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Abstract

Stochastic games under imperfect information are typically computationally in-
tractable even in the discrete-time/discrete-state case considered here. We consider
a problem where one player has perfect information. A function of a conditional
probability distribution is proposed as an information state. In the problem form
here, the payoff is only a function of the terminal state of the system, and the initial
information state is either linear or a sum of max-plus delta functions. When the ini-
tial information state belongs to these classes, its propagation is finite-dimensional.
The state feedback value function is also finite-dimensional, and obtained via dy-
namic programming, but has a nonstandard form due to the necessity of an ex-
panded state variable. Under a saddle point assumption, Certainty Equivalence is
obtained and the proposed function is indeed an information state.

1 Introduction

A class of discrete stochastic games where one player has imperfect information is consid-
ered. Background material on such games can be found in [5], [14], [10]. The focus here
will be on minimax-type values [3], [5], [9], [14]. Let us first put the problem difficulty
in context by discussing increasingly complex types of problems leading to the problem
type under consideration.

For discrete deterministic and stochastic games under perfect information, the value
functions and feedback controls are functions of the state (annexed by time for some
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problems). If the state-space is finite, these are functions over finite sets (albeit potentially
large finite sets).

For stochastic control problems with imperfect information, one must propagate the
probability distribution, conditioned on the observations, forward in time. This con-
ditional distribution is an information state, i.e. it contains sufficient information to
compute optimal controls. In the finite state-space case with n states, this distribution is
a point in Rn at each time. The value function and optimal control function (if it exists)
are functions of the conditional distribution function. In the continuum state-space case,
these are functions on an infinite-dimensional space, and in the finite state-space (of size
n) case, they are functions on Rn. Under certain conditions, which are typically not
verifiable, one has both certainty equivalence and a separation principle [13], [21], which
asserts that the optimal control is the state feedback optimal control computed at the
(assumed unique) maximum likelihood state (the argmax of the probability distribution).

In recent years, some classes of deterministic games have come under intense study
due to the fact that they are equivalent to H∞ control problems ([3], [18] and the refer-
ences therein). In H∞ control, the opposing player is “nature”, and the natural imper-
fect information problem is where only one player (the actual controller) has imperfect,
observation–based, information. For these problems, there is an information state which
is a function of the state – essentially an integral or summed cost up to the current time,
optimized over the opponent’s control processes [3], [18], [19], [20]. In general, the value
function and optimal controls are functions of this information state function. Under cer-
tain conditions, a Certainty Equivalence Principle (weaker than separation) holds [3], [18],
[20]. When Certainty Equivalence holds, one need only compute the information state
and the state feedback value function. The optimal control is obtained by computing the
unique argmax of the sum of the information state and state feedback value functions.
The optimal control is the optimal state feedback control evaluated at the argmax point
in state-space. Thus, in this case, one avoids computing the control as a function on the
space of information state functions.

The problem of interest here is a discrete stochastic game over a finite state-space.
Since the interest is also in robust/worst-case control, a minimax upper value is considered
(where the opponent is maximizing the cost). Of course, it is implicit in the above that
we are interested here only in zero-sum games. Since this problem formulation generalizes
both the stochastic control and deterministic game formulations, it is completely unclear
what form an information state would take, although heuristically one would expect yet
another level of function composition. (Note that in the stochastic control case one had
a probability distribution function, and in the deterministic game case, an optimized
integral/summed cost function.)

In this paper, an information state for discrete-time/discrete-space stochastic games
under imperfect information (for one player) will be proposed. This information state will
take the form of an optimal summed cost for any given conditional probability distribution.
If the state-space is of finite size n, each conditional probability will be a point on a simplex
in Rn, and the information state will thus be a function on this (n − 1)–dimensional
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simplex in Rn. (In the continuous state-space case, it would be a function over an infinite-
dimensional space.) The payoff will be a function of the true state only, and the initial
information will be either piecewise linear or a max-plus sum of max-plus delta functions,
and in this case, the information state itself will be finite-dimensional.

Under a saddle point condition, a Certainty Equivalence result will be obtained, and
of course, this will implicitly imply that the above function is indeed an information state.
Whether it is an information state in general remains an open question. Regardless, the
construction of the candidate information state and the state feedback value function are
quite technical, and the supporting analysis is substantial. One purpose of this paper is
simply the laying of these foundations, and of course the other purpose is the development
of the Certainty Equivalence result for this problem class.

The interest here is not only mathematical. There is a motivational application in the
realm of military command and control (C2 ) for air operations with uninhabited combat
air vehicles (UCAVs). For related information, see [2], [6], [7], [15], [16], [17], [23], [24],
[26]. In particular, the dynamic models in [23], [24], [26] take the discrete stochastic
game form considered here. Notably, the controls for both players affect the observation
process for player 1 as well as the game dynamics. Specifically, the choice of task for the
player 1 UCAVs can affect the probability that they observe player 2 assets, as well as
the game dynamics. At the same time, the control for the player 2 also affects both the
probability it will be observed and the game dynamics. A problem model where there is
only a terminal cost in terms of the players’ remaining assets fits the game formulation
studied here as well. Although this motivational application is specific to military C2 ,
one could easily imagine other applications which one would hope to formulate similarly,
given that the solutions are finite dimensional (although potentially very large).

The paper is organized as follows. In Section 2, the stochastic game problem for-
mulation is laid out. In Section 3, the information state is defined, and its propagation
forward in time is discussed. In Section 4, the state feedback value function is defined,
and a dynamic programming iteration is demonstrated to compute this value. This state
feedback problem is nonstandard. In Section 5, the robustness and Certainty Equivalence
results are obtained. Lastly, Section 6 provides a very short discussion of the finiteness of
the information state and value function computations.

2 Problem Formulation

Potential states of the system will be represented by x ∈ X where X is some finite set.
Time will be discrete, and the state of the system at time t will be denoted by Xt. Each
state x will be associated with a unit basis vector in R(#X ). For instance, one could have
X = {1, 2, 3, 4, . . . , n}, and state x = 3 would be associated with standard basis vector
(0, 0, 1, 0, . . . , 0). The control for player 1, the minimizing player, will take values u ∈ U
where U is finite. The corresponding controls for player 2 (maximizing) will be w ∈ W
which is also a finite set. Controls for each player at time t will be denoted as ut and wt.
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We will consider a finite time problem with time taking values in {0, 1, 2, . . . , T}. We
will denote the terminal cost as E : X → R; the cost of terminal state XT is E(XT ). There
is no running cost. Player 1 will be minimizing the cost, and player 2 will be maximizing.

We suppose that the state evolves as a controlled Markov chain (where the dynamics
are time independent for simplicity of exposition). Let the probability that Xt+1 = j
given Xt = i with controls ut = u ∈ U and wt = w ∈ W be

Pij(ut, wt) = Pr(Xt+1 = j|Xt = i, ut = u,wt = w), (1)

and let the n × n matrix of the elements pij be denoted as P (u,w) where n
.
= #X . We

will assume that there is an observation process for player 1 (recall that player 2 will know
the state perfectly) which can be controlled by both players. Let the observation process
be y· with yt ∈ Y where the probability that observation yt = y given Xt = i and controls
ut = u,wt = w is denoted as

Ri
.
= Pr(yt = y|Xt = i, ut = u,wt = w). (2)

We take Y to be a finite set for consistency, but that does not appear to be required for
the results to follow.

In a deterministic game under imperfect information, the information state for player
1 is a function of the state, and it represents the minimal cost to the opposing player
(maximal cost from the point of view of player 1) for the state to be x at current time
t given the observations up to the current time. Alternatively, in a stochastic control
problem under imperfect information, the information state is simply the probability that
Xt = x conditioned on the observations up to the current time t. Here however, player 2
can affect the observation process, so one must consider the cost to player 2 to produce a
possibly misleading conditional probability distribution. Thus, it is natural to propose an
information state for player 1 as It : Q(X ) → R where Q(X ) is the space of probability
distributions over state space X ; Q(X ) is the simplex in the first octant of Rn defined
by the unit basis vectors. For simplicity of presentation, we henceforth refer to It as an
information state, although the basis for this designation does not appear until Section 5.
We let the initial information state be I0(·) = φ(·). Here, φ represents the initial cost to
obtain and/or obfuscate initial state information. The case where this information cannot
be affected by the players may be represented by a max–plus delta function. That is, φ
takes the form

φ(q) = δqc(q) =
{

0 if q = qc

−∞ otherwise.
The problem will be finite-dimensional for initial information states taking the form of
finite max-plus sums of max-plus delta functions

φ(q) =
m⊕

i=1

δqi
(q) = max

i∈{1,2,...,m}
δqi

(q).

A second case that will be tractable is where φ is linear or piecewise linear, since the
piecewise linear form will be preserved under forward propagation of the information
state.
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3 Information State Propagation

Let time be denoted by t ∈ {0, 1, 2, . . . , T} where T is the terminal time. Let a conditional
probability of the state at time t be denoted by qt ∈ Q(X ). It will reduce notation and
simplify the presentation if we consider first the case without observations; the observation
process will be included further below. In the absence of observations, and for given
controls ut, wt, the probability distribution propagates according to

qt+1 = P T (ut, wt)qt. (3)

For simplicity, we will assume the existence of P−T in the standard sense throughout.
(This is not broken out as an assumption since it will be superseded by an assumption to
appear a little further below.) Note that although this mapping is into Q(X ), it is not
necessarily onto. Since wt is not known by player 1, it will be necessary to keep track of a
set of feasible conditional probabilities at time t, Qt. Note that for t prior to the current
time, ut being player 1’s control is known by player 1.

