M ≥ M̄ ,

|G(x, ·) ⊙ aM (·) −G(x, y)| < ε/4, (44)

|Ĝ(x, ·) ⊙ aM (·) − Ĝ(x, y)| < ε/4. (45)

By (40), (44) and (45),

G(x, ·) ⊙ aM(·) 6= Ĝ(x, ·) ⊙ aM(·)

which contradicts the assumption.

Combining Lemmas 4.4 and 4.5, we have:

Theorem 4.6 For all t1, t2 ≥ 0 such that t1 + t2 < T ,

Bt1+t2(ζ, x) =

∫ ⊕

IRn

Bt1(ζ, z) ⊗ Bt2(z, x) dz ∀x, ζ ∈ IRn.

Combining Theorem 4.6 with Lemma 3.4 and Theorem 3.5, one obtains the semigroup
propagation of the fundamental solution of the DRE, and this is:

Theorem 4.7 The forward propagation of semigroup βt is given by

βt1+t2 = βt1 ⊛ βt2 (46)

where as above,

[βt1 ⊛ βt2 ]
1,1 = β1,1

t1 − β1,2
t1 U

−1
t1,t2

β1,2
t1

′

[βt1 ⊛ βt2 ]
1,2 = −β1,2

t1 U
−1
t1,t2

β1,2
t2

[βt1 ⊛ βt2 ]
2,1 = −β1,2

t2

′
U−1
t1,t2β

1,2
t1

′

[βt1 ⊛ βt2 ]
2,2 = β2,2

t2 − β1,2
t2

′
U−1
t1,t2

β1,2
t2

where Ut1,t2
.
= β2,2

t1 + β1,1
t2 .
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In the next section, we will indicate how the forward propagation of the fundamental
solution of the DRE, (46), can be viewed in a sense analogous to an exponential. Prior
to that, let us recap how one uses the fundamental solution to obtain a solution for any
initial condition.

We suppose one wishes to obtain the solution of (1) at time t with initial condition
P0 = p0. We suppose that one wishes to use βt to obtain Pt. Recall that

St[φ] = D−1
ψ BtDψφ. (47)

Let φ(x) = 1
2
x′p0x. By Lemma 4.2, a(z)

.
= [Dψφ](z) = 1

2
z′q0z where

q0 = Dψp0 = Q(Q− p0)
−1p0. (48)

Then, by (25) and Lemma 3.4,

Bt[Dψφ](y) = Bt(·, y)⊙ q0(·) = max
z∈IRn

{
1
2

(
y
z

)′

βt

(
y
z

)
+ 1

2

(
z
0

)′ [
q0 0
0 0

](
z
0

)}

= 1
2

(
y
0

)′ [
qt 0
0 0

](
y
0

)
(49)

where

qt = β1,1
t − β1,2

t

(
β2,2
t + q0

)−1
β1,2
t

′
=

{
βt ⊛

[
q0 0
0 0

]}1,1
.
= βt ⊛

′ q0 (50)

where this defines the ⊛
′ operation.

Recall, from (19), that we may represent St[φ] as

St[φ] = 1
2
x′Ptx. (51)

However,

St[φ] = D−1
ψ BtDψφ (52)

where, by (49), (50)
[BtDψφ](z) = 1

2
z′qtz = 1

2
z′ {βt ⊛

′ Dψp0} z. (53)

Combining (51)–(53), we see

Pt = D−1
ψ qt = D−1

ψ [βt ⊛
′ Dψp0] (54)

where, using Lemma 4.2,
D−1
ψ qt = Q(Q+ qt)

−1qt. (55)

Equation (54) indicates how one obtains the solution Pt from the fundamental solution
βt and initial condition p0. In particular, one performs the following steps:

• Obtain q0 from p0 via (48).
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• Obtain qt from βt and q0 via (50).

• Obtain Pt from from qt via (55).

This may be repeated for any number of initial conditions, p0. The choice of symmetric
Q (which parametrizes semiconvex duality) is partially free, only needing to be sufficient
to ensure existence of the semiconvex duals.

Remark 4.8 It is worth noting that if one worked in the dual space, one simply has
qt = βt ⊛

′ q0 as the solution of the (dual of the) DRE.

In the next section, in analogy with standard-algebra linear systems, we discuss the
interpretation of βt as an exponential. Then, in Section 6, we indicate the associated
semiring. Lastly, in Sections 7 and 8, we make some tentative comments about numerical
issues, and provide an example.

5 Propagation as exponentiation

We have seen that this fundamental solution propagates according to the matrix operation
βt1+t2 = βt1 ⊛ βt2 . There are two issue here: the fundamental solution concept, and the
issue of numerical solution. With regard to the latter, we note that one can obtain βτ
for some very small τ by a single step of a Runge-Kutta method. Then one obtains βnτ
by repeated ⊛-multiplication, or better yet, by β2τ = βτ ⊛ βτ , β4τ = β2τ ⊛ β2τ , and so
on. We will discuss this further in the next section. The former issue regards the notion
of fundamental solution. Recall that for a standard-algebra linear system, one views
the fundamental solution as eAt = (eA)t, and so (eA)t1+t2 = (eA)t1 · (eA)t2 . Thus, βt is
analogous to (eA)t, and we would like some similar exponential-type representation here.

Naturally, we define ⊛-exponentiation for positive integer powers through β⊛2 = β⊛β,
β⊛3 = [β⊛2] ⊛ β, et cetera. Using Theorem 4.7, this immediately yields βnt = β⊛n

t .
However, this only works for integer powers. We will extend this to positive real powers
so that we may simply write βt = (β1)

⊛t for any t > 0. Then, propagation of solutions in
the dual space is given by

qt = β⊛t
1 ⊛

′ q0,

and is given, in the original space, by

Pt = D−1
ψ β⊛t

1 ⊛
′ Dψp0.

