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Abstract

Command and Control (C?) decisions must of necessity be based on imperfect
knowledge of the battlespace. With the advent of unmanned air vehicles (UAVs),
the pace at which decision points arise will increase. This necessitates the devel-
opment of automated C?tools for use in the decision-making process. Estimation
and control in the presence of purely random input noise is well-understood, and
produces excellent results. In the context of C?decisions, one most consider ob-
servations contaminated by both random noise and adversarially induced “noise”.
Consequently, zero-sum, discrete, stochastic games under imperfect observations are
considered here. Machinery has recently been developed which allows one to solve
such problems. The theory is summarized. For problems in the class considered
here, the resulting algorithms are computationally feasible. The method is applied
on a small game testbed. The behavior of the resulting controls are discussed. An
alternate (naive) approach is to apply the optimal state feedback game controls to
the maximum likelihood state. This alternate approach is susceptible to deception
by the opponent. It is shown that the improvements in using the robust approach
range from small to tremendous depending on certain factors.

1 Introduction

Command and Control (C?) decisions must of necessity be based on imperfect knowledge
of the battlespace. With the advent of unmanned air vehicles (UAVs), the size of vehicle
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fleets and operation speed will undoubtedly increase. Consequently, the pace at which de-
cision points arise will increase. This necessitates the development of automated C? tools
for the decision-making process (and/or advisement to the decision-making process).

The availability of automated tools for decision making in the presence of only random
noise is excellent, surpassing that of human operators in most cases. Notable tools are the
Kalman filter, Bayesian estimators, and their many progeny. However, battlepsace obser-
vations are contaminated not only by random noise, but also by purposefully deceptive
information. Deception and diversion have been the basis of many of the most signifi-
cant military successes in history. In the current environment of asymmetrical warfare,
deception has continued to play a tremendously important role. In particular, inadequate
reasoning about deception has led to serious failures.

In stochastic estimation and control applications, one carries forward conditional prob-
ability distributions concerning the current state of the system, and applies state feedback
controls at state estimates based on these distributions. Typically, the maximum likeli-
hood state is used as the basis for the state feedback control computation. (It should
be noted that the probability distributions are “information states” in that they contain
sufficient information to compute the optimal control [9], [17].) However, the reduction of
the distribution to the maximum likelihood state, and computation of the corresponding
state feedback control is typically suboptimal in the nonlinear case. Computational limits
generally preclude any other approach than reduction to the maximum likelihood state.

An alternate approach that has grown in influence in the last two decades has been
the H,, approach. Here, a form of worst-case analysis is used where the disturbances are
essentially modeled as antagonistic. The conditional probability distribution is replaced
by an information state based on past costs. The state feedback control is computed at
the argmax of the sum of this information state and the value function (a measure of
future cost). This is only provably optimal on a thin slice of the problem space [3], [15].

In the context of C? decisions, one most consider both random noise and adversarially
induced “noise”. We will be concerned here with a specific class of discrete stochastic
games under imperfect observations. The choice of this class will be affected by both
application considerations and computational feasibility considerations. We will describe
a reasonable class of problems whose solutions are much more tractable than one would
expect. We consider only zero-sum games (see, for example, [3], [4], [8], [10] [11]). In
particular, we concentrate on a simple (sub)class of discrete-time/discrete-space stochastic
games where one player (the opponent) has perfect information.

This paper has two components. The first is the theory for computation of a robust
controller for such a game. This theory is fully developed in [18], [19], [20], and will only
be briefly described here. Although this theory is a new development, some earlier work
in related directions can be found in [5], [24]. The second component is the study of
an application of this theory to a simple C? problem for UAV operations. (For related
information, see [1], [6], [7], [12], [13], [14], [16], [21], [22], [23].) The application example
will indicate the importance of reasoning about deception in this context, and provide



some understanding of the behaviors induced by such a tool.

The application study problem will be one where player 1 (with imperfect information)
is attempting to prevent player 2 from taking certain fixed-location, ground assets. In the
model problem, player 2 is moving entities (say general ground vehicles and air defenses)
toward one or both of these player 1 fixed-location strategic assets. Player 2 “takes” the
assets by successfully moving the entities to their locations. Player 1 has UAVs which
can move to intercept the player 2 entities. Player 2 may choose to move the entities in
one of two modes: ‘stealthy’ or ‘non-stealthy’. In the former case, the entities are difficult
to detect, and in the latter they are detected more easily. We consider both the case
where player 1’s UAVs are also more effective against non-stealthy player 2 entities, and
the case where they are not. (Perhaps this second case should be clarified. In this latter
case, the probability of observing a stealthy entity is lower than that of a non-stealthy
entity, but the probability of destruction once player 1 attacks the entity is independent
of its stealthiness.) We also allow player 2 to use inexpensive decoys, and we assign
probabilities by which these decoys are mistaken for player 2 vehicles. This problem has
sufficient complexity in order for diversionary tactics on the part of player 2 to be effective.
Specifically, it can be effective for player 2 to make one group of entities highly visible
by making them non-stealthy and accompanying them with decoys, while attempting to
keep a second group of entities stealthy.