Let w[0,t−1] = {w0, w1, . . . , wt−1}, where each wr ∈ W , denote a sequence of controls
for player 2. Then, if the controls for player 2 were independent of the true state, x, one
would have

Qt(u[0,t−1]) = {q ∈ Q(X ) : ∃w[0,t−1] ∈ W t such that q0 ∈ Q(X ) where q0 is

given by backward propagation (5) with qt = q } (4)

where

qr−1 = P−T (ur−1, wr−1)qr. (5)

However, player 2 has full state knowledge, and consequently, it’s control must be allowed
to depend on the actual state. The needed notation is most easily handled by the following
device. For u ∈ U and any vector ~w ∈ W n, define the matrix P̃ by

P̃ij(ut, ~w)
.
= Pij(ut, ~wi) ∀ i, j ∈ {1, 2, . . . , n}. (6)

Now let ~w[0,t−1] = {~w0, ~w1, . . . , ~wt−1}, where each ~wr ∈ W n, denote a sequence of state-
dependent controls for player 2. That is, the ith component of ~wr is the player 2 feedback
control for state Xr = i. One now sees that (in the absence of an observation process)
the feasible set at time t should be given by

Qt(u[0,t−1]) = {q ∈ Q(X ) : ∃~w[0,t−1] ∈ [W n]t such that q0 ∈ Q(X ) where q0 is

given by backward propagation (8) with qt = q } (7)

where

qr−1 = P̃−T (ur−1, ~wr−1)qr. (8)
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Since the following constructions are already quite cumbersome, we make the following
assumption throughout.

For all u ∈ U and ~w ∈ W n, P̃−1(u, ~w) exists in the standard sense (A3.1)

(i.e. the Moore-Penrose pseudo-inverse is not needed). The information state at time t,
being the worst-case cost, is defined as

It(q; u[0,t−1])
.
=

{
sup

q0∈Q
q,u[0,t−1]
0

sup~w[0,t−1]∈[W n]t I0(q0) if q ∈ Qt(u[0,t−1])

−∞ otherwise
(9)

for t > 0 and

I0(q) = φ(q) (10)

where

Q
q,u[0,t−1]

0
.
= {q ∈ Q(X ) : ∃~w[0,t−1] ∈ [W n]t such that qt = q given

q0 = q and propagation (8)}. (11)

Note that the maximum here used to compute the player 1 information state allows
~w to be chosen depending on ut (upper value). For each possible distribution, q, this
represents the maximal cost (minimal from player 2’s perspective) for the computed con-
ditional probability to be q given the original cost. (Recall that we have only initial and
terminal costs in this problem formulation.)

So far we have ignored the possibility of an observation process. Let us now include
this in the propagation. We will assume that the observations may occur at each time
step, t. We will distinguish between a priori conditional distributions, denoted as qt,
and a posteriori distributions, denoted as q̂t. That is, q̂t incorporates the possible new
information in an observation at time t. Suppose the actual observation at time t is
yt = y ∈ Y . Recalling the observation discussion of Section 2, and the fact that we
are allowing the player 2 control to depend on the true state, we let the vector R̃ have
components

R̃i = R̃i(y, u, ~wi)
.
= Pr(yt = y|Xt = i, u, ~wi) (12)

for each i ≤ n where again ~w indicates the possibly state-dependent choice of player 2
control. Let D(R̃) be the matrix whose ith diagonal element is R̃i for each i, and whose
other elements are zero. Then, given any control u and ~w, the a posteriori distribution
would be given by

q̂t =
(

1

R̃T (y,ut, ~w)qt

)
D(R̃(y, ut, ~w))qt. (13)

The possible set of a posteriori distributions, Q̂t is the set of all q̂t given by (13) for
some qt ∈ Qt. To reduce the already cumbersome development, we make the following
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assumption.

Assume that for all u ∈ U , ~w ∈ W n and y ∈ Y , D is full rank;

i.e. R̃i(y, ut, ~w) 6= 0 for all i.
(A3.2)

Note that each component of q̂t is given by q̂ti = αR̃iqti for constant α = 1/(R̃T (y, ut, ~w)qt)
independent of i. Inverting this, each component qti = (1/α)R̃−1

i q̂ti. Since
∑

i qti = 1,
one sees that one must have 1/α = 1/(

∑
i R̃

−1
i q̂t i). Consequently, each component qti =

[1/(
∑

i R̃
−1
i q̂ti)]R̃

−1
i q̂ti.

With the addition of the observation process, the feasible set now becomes

Qt(u[0,t−1], y[0,t−1]) = {q ∈ Q(X ) : ∃~w[0,t−1] ∈ [W n]t such that q0 ∈ Q(X ) where q0 is

given by backward propagation (15) with qt = q } (14)

where

qr−1 = Ĝ−1(yr−1, ur−1, ~wr−1, qr) (15)
.
= 1

R̂T (yr−1,ur−1, ~wr−1)P̃−T (ur−1, ~wr−1)qr
D−1(R̃(yr−1, ur−1, ~wr−1))P̃

−T (ur−1, ~wr−1)qr

where R̂i(yr−1, ur−1, ~wr−1)
.
= 1/[R̃i(yr−1, ur−1, ~wr−1)].

Also, with the addition of the observation process, the information state definition (at
time t prior to the observation) now becomes

It(q; u[0,t−1], y[0,t−1])
.
=

{
max

q0∈Q
q,u[0,t−1]
0

max~w[0,t−1]∈[W n]t I0(q0) if q ∈ Qt(u[0,t−1], y[0,t−1])

−∞ otherwise
(16)

for t > 0 and

I0(q) = φ(q) (17)

where

Q
q,u[0,t−1]

0
.
= {q0 ∈ Q(X ) : ∃~w[0,t−1] ∈ [W n]t such that qt = q given initial

q0 and backward propagation (15)}. (18)

The difference between (16) and (9) is that the propagation is now given by (15) rather
than by (8). Note that maxima (as opposed to suprema) are appropriate in (16) since
W is finite and since I0 is either a finite maximum of max-plus delta functions or a
piecewise linear function. Also note that we will often suppress the dependence of Qt on
u[0,t−1], y[0,t−1]. The proofs of the next two lemmas are obvious.
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Lemma 3.1

Qt+1 = {q ∈ Q(X ) : ∃qt ∈ Qt, ~w ∈ W n such that q = G(yt, ut, ~w)[qt]} (19)

where

G(y, u, ~w)[q]
.
= Ĝ(y, u, ~w, q) = P̃ T (u, ~w) 1

R̃T (y,u, ~w)q
D(R̃(y, u, ~w))q. (20)

Note that we are introducing the notation G(y, u, ~w)[q] to indicate that G(y, u, ~w) is a
mapping from Q(X ) into Q(X ) for each triple y, u, ~w; this notation will be useful below.

Lemma 3.2 Qt 6= ∅ for all t ∈ {0, 1, . . . , T}.

Lemma 3.3

It+1(q) =
{

max~w∈W q
t
max

q̂∈S ~w,q
t
It(q̂) if W q

t 6= ∅
−∞ otherwise

(21)

where

S ~w,q
t = S ~w,q

t (u[0,t], y[0,t]) = {q̂ ∈ Qt : q = G(yt, ut, ~w)[q̂]}
W q

t = {~w ∈ W n : S ~w,q
t 6= ∅}. (22)

Proof. We prove inequalities in both directions. We first show It+1(q) is greater
than or equal to the right hand side. Suppose q ∈ Qt+1. Let

W̃ q
t−1

.
=

{
~w[0,t−1] : ∃q0 ∈ Q(X ) such that q =

[t−1∏
r=0

G(yr, ur, ~wr)
]
[q0]

}
(23)

where the
∏

notation indicates operator composition.

Let ~w ∈ W q
t and qt ∈ S ~w,q

t where we assume W q
t 6= ∅ since otherwise there is nothing

to prove in this direction.

By the definition of S ~w,q
t there exists ~̃w[0,t−1] ∈ W̃ qt

t−1 and a corresponding q̃0 ∈ Q(X )
such that

It(qt) = I0(q̃0) (24)

where

qt =
[t−1∏
r=0

G(yr, ur, ~̃wr)
]
[q̃0]. (25)

Define
~̂wr =

{
~̃wr if r ≤ t− 1
~w if r = t.
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Then ~̂w ∈ W̃ q
t (defined similarly to W̃ q

t−1 of course). By the definition of It+1(q),

It+1(q) ≥ I0(q̃0). (26)

Combining (24) and (26) yields It+1(q) ≥ It(qt). Since this is true for all ~w ∈ W q
t and

qt ∈ S ~w,q
t , one has

It+1(q) ≥ max
~w∈W q

t

max
q̃∈S ~w,q

t

It(q̃) (27)

which is the inequality in one direction.

Now we turn to the other direction. Suppose It+1(q) 6= −∞; otherwise there is
nothing to prove. By the finiteness of W , there exists an optimal ~̂w[0,t] and corresponding
q0 ∈ Q(X ) given by

q =
[ t∏
r=0

G(yr, ur, ~̂wr)
]
[q0]

such that
I0(q0) = It+1(q). (28)

Then, ~̂wt ∈ W q
t , S ~w,q

t 6= ∅ and

qt
.
=

[t−1∏
r=0

G(yr, ur, ~̂wr)
]
[q0] ∈ S

~̂wt,q
t .