Let Q denote the set of rationals. Given any t ∈ (0,∞), let et
.
= {s ∈ (0,∞) | ∃p ∈

Q such that s = pt}. As is well-known, the collection of such et forms an uncountable
set of equivalence classes covering (0,∞).
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Suppose s ∈ et. Then, there exists p = m/n with m,n ∈ N such that s = pt.
Let τ = t/n. Then, t = nτ and s = mτ . Consequently, by Theorem 4.7, βs = β⊛m

τ

and βt = β⊛n
τ . With this in mind, we make the following extension of ⊛-exponentiation

to rationals, and the fact that this extension is well-defined will be proved immediately
below.

Definition 5.1 Let s = pt with p = m/n, m,n ∈ N . We define β⊛p
t

.
= β⊛m

τ where
τ = t/n.

We need to demonstrate that the definition is independent of the choice of m,n ∈ N .
That is, suppose p = m0/n0 = m1/n1. Let τ0 = t/n0 and τ1 = t/n1. We must show
β⊛m0

τ0 = β⊛m1

τ1 . We will use the following, trivially-verified result.

Lemma 5.2
[
β⊛n
t

]⊛m
= β

⊛(nm)
t .

Let τ̄ = t/(n0n1). Then, τ0 = n0τ̄ and τ1 = n1τ̄ . Consequently,

β⊛m0

τ0
=

(
β⊛n1

τ̄

)⊛m0

which by Lemma 5.2,
= β

⊛(n1m0)
τ̄ . (56)

Similarly,
β⊛m1

τ1
=

(
β⊛n0

τ̄

)⊛m1 = β
⊛(n0m1)
τ̄ . (57)

However, n1m0 = n0m1, and so by (56) and (57),

β⊛m0

τ0 = β⊛m1

τ1 .

In other words, the definition is independent of the choice of m,n ∈ N such that m/n = p.

Next we extend the ⊛-exponentiation definition to exponents which may not be ratio-
nal. Let t ∈ (0,∞). From (30), the continuity of P̃t, and the fact that P̃t > Q on (0, T ),
we see that βt is continuous on (0, T ). Consequently, we may define

β⊛t
1 = lim

pn∈Q, pn→t
βpn

= lim
pn∈Q, pn→t

β⊛pn

1 .

We have now obtained the fundamental solution as an ⊛-exponential,

βt = β⊛t
1 ,

and solutions for any initial values as

qt = β⊛t
1 ⊛

′ q0, andPt = D−1
ψ β⊛t

1 ⊛
′ Dψp0.
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6 〈⊕,⊛〉-Semirings

There are underlying semirings with the ⊕,⊛ operations, and this seems to be quite
interesting. These semirings are related to the convolution semiring of [13]. We only
touch on the matter here. Consider the case where ā and b̄ are 2× 2 matrices of the form

ā =

[
a −a
−a a

]
, b̄ =

[
b −b
−b b

]
(58)

with a, b ∈ [0,+∞) ∪ {+∞}
.
= W+.

Define the mapping from W+ onto 2 × 2 matrices of the form given in (58) as

M(a)
.
= ā =

[
a −a
−a a

]
.

Let the space of such matrices be denoted by LW+

2 . Then c̄ = ā⊛ b̄ if and only if c̄ = M(c)
where

c =
ab

a+ b
.
= a⊛ b

which defines the ⊛ operation on W+. Also, define ⊕ on W+ by a⊕ b = max{a, b}. Then
define ⊕ on LW+

2 by
ā⊕ b̄ = M(a⊕ b).

We define a⊕ +∞ in the natural way, and let

a⊛ +∞
.
= lim

b→+∞

ab

a+ b
= a.

It is obvious that a⊕ b, a⊛ b ∈ W+ for all a, b ∈ W+.

Theorem 6.1 〈W+,⊕,⊛〉 is a commutative idempotent semiring.

Proof. Note that idempotency is immediate as a⊕ b = a if a ≥ b (c.f., [13]). Note
that 0 is the ⊕ identity, and +∞ is the ⊛ identity. One needs to show that ⊕ and ⊛

are commutative and associative, and that the distributive property holds. We will skip
the special cases involving +∞. The commutative and associative properties of ⊕ are
immediate, as is the commutative property of ⊛.

Let a, b, c ∈ W+. Then,

a⊛ (b⊛ c) = a⊛
bc

b+ c
=

abc

ab+ bc + ca
,

and similarly one finds (a⊛ b) ⊛ c = abc/(ab+ bc + ca) which proves associativity.
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For the distributive property, again let a, b, c ∈ W+, and without loss of generality,
suppose b ≥ c. Then,

a⊛ (b⊕ c) = a⊛ b. (59)

However, b ≥ c and a, b, c ∈ W+ imply

b(a + c) ≥ c(a+ b)

and again using a, b, c ∈ W+, this implies
b

a+ b
≥

c

a+ c

and, upon multiplying by a on both sides,
a⊛ b ≥ a⊛ c,

which implies
(a⊛ b) ⊕ (a⊛ c) = a⊛ b. (60)

Combining (59) and (60), we see that the distributive property holds.

The following is immediate by the bijective and order-preserving properties of M.

Corollary 6.2 〈LW+

2 ,⊕,⊛〉 is a commutative idempotent semiring.

7 Numerical method

The existence of this fundamental solution is certainly of interest as a mathematical
object. However, it can also be used to numerically obtain solutions of DREs. The
fact that the word numerically appears in the previous statement is due to the fact that
one cannot analytically obtain βτ for some τ > 0. One obtains βτ for some very small
value of τ > 0, and then propagates the fundamental solution forward analytically via ⊛-
multiplication (equivalently, ⊛-exponentiation for integer exponents). In contrast to say,
Runge-Kutta methods, which are of polynomial order, this yields a numerical method
which is of exponential order. Solutions can be obtained extremely quickly. However,
there is an instability in the propagation, similar to that in say the Kalman filter, and so
small round-off errors can grow rapidly even if the solution is stable (c.f., [4] for discussion
and solution of this problem in the Kalman filter case). We do not attempt to remove, or
attenuate, the instability in this fundamental solution of the DRE, as that significantly
exceeds the scope of what should be examined in a first excursion into this domain.
Nonetheless, we will indicate how this fundamental solution can be used to obtain an
exponential-order method for solution of the DRE.