We compare two player 1 approaches in this simple game problem. The most naive
is for player 1 to simply take the maximum likelihood estimate of the player 2 state,
and to apply a feedback control for this system state. As one can easily imagine, this
approach is open to exploitation by player 2 diversionary tactics. In that case, the max-
imum likelihood estimate made by player 1 can sometimes be that all or almost all of
the player 2 entities are heading for the first player 1 asset. If player 1 does not react
quickly enough to the potentiality of player 2 assets moving toward the other asset, then
the outcome may often be far from optimal. The second player 1 approach is through
the use of the imperfect information stochastic game machinery described below. Both
approaches are compared using standard Monte Carlo techniques. As one would expect,
there is an improvement in outcome with the approach described herein when compared
with the standard maximum likelihood/certainty equivalence approach. On the other
hand, there are significant computational requirements when using this new approach.
Various parameters will be varied to obtain some heuristic understanding of how much
improvement the new approach yields as a function of the specific game model.

Section 2 describes the general imperfect information stochastic game model. The the-
ory/machinery is outlined in Section 3. The theory has three components: the information
state definition and propagation, the value function definition and computation, and the
combination of these two elements to produce a deception-robust controller. These are
discussed briefly in the Subsections 3.1 — 3.3. As indicated above, more detail on the
theory can be found in [18], [19], [20]. Some computational complexity issues are very
briefly indicated in Section 4. Section 5 contains the application of this technology, and
the discussion of the results obtained.



2 System Definition

Potential states of the system will be represented by x € X where X is some finite set.
Time will be discrete, and the state of the system at time ¢ will be denoted by X;. The
control for player 1, the minimizing player, will take values u € U where U is finite. The
corresponding controls for player 2 (maximizing) will be w € W which is also a finite set.
Controls for each player at time ¢ will be denoted as u; and w;.

We will consider a finite time problem with time taking values in {0,1,2,...,7}. We
will denote the terminal cost as £ : X — R; the cost of terminal state Xp is £(Xr).
There is no running cost.

We suppose that the state evolves as a controlled Markov chain. Let the probability
that X1 = Jj given X; = ¢ with controls u; = u € U and wy; = w € W be

pij(up, wy) = Pr( Xy = jI Xy = 4,0 = v, wy = w),

and let the n x n matrix of the elements p;; be denoted as P(u,w) where n = #X. We
will assume that there is an observation process for player 1 (recall that here player 2
will know the state perfectly) which can be controlled somewhat by both players. Let
the observation process be y. with y; € Y, where the probability that observation y; = ¥
given X; = ¢ and controls u; = u,w; = w is denoted as

R; = Pr(yt = ?|Xt =1,U = U, Wy = w).

3 Review of the Theory

As indicated in the introduction, the theory has three components: the information state
definition and propagation, the value function definition and computation, and the combi-
nation of these two elements to produce a deception-robust controller. These are discussed
briefly in the following subsections. (See [18], [19], [20] for further detail on the theory.)
Readers interested mainly in the application might prefer to proceed to Sections 4 and 5.

3.1 Information State Propagation

As indicated above, we suppose that both the dynamic and observation processes might
be affected by player 2 controls. Suppose player 1 (with imperfect/observation-based
information) had an initial probability distribution for the system state at time t = 0,
say qo. If player 1 knew all the player 2 inputs prior to the current time ¢, then player 1
could propagate the observation-conditioned probability distribution forward in time to
produce ¢;. However, the player 2 controls are unknown. The information state at any
time, ¢, will be a function of current conditional probability distributions, and we denote
it as I;(q). For any probability distribution, ¢, consistent with the observations, I;(q) will
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be the worst-case (from player 1 perspective) cost to player 2 for application of controls
that might yield ¢ at time ¢ given the observations so far obtained. The formal definition
of I;(-) and propagation algorithm will now be discussed. Recall that the size of X is
n. The domain of I;(-) is Q(X) C R™ — the simplex of probability distributions over X
(Q(X) is the simplex in the first octant of R™ defined by the unit basis vectors.)

We let the initial information state be Io(-) = ¢(-). Here, ¢ represents the initial cost
to obtain and/or obfuscate initial state information. The case where this information
cannot be affected by the players may be represented by a max-plus delta function. That
is, ¢ takes the form

0 if g =q.
oa) =0 () ={" __ D0~ 1)

—o00 otherwise.