This implies that qt ∈ Qt. By the definition of It,

It(qt) ≥ I0(q0). (29)

Combining (28) and (29) yields

It+1(q) ≤ It(qt) ≤ max
~w∈W q

t

max
q̃∈S ~w,q

t

It(q̃). (30)

By (27) and (30), one has the result.

A potential problem is that the normalization in (13) and (15) induces nonlinearities in
the propagation. This is specifically important in the case where I0 is linear or piecewise
linear. Consequently, we will work with the unnormalized distribution. The a priori and
a posteriori unnormalized distributions at time t will be denoted as q̃t and ̂̃qt, respectively.
At any time t, one can renormalize by dividing by

∑
i[q̃t]i for the a priori distribution, and

similarly for the a posteriori. The feasible sets of a priori and a posteriori unnormalized

distributions will be denoted by Q̃t and
̂̃Qt.

If the control processes, u· and ~w·, and the observation process, y·, are given, then the
unnormalized distribution would propagate as

q̃t+1 = P̃ T (ut, ~wt)̂̃qt,
̂̃qt = D(R̃(yt, ut, ~wt))q̃t (31)
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for given initial q̃0 = q0. Based opn the above results for the normalized case, the informa-
tion state as a function of the unnormalized distribution, denoted by Ĩt, should propagate
by

Ĩt+1(q̃) = max
{
Ĩt[D

−1(R̃(yt, ut, ~w))P̃−T (ut, ~w)q̃] :

∃~w ∈ W n such that D−1(R̃(yt, ut, ~w))P̃−T (ut, ~w)q̃ ∈ Q̃t

}
(32)

where
Q̃t+1 =

{
q ∈ R#X : ∃ qt ∈ Q̃t, ~w ∈ W n such that

q = G̃(yt, ut, ~wt)[qt]
}

(33)

where G̃(y, u, ~w)[q]
.
= P̃ T (u, ~w)D(R̃(y, u, ~w))[qt] with initial conditions Ĩ0(q) = φ(q) and

Q̃0 = Q(X ).

To be fully rigorous, one should first define the unnormalized Ĩt and Q̃t directly, and
then obtain the propagation formulae (32)–(33) in a manner analogous to Lemmas 3.1
through 3.3. Since the variation from the normalized case is trivial, we do not include
this.

In the case that the initial cost, φ is piecewise linear, we see that, even when including
the observation process, the unnormalized information state remains finite-dimensional.
More specifically,

Theorem 3.4 If φ is linear (where we freely use the term linear to mean affine, i.e.
linear plus a constant), then for any time, t ≥ 0, Ĩt is the maximum of a finite set of
linear functions with convex domains with piecewise linear boundaries defined by at most
n extremal points. The number of such linear functions required is at most (#W n)t. If
φ is piecewise linear, then Ĩt is the maximum of a finite set of piecewise linear functions
with piecewise linear boundaries, and again the number of such functions required is at
most (#W n)t.

Proof. Recall that we are assuming, for simplicity, that P−T and D−1 exist in the
standard sense. Suppose φ is linear (more precisely, affine), say φ(q) = γT q + β for some
γ ∈ Rn and β ∈ R. Note that Q̃0 = Q(X ). Suppose q0 ∈ Q̃0, u0 ∈ U , y0 ∈ Y , and let
~w ∈ W n. Define

q1 = q1(~w)
.
= G̃(u0, ~w, y0)[q0]

= P̃ T (u0, ~w)D(R̃(y0, uo, ~w))q0.

By (33), q1 ∈ Q̃1. Let Q̃~w
1 = G̃(y0, u0, ~w)[Q̃0] which is the image of simplex Q̃0 under

linear operator G̃(y0, uo, ~w), and so Q̃~w
1 is a convex subset of a hyperplane in Rn, and

since the boundary of Q̃0 has n extremal points, Q̃~w
1 has at most n extremal points (the

images of the extremal points of Q̃0 modulo degeneracy). Then, by (33), Q̃1 = ∪~w∈W nQ̃~w
1
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which is a set of at most #W n hyperplane subsets. Proceeding inductively, one obtains
Q̃t as the union of at most (#W n)t hyperplane subsets.

Now we turn to the Ĩt themselves. Let q1 ∈ Q̃1. Also, denote W n as W n = {~wk}#W n

k=1 .
For each k ≤ #W n, define

Ĩ ~wk

1 (q) = Ĩ0(G̃
−1(u0, y0, ~wk)[q])

= γT D−1(R̃(y0, u0, ~wk)P̃−T (u0, ~wk)q + β

for all q ∈ Q̃~wk

1 , which is a linear functional over domain Q̃~wk

1 . For each q ∈ Q̃1, let
Ŵ (q)

.
= {~w ∈ W n : q = G̃(y0, u0, ~w)[q0] for some q0 ∈ Q̃0}. Then, by (32), Ĩ1(q) =

max
~wk∈Ŵ (q)

Ĩ ~wk

1 (q) which proves the result for t = 1. Proceeding inductively, one obtains

the result for all t.

The proof for the case where φ is piecewise linear is similar, and so we do not include
it.

Although we will not consider the actual computational costs here, the sequential prop-
agation of such information states is tractable in real-time for reasonably small problems.
We particularly want to distinguish this propagation from the case where the information
state is infinite dimensional.

Alternatively, in the case where φ is a max-plus delta function or finite max-plus sum
of max-plus delta functions, this is even more tractable. Note that φk is a max-plus delta
function over Q(X ) if there exists qk ∈ Q(X ) such that

φk(q) =
{

0 if q = qk

−∞ if q 6= qk.

Also, φ is a (finite) max-plus sum of max-plus delta functions if there exist {qk}K
k=1 such

that

φ(q) =
K⊕

k=1

φk(q) = max
k

φk(q).

Theorem 3.5 If φ is a max-plus sum of K max-plus delta functions (where K ≥ 1),
then It(q) : Q(X ) → {−∞, 0} is a max-plus sum of at most K(#W n)t max-plus delta
functions.

The proof is quite trivial by (32), and we do not include it. It is worth noting that in
this (max-plus delta functions) case, one does not need to use the unnormalized distribu-
tions, which is in contrast to the linear and piecewise linear cases.

4 Value Function

We now turn to the state feedback value function. The full state of the system is now
described by the true state taking values x ∈ X and the player 1 information state taking
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values q ∈ Q(X ). We denote the terminal payoff for the game as E : X → R (where of
course this does not depend on the internal information state of player 1). Thus the state
feedback value function at the terminal time is

VT (x, q) = E(x). (34)

One issue that arises is the information available to player 2. One option would be to
assume that it knows only the actual true state, x. However, with full knowledge of
the state and observations, player 2 could also construct the conditional probability, q.
This second problem model is more conservative in terms of construction of the player 1
control, and this model will be used here.

The state of the state feedback game at time t is (Xt, qt) where Xt propagates as a
Markov chain with probabilities given by (1) and qt propagates by (3). Player 1 will have
access only to the probability distributions up to the current time, while player 2 will
have access to the true state as well.

We define the strategies for player 1 as follows. Throughout, we will continue to use
the convention that interval subscripts indicate sequences; for instance, u[t̄,t1] = {ur}t1

r=t̄.
Since player 1 has access only to probability distributions, the set of strategies for player
1 over time interval [t̄, T − 1] is

Λ[t̄,T−1] =
{
λ[t̄,T−1] : QT−t̄ → UT−t̄, nonanticipative in q·

}
. (35)

Note that λ[t̄,T−1] is nonanticipative in q· if given any t ∈ {t̄, t̄ + 1, . . . , T − 1} and any
q[t̄,T−1] = q̃[t̄,T−1] ∈ QT−t̄ such that qr = q̃r for all r ≤ t, then λt[q[t̄,T−1]] = λt[q̃[t̄,T−1]].

Further, note that λt is independent of x. More specifically, if the true state Xt 6= X̂t, but
qr = q̃r for all r ≤ t, then one still has λt[q[t̄,T−1]] = λt[q̃[t̄,T−1]]. For notational simplicity,
let λt ≡ λ[t,t]. For reasons of robustness, we will be interested in an upper value (giving
advantage to player 2). Consequently, the strategy set for player 2 is naturally

Θ[t̄,T−1] =
{
θ[t̄,T−1] : X T−t̄−1 ×QT−t̄ → W n(T−t̄), nonanticipative in X·, q·

}
.

Note that the dependence of θt on the current state, Xt is implicit in the fact that ~w is a
vector of length n where component i represents the control w to be played if the current
state is Xt = i. The strategy set Θ corresponds to the closed-loop perfect state (CLPS)
information pattern [3], [5], while λ is similar to CLPS but with the x-portion of the state
unobserved.

We note that in this state feedback game definition, player 1 assumes that qt̄ is an
accurate representation of the true distribution of its lack of information of the true
state Xt̄. Assuming no modeling errors (as always here), qt then remains an accurate
representation for all t for each possible sequence of player 2 moves.

Since player 1 knows only the q· process, the best that could be achieved from player
1’s perspective would be

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

sup
θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}
(36)
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where Eq represents expectation over X with P (X = i) = qi for all i ∈ X , and the
dynamics are given by (1), (3), (6) with strategies λ and θ. Since the above formulation
is slightly nonstandard, some equivalent formulations follow.