With a Runge-Kutta algorithm, one obtains a solution with polynomial-order error.
With the standard fourth-order Runge-Kutta method, the error in the solution over the
fixed interval [0, T ] drops like δ4 where δ is the time-step size. Consequently, the error
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decreases like (1/M)4 where M is the computational effort. Using this fundamental
solution, we can instead obtain the solution at T where the error drops like γM for
some γ ∈ (0, 1); the method is of exponential order. An example will also be included,
demonstrating the computational efficiency.

Fix some T <∞. We choose integer N , and let τ = T
2N . We will obtain βτ . From this,

we compute β2τ = βτ ⊛ βτ , and β2nτ = β2n−1τ ⊛ β2n−1τ for n ∈ {2, 3 . . .N}, yielding βT =
β2N τ . Finally, given any initial condition, p0, we obtain PT from PT = D−1

ψ βT ⊛
′ Dψp0.

These computations are all approximation-error free, neglecting machine roundoff. The
only (approximation) error source is through the computation of βτ . Of course given
another initial condition, p′0, the solution is P ′

T = D−1
ψ βT ⊛

′ Dψp
′
0, and so only negligible

additional computational effort is required to produce P ′
T .

We will compute βτ through a single step of a Runge-Kutta method of order ᾱ, thus
producing an error in βτ on the order of τ ᾱ+1. (Recall the local one-step error for a
Runge-Kutta method is one order greater than the fixed-horizon error.) For the fourth-
order Runge-Kutta algorithm, ᾱ = 4, one has ᾱ+1 = 5. As noted above, this requires four
function evaluations per step. To obtain ᾱ = 5 (i.e., ᾱ+ 1 = 6), one needs to perform six
function evaluations per step. Alternatively, one could employ multiple steps of a Runge-
Kutta method with step-size δ, and obtain βτ = βmδ for some integer m. One would
balance m against N to produce the minimal total error as a function of computational
effort. We will not examine such an optimization here.

We will determine the error in βτ from the use of one step in an ᾱ-order Runge-Kutta
method. This will then be mapped directly into an error in Pt. Recall that βτ is obtained
from P̃τ through equations (30). Consequently, we will note the error order in P̃τ , and

then determine the resulting order of the error in βτ induced by this error in P̃τ . From
this, we obtain the exponential order of the error in PT . As indicated above, we use an
ᾱ-order Runge-Kutta algorithm with resultant error in P̃τ of order τ ᾱ+1. With a fourth-
order Runge-Kutta method, we have (one-step) error order τ 5. Now we begin the main

task of the section: mapping the error in P̃τ into the error in βτ .

Let P̃τ be the exact solution at time τ with initial condition P̃0 = Q. Let P̂τ be the
solution computed by one-step of the Runge-Kutta method (again with initial condition

P̂0 = Q of course). Let Eτ
.
= P̂τ − P̃τ , and note

|Eτ | ≤ krτ
ᾱ+1 (61)

for some kr dependent on the specific problem coefficients. Similarly, letting Λ̂τ and R̂τ

be the one-step Runge-Kutta solutions for Λτ and Rτ , we have (where we use the same
constant for simplicity)

|Λ̂τ − Λτ | ≤ krτ
ᾱ+1 and |R̂τ − Rτ | ≤ krτ

ᾱ+1. (62)

By examining (30), we see that there will be errors induced directly by multiplication

by P̂τ , and also errors induced by the error in ∆τ = Q − P̃τ , where our approximation
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will be denoted by ∆̂τ
.
= Q − P̂τ . We will need several estimates. First we collect some

observations and an assumption.

Let F (P ) denote the right-hand side of (1), i.e., F (P ) = A′P +PA+C +PΣP . Note
that given R <∞, there exists KL <∞ such that

|F (P1) − F (P2)| ≤ KL|P1 − P2| ∀P1, P2 ∈ BR(Q) (63)

where | · | will denote the induced norm. Throughout the remainder, we assume there
exists c > 0 such that

|F (Q)x| ≥ c|x| ∀x ∈ IRn
(A.l)

which of course implies |F (Q)| ≥ c.

The first step will be to obtain a lower bound on |∆−1
τ |. By (63) and standard results,

there exist τ̄0 > 0 and D <∞ such that

|P̃t −Q| ≤ Dt ∀ t ∈ [0, τ̄0]. (64)

Let τ0
.
= min{τ̄0, R/D}. Now, fix any x ∈ IRn, and note

∣∣∣∣
d

dt

[
(P̃t −Q)x− F (Q)xt

]∣∣∣∣ =
∣∣∣
[
F (P̃t) −Q

]
x
∣∣∣

which by (63)

≤ KL|P̃t −Q||x|

which by (64)
≤ KLD|x|t (65)

for all t ∈ [0, τ0]. This immediately implies

∣∣∣(P̃t −Q)x− F (Q)xt
∣∣∣ ≤

KLD|x|

2
t2 ∀ t ∈ [0, τ0]. (66)

Now, for t ≤ τ2
.
= c/(KLD), one has

KLD|x|t ≤ c|x|

which by Assumption (A.l)
≤ |F (Q)x|,

which implies
KLD|x|

2
t2 ≤

∣∣∣∣
F (Q)xt

2

∣∣∣∣ ∀ t ∈ [0, τ2].