This will be the case we will concentrate on here.

Denote a conditional probability of the state at time ¢ be by ¢; € Q(X). In the ab-
sence of observations, and for given controls u,;, w;, this propagates according to ¢;;1 =
PT(us, w;)q:. Note that although this mapping is into Q(X), it is not necessarily onto.
Consequently, it will be necessary to keep track of the set of feasible conditional prob-
abilities at time ¢, ();. Note that for ¢ prior to the current time, u; is known by player
1 while w; is unknown. Player 2 has full state knowledge, and consequently, it’s control
must be allowed to depend on the actual state. We encapsulate this by letting the player
2 feedback control at time ¢ be @, where the i** component of 1, represents the player 2
state feedback control corresponding to state ¢. Consequently, for v € U and any vector
@ € W, define the matrix P by

Py (ug, W) = Pyj(uy, ;) Vi, j€{1,2,...,n}. (2)

Now let wjg¢—1) = {wo, W, ..., W;—1} where each w, € W™ denote a sequence of state-
dependent controls for player 2. Forward propagation is via

qt+1 = PT(Ut, U7t)Qt- (3)

We assume throughout that P! exists in the standard sense.

Let us now consider the observation process. We will assume that the observations may
occur at each time step, t. We will distinguish between a priori conditional distributions,
denoted as ¢;, and a posteriori distributions, denoted as ¢;. That is, ¢; incorporates the
possible new information in an observation at time ¢. Recalling the observation discussion
of Section 2, and the fact that we are allowing the player 2 control to depend on the true
state, we let the vector R have components

Ri = Pr(yt = y‘Xt = ia u>u_jz)

for each @ < n where again « indicates the possibly state-dependent choice of player 2
control. Let D(R) be the matrix whose i** diagonal element is R; for each i, and whose



other elements are zero. Then, given any control u and « and any observation 7, the a
posteriori distribution would be given by

i = (et ) PR v, ) @

Y,ut,W)qt

We suppose that D is full rank; i.e. that R, = (0 for all 7. Otherwise there is some addi-
tional technical analysis which we do not include here. Note that with a little work, one
can show that the inversion of this propagation takes the form q,; = [1/(2; R; 'G:,)| R; G-

We see that the set of feasible distributions at time ¢ is

Qi(wo—1], Ypoi—1)) = {q € Q(X) : Ijp—1) € [W"]" such that ¢y € Q(X) where ¢q is

given by backward propagation (6) with ¢; = ¢ } (5)
where
qr—1 = G_l(QTaur—laU_j’r—layr—l) (6)
= 1 D_1<R(yr—17ur—hwr—1>>P_T<ur—17U7r—l)qr

RT(yr—hur—l,u_jr—l)QT

where ﬁi(yr_l, Up_1, Wy_q) = 1/[1§i(yr_1, Up—1,W,—1)]. The information state is

Supqerg’“[o,tﬂJ SUDg, , qy€[Wn]t ]o(CJo) if g € Qt(u[o,tq}, y[O,tfl])

I (q; v —11, Yjo,e-1)) = .
—00 otherwise

where

o N = LG e Q(X) : FWp,_q) € [W"]" such that ¢, = g given
¢o = ¢ and propagation (6)}.

Note that the information state at time ¢ maps conditional probability distributions
(conditioned on the observation process) to costs (€ R U {—o0}). It indicates the max-
imal cost (optimal from player 2 perspective) to generate conditional distribution ¢ in a
Bayesian estimator given the player 1 observations up to time t. A cost of —oo indicates
that that value of ¢ is not feasible. For the case we concentrate on here, the initial in-
formation state, Iy = ¢ takes the form of a max-plus delta function (1). (The general
case appears in [18], [20].) This corresponds to the situation where player 2 controls do
not affect the initialization. This can be generalized by taking a sum of max-plus delta
functions as the initialization. For each (known) uy and (unknown) @y, the dynamics and
observation propagation discussed above takes gy into some ¢;. The set of all possible ¢;’s
which may be generated by feasible ’s is ()1 (as indicated mathematically above). Note
that the size of )1 is no larger than the size of W™. Further,

_J0 if g € O
L(q) = {—oo otherwise.

This defines the propagation of the information state forward in time by one time-step
for this particular class of initial information states.



Theorem 3.1 If ¢ is a max-plus delta function, then I;(q) : Q(X) — {—o00,0} takes the

form '
]t(Q):{O vaeQ

—00  otherwise

where Q; contains at most (#FW™)! points. Further,

Q: ={q € Q(X)| g = P(uy, W)q;_1 for some q_1 € Qy—1 and & € W"}.

The proof is quite trivial [18].