Lemma 4.1 The optimal player 1 value, V 1
t̄ , satisfies

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

Eq

{
E[E(XT ) |Xt̄ = X]

}
. (37)

Proof. We prove that for any λ[t̄,T−1] ∈ Λ[t̄,T−1],

sup
θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}
= max

~w[t̄,T−1]∈W n(T−t̄)
Eq

{
E[E(XT ) |Xt̄ = X]

}
(38)

Let the left-side of (38) be denoted by A(q, λ[t̄,T−1]), and the right-side by B(q, λ[t̄,T−1]).
Fix any q ∈ Q(X ) and λ[t̄,T−1] ∈ Λ[t̄,T−1]. Let ~w∗

[t̄,T−1] ∈ W n(T−t̄) achieve the maximum

on the right in (38). Define θ
∗
t [X·, q·]

.
= w∗

t for all t ∈ [t̄, T − 1]. Then the corresponding
processes which we denote by X∗

· and q∗· are identical for both control ~w∗
[t̄,T−1] and strategy

θ
∗
[t̄,T−1], and B(q, λ[t̄,T−1]) = Eq

{
E[E(X∗

T ) |X ∗̄
t = X]

}
≤ A(q, λ[t̄,T−1]).

Now the reverse inequality is proved. Let θ
ε

[t̄,T−1] be ε–optimal for the left-side of

(38). This yields a qε
· process where qε

t+1 = P̃ T (λt[q
ε
[t̄,t]], θ

ε

t [X
ε
[t̄,t−1], q

ε
[t̄,t]])q

ε
t . Let ~wε

t =

θ
ε

t [X
ε
[t̄,t−1], q

ε
[t̄,t]] for all t ∈ [t̄, T − 1]. Then, the corresponding processes which we denote

by Xε
· and qε

· are identical for both control ~wε
[t̄,T−1] and strategy θ

ε

[t̄,T−1]. Consequently,

A(q, λ[t̄,T−1]) − ε ≤ Eq

{
E[E(Xε

T ) |Xε
t̄ = X]

}
≤ B(q, λ[t̄,T−1]). Since this is true for all ε,

the proof is complete.

Remark 4.2 Note that the θ
∗

constructed in the first half of the proof of Lemma 4.1 is
optimal, and consequently, one has

sup
θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}
= max

θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}

for any q ∈ Q(X ) and λ[t̄,T−1] ∈ Λ[t̄,T−1], which is to say that one can replace the supremum

with a maximum since the least upper bound is achieved by θ
∗
.

Lemma 4.3 The optimal player 1 value, V 1
t̄ , satisfies

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(XT ) |Xt̄ = X]
}

(39)

= inf
λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
max

~w[t̄,T−1]∈W n(T−t̄)
E[E(XT ) |Xt̄ = X]

}
. (40)
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Proof. We prove only the first assertion. The second follows from the first by a
proof similar to that of Lemma 4.1. Fix any q ∈ Q(X ) and λ[t̄,T−1] ∈ Λ[t̄,T−1]. We prove
that

max
θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}
= Eq

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(XT ) |Xt̄ = X]
}
. (41)

Let the left-side of (41) be denoted by A(q, λ[t̄,T−1]), and the right-side by B(q, λ[t̄,T−1]).
Let

θ
∗
· ∈ argmax

θ[t̄,T−1]∈Θ
n(T−t̄)

[
Eq

{
E[E(XT ) |Xt̄ = X]

}]
,

and let X∗
· be the corresponding state process. Then

A(q, λ[t̄,T−1]) = Eq

{
E[E(X∗

T ) |X ∗̄
t = X]

}
where X∗

· is generated by strategies θ
∗

and λ, and since obviously θ
∗ ∈ Θ,

≤ Eq

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(XT ) |Xt̄ = X]
}

= B(q, λ[t̄,T−1]).

Now we prove the reverse inequality. Recall that θ· is dependent on the state process
X· (nonanticipatively). Given any x ∈ X , let θ

x,∗
be optimal, that is

E[E(Xx,∗
T ) |Xx,∗

t̄ = x] = max
θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(XT ) |Xt̄ = x] (42)

where Xx,∗ is the state process corresponding to θ
x,∗

with initial condition Xx,∗
t̄ = x. Now

define θ
∗ ∈ Θ as follows. For each pair of sequences, (x[t̄,T−1], q[t̄,T−1]) ∈ X T−t̄ ×Q(X )T−t̄

such that xt̄ = x, let θ
∗
[t̄,T−1] = θ

x,∗
[t̄,T−1]. Note that this defines θ

∗
uniquely for each process

path. Given θ
∗

and λ, initial qt̄ = q and any initial Xt̄, let X∗
· and q∗· be the corresponding

processes. By (42) and the definition of θ
∗
,

Eq

{
E[E(X∗

T ) |X ∗̄
t = X]

}
= Eq

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(X∗
T ) |X ∗̄

t = X]
}

= B(q, λ[t̄,T−1]).

As above, since θ
∗ ∈ Θ, this immediately yields

A(q, λ[t̄,T−1]) ≥ B(q, λ[t̄,T−1])

which completes the proof.

Define

Mt̄(x, q, λ[t̄,T−1])
.
= max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[VT (XT , qT ) |Xt̄ = x] (43)

so that
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V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

Eq{Mt̄(X, q, λ[t̄,T−1])}. (44)

Noting the fact that U is finite, one sees that there exists an optimal λ
0

[t̄,T−1] (see Remark
4.4 just below) given by

λ
0

[t̄,T−1] = argmin
λ[t̄,T−1]∈Λ[t̄,T−1]

Eq{Mt̄(X, q, λ[t̄,T−1])}. (45)

Remark 4.4 Rather than include a full, technical proof of the existence of an optimal

λ
0

[t̄,T−1], we simply indicate a proof in the one time-step case. Let F : Q(X )× U → R be
any function which is measurable in Q(X ) for each u ∈ U . In particular, F will represent
Eq{MT−1(X, q, u)} where for expediency, we abuse notation by letting the third argument
in MT−1 here be an element of U rather than a function with range in U . Let the number
of elements of U be Nu. Define

A1 = {q ∈ Q(X ) : F (q, u1) ≤ min
i>1

F (q, ui)}.

Then, for each j ∈ {2, 3, . . . , Nu − 1}, define

Aj =
{
q ∈ Q(X ) \

[ ⋃
k<j

Ak

]
: F (q, uj) ≤ min

i>j
F (q, ui)

}
,

and finally, let
ANu = Q(X ) \ [

⋃
k<Nu

Ak].

Note that Q(X ) =
⋃Nu

j=1 Aj and Ai ∩ Aj = ∅ for all i 6= j. Then, λ
0

[T−1,T−1][q]
.
= uj for

q ∈ Aj is optimal in (44) with t̄ = T − 1.

We consider only the upper value of the game given by

Vt̄(x, q) = Mt̄(x, q, λ
0

[t̄,T−1]). (46)

Note that by (44), (45) and (46)

V 1
t̄ (q) = Eq[Mt̄(X, q, λ

0

[t̄,T−1])]

= Eq[Vt̄(X, q)]. (47)

Recall from Remark 4.2, that there also exists an optimal θ
0

[t̄,T−1] (dependent on λ[t̄,T−1]

of course). Let the vector of length n, ~E , be defined by ~Ei = E(i). Then one sees that

Vt̄(i, q) =

[T−1∏
t=t̄

P̃
(
λ

0

t [q[t̄,T−1]], θ
0

t [X[t̄,T−1], q[t̄,T−1]]
)]

~E


i

(48)

and
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V 1
t̄ (q) = qT

[T−1∏
t=t̄

P̃
(
λ

0

t [q[t̄,T−1]], θ
0

t [X[t̄,T−1], q[t̄,T−1]]
)]

~E
 . (49)

Now that the state feedback value has been defined, one needs to show how it can be
obtained by backward dynamic programming propagation. Let V i

t (x, q) be the function
obtained by the following backward (dynamic programming) iteration. (Note that the
i superscript notation does not inidicate an element of a set, but is instead intended
to denote the function obtained by this backward iteration.) It must be shown that
V i

t (·, ·) = Vt(·, ·), the value function. Let V i
T (x, q) = E(x) for all x ∈ X and q ∈ Q(X ).

We now suppose that one has V i
t+1(·, ·), and demonstrate how one obtains V i

t (·, ·).

1. First, let the vector-valued function ~Mt be given component-wise by

[ ~Mt]x(q, u) = max
~w∈W n

[∑
j∈X

P̃xj(u, ~w)V i
t+1(j, q

′(q, u, ~w))
]

(50)

where
q′(q, u, ~w) = P̃ T (u, ~w)q (51)

and the optimal ~w is
~w0

t = ~w0
t (x, q, u) = argmax

~w∈W n

{∑
j∈X

P̃xj(u, ~w)V i
t+1(j, q

′(q, u, ~w))
}
. (52)

2. Then define Lt as

Lt(q, u) = qT ~Mt(q, u), (53)

and note that the optimal u is
u0

t = u0
t (q) = argmin

u∈U
Lt(q, u) = argmin

u∈U
qT ~Mt(q, u). (54)

3. With this, one obtains the next iterate from

V i
t (x, q) =

∑
j∈X

P̃xj(u
0
t , ~w0

t )V
i
t+1(j, q

′(q, u0
t , ~w0

t )) = [ ~Mt]x(q, u
0
t ) (55)

and the corresponding best achievable expected result from the player 1 perspective is
V i,1

t (q) = qT ~Mt(q, u
0
t ). (56)

Consequently, for each t ∈ {0, 1, . . . , T} and each x ∈ X , V i
t (x, ·) is a piecewise

constant function over simplex Q(X ). (Once we obtain Vt ≡ V i
t , this will obviously

imply the corresponding piecewise constancy of the state feedback value function Vt.)
Due to this piecewise constant nature, propagation is relatively straight-forward (more
specifically, it is finite-dimensional in contradistinction to the general case). However,
this is slightly less critical than the propagation issue for the information state of the
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unnormalized distribution, Ĩt, since the state feedback value may be pre-computed, while
the information state must be propagated in real-time.