Combining this observation with (66) yields

∣∣∣(P̃t −Q)x− F (Q)xt
∣∣∣ ≤

∣∣∣∣
F (Q)xt

2

∣∣∣∣ ∀ t ∈ [0, τ3]
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where τ3 = τ0 ∧ τ2, and so by the triangle inequality,

|∆tx| =
∣∣∣(P̃t −Q)x

∣∣∣ ≥
∣∣∣∣
F (Q)x

2

∣∣∣∣ t,

which by (A.l),

≥
c

2
|x|t ∀ t ∈ [0, τ3]. (67)

This, of course implies the existence of ∆−1
t , and so we may rewrite (67) as

|∆−1
t ∆tx| ≤

1

Kit
|∆tx| ∀x ∈ IRn, ∀t ∈ [0, τ3] (68)

where Ki = c/2. However, (67) also implies that ∆t maps onto IRn, and so (68) implies

|∆−1
t y| ≤

|y|

Kit
∀ y ∈ IRn, ∀t ∈ [0, τ3],

and we have:

Lemma 7.1 There exist τ3 > 0 and Ki ∈ (0,∞) such that

|∆−1
t | ≤

1

Kit
∀ t ∈ [0, τ3].

We will also need the following.

Lemma 7.2 There exist k1 > 0 and τ4 > 0 such that

|∆−1
τ − ∆̂−1

τ | ≤ k1τ
ᾱ−1 ∀ τ ∈ [0, τ4].

Proof. Note that

0 = ∆̂−1
τ ∆̂τ − ∆−1

τ ∆τ

= (∆̂−1
τ − ∆−1

τ )∆τ + ∆̂−1
τ (∆̂τ − ∆τ )

which implies

∆−1
τ − ∆̂−1

τ = (∆̂−1
τ − ∆−1

τ )(∆̂τ − ∆τ )∆
−1
τ + ∆−1

τ (∆̂τ − ∆τ )∆
−1
τ ,

which upon rearrangement (and noting ∆̂τ − ∆τ = P̂τ − P̃τ ), yields

∆−1
τ − ∆̂−1

τ = ∆−1
τ (P̂τ − P̃τ )∆

−1
τ

[
I + (P̂τ − P̃τ )∆

−1
τ

]−1

. (69)
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Also, from (61) and Lemma 7.1,

|(P̂τ − P̃τ )∆
−1
τ | ≤ |P̂τ − P̃τ ||∆

−1
τ |

≤
kr
Ki

τ ᾱ ∀ τ ∈ [0, τ3].

This implies

∣∣∣
[
I + (P̂τ − P̃τ )∆

−1
τ

]
x
∣∣∣ ≥

(
1 −

kr
Ki
τ ᾱ

)
|x| ≥ 1

2
|x| ∀x ∈ IRn

for all τ ∈ [0, τ4] for some τ4 ∈ (0, τ3]. This implies
[
I + (P̂τ − P̃τ )∆

−1
τ

]−1

exists and

∣∣∣∣
[
I + (P̂τ − P̃τ )∆

−1
τ

]−1
∣∣∣∣ ≤ 2. (70)

Now, from (69),

|∆−1
τ − ∆̂−1

τ | ≤ |∆−1
τ ||P̂τ − P̃τ ||∆

−1
τ |

∣∣∣∣
[
I + (P̂τ − P̃τ )∆

−1
τ

]−1
∣∣∣∣ ,

which by (61), (70) and Lemma 7.1,

≤
2kr
K2
i

τ ᾱ−1.

Let β̂τ be obtained from P̂τ (i.e., from the Runge-Kutta-generated P̃τ approximation).

Theorem 7.3 There exist k̄ > 0 and τ5 > 0 such that

|β̂1,1
τ − β1,1

τ |, |β̂1,2
τ − β1,2

τ |, |β̂2,1
τ − β2,2

τ |, |β̂2,2
τ − β2,2

τ | < k̄τ ᾱ−1

for all τ ∈ [0, τ5].

Proof. From (30), we see that

|β̂1,1
τ − β1,1

τ | =
∣∣∣Q∆̂−1

τ P̂τ −Q∆−1
τ P̃τ

∣∣∣

≤ |Q|
{
|∆̂−1

τ − ∆−1
τ ||P̂τ − P̃τ | + |∆̂−1

τ − ∆−1
τ ||P̃τ | + |∆−1

τ ||P̂τ − P̃τ |
}

which by (61) and Lemmas 7.1 and 7.2,

≤ |Q|

{
k1krτ

ᾱ−1τ ᾱ+1 + k1τ
ᾱ−1(|Q| + krτ

ᾱ+1) +
kr
Kiτ

τ ᾱ+1

}

which for proper choice of k̄1,
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≤ k̄1τ
ᾱ−1. (71)

Next, also using (30), we note that

|β̂1,2
τ − β1,2

τ | =
∣∣∣Q∆̂−1

τ P̂τ Λ̂τ −Q∆−1
τ P̃τΛτ

∣∣∣

≤ |Q∆̂−1
τ P̂τ −Q∆−1

τ P̃τ ||Λτ | + |Q∆̂−1
τ P̂τ −Q∆−1

τ P̃τ ||Λ̂τ − Λτ |

+Q∆−1
τ P̃τ ||Λ̂τ − Λτ |

which by Lemma 7.1, (62) and (71),
≤ k̄1τ

ᾱ−1(|Λτ − I| + 1) + k̄1τ
ᾱ−1krτ

ᾱ+1

+
|Q|

Kiτ

(
|P̃τ −Q| + |Q|

)
krτ

ᾱ+1. (72)

Again, by (64) and standard results, there exists τ5 ∈ (0, τ4] such that

|P̃τ −Q| ≤ Dτ and |Λτ − I| ≤ D2τ

for all τ ∈ [0, τ5]. Combining these with (72) implies there exists k̄2 > 0 such that

|β̂1,2
τ − β1,2

τ | ≤ k̄2τ
ᾱ−1 (73)

for all τ ∈ [0, τ5].

A similar analysis yields the required result for |β̂2,2
τ −β2,2

τ |, and we do not include the
details.

Recall that we will be computing the fundamental solution at time T as βT = β2N τ

from the iteration β2k+1τ = β2kτ ⊛ β2kτ for k ∈ {1, 2 . . .N − 1}, that is, via (N − 1)
⊛-multiplications. Note that there are no approximations in this sequence of operations.
The error bounds at time T = 2Nτ will be obtained from the error bounds at time τ ,
which were obtained in Theorem 7.3. (We consider only the error sources introduced by
the approximation in the method – not machine round-off.)