Various methods are used to reduce the potentially exponential growth in the size of
@ including pruning and assumptions of consistency of player 2 strategies (which may
include consistently randomized strategies).

The more general theory for propagation (when Iy = ¢ is not necessarily a max-plus
delta function) can be found in [18]. The only additional remark we make here is that
the propagation of the information state remains finite-dimensional in the cases where ¢
is either piecewise linear or a sum of max-plus delta functions.

3.2 State Feedback Value Function

We now turn to the state feedback value function. The full state of the system is now
described by the true state taking values x € X and the player 1 conditional probability
process taking values ¢ € Q(X). We denote the terminal payoff for the game as € : X — R
(where of course this does not depend on the internal conditional probability process of
player 1). Thus the state feedback value function at the terminal time is

Vi (z,q) = E(x). (7)

One issue that arises is the information available to player 2. One option would be to
assume that it knows only the actual true state, x. However, with full knowledge of the
state and observations, player 2 could also construct the conditional probability, g. This
second model is more conservative in terms of construction of the player 1 control, and
this model will be used here.

The state of the state feedback game at time t is (X, ¢;). Player 1 will have access
only to the probability distributions up to the current time, while player 2 will have access
to the true state as well.

The allowable strategies for player 1 are mappings from the space of distributions up
to the current time to player 1 controls in U, and are non-anticipative. Player 2 strategies
may depend on both the probability distributions up to the current time and the true
states X; up to the current time. Since player 1 knows only ¢; in this nonstandard state
feedback game, the value function from player 1 perspective is a function of ¢ only, and
we denote this as V' (q) It is also necessary to compute a related function, V;(z, ¢) which
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might be thought of as roughly corresponding to the value from the player 2 perspective
since that player has access to the true state, X;. Rigorous definitions appear in [18]. Tt is
proven there that the value function can be obtained by the following backward dynamic
programming algorithm.

We suppose that one has V,};(+), Viz1 (-, -), and indicate how one obtains V;'(-), Vi(-, -).

1. First, let the vector-valued function ]\7[75 be given component-wise by

(M)o(g,u) = max [ 3 Poj(u, @) Vi (. ¢ (g, 0, @) (8)
where B
¢(q,u, @) = P"(u,w)q 9)

and the optimal 7 is

U_j? = 117?(1‘7 q, U) = al;gI;l/aX{ Z ﬁxj(uﬁ u_;)‘/;-l-l(ja q/<q7 u, U_j))} (10)
welWn jex

2. Then define L, as

Lt(Qa ’LL) = qTMt(qa u)? (11)
and note that the optimal w is .
u) = ud(q) = argmin L,(q,u) = argmin ¢ M,(q, u). (12)
uclU uclU

3. With this, one obtains the next iterate from

Viz,q) = 3 Poj (uf, @)Vira (, ¢/ (4wl 07)) = [Milo(q, uf) (13)

jex
and the corresponding best achievable expected result from the player 1 perspective is
Vil (q) = ¢" My(q,uf). (14)

Consequently, for each t € {0,1,...,T} and each = € X, Vi(x,") is a piecewise con-
stant function over simplex Q(X’). Due to this piecewise constant nature, propagation is
relatively straight-forward (more specifically, it is finite-dimensional in contradistinction
to the general case). However, this is slightly less critical than the propagation issue for
the information state, since the state feedback value may be pre-computed, while the
information state must be propagated in real-time.

3.3 Robustness

The remaining component of the computation of the control at each time instant is now
discussed. One seeks a way to combine the information state at time ¢ with the state



feedback value function at time ¢, in order to produce a controller which is robust to
adversarial inputs (the player 2 controls). Note that this allows one to compute a state
feedback controller ahead of time, and then only propagate the information state forward
in time.

To simplify notation, note that by (11) and (8)

for any wu,
Lt(qa U) = Eq { max Z ﬁXj(ua U_j)‘/t-i-l (]a q/(Q> u, 717)):|
eX

wewn «
J
where the notation ¢'(g, u, W) is defined in (9). Let us hypothesize that the optimal control
for player 1 is

uy’ = argmin | max {l;(q) + L;(q,u)}| . 15
= g | e (100) + Lo, )] (15

We will assume that «™ is a strict minimizer. Note that «™ is a strict minimizer of a
function f(u) if f(u™) < f(u) for all u # u™.