We now show that in fact, Vt ≡ V i
t for all t ∈ [0, T ]. By definition, V i

T (x, q) = E(x) =
VT (x, q) for all x ∈ X and q ∈ Q(X ). The next step in proving the equivalence is to prove
that Vt satisfies the dynamic programming principle (DPP). For the problem considered
here, the DPP takes the form of the following theorem.

Theorem 4.5 Let 0 ≤ t < t1 ≤ T . Then

Vt(x, q) = Mt(x, q, λ
0

[t,T−1]) = M̃t,t1(x, q, λ̃
0

[t,t1−1]) (57)

where
M̃t,t1(x, q, λ[t,t1−1]) = max

θ[t,t1−1]∈Θ[t,t1−1]

E[Vt1(Xt1 , qt1) |Xt = x] (58)

qt = q, and

λ̃
0

[t,t1−1] = argmin
λ[t,t1−1]∈Λ[t,t1−1]

Eq

{
M̃t,t1(X, q, λ[t,t1−1])

}
. (59)

Proof. The first equality in (57) is merely a restatement of the definition (46), and
one needs only to prove the second equality in (57). From (58), one has

M̃t,t1(x, q, λ̃
0

[t,t1−1]) = max
θ[t,t1−1]∈Θ[t,t1−1]

E[Vt1(Xt1 , qt1) |Xt = x] (60)

where to be specific, we note that Xt1 is generated from Xt = x according to dynamics (1)

with controls λ̃
0

[t,t1−1] and θ[t,t1−1], and qt1 is generated similarly from qt = q. By definition
(46)

Vt1(Xt1 , qt1) = Mt1(Xt1 , qt1 , λ
0

[t1,T−1]) (61)

where
λ

0

[t1,T−1] = argmin
λ[t1,T−1]∈Λ[t1,T−1]

Eqt1
{Mt1(Xt1 , qt1 , λ[t1,T−1])}. (62)

Note also that by definition (43)

Mt1(z, qt1 , λ
0

[t1,T−1]) = max
θ[t1,T−1]∈Θ[t1,T−1]

E[E(X̂T ) | X̂t1 = z] (63)

for any z ∈ X where X̂· propagates according to dynamics (1) with controls λ
0

[t1,T−1] and

θ[t1,T−1]. Substituting (61) into (60) yields

M̃t,t1(x, q, λ̃
0

[t,t1−1]) = max
θ[t,t1−1]∈Θ[t,t1−1]

E[Mt1(Xt1 , qt1 , λ
0

[t1,T−1]) |Xt = x]

which by (63)
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= max
θ̃[t,t1−1]∈Θ[t,t1−1]

E
{

max
θ[t1,T−1]∈Θ[t1,T−1]

E[E(X̂T ) | X̂t1 = Xt1 ] |Xt = x
}

which by Lemma 4.3 and the definition of Θ

= max
θ[t,T−1]∈Θ[t,T−1]

E
{
E[E(X̂T ) | X̂t1 = Xt1 ] |Xt = x

}
= max

θ[t,T−1]∈Θ[t,T−1]

E
[
E(XT ) |Xt = x

]
(64)

where X· propagates according to dynamics (1) with controls λ̃
0

[t,t1−1]∪λ
0

[t1,T−1] and θ[t,T−1].

Note that by (59) and (64),

λ̃
0

[t,t1−1] = argmin
λ[t,t1−1]∈Λ[t,t1−1]

Eq

{
max

θ[t,T−1]∈Θ[t,T−1]

E
[
E(XT ) |Xt = X

]}
(65)

where X· propagates according to dynamics (1) with controls λ[t,t1−1]∪λ
0

[t1,T−1] and θ[t,T−1].

Now, if λ̃
0

[t,t1−1] ∪ λ
0

[t1,T−1] achieved a lower cost in (64) than λ
0

[t,T−1], then this would

contradict the optimality of λ
0

[t,T−1]. Alternatively, λ̃
0

[t,t1−1] achieves the lowest cost when

paired with λ
0

[t1,T−1] by (65), and so λ̃
0

[t,t1−1] ∪ λ
0

[t1,T−1] must yield the same cost in (64) as

λ
0

[t,T−1]. Therefore, by (64) and (43),

M̃t,t1(x, q, λ̃
0

[t,t1−1]) = Mt(x, q, λ
0

[t,T−1])

which completes the proof.

We now continue with the proof that the V i
· obtained by the DP iteration is the state

feedback value function, V·. Recall that by definition

VT (x, q) = E(x) = V i
T (x, q) ∀x ∈ X , q ∈ Q.

We will first propagate this equality back a single step.

By (43), for any λT−1 : q → U ,

MT−1(x, q, λT−1) = max
~w∈W n

∑
j∈X

P̃xj(λT−1[q], ~w)~Ej ∀x ∈ X , q ∈ Q.

Letting
uq

.
= λT−1[q] ∀ q ∈ Q, (66)

one then has

MT−1(x, q, λT−1) = max
~w∈W n

∑
j∈X

P̃xj(uq, ~w)~Ej ∀x ∈ X , q ∈ Q. (67)
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Let
λ

0

T−1[q]
.
= argmin

λT−1∈Λ[T−1,T−1]

Eq[MT−1(X, q, λT−1)]. (68)

By (50), (66) and (67), for any q ∈ Q, x ∈ X and λT−1 ∈ Λ[T−1,T−1],

[ ~MT−1]x(q, uq) = max
~w∈W n

∑
j∈X

P̃xj(uq, ~w)~Ej

= MT−1(x, q, λT−1). (69)

Note that for any q ∈ Q and any λT−1 ∈ Λ[T−1,T−1],

qT ~MT−1(q, uq) =
∑
i∈X

qi[ ~MT−1]i(q, uq)

when uq is given by (66). By (69)
=

∑
i∈X

qiMT−1(i, q, λT−1)

= Eq

{
MT−1(X, q, λT−1)

}
. (70)

By (70), (45) and (54), for any q ∈ Q,

λ
0

T−1[q] = u0
T−1. (71)

By (69) and (71),

[ ~MT−1]x(q, u
0
T−1) = MT−1(x, q, λ

0

T−1) ∀x ∈ X , q ∈ Q. (72)

Then, by (72),(46) and (55)

VT−1(x, q) = V i
T−1(x, q) ∀x ∈ X , q ∈ Q, (73)

and also by (73), (47) and (56)

V 1
T−1(q) = V i,1

T−1(q) ∀ q ∈ Q. (74)

This validates the DP iteration for the first (backward) time-step.

Now we validate the DP iteration for all t by induction. Suppose

Vt+1(x, q) = Mt+1(x, q, λ
0

t+1) = [ ~Mt+1]x(q, u
0
t+1) = V i

t+1(x, q) ∀x ∈ X , q ∈ Q (75)

which is true for t + 1 = T − 1 by (73). By Theorem 4.5, for any x, q,

Vt(x, q) = Mt(x, q, λ
0

[t,T−1])

= M̃t,t+1(x, q, λ̃
0

t )

which by definition (58)

19



= max
θt∈Θ[t,t]

E[Vt+1(Xt+1, qt+1) |Xt = x]

where propagation from Xt to Xt+1 is with controls λ̃
0

t , θt. By (75) and the definition of
Θ, this is

= max
~w∈W n

E[V i
t+1(Xt+1, qt+1) |Xt = x]

and since it is easily shown (as in (71)) that u0
t = λ̃

0

t [q]
= max

~w∈W n

∑
j∈X

P̃xj(u
0
t , ~w)V i

t+1(j, qt+1)

which by the notation of (51)
= max

~w∈W n

∑
j∈X

P̃xj(u
0
t , ~w)V i

t+1(j, q
′(q, u0

t , ~w))

which by (52) and (55)
= V i

t (x, q).

Therefore, by induction, one has:

Theorem 4.6

Vt = V i
t ∀ t ∈ [0, T ]

and of course
V 1

t = V i,1
t ∀ t ∈ [0, T ].

This validates the DP iteration (50)–(56) as a means for computing the state feedback
value function, Vt.

5 Robustness

The last step in the computation of the control at each time instant is now discussed. The
control computation for such games is typically performed via the use of the Certainty
Equivalence Principle (cf. [3], [18]). When the Certainty Equivalence Principle holds,
the information state and state feedback value function can be combined to obtain the
“optimal” controls which can be shown to be robust in a sense to be discussed below. The
chief gain is that this allows one to compute a controller ahead of time, and then only
propagate the information state “estimator” forward in time rather than computing the
control as a function of the information state in real time. Otherwise, the computational
cost would be prohibitive.