The following result is a very coarse bound on the error propagation. We make no
attempt here to achieve more than a statement of the exponential order of the numerical
method under rather strong conditions. The reader should note that we did not assume
that we were considering only DRE/initial condition combinations that yielded stable
solutions, and in fact, we allow for problems with finite-time blow-up of the solutions.
For such problems, the sensitivity of the solution near the time of blow-up to errors at
initialization can be extremely high. (Our assumption that T ≤ Tε for fixed positive ε
guarantees that we stay at least ε away from the “vertical” asymptote.) Consequently, our
error bounds allow for solutions with geometric growth. Refinements for specific classes
of problems with well-behaved solutions are clearly beyond the scope of this introductory
study.

We indicate an easy lemma prior to proceeding to the main result on error propagation
in the ⊛-multiplications.
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Lemma 7.4

PM
.
= sup

t∈[0,Tε]

|P̃t| <∞, ΛM
.
= sup

t∈[0,Tε]

|Λt| <∞,

and
RM

.
= sup

t∈[0,Tε]

|Rt| <∞.

Proof. The result for P̃t follows from the definition of Tε. The result for Λt then
follows from the fact that it is the solution of a linear system with bounded coefficient
(see (12)). Then one notes from (12), that Rt is an integral with bounded integrand.

For the remaining results we will assume

Q is either positive definite or negative definite, (A.Q)

and

∃δ̄ > 0 such that β1,1
t − δ̄I > 0, β2,2

t − δ̄I > 0 ∀ t ∈ [0, Tε]. (A.β)

We then let σM = min{|λ| | λ is an eigenvalue of Q}.

For i, j ∈ {1, 2}, let δi,j
2kτ

.
= β̂i,j

2kτ
− βi,j

2kτ
where β̂i,j

2kτ
= β̂i,j

2k−1τ
⊛ β̂i,j

2k−1τ
.

Theorem 7.5 Suppose |δ1,2
2kτ

| ≤ 1, |δ1,1
2kτ

| ≤ δ̄ and |δ2,2
2kτ

| ≤ δ̄ where k ∈ {1, 2 . . .N − 1}.
There exists τ <∞ such that, if τ is sufficiently small, then

|δ1,1
2k+1τ

| ≤ (1 + c̄1)|δ
1,1
2kτ

| + c̄2|δ
1,2
2kτ

| + c̄1|δ
2,2
2kτ

|

|δ1,2
2k+1τ

| ≤ c̄1|δ
1,1
2kτ

| + c̄2|δ
1,2
2kτ

| + c̄1|δ
2,2
2kτ

|

|δ2,2
2k+1τ

| ≤ c̄1|δ
1,1
2kτ

| + c̄2|δ
1,2
2kτ

| + (1 + c̄1)|δ
2,2
2kτ

|

where

c̄1 = 2c̄2, c̄2 = 2c̄,

c̄ = max
t∈[0,∞)

(
1 +

PMΛM |Q|

Kit

)
gS(t),

and

gS(t) =

{
2Kit
σ2

M

if t ∈ (0, τ ]
1
2δ̄

if t ∈ (τ ,∞).

As it is rather technical, the proof of Theorem 7.5 is delayed to the appendix.

24



We now continue with the coarse estimates; the goal is simply to prove exponential
order under some, perhaps overly strong, conditions. Let ¯̄c

.
= 3 max{1 + c̄1, c̄2}. We see

that for all i, j ∈ {1, 2} and all k ∈ {1, 2 . . .N − 1},

|δi,j
2k+1τ

| ≤ ¯̄c max
î,ĵ∈{1,2}

|δ î,ĵ
2kτ

|.

More succinctly, with δ̃2kτ
.
= maxî,ĵ∈{1,2} |δ

î,ĵ
2kτ

|,

δ̃2k+1τ ≤ ¯̄cδ̃2kτ . (74)

Recall from Theorem 7.3 that δ̃τ ≤ k̄τ ᾱ−1. Suppose that ᾱ is sufficiently large such
that k̄τ ᾱ−1 < min{1, δ̄}. Then, by Theorem 7.5 and (74),

δ̃2τ < ¯̄cδ̃τ < ¯̄ck̄τ ᾱ−1.

Next, if we also have ¯̄ck̄τ ᾱ−1 < min{1, δ̄}, then again by Theorem 7.5 and (74), we obtain

δ̃22τ < ¯̄cδ̃2τ < ¯̄c2k̄τ ᾱ−1.

By induction, we see that if
¯̄cN−1k̄τ ᾱ−1 < min{1, δ̄},

then
δ̃2N τ < ¯̄cN−1k̄τ ᾱ−1.

However, note that N = log2(T/τ) and

¯̄clog2(T/τ)−1 = (T/τ)ln(̄̄c) 1

2̄̄c
.

Consequently, we have:

Lemma 7.6 If τ is sufficiently small, if k̄τ ᾱ−1 < min{1, δ̄}, and if

[
k̄T ln(̄̄c)

2̄̄c

]
τ ᾱ−(1+ln(̄̄c)) < min{1, δ̄},

then
|β̂i,jT − βi,jT | ≤ δ̃2N τ < ¯̄cN−1k̄τ ᾱ−1 ∀ i, j ∈ {1, 2}. (75)

The computational effort consists of two components: The effort for the single Runge-
Kutta step of order ᾱ, eᾱ, and the effort to perform the N − 1 ⊛-multiplications, each
requiring effort em. The total computational effort is ē = eᾱ + (N − 1)em. Rearranging
this, we have

N − 1 =
ē− eᾱ
em

. (76)
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Substituting (76) into (75) (and noting τ = T/(2N)) yields

|β̂i,jT − βi,jT | < k̄T ᾱ−1

(
¯̄c

2ᾱ−1

) ē−eᾱ

em

= k̄T ᾱ−1

(
¯̄c

2ᾱ−1

)−eᾱ

em

[(
¯̄c

2ᾱ−1

) 1

em

]ē
.