In order to prove robustness, one must first define an imperfect observation value
function in terms of the worst-case expected cost (from the player 1 point of view).
In order to make this section more readable, we will begin by writing down this value
function, and then describe the terms within it rather than vice-versa. For technical
reasons, it appears best to work with the following value function. This value at any time
tis

Zy=sup _inf sup [I{(Q{) +E, {EE(X7)| X7 = X]}} (16)
qr€Qe MET-NEAET-1) 05 p_1) €0 11
The expectation uses the (player 1) assumption that the distribution of X7 is ¢; for each
qr € Q7 and is taken not only over X7 but also over all observation and dynamic noise from
time ¢ to terminal time 7. Note that this is not a full upper value in that the supremum
over g; occurs outside the infimum over player 1 controls Agzr_;. The strategy set for
player 1 is

Agr_q) = {/\[gT_l] 2 UT_’?, nonanticipative in y._q }

where “nonanticipative in y._;” is defined as follows. A strategy, Ajzr_1) is nonanticipative
in y._; if given any ¢t € (¢,7 — 1] and any sequences y.,¢. such that y, = ¢, for all
r € [t,t — 1], one has \[y] = \[g]. The strategy set for player 2 (neglecting ¢ as a player
2 control) is naturally

Opr-1 = {9[57T,1] LY Tt =), nonanticipative in y._l}. (17)

The first step in obtaining the robustness result is to show that the value, Z7 has the
following representation [18].

Theorem 3.2
Zy = sug Ii(qr) + Vi () Vite[0,T]. (18)
qellt




In other words, the game value Z7 is the supremum of the sum of the information
state, Iz, and the optimal expected state feedback value, V}, from player 1’s perspective.
Using Theorem 3.2, one can show [18] that

Zy = sup {Ig(q;) + min L;(g;, u)} = sup min {Ig(qt-) + Li(qs, u)} (19)
aEQ: uet ar€Qe UE

In order to obtain the Robustness/Certainty Equivalence result to follow, it is sufficient
to make the following Saddle Point Assumption. We assume that

sup min [I{(Q{) + Li(qz, u)] = min sup [Ig(qg) + Li(qz, u)} Vtel[0,7T]. (A5.1)

ar€Q: uelU uelU rEQt

With Assumption (A5.1), (19) becomes

Z; = min sup [IE(QE) + Li(qs, U)] (20)

Finally, after some work [18], one obtains the robustness result:

Theorem 3.3 Let t € {0,T — 1}. Let Iy, up,i-1] and yoi-1) be given. Let the player 1
control choice, uf*, given by (15) be a strict minimizer. Suppose Saddle Point Assumption
(A5.1) holds. Then, given any player 1 strategy, Agr—1) such that Ai[y.] # u*, there exists
e >0, ¢; and Wi p_y) such that

sup{I(q) + Li(q, u")} = Zr < Iilqp) + Bo: {EIE(X7) | Xf = X]} - (21)

q€Qs

where X© denotes the process propagated with control strategies A\igr_1) and wfw—u-

In summary, the machinery for computation of the deception-robust control is as
follows. Ome precomputes (piecewise constant) Vi(z,q) and L;(q,u) (possibly by the
dynamic programming algorithm of the previous subsection). One also propagates the
information state, I;(¢) in real-time. In the case considered here (I being a max-plus
delta function), this amounts to propagating the finite set of distributions, ;. One then
computes the control from (15). In the case considered here, (15) reduces to

m

uyt = argmin |max{L;(q,u)}| . (22)
uelU q€Qt

4 Computational Tractability

One of the main motivations for consideration of games of this form is the claim that
they can represent useful applications and, at the same time, lead to reasonably tractable
algorithms. The largest problem with tractability for imperfectly observed problems is
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the propagation of the information state forward in real-time. Recall that the case we
concentrate on here is where ¢ is a max-plus delta function. This leads to a particularly
tractable problem. In this case, I; is 0 only at a finite number of points, and is —oo
elsewhere (see Theorem 3.1). Thus, the information state is easily propagated. Further,
since [; is not —oo at only a finite number of points, the computation of the maximum in
(15) reduces to the maximum over a finite set as indicated in (22). The size of this finite
set is the number of distributions in ();. Consequently, an important issue is the growth in
the number of probability distributions due to unknown player 2 control options. If there
are N, possible player 2 controls at every time step, and no assumption is made about the
continuity of player 2 controls over time, then the set of feasible distributions would grow
as (N,)". In general, there are some (suboptimal) techniques or approximations that can
be employed to prune the growth. An example of a pruning algorithm currently in use is
where pairs of distributions whose distance from one another is below a certain tolerance
are merged into a single distribution. Another pruning technique which needs to be
tested is where distributions for which the value is extremely low are neglected; these are
distributions which may be unlikely to become active in the maximization computation.
Lastly, an assumption of continuity of strategy by the opponent (or an assumption of
a limited number strategy changes by the opponent) greatly reduces the computational
burden, and this will be studied.