To simplify notation, note that by (53), (50) and Theorem 4.6 for any u,

Lt(q, u) = Eq

[
max
~w∈W n

∑
j∈X

P̃xj(u, ~w)Vt+1(j, q
′(q, u, ~w))

]
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where the notation q′(q, u, ~w) is defined in (51). Let us hypothesize that the optimal
control for player 1 is

um
t

.
= argmin

u∈U

[
max

q∈Q(X )
{It(q) + Lt(q, u)}

]
. (76)

Note here that this uses It not Ĩt (the function of unnormalized distribution), and one
may transform via the transformation from unnormalized q̃ to normalized q. Alterna-
tively, it may sometimes be computationally more efficient to do the maximization in
the unnormalized space since there the unnormalized versions of V and L are piecewise
constant while the unnormalized Ĩt remains piecewise linear in the piecewise linear initial
information state case. In either case, one has obvious robust game inequalities such
as the following. (Note here that um will be a strict minimizer of a function f(u) if
f(um) < f(u) for all u 6= um.)

Theorem 5.1 Suppose um
t is a strict minimizer. Then, given any ũt 6= um

t , there exist
q1, ~w1 and ε > 0 such that{

It(q
1) + Eq1 [

∑
j∈X

P̃xj(ũt, ~w1)Vt+1(j, q
′(q1, ũt, ~w1))]

}
(77)

> max
q∈Q(X )

{
It(q) + Eq max

~w∈W n

[∑
j∈X

P̃xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
+ ε

where recall that we set It(q) = −∞ for q 6∈ Qt.

Proof. By assumption, there exists ε̂ > 0 such that

max
q∈Q(X )

{
It(q) + Lt(q, ũt)

}
≥ max

q∈Q(X )

{
It(q) + Lt(q, u

m
t )

}
+ 3ε̂.

Letting q1 be ε̂–optimal for the left-hand side yields

It(q
1) + Lt(q

1, ũt) ≥ max
q∈Q(X )

{
It(q) + Lt(q, u

m
t )

}
+ 2ε̂.

Expanding the left-hand side, this is

It(q
1) + Eq1

{
max
~w∈W n

[∑
j∈X

P̃xj(ũt, ~w)Vt+1(j, q
′(q1, ũt, ~w))

]}
≥ max

q∈Q(X )

{
It(q) + Lt(q, u

m
t )

}
+ 2ε̂.

Letting ~w1 be ε̂–optimal for the left-hand side yields the result.
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Corollary 5.2 Let I0, u[0,t−1] and y[0,t−1] be given. Suppose um
t is a strict minimizer.

Then, given any ũt 6= um
t , there exist q1

0 ∈ Q(X ), ~w1 ∈ [W n]t and ε > 0 such that

Eq′′t

{
I0(q

1
0) +

∑
j∈X

P̃Xj(ũt, ~w1
t )Vt+1(j, q

′(q′′t , ũt, ~w1
t ))

}
(78)

> max
q0∈Q(X )

max
~w[0,t]∈[W n]t+1

Eq′t

{
I0(q0) +

∑
j∈X

P̃Xj(u
m
t , ~wt)Vt+1(j, q

′(q′t, u
m
t , ~wt))

}
+ ε

where conditional distributions q′′t and q′t are generated by propagation (15) for given
q1
0, u[0,t−1], y[0,t−1], ~w1

[0,t−1] and q0, u[0,t−1], y[0,t−1], ~w[0,t−1], respectively.

Proof. It is sufficient to show that the left and right hand sides of (77) are equivalent
to the left and right hand sides of (78). Consider the right hand side of (77). From the
definition of It (see (16)), and noting that Qt 6= ∅ by Lemma 3.2, one finds that

max
q∈Q(X )

{
It(q) + Eq max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
= max

q∈Qt

{
It(q) + Eq max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
= max

q∈Qt

max
q0∈Qq,u

0

max
w∈W̃

q0,q
t−1

{
I0(q0) + Eq max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
(79)

where W̃ q0,q
t−1 = {~w[0,t−1] ∈ W̃ q

t−1 : qt = q where qt is given by propagation (15) with

initial q0}, W̃ q
t−1 is defined in (23), and Qq,u

0 = Q
q,u[0,t−1]

0 is defined in (18). For each
q0 ∈ Q(X ) and ~w[0,t−1], there exists q = q′t ∈ Qt such that q′t is given by propagation

(15), and so q0 ∈ Qq,u
0 and ~w[0,t−1] ∈ W̃ q0,q

t−1 . Conversely, given any q ∈ Qt, q0 ∈ Qq,u
0 and

~w[0,t−1] ∈ W̃ q0,q
t−1 , q0 ∈ Q(X ) and ~w[0,t−1] ∈ [W n]t. Consequently, (79) becomes

max
q∈Q(X )

{
It(q) + Eq max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
= max

q0∈Q(X )
max

w[0,t−1]∈[W n]t

{
I0(q0) + Eq′t max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q′t, u
m
t , ~w))

]}
(80)

where q′t is given by propagation (15) with initial q0, controls u[0,t−1] and ~w[0,t−1], and

observations y[0,t−1], and noting that It is deterministic (given y[0,t−1])

= max
q0∈Q(X )

max
w[0,t−1]∈[W n]t

Eq′t

{
I0(q0) + max

~w∈W n

[∑
j∈X

P̃Xj(u
m
t , ~w)Vt+1(j, q

′(q′t, u
m
t , ~w))

]}
and since W n consists of state feedback controls

= max
q0∈Q(X )

max
w[0,t]∈[W n]t+1

Eq′t

{
I0(q0) +

∑
j∈X

P̃Xj(u
m
t , ~wt)Vt+1(j, q

′(q′t, u
m
t , ~wt))

}
(81)

which is the desired equivalence for the right hand sides. Proceeding similarly with the
left hand sides yields the result.
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Theorem 5.1 and Corollary 5.2 provide statements regarding robustness, but this is
only with respect to the defined criterion of It(q) + Lt(q, u). It still remains to relate this
to the original problem definition. That is, one must relate the criterion in these results
to an originating imperfect observation value function defined in terms of the worst-case
expected cost (from the player 1 point of view). In order to make this section more
readable, we will begin by writing down the value function, and then describe the terms
within it rather than vice-versa. For technical reasons, it appears best to work with the
following value function. This value at any time t̄ is

Zt̄
.
= sup

qt̄∈Qt

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

sup
θ[t̄,T−1]∈θ[t̄,T−1]

[
It̄(qt̄) + Eqt̄

{E[E(XT )|Xt̄ = X]}
]
. (82)

The expectation uses the (player 1) assumption that the distribution of Xt̄ is qt̄ for each
qt̄ ∈ Qt̄ and is taken not only over Xt̄ but also over all observation and dynamic noise from
time t̄ to terminal time T . Note that this is not a full upper value in that the supremum
over qt̄ occurs outside the infimum over player 1 controls λ[t̄,T−1]. The strategy set for
player 1 is

Λ[t̄,T−1] =
{
λ[t̄,T−1] : Y T−t̄ → UT−t̄, nonanticipative in y·−1

}
where “nonanticipative in y·−1” is defined as follows. A strategy, λ[t̄,T−1] is nonanticipative
in y·−1 if given any t ∈ [t̄, T−1] and any sequences y·, ỹ· such that yr = ỹr for all r ∈ [t̄, t−1],
one has λt[y] = λt[ỹ]. Note that since the infimum over λ[t̄,T−1] in (82) occurs inside the
supremum over qt̄, the “optimal” choice of λ may depend on qt̄. Also note that the
“optimal” choice of λ[t̄,T−1] may depend on It̄(·). The strategy set for player 2 (neglecting
qt̄ as a player 2 control) is naturally

Θ[t̄,T−1] =
{
θ[t̄,T−1] : Y T−t̄ → W n(T−t̄), nonanticipative in y·−1

}
. (83)

Also, Qt = Qt(u[0,t−1], y[0,t−1]) as given in (14). Since the supremum over θ[t̄,T−1] is inside
the infimum, and the ~w[t̄,T−1] process is a feedback on the state, then as in Lemma 4.1, one
can replace the supremum over θ[t̄,T−1] ∈ Θ[t̄,T−1] with a maximum over ~w[t̄,T−1] ∈ W n(T−t̄),
and so

Zt̄ = sup
qt̄∈Qt

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[It̄(qt̄) + Eqt̄
{E(XT )}] . (84)

It is helpful to modify the notation of (12), (13) slightly by including the observation
dependence in the superscript so that one has observation update (with observation yt =
y)

q̂t =
(

1

R̃y T (ut, ~w)qt

)
D(R̃y(ut, ~w))qt (85)

and dynamics update

qt+1 = P̃ T (ut, ~wt)q̂t. (86)
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For t ≥ t̄, let qti be the probability that Xt = i conditioned only on the observations
only up through time t̄−1. Then obviously qt̄ = qt̄. For completeness, let qt = qt for t < t̄.
Also, given qt and any choice of λ[t̄,T−1], ~w[t̄,T−1], one obtains qt+1 from the following (where

for compactness, we abuse notation by writing P̃j,i(λt, ~wt) in place of P̃j,i(λt[y[t̄,T−1]], ~wt)

and R̃y(λt, ~w) in place of R̃y(λt[y[t̄,T−1]], ~w) ).

qt+1i
=

∑
j∈X

∑
y∈Y

P̃j,i(λt, ~wt)
(

1∑
l∈X R̃y T

l
(λt, ~wt)qtl

)
R̃y

j (λt, ~wt)qtj P (yt = y)

where P (yt = y) indicates the probability that observation yt = y

=
∑
j∈X

∑
l′∈X

∑
y∈Y

P̃j,i(λt, ~wt)
(

1∑
l∈X R̃y

l
(λt, ~wt)qtl

)
R̃y

j (λt, ~wt)qtj R̃y
l′(λt, ~wt)qtl′

=
∑
j∈X

∑
y∈Y

P̃j,i(λt, ~wt)R̃
y
j (λt, ~wt)qtj

=
∑
j∈X

P̃j,i(λt, ~wt)qtj. (87)