We have:

Theorem 7.7 Suppose τ is sufficiently small, and that ᾱ is sufficiently large so that both
the conditions of Lemma 7.6 and the inequality ¯̄c/(2ᾱ−1) < 1 are satisfied. Then, the
method displays an exponential order of convergence with respect to total computational
effort, ē, and this is given by

|β̂i,jT − βi,jT | < K1

[
K2

]ē

where

K1 = k̄T ᾱ−1

(
¯̄c

2ᾱ−1

)−eᾱ

em

and K2 =

[(
¯̄c

2ᾱ−1

) 1

em

]
. (77)

8 Example

There are two components to the above results. The first is the new, and intrinsically
interesting, fundamental solution of the DRE. The second is the application of this funda-
mental solution in a numerical method. We include a very simple example as an indication
that the numerical method does indeed function as indicated, with exponential conver-
gence as a function of computational effort. The example also indicates the unresolved
issue of stability of a numerical method based on this new fundamental solution.

As a first example, we consider DRE (1) with matrices of size 2 × 2, and coefficients

A =

[
−2 1.6
−1.6 −0.4

]
, C =

[
1.5 0.2
0.2 1.6

]
, Σ =

[
0.216 −0.008
−0.008 0.216

]
,

with semiconvexity matrix given by

Q =

[
−1 −0.2
−0.2 −1

]
,

and initial condition

p0 =

[
−0.1 0

0 −0.1

]
.

The problem was to compute the solution at time T = 4. The matrix used in the
semiconvex duality was

Q =

[
−1 −0.2
−0.2 −1

]
.
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A basic fourth-order Runge-Kutta method was applied with 3200 steps, to generate
what we used as the “true” solution. Fourth-order Runge-Kutta approximations were
computed with numbers of steps ranging from 8 to 800. The new fundamental solution
method was also applied with N ranging from 4 to 13 (i.e., τ ranging from τ = T/24 =
1/16 to τ = T/213 = 1/2048. The errors in each are computed by comparison with the
“true” solution indicated above as the Runge-Kutta fourth-order solution with 3200 steps.
In particular, we take the error to be e =

∑n
i=1

∑n
j=1 |P

a
i,j − Pi,j| with P being the true

solution at time T and P a being the approximate.

We will examine the errors as a function of computational cost. The measure compu-
tational cost used here is the number of floating point multiplications. We assume that an
n × n matrix inverse requires approximately 4n3/3 matrix multiplications. The number
of multiplications required by the basic fourth-order Runge-Kutta method on this prob-
lem is approximately 4n3NRK where NRK is the number of Runge-Kutta steps (with four
function evaluations per step). For the new fundamental solution approach, we assume
that only a single-step of the same fourth-order Runge-Kutta method is used to initialize
βτ , and then approach discussed in the previous section is used to obtain βT = β2N τ .
Including also the Dψ and D−1

ψ operations, the number of multiplications for the new
fundamental solution approach is approximately (19N/3 + 16)n3 + 4n2.

In Figure 1, we plot the log of the solution error as a function of the log of the
computational cost (i.e., of the number of multiplications) for both approaches on the
above problem. Note that at an error size of e−22‘ ≃ 3 × 10−10, the computational
effort required by the new fundamental solution method is lower by nearly a factor of
e3.5 ≃ 30. Also note that at the very bottom of the curve for the new fundamental
solution method, there is a sudden halt in the improvement as a function of effort. This
appears to be due to some instability in the method, where it is likely that round-off error
in the computation of βτ is exploding at time T . If this stability issue can be resolved
without tremendously affecting the convergence rate, then the computational effort ratio
at higher approximation levels would be much greater than that at e−22. However, as
noted earlier, a deeper study of numerical issues is beyond the scope of this paper, which
is introducing a new fundamental solution for Riccati equations.

Recall that the fundamental solution approach allows us to compute solutions for
multiple initial conditions from a single fundamental solution by some relatively simple
manipulations. With this in mind, we also plot the log of the solution error as a function
of the log of the computational cost for the case where 10 initial conditions are considered.
In this case the cost of the Runge-Kutta approach grows by a factor of 10 while that of
the new fundamental solution approach grows much more slowly, and this can be seen in
Figure 2. For example, at an error of e−22, the computational effort required by the new
fundamental solution method is lower by over a factor of e5.5 ≃ 240.

We can also use this example to verify the exponential convergence rate of the new
fundamental solution method. Recalling Theorem 7.7, we expect that the error in the
particular solution, δPT , should satisfy |δPT | ∝ (K̃)ē where ē is the computational effort,

and K̃ is some coefficient which must be less than one for convergence. Consequently,
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Figure 1: Log-log plot of error versus effort

plotting log(|δPT |) against ē should yield a straight line with slope log(K̃). In Figure 3, we
see this staight-line behavior (up until the instability point). The slope is approximately

−24/400, leading to an estimate for K̃ of roughly 0.94.

9 Summary

A new fundamental solution for the DRE has been obtained. It is intimately connected
with the control interpretation of Riccati equations. At another level, this fundamental
solution seems representative of a deep connection between quadratic systems and the
max-plus semiring (and/or the newly-introduced 〈⊕,⊛〉 semiring), which is analogous to
the connection between linear systems and the standard field. In fact, the whole notion
of fundamental solutions in linear systems as exponentials (i.e., eAt) is echoed in the
max-plus/quadratic systems arena.
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Figure 2: Log-log plot of error versus effort, 10 initial conditions

There are natural extensions of this work to DREs with time-dependent coefficients.
Further, this approach is clearly extendable to infinite-dimensional systems, including
first-order Riccati PDEs. It also opens up new avenues for solution of more general dif-
ferential equations with quadratic nonlinearities. Extension of the semiring to moduloids
(“vector spaces” loosely speaking) over spaces of matrices may also be of theoretical value.