One should also note that V; is a piecewise constant function of ¢. It is easy to observe
that the number of pieces is proportional to the product of future player 1 and future
player 2 control options. One could prevent exponential growth by restricting the player 1
and /or player 2 controls to predetermined sets of feedback policies (possibly randomized).

5 UAYV Operations Example Test-bed

We now apply the above approach to a relatively simple problem. This problem is based
on UAV Command and Control applications. Its simplicity will allow us to obtain insight
into the potential benefits and behaviors of the imperfect information stochastic game
approach. The general motivational application is described more fully elsewhere — such
as in [1] and [14], and to a lesser extent in [21] and [22].

We will consider a problem where player 1 (with imperfect information) is attempting
to prevent player 2 from taking certain assets. Refer to Figure 1 which is a still shot from
the graphic for the MATLAB simulation that runs the example game. Player 1 is depicted
with a base (in blue) at the bottom of the figure. Player 2 is depicted with a base (in red)
at the top of the figure. The two blue rectangular shapes on either side of the player 1 base
represent the positions of two strategic assets belonging to player 1. The two blue lines are
meant to indicate routes that player 2 entities (depicted as tanks) could take toward each
of the player 1 assets. Each segment of the road constitutes the distance covered by player
2 assets in a single time step. Player 2 may move entities (including say ground vehicles
and air defenses, although only a single entity type is used in this example) toward one or
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Figure 1:

both of the player 1 assets. The simulation snapshot in Figure 1, is taken between time
steps 1 and 2. Player 2 was in the process of moving one tank and one decoy (yellow tank
icon) toward the left player 1 asset, and two tanks (their green color indicating stealthy)
toward the right player 1 asset. The black tank icon along the left road indicates that at
time 1 the tank on the left (which had been operating nonstealthily) was destroyed. As
may be intuited from this discussion, modeling of this problem allows player 2 to move
the entities in one of two modes: ’stealthy’ and 'nonstealthy’. Of course they are detected
more easily when they are nonstealthy. Player 1’s UAVs are typically expected to be
more effective against the player 2 entities when they are moving in the nonstealthy mode
(although for study purposes, we include results where the effectiveness against stealthy
and nonstealthy entities are identical). We should note that player 2 “takes” the assets
by successfully moving (non-decoy) entities to their targets. Player 1 has UAVs which can
move to intercept the player 2 entities. In the figure, the missile shaped blue icons moving
along the left road indicate player 1 UAVs which are currently attempting to intercept
player 2 entities moving along that route.

The current player 1 marginal distributions and observations are also shown at the
lower left and lower right of Figure 1. In this snapshot, the annotations indicate that
it so happens that player 1 has detected the player 2 entity (which is a decoy) on the
left and one of the player 2 entities on the right. The bar graphs indicate the marginal
distributions (marginals of ¢;) of the numbers of player 2 entities on the left and right as
computed by player 1. (These appear due to the use of a maximum likelihood approach
being used in this example in contrast with the imperfect information stochastic game
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approach discussed above. This alternate approach is discussed very briefly below.)

This problem has sufficient complexity in order for diversionary tactics on the part of
player 2 to be effective. Specifically, it can be effective for player 2 to move one group
of entities toward one player 1 asset in a non-stealthy manner, while moving some other
entities toward a different asset in as stealthy a manner as possible. Player 2 may also
exaggerate one of the forces (typically the non-stealthy force) by the use of decoys.

We test two approaches for player 1 in this simple game problem. The standard
(naive) approach is for player 1 to simply take the maximum likelihood state estimate of
the player 2 state, and to apply a state-feedback control corresponding to this maximum
likelihood state. This state feedback control is computed via dynamic programming as
applied to the stochastic game described in Section 2 with full state knowledge for both
players. We will refer to this approach as the MLS/SF controller. Note that in order
to generate a single probability distribution using the above observation model, player 1
needs to assume that the player 2 choice of nonstealthy versus stealthy control is random
according to some distribution. In the second approach a robust controller is computed
based on the imperfect information stochastic game theoretic method discussed above.
As a shorthand, we will refer to this as the robust controller.

As one can easily imagine, the MLS/SF control approach for player 1 is open to
exploitation by diversionary tactics for player 2. In that case, the maximum likelihood
estimate made by player 1 can sometimes be that all or almost all of the player 2 entities
are heading for only one of the player 1 assets. If player 1 does not react to the potentiality
of player 2 entities moving toward the other asset quickly enough, then the outcome may
often be far from optimal. We will see that the diversionary tactic for player 2 can gain
quite an advantage against the MLS/SF controller. Further, we test the robust controller,
and find that it achieves better results against an intelligent, deceptive opponent than the
(naive) MLS/SF approach.