Using qT , (84) may be rewritten as

Zt̄ = sup
qt̄∈Qt̄

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T
~E
]
.

which by (87)

= sup
qt̄∈Qt̄

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T−1P̃ (λT−1, ~wT−1)~E
]

= sup
qt̄∈Qt̄

inf
λ[t̄,T−2]∈Λ[t̄,T−2]

inf
λT−1∈Λ[T−1,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T−1P̃ (λT−1, ~wT−1)~E
]
. (88)

Note that, not including λT−1, the dependence of the bracketed term on the y· process is
only through q·. (This is of course simply an instance of the principle that the conditional
probability is a sufficient statistic, but in the nonstandard context of a stochastic game.)
Thus we may replace the infimum over λT−1 ∈ Λ[T−1,T−1] by an infimum over λT−1 ∈
Λ[T−1,T−1] where

Λ[t,T−1] = {λ[t,T−1] : QT−t → UT−t, nonanticipative in q·}

In other words,

Zt̄ = sup
qt̄∈Qt̄

inf
λ[t̄,T−2]∈Λ[t̄,T−2]

inf
λT−1∈Λ[T−1,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T−1P̃ (λT−1, ~wT−1)~E
]
. (89)
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One may step backward another step with this same procedure. It is perhaps worth
recalling here that the control at time T −2 depends only on the observations up through
time T − 3. Applying (87) to expand qT−1, (89) becomes

Zt̄ = sup
qt̄∈Qt̄

inf
λ[t̄,T−2]∈Λ[t̄,T−2]

inf
λT−1∈Λ[T−1,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T−2P̃ (λT−2, ~wT−2)P̃ (λT−1, ~wT−1)~E
]
. (90)

One then notes that, not including λT−2, the bracketed term depends on y[t̄,T−3] only
through qT−2. Consequently, (90) becomes

Zt̄ = sup
qt̄∈Qt̄

inf
λ[t̄,T−3]∈Λ[t̄,T−3]

inf
λ[T−2,T−1]∈Λ[T−2,T−1]

(91)

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + qT

T−2P̃ (λT−2, ~wT−2)P̃ (λT−1, ~wT−1)~E
]
.

Proceeding inductively and recalling that qt̄ = qt̄, one obtains

Zt̄ = sup
qt̄∈Qt̄

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

It̄(qt̄) + qT
t̄

T−1∏
t=t̄

P̃ (λt, ~wt)

 ~E
 (92)

= sup
qt̄∈Qt̄

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + Eqt̄

{E [ E(XT ) |Xt̄ = X]}
]
. (93)

Comparing (93) to (84), one sees that it has been shown that the value Zt̄ is unchanged
if the future player 1 planned controls are assumed to depend only on the conditional
probability process rather than the entire observation process. (Again, this is merely a
particular instance of the principle that the conditional probability is a sufficient statistic.)

Now, since It̄(qt̄) is independent of future control choices, (92), (93) may be rewritten
as

Zt̄ = sup
qt̄∈Qt̄

It̄(qt̄) + inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

qT
t̄

T−1∏
t=t̄

P̃ (λt, ~wt)

 ~E


 (94)

= sup
qt̄∈Qt̄

[
It̄(qt̄) + inf

λ[t̄,T−1]∈Λ[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

Eqt̄
{E [ E(XT ) |Xt̄ = X]}

]
. (95)

Then, using Lemmas 4.1 and 4.3 and Remark 4.2, this yields

Zt̄ = sup
qt̄∈Qt̄

[
It̄(qt̄) + inf

λ[t̄,T−1]∈Λ[t̄,T−1]

Eqt̄

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E [ E(XT ) |Xt̄ = X]
}]

(96)

= sup
qt̄∈Qt̄

[
It̄(qt̄) + inf

λ[t̄,T−1]∈Λ[t̄,T−1]

Eqt̄

{
max

~w[t̄,T−1]∈W n(T−t̄)
E [ E(XT ) |Xt̄ = X]

}]
. (97)

Substituting (39) into (96) (or (40) into (97)), one has
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Theorem 5.3

Zt̄ = sup
qt̄∈Qt̄

[
It̄(qt̄) + V 1

t̄ (qt̄)
]

∀ t̄ ∈ [0, T ]. (98)

In other words, the game value Zt̄ is the supremum of the sum of the information
state, It̄, and the optimal expected state feedback value, V 1

t̄ , from player 1’s perspective.
It is interesting to note that in the max-plus algebra [8], [4], (98) takes the form

Zt̄ =
∫ ⊕

Qt̄

V 1
t̄ (q)⊗ It̄(q) dq (99)

where
∫⊕ indicates max-plus integration. In other words, (99) is the max-plus expectation

of V 1
t̄ with respect to max-plus probability It̄ (see [11], [25], [1] for example).

Also, from (39), by the definition of Λ[t̄,T−1], one has

V 1
t̄ (q) = min

u∈U
inf

λ[t̄+1,T−1]∈Λ[t̄+1,T−1]

Eqt̄

{
max

~w[t̄,T−1]∈W n(T−t̄)
E[E(XT ) |Xt̄ = X]

}
which upon using the definition of Mt̄ (43)

= min
u∈U

inf
λ[t̄+1,T−1]∈Λ[t̄+1,T−1]

Eqt̄

{
Mt̄(X, q, (u, λ[t̄+1,T−1]))

}
(100)

(where it could be noted that we may view (u, λ[t̄+1,T−1]) as an element of Λ[t̄+1,T−1] which

happens to be constant over Q(X ) at time t̄). Then, defining L̂ to be the term inside the
minimum over u,

= min
u∈U

L̂t̄(q, u). (101)

It is useful to note the following.

Lemma 5.4
Lt̄ = L̂t̄ ∀ t̄ ∈ [0, T ].

For purposes of presentation, the proof of Lemma 5.4 is delayed until after Theorem
5.5 below.

Using Theorem 5.3, Lemma 5.4 and (101), one has

Zt̄ = sup
qt̄∈Qt

[
It̄(qt̄) + min

u∈U
Lt̄(qt̄, u)

]
= sup

qt̄∈Qt

min
u∈U

[
It̄(qt̄) + Lt̄(qt̄, u)

]
. (102)

In order to obtain the Robustness/Certainty Equivalence result to follow, it is sufficient
to make the following Saddle Point Assumption. We assume that

sup
qt̄∈Qt

min
u∈U

[
It̄(qt̄) + Lt̄(qt̄, u)

]
= min

u∈U
sup
qt̄∈Qt

[
It̄(qt̄) + Lt̄(qt̄, u)

]
∀ t̄ ∈ [0, T ]. (A5.1)
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With Assumption (A5.1), (102) becomes

Zt̄ = min
u∈U

sup
qt̄∈Qt

[
It̄(qt̄) + Lt̄(qt̄, u)

]
. (103)

Recall the control choice from (76), um
t̄ , the definition of which was as follows (where

we recall It̄ = −∞ off of Qt̄)

um
t̄

.
= argmin

u∈U

[
sup
q∈Qt̄

{It̄(q) + Lt̄(q, u)}
]
. (104)

Suppose that um
t̄ is a strict minimizer (where we recall that um is a strict minimizier of

a function f if f(um) < f(u) for all u 6= um). Suppose u 6= um
t̄ . Then there exists ε > 0

(independent of u since U is finite) such that

Zt̄ = sup
q∈Qt̄

{It̄(q) + Lt̄(q, u
m
t̄ )}

≤ sup
q∈Qt̄

{It̄(q) + Lt̄(q, u)} − 2ε (105)

for all u 6= um
t̄ .

Fix any u 6= um
t̄ . Let

Zu
t̄

.
= sup

q∈Qt̄

inf
λ[t̄,T−1]∈Λu

[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + Eqt̄

{
E [ E(XT ) |Xt̄ = X]

}]
(106)

where
Λu

[t̄,T−1]
.
= {λ[t̄,T−1] ∈ Λ[t̄,T−1] | λt̄[y·] = u ∀y· ∈ Y T−t̄}.

Then an analysis essentially identical to that in (88)–(96) holds with Λu replacing Λ and
letting Λ

u
[t̄,T−1]

.
= {λ[t̄,T−1] ∈ Λ[t̄,T−1] | λt̄[q·] = u ∀q· ∈ Q(X )T−t̄}. Consequently, one

obtains

Zu
t̄ = sup

qt̄∈Qt̄

It̄(qt̄) + inf
λ[t̄,T−1]∈Λ

u
[t̄,T−1]

Eqt̄

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E [ E(XT ) |Xt̄ = X]
}

which by (43) again

= sup
qt̄∈Qt̄

It̄(qt̄) + inf
λ[t̄,T−1]∈Λ

u
[t̄,T−1]

Eqt̄

{
Mt̄(X, q, λ[t̄,T−1]))

}
and as before

= sup
qt̄∈Qt̄

[
It̄(qt̄) + inf

λ[t̄+1,T−1]∈Λ[t̄+1,T−1]

Eqt̄

{
Mt̄(X, q, (u, λt̄+1,T−1]))

}]

= sup
qt̄∈Qt̄

[
It̄(qt̄) + L̂t̄(q, u)

]
which by Lemma 5.4
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= sup
qt̄∈Qt̄

[It̄(qt̄) + Lt̄(q, u)]

which by (105)
≥ Zt̄ + 2ε.