Not unexpectedly, the fundamental solution allows for exponentially fast numerical
schemes, and these can be especially useful when one wishes to solve a system for multi-
ple initial conditions. The author encountered numerical instability as the error tolerance
became very small, and it would clearly be of interest to determine how this could be
eliminated. Such development might require separation of the problem domain into those
systems possessing solutions for all (forward) time, and those whose the solutions exist
only on finite time-intervals. Both the theoretical and numerical aspects are of indepen-
dent interest.
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11 Appendix (Proof of Theorem 7.5)

First we will obtain bounds on three objects. Once these are obtained, the result will
follow easily. Along the way, several quite coarse estimates are made. As noted earlier,
one might be able to improve quite a bit on these bounds. However, we are considering a
rather wide class of problems, where in particular, the fundamental solution must suffice
for use with a very wide class of initial conditions. Under such broad conditions, and time-
wise global error estimates (as opposed to local one-step error estimates), it is not clear
whether sharpening the coarse estimates will be fruitful. In any case, such an endeavor
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must be left to future investigators.

Recall the βt ⊛-multiplication propagation given in Theorem 4.7; we will now take
t1 = t2 = t, and let Ut denote Ut,t. Now, note that by Assumption (A.β),

|Utx|
.
= |(β1,1

t + β2,2
t )x| ≥ 2δ̄|x|

= 2δ̄|U−1
t Utx| ∀x ∈ IRn, ∀t ∈ [0, Tε]

which implies |U−1
t y| ≤ 1

2δ̄
|y| for all y ∈ IRn. Consequently,

|U−1
t | ≤

1

2δ̄
∀ t ∈ [0, Tε]. (78)

Lemma 11.1 There exists τ̄ > 0 such that for all t ∈ (0, τ̄ ],

|U−1
t | ≤

2Kit

σ2
M

. (79)

Proof. Because Λt is a solution of (12) with initial condition Λ0 = I, there exists
DΛ <∞ such that for all t ∈ [0, Tε],

|I − Λt| ≤ DΛt. (80)

For any n× n A,

|Λ′
tAΛt − A| ≤ |(Λ′

t − I)AΛt| + |IA(Λt − I)|

which, using (80),
≤ |A|(|Λt| + 1)DΛt, (81)

and using Lemma 7.4,
≤ |A|(ΛM + 1)DΛt

.
= |A|kΛt ∀ t ∈ [0, Tε]. (82)

Letting A = Q∆−1
t P̃t in (82) yields

|Λ′
tQ∆−1

t P̃tΛt −Q∆−1
t P̃t| ≤ |Q∆−1

t P̃t|kΛt. (83)

Using the triangle inequality, one finds that for any x ∈ IRn,

|(Λ′
tQ∆−1

t P̃tΛt +Q∆−1
t P̃t)x| ≥ |2Q∆−1

t P̃tx| − |(Λ′
tQ∆−1

t P̃tΛt −Q∆−1
t P̃t)x|

which by (83)

≥ 2|Q∆−1
t P̃tx| − |Q∆−1

t P̃t|kΛt|x|. (84)

Now, by (30),

|Utx| = |(β1,1
t + β2,2

t )x| = |(Q∆−1
t P̃t + Λ′

tQ∆−1
t P̃tΛt +Rt)x|

≥ |(Λ′
tQ∆−1

t P̃tΛt +Q∆−1
t P̃t)x| − |Rtx|

which by (84)

31



≥ 2|Q∆−1
t P̃tx| − |Q∆−1

t P̃tx|kΛt− |Rtx|. (85)

However, Rt is an integral over [0, t] with bounded integrand. Therefore, there exists
kR <∞ such that |Rt| ≤ kRt for all t ∈ [0, Tε]. Using this in (85) yields

|Utx| ≥ |Q∆−1
t P̃tx|(2 − kΛt) − kRt|x| ∀x ∈ IRn, ∀t ∈ [0, Tε]. (86)

By Assumption (A.Q) and the definition of σM ,

|Q∆−1
t P̃tx| ≥ σM |∆−1

t P̃tx| ∀x ∈ IRn

which by Lemma 7.1

≥
σM
Kit

|P̃tx| ∀x ∈ IRn. (87)

Also,

|P̃tx| ≥ |Qx| − |(P̃t −Q)x|

which by (64)
≥ σM |x| −Dt|x| ∀ t ∈ [0, τ0]

which, with τ̄2
.
= τ0 ∧ (σM/(2D)),

≥
σM
2

|x| ∀x ∈ IRn, ∀t ∈ [0, τ̄2].

Substituting this into (87) yields

|Q∆−1
t P̃tx| ≥

σ2
M

2Kit
|x|

.
=
l̃

t
|x| ∀x ∈ IRn, ∀t ∈ [0, τ̄2]. (88)

Combining (86) and (88), one sees that for t sufficiently small,

|Utx| ≥

[
l̃

t
(2 − kΛt) − kRt

]
|x|

which for t sufficiently small,

≥
l̃

t
|x| ∀x ∈ IRn.

Consequently, |U−1
t Utx| = |x| ≤ (t/l̃)|Utx| for all x ∈ IRn, and this implies |U−1

t y| ≤
(t/l̃)|y| for all y ∈ IRn.

Lemma 11.2 There exists τ > 0 such that

|U−1
t | ≤ gS(t) =

{
2Kit
σ2

M

if t ∈ (0, τ ]
1
2δ̄

if t ∈ (τ ,∞).
∀ t ∈ [0, Tε]. (89)
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Proof. The result follows directly from (78) and Lemma 11.1.