Both these approaches were compared using standard Monte Carlo techniques. Two
different models were tested. The major difference between the two being the speed with
which player 1 can cross from one side to another. We keep the same diversionary tactic
for player 2 in all cases, the player 2 entities on left side are non-stealthy with a decoy
whereas the player 2 entities on right are all stealthy. Each model was tested for two
different game durations — one where it take player 1 four time steps to reach the assets,
and one where it takes five. The details of some parameters and the results in presented
in the tables. We do not include all the model parameters nor the values assigned to each
entity /asset, but reiterate that player 1 is trying to minimize the cost. The best outcome
player 1 could achieve (no assets lost and all player 2 entities destroyed) yields a cost of
zero. The worst outcome (both assets lost and no player 2 entities destroyed) yields a
cost of 23. Although the actual numbers are irrelevant here, the relative values will be of
interest.

We introduce some notation here for the parameters used in the input data table.

e pll: Probability of attrition/kill of non-stealthy player 2 entity, Full force.
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INPUT DATA

p11 p21 p12 p22 pl p2 pdecon
0.85 0.85 0.6 0.6 0.8 0.15 0.6
0.85 0.85 0.6 0.6 0.8 0.4 0.6
0.85 0.85 0.6 0.6 0.8 0.6 0.6
0.85 0.85 0.6 0.6 0.8 0.8 0.6
0.85 0.6 0.425 0.3 0.8 0.15 0.6
0.85 0.6 0.425 0.3 0.8 0.4 0.6
0.85 0.6 0.425 0.3 0.8 0.6 0.6
0.85 0.6 0.425 0.3 0.8 0.8 0.6
Figure 2:

pl2: Probability of attrition/kill of non-stealthy player 2 entity, Split force.

p21: Probability of attrition/kill of stealthy player 2 entity, Full force.

p22: Probability of attrition/kill of stealthy player 2 entity, Split force.

pl: Probability of detecting a non-stealthy player 2 entity.

p2: Probability of detecting a stealthy player 2 entity.

pdecon: Probability of detecting a decoy when it is on.

The input parameters are listed in the input data table: Figure 2. These are divided
into three sets — distinguished by color (red, green and blue) in the table. Sets 1 and
2 (the first 9 rows of the table — the red and green rows) give player 1 equal kill/strike
capability against both stealthy and non-stealthy objects. (Of course player 1 needs to
determine some nonzero probability of existence of these entities and decide to attack
them first.)

Note that Set 1 gives player 1 somewhat less strike capability if it uses a ‘split force’
tactic (i.e. uses half of its forces on each side), whereas Set 2 drops the strike capability
to half in the ‘split force’ case. Set 3 (corresponding to the last 4 blue rows) sets the
strike capability of player 1 to be lower against stealthy player 2 entities than against
non-stealthy entities, and allows only half the strike capability in the ‘split force’ case.

14



Intuitively Set 1 should be the best for player 1 and Set 3 should give player 2 the
advantage in absolute terms. The results appear in the bottom four tables (discussed
below). Also note that within the same set the variation in parameters in different rows
is owing to the change in the value of p2 (the observation probability for stealthy player
2 entities).

There are four tables of results: refer to Figures 3 - 6. Game durations of 4 and 5 were
allowed, and two models were tested for each duration: thus yielding four variations. As
mentioned above, the difference in the two models is through the player 1 control dynam-
ics. Specifically, player 1 vehicles cannot move from one side to the other instantaneously.
Player 1 requires two time steps to move all of its vehicles from one side to another in
Model 1, and three time steps in Model 2. In each of these results tables, the first two
columns correspond to the average outcomes of the MLS/SF and robust controllers —
obtained through Monte Carlo iteration. The third and fourth columns indicate the dif-
ference and percentage improvement between the first two columns. The rows correspond
to the input data sets indicated in the top table.

First we consider the advantage for player 1. It is very clear from the data that the
robust approach works better for player 1 than the naive MLS/SF approach (by comparing
the first two columns of any Results Table). As one can see from the data corresponding
to Set 3, the advantage of robust controller is somewhat reduced if player 1 forces are
less effective in attrition potential against stealthy player 2 entities. Thus the robust
controller advantage is attenuated if the kill probability for stealthy player 2 entities is
lower compared to the non-stealthy kill probability.

It is worth noting that increasing the game duration (7" in the above theory) has a
natural relationship to the value. It gives player 1 more time to strike and hence gives
better results for player 1 in both approaches. Moreover, the robust approach gives
comparatively better results as measured by percent improvement in the longer duration
case. We provide one such illustration from Figure 5 and 6. Specifically, we are looking
at Model 2 Results Table for the Set 1 parameter corresponding to row 1.