Combining this with (106), one finds that there exists qε
t̄ such that

inf
λ[t̄,T−1]∈Λu

[t̄,T−1]

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(q

ε
t̄ ) + Eqε

t̄

{
E [ E(XT ) |Xt̄ = X]

}]
≥ Zt̄ + ε

where X· is propagated with λ[t̄,T−1] and ~w·. Consequently, for any λ[t̄,T−1] ∈ Λ[t̄,T−1] such
that λt̄[y·] = u,

max
~w[t̄,T−1]∈W n(T−t̄)

[
It̄(q

ε
t̄ ) + Eqε

t̄

{
E [ E(XT ) |Xt̄ = X]

}]
≥ Zt̄ + ε

where X· is propagated with λ[t̄,T−1] and ~w·. This implies that there exists an optimal ~wε
·

such that

It̄(q
ε
t̄ ) + Eqε

t̄

{
E [ E(Xε

T ) |Xε
t̄ = X]

}
≥ Zt̄ + ε

where Xε
· is propagated with λ[t̄,T−1] and ~wε

· . We summarize this in the following Theorem.

Theorem 5.5 Let t̄ ∈ {0, T − 1}. Let I0, u[0,t̄−1] and y[0,t̄−1] be given. Let the player
1 control choice, um

t̄ , given by (104) (also given in (76)) be a strict minimizer. Suppose
Saddle Point Assumption (A5.1) holds. Then, given any player 1 strategy, λ[t̄,T−1] such
that λt̄[y·] 6= um

t̄ , there exists ε > 0, qε
t̄ and ~wε

[t̄,T−1] such that

sup
q∈Qt̄

{It̄(q) + Lt̄(q, u
m
t̄ )} = Zt̄ ≤ It̄(q

ε
t̄ ) + Eqε

t̄

{
E[E(Xε

T ) |Xε
t̄ = X]

}
− ε (107)

where Xε denotes the process propagated with control strategies λ[t̄,T−1] and ~wε
[t̄,T−1].

Remark 5.6 Theorem 5.5 also serves as a basis for referring to It as an information state
– at least in the case where Assumption (A5.1) holds.

The following proof was delayed for reasons of presentation.

Proof. (proof of Lemma 5.4) Let t ∈ {0, 1, . . . T − 1}. Note that by definition,

L̂t(q, u) = inf
λ[t+1,T−1]∈Λ[t+1,T−1]

Eq

{
Mt(X, q, (u, λ[t+1,T−1]))

}
where we note that (u, λ[t+1,T−1]) ∈ Λ[t,T−1], and by the definition of Mt (43)

= inf
λ[t+1,T−1]∈Λ[t+1,T−1]

Eq

{
max

θ[t,T−1]∈Θ[t,T−1]

E[VT (XT , qT ) |Xt = x]
}

where qT and XT are obtained by propagation according to (1), (6), (8) with qt = q and
λt = u. By Remark 4.2 and Lemma 4.3,
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= inf
λ[t+1,T−1]∈Λ[t+1,T−1]

max
θ[t,T−1]∈Θ[t,T−1]

Eq

{
E[VT (XT , qT ) |Xt = x]

}
. (108)

On the other hand, by definitions (53) and (50) and Theorem 4.6,

Lt(q, u) = Eq max
~w∈W n

[∑
j∈X

P̃Xj(u, ~w)Vt+1(j, q
′(q, u, ~w))

]
(109)

where as before, q′(q, u, ~w) = P̃ T (u, ~w)q. Since the case of t + 1 = T is rather straightfor-
ward, we assume t + 1 < T . Using (46), (109) becomes

= Eq max
~w∈W n

[∑
j∈X

P̃Xj(u, ~w)Mt+1(j, q
′(q, u, ~w), λ

0

[t+1,T−1])
]

and by the definition of Mt+1 (43), this is

= Eq max
~w∈W n

[∑
j∈X

P̃Xj(u, ~w) max
θ[t+1,T−1]∈Θ[t+1,T−1]

E[VT (XT , qT ) |Xt+1 = j]
]

(110)

where XT , qT are obtained by propagation according to (1), (6), (8) with qt = q and

strategies (u, λ
0
) and θ. Noting that the supremum over ~w ∈ W n allows the control to

depend on state Xt, as in Remark 4.2 and Lemma 4.3, (110) becomes

Lt(q, u) = Eq max
θ[t,T−1]∈Θ[t,T−1]

[∑
j∈X

P̃Xj(u, θt[X·, q·])E[VT (XT , qT ) |Xt+1 = j]
]

which by the definition of P̃ in (6)

= Eq

{
max

θ[t,T−1]∈Θ[t,T−1]

E[VT (XT , qT ) |Xt = X]
}

and again as in Remark 4.2 and Lemma 4.3,

= max
θ[t,T−1]∈Θ[t,T−1]

Eq

{
E[VT (XT , qT ) |Xt = X]

}
= max

θ[t,T−1]∈Θ[t,T−1]

Eqt+1

{
E[VT (XT , qT ) |Xt+1 = X]

}
(111)

where to avoid any confusion we note that Eqt+1 indicates expectation where the distribu-

tion of X is qt+1, where qt+1 = P̃ T (u, θt)q, and where XT , qT are obtained from Xt+1, qt+1

by propagation with strategies λ
0

[t+1,T−1] and θ[t+1,T−1]. By the definition of λ
0

as optimal,
(111) becomes

Lt(q, u) = inf
λ[t+1,T−1]∈Λ[t+1,T−1]

max
θ[t,T−1]∈Θ[t,T−1]

Eqt+1

{
E[VT (XT , qT ) |Xt+1 = X]

}
where the propagation is with strategies λ[t+1,T−1] and θ[t+1,T−1], and this is
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= inf
λ[t+1,T−1]∈Λ[t+1,T−1]

max
θ[t,T−1]∈Θ[t,T−1]

Eq

{
E[VT (XT , qT ) |Xt = X]

}
(112)

where the propagation from Xt = X, qt = q is with strategies (u, λ[t+1,T−1]) and θ[t,T−1].
Comparing (108) and (112) yields the result.

6 Computational Tractability

Although one can obtain results such as Corollary 5.2 and Theorem 5.5, another moti-
vation for consideration of games of this form is the claim that they can represent useful
applications and, at the same time, lead to reasonably tractable algorithms. The largest
problem with tractability for imperfect information problems is the propagation of the
information state forward in real-time. A secondary problem is of course the computation
of the argmin in (76). We briefly discuss computational tractability for two cases: linear φ
and max–plus delta function φ. A key to the tractability is that the costs are only initial
and final, and in particular, the cost to the players to affect the observation process is
only indirectly felt through the effects those same controls may have on the state process.
(For example, in the military application referred to in the introduction, this effect might
be the loss of UCAVs whose controlled trajectories not only lead to observations but also
to potential loss of the vehicles.)

Consider the case of linear Ĩ0 = I0 = φ. The propagation of Ĩ· is given by (32) with
domain propagation (33) (see the proof of Lemma 3.4 for more details). In the case where
there is only one choice of control for the player 2, this would simply be a linear mapping
of the underlying distribution, and so Ĩt(·) would remain a linear function. Note that
the domain remains a (convex) simplex subset of an affine hyperplane with at most #X
extremal points, but this may not be the initial simplex Q(X ). In the more realistic
situation where W is not a single point (but recall that it is still assumed finite), Theorem
3.4 shows that Ĩt is a maximum of linear functions over such convex, simplex subsets.
Thus, propagation of the information state forward in time is a finite-dimensional process.
On the other hand, for more general problems, qt ∈ Rn, and so It is an infinite-dimensional
object - a function over Rn. In that case, one might use a finite-element approach (or
possibly a max-plus approach, c.f. [12]) to propagate It forward in time. If this requires
Md grid points per space dimension, the problem becomes intractable very quickly as the
dimension grows; A four-dimensional problem requiring M4

d grid points, and with a very
reasonable Md = 50, this is more than 6×106 grid points. As noted above, the transformed
version of Vt(x, q), Ṽt(x, q̃)

.
= Vt(x, q(q̃)), remains piecewise constant. Thus Ĩt(q̃)+ Ṽt(x, q̃)

is a discontinuous piecewise linear function. (That is, it consists of a union of linear pieces,
and may be discontinuous along the boundaries of the pieces.) Consequently the argmax
computation reduces to a comparison among a finite set of maxima of each of the linear
pieces. If the set of not-unreasonable controls for player 2 is small, then it appears that
this can be propagated in real-time.
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The case where φ is a max–plus delta function, i.e. φ(q) = δqc(q) for some qc ∈ Q(X ),
leads to a particularly tractable problem. Recall that this case corresponds to a model
where the initial distribution for player 1 state information is not subject to disruption by
some initial control of player 2. (More specifically, such a control is not considered within
the game.) In this case, It is 0 only at a finite number of points, and is −∞ elsewhere.
Thus, It retains this property. The propagation of these points proceeds by (31) for each
possible player 2 control. Thus, the information state is easily propagated. Further, since
It is not −∞ at only a finite number of points, the max computation in (76) involves
only comparison of a finite (although potentially large) number of values of maxx Vt(x, q)
for these select values of q.
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