Let Ût
.
= β̂1,1

t + β̂2,2
t and δUt

.
= Û−1

t − U−1
t . We now proceed to bound δUt . We will use

the same approach as at the top of the proof of Lemma 7.2. In particular, one has

0 = Û−1
t Ût − U−1

t Ut = (Û−1
t − U−1

t )Ut + Û−1
t (Ût − Ut),

and this implies

Û−1
t − U−1

t = −(Û−1
t − U−1

t )(Ût − Ut)U
−1
t − U−1

t (Ût − Ut)U
−1
t

which yields

δUt = −U−1
t (Ût − Ut)U

−1
t

[
I + (Ût − Ut)U

−1
t

]−1

. (90)

Note that Ût − Ut = δ1,1
t + δ2,2

t , and so, using Lemma 11.2, one obtains

∣∣∣(Ût − Ut)U
−1
t

∣∣∣ ≤ (|δ1,1
t | + |δ2,2

t |)/(2δ̄),

which by the assumptions of Theorem 7.5,
≤ 1 ∀ t ∈ [0, Tε],

and this implies ∣∣∣I + (Ût − Ut)U
−1
t

∣∣∣
−1

≤ 2 ∀ t ∈ [0, Tε]. (91)

Combining (90) and (91), one obtains

|δUt | ≤ 2|U−1
t |2|Ût − Ut| ≤ 2|U−1

t |2|(|δ1,1
t | + |δ2,2

t |). (92)

Finally, combining (92) and Lemma 11.2 yields:

Lemma 11.3
|δUt | ≤ 2[gS(t)]

2
(
|δ1,1
t | + |δ2,2

t |
)

∀ t ∈ [0, Tε]. (93)

Lemma 11.4

|β1,2
t | ≤

PMΛM |Q|

Kit
∧ b̄ ∀ t ∈ (0, Tε]. (94)

Proof. From (30), we have

|β1,2
t | ≤ |Q||∆−1

t ||P̃t||Λt|

which by Lemma 7.4
≤ PMΛM |Q||∆−1

t |

which by Lemma 7.1
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≤
PMΛM |Q|

Kit
∀ t ∈ (0, τ3]. (95)

We have now obtained all the constituent estimates, and proceed directly to the bounds
asserted in the theorem statement. We work mainly with δ1,1

2k+1τ
; a quick examination of

the assertion of Theorem 4.7 shows that the other terms will follow easily by nearly
identical steps.

Let k ∈ {1, 2 . . .N − 1}. Note that

|δ1,1
2k+1τ

| = |β̂1,1
2k+1τ

− β1,1
2k+1τ

|

=
∣∣∣[β̂2kτ ⊛ β̂2kτ ]

1,1 − [β2kτ ⊛ β2kτ ]
1,1

∣∣∣

which by Theorem 4.7
≤ |β̂1,1

2kτ
− β1,1

2kτ
| + |β̂1,2

2kτ
Û−1

2kτ
(β̂1,2

2kτ
)′ − β1,2

2kτ
U−1

2kτ
(β1,2

2kτ
)′|

= |δ1,1
2kτ

| + |δ1,2
2kτ
Û−1

2kτ
(β̂1,2

2kτ
)′ + β1,2

2kτ
δU2kτ (β̂

1,2
2kτ

)′ + β1,2
2kτ
U−1

2kτ
(δ1,2

2kτ
)′|

≤ |δ1,1
2kτ

| + |δ1,2
2kτ
δU2kτ + δ1,2

2kτ
U−1

2kτ
+ β1,2

2kτ
δU2kτ | |β

1,2
2kτ

+ δ1,2
2kτ

| + |β1,2
2kτ
U−1

2kτ
(δ1,2

2kτ
)′|

≤ |δ1,1
2kτ

| + 2|δ1,2
2kτ

||δU2kτ ||β
1,2
2kτ

| + |δ1,2
2kτ

|2|δU2kτ | + 2|δ1,2
2kτ

||U−1
2kτ

||β1,2
2kτ

|

+|δ1,2
2kτ

|2|U−1
2kτ

| + |β1,2
2kτ

|2|δU2kτ |.

We will be making very coarse estimates which can obviously be improved. Noting that
we assume |δ1,2

2kτ
| ≤ 1 in the theorem statement, the last inequality yields

|δ1,1
2k+1τ

| ≤ |δ1,1
2kτ

| +
[
|β1,2

2kτ
|2 + 2|β1,2

2kτ
| + 1

]
|δU2kτ | +

[
2|β1,2

2kτ
| + 1

]
|U−1

2kτ
||δ1,2

2kτ
|

≤ |δ1,1
2kτ

| + (1 + |β1,2
2kτ

|)2|δU2kτ | + 2(1 + |β1,2
2kτ

|)|U−1
2kτ

||δ1,2
2kτ

|.

Applying Lemmas 11.2, 11.3 and 11.4, to the terms in this estimate yields

|δ1,1
2k+1τ

| ≤ |δ1,1
2kτ

| + 2

[
1 +

PMΛM |Q|

Ki2kτ

]2 [
gS(2

kτ)
]2 (

|δ1,1
2kτ

| + |δ2,2
2kτ

|
)

+2

[
1 +

PMΛM |Q|

Ki2kτ

] [
gS(2

kτ)
]
|δ1,2

2kτ
|

≤ (1 + c̄1)|δ
1,1
2kτ

| + c̄2|δ
1,2
2kτ

| + c̄1|δ
2,2
2kτ

|

where

c̄1 = 2c̄2, c̄2 = 2c̄,

and

c̄ = max
t∈[0,∞)

[
1 +

PMΛM |Q|

Kit

]
[gS(t)] <∞.

We have now obtained the bound on |δ1,1
2k+1τ

|. Examining the right-hand sides of the
four equations describing the components of βt1 ⊛ βt2 (where t1 = t2 = 2kτ in our case
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here), one sees that the right-hand sides are quite similar. In particular, the product
terms are identical to the product term which we just bounded in the case of δ1,1

2k+1τ
. The

only other term is the trivial β2,2
2kτ

term. Consequently, the bounds on |δ1,2
2k+1τ

| and |δ2,2
2k+1τ

|
are immediate given the bounds we obtained just above. This completes the proof of
Theorem 7.5.
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