For Duration/Terminal Time: T' = 4

e MLS/SF: Mean payoff = 13.35
e Robust: Mean payoff = 2.344

e Percent advantage: 82.44
For Duration/Terminal Time: 7' =5

e MLS/SF: Mean payoff = 11.80

e Robust: Mean payoff = 1.134
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e Percent advantage: 90.42

Note also that the percent advantage increase in going from Terminal time 7' =4to T =5
is higher for Set 3 than for Sets 1 and 2.

It is worth mentioning that in all these results the robust controller happens to be the
same for all values of p2; it was not affected by the probability of observing a stealthy entity
— in this particular example. Consequently, the same (merged) Monte Carlo data
appears in the robust control output columns for different values of p2. However, since
the naive MLS/SF approach performs more poorly with increasing deception effectiveness
(decreasing values of p2), the percent advantage is more for the cases where player 2
deception is more effective. It is useful to note that the advantages of the solution of the
imperfect information game are dependent on the effectiveness (or usage) of deception by
the opponent. Refer to Figure 6 for this illustration. In particular we choose Set 1 for
Model 2 and terminal time 7" = 5.

e p2= 0.15, Percent advantage: 90.42
e p2= 0.4, Percent advantage: 86.22
e p2= 0.6, Percent advantage: 79.71

e p2= 0.8, Percent advantage: 78.27

Note that the percent improvement of the robust approach drops as the probability of
observing a stealthy entity increases.

Also as one would naturally expect, there is an improvement in outcome (from the
point of view of player 2) when player 2 uses a diversionary/deceptive tactic. This is clear
by the decrease in average values as p2 increases (observation probability for stealthy
player 2 entities increases or deception decreases).

It is worth noting that it is being found that the state feedback control for player 2 is
not optimal — even when player 2 has perfect state knowledge. This will be explored in
further simulations.

The downside for the imperfect information game (robust) approach is that the com-
putational costs are much greater than for the MLS/SF method. This implies that the
fidelity of the model might need to be less for this approach than what one could feasibly
compute with when using the MLS/SF method. Trade-offs would need to be studied for
any particular problem class that had a relatively complex model, in order to weigh the
advantages.
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AVERAGE VALUE TABLE: MODEL 1, TERMINAL TIME T=4

I A B v
13.96 2.34 11.62 83.24
9.86 2.34 7.52 76.27
8.28 2.34 5.94 71.74
8.1 2.34 5.76 71.11
16.16 7.4 8.76 54.21
14.29 7.4 6.89 48.22
12.26 7.4 4.86 39.64
12.05 7.4 4.65 38.59
9.24 7.4 1.84 19.91
18.45 12.96 5.49 29.76
17.08 12.96 4.12 24.12
15.4 12.96 2.44 15.84
13.9 12.96 0.94 6.76

Figure 3:

AVERAGE VALUE TABLE: MODEL 1, TERMINAL TIME T=5

e T, | Rowscon | o
10.99 1.13 9.86 89.72
8.75 1.13 7.62 87.09
6.48 1.13 5.35 82.56
5.88 1.13 4.75 80.78
15.21 4.63 4.49 49.23
12.02 4.63 7.39 61.48
10.6 4.63 5.97 56.32
9.12 4.63 4.49 96.98
7.28 4.63 2.65 36.4
17.47 8.8 8.67 49.63
15.42 8.8 6.62 42.93
12.89 8.8 4.09 31.73
12.6 8.8 3.8 30.16

Figure 4:
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AVERAGE VALUE TABLE: MODEL 2, TERMINAL TIME T=4

State F_/b C_:ontrol at Robust Control Absolute Percent

Max. Likelihood State Advantage Advantage
13.35 2.34 11.01 82.47
10.35 2.34 8.01 77.39
8.33 2.34 5.99 71.91
8.1 2.34 5.76 71.11
16.34 7.4 8.94 54.71
13.7 7.4 6.3 45.99
12.35 7.4 4.95 40.08
11.42 7.4 4.02 35.2
9.71 7.39 2.32 23.89
18.74 12.96 5.78 30.84
17.35 12.96 4.39 25.3
14.9 12.96 1.94 13.02
14.58 12.96 1.62 11.11

Figure 5:

AVERAGE VALUE TABLE: MODEL 2, TERMINAL TIME T=5

oot | oo | e | e
11.8 1.13 10.67 90.42
8.2 1.13 7.07 86.22
5.57 1.13 4.44 79.71
52 1.13 4.07 78.27
14.3 4.63 9.67 67.62
11.34 4.63 6.71 59.17
10.05 4.63 5.42 53.93
9.7 4.63 5.07 52.27
6.72 4.63 2.09 311
17.2 8.8 8.4 48.84
14.8 8.8 6 40.54
12.9 8.8 4.1 31.78
11.8 8.8 3 25.42

Figure 6:
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