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Abstract— Two-point boundary-value problems for conserva-
tive systems are studied in the context of the stationary action
principle. In particular, we consider the case where the initial
boundary condition is the system position, and the terminal
boundary condition may be a combination of position and
velocity data. The emphasis is on the N -body problem under
gravitation. When the duration is sufficiently short, one may
use a differential game formulation to obtain a fundamental
solution, where for specific initial position and terminal data,
one obtains the particular solution via a min-plus convolution
of a function related to the terminal data and another function
associated with the fundamental solution. That latter function is
obtained by minimization of a parameterized linear functional
over a convex set. This convex set is the fundamental solution.
For longer duration problems, one takes a stationary point
rather than a minimum.

I. INTRODUCTION

A conservative system follows a trajectory which is a
stationary point of the action functional, this being known
as the Principle of Stationary Action, derivable in a general
context from fundamental principles (c.f., [3], [4]). For two-
point boundary-value problems (TPBVPs) of sufficiently
short time-duration, the stationary point is a minimum. In
simple mass-spring problems, as well as the wave equation,
the potential takes a quadratic form, and the fundamental so-
lution is a quadratic form obtained by solution of associated
Ricatti equations [1], [5], [6]. For specific initial position
and terminal data comprised of a combination of position
and velocity data, one obtains the solution of that TPBVP
by min-plus convolution of the fundamental solution with a
function defined by the terminal data.

Here, we are concerned mainly with the N -body prob-
lem under gravitation. One obtains a bound such that for
time-durations below that bound, the stationary point is a
minimum. Minimization of the action takes the form of an
optimal control problem. However, in the N -body problem,
the potential has the rather unpleasant 1/r form. In a
minor generalization of classical convex duality, the additive
inverse of the gravitational potential has a representation as a
maximum of quadratic forms where the dual variable appears
in a cubic form. One may reformulate the control problem as
a game where the opposing player maximizes over functions
mapping time into the space of the dual variable. More
specifically, the original, minimizing, controller minimizes
over controls which are the velocities of the N bodies,
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and the maximizing player controls these parameterized
quadratics which define the potential. Interestingly, the upper
and lower values of this game over open loop controls are
equal. Inverting the order of infimum and supremum, the
inner, minimizing, control problem is of quadratic form. The
solution is represented in terms of solutions of Riccati equa-
tions. These solutions may be parameterized by maximizing-
player controls. The collection of such solutions forms a set
in a space related to the number of bodies. This set forms
the fundamental solution for the TPBVPs. All TPBVPs of
the given form, with those particular body masses and time-
duration, are obtained by minimization of a parameterized
linear functional over the convex hull of this set, followed
by min-plus convolution against a function defined by the
terminal data. One has guaranteed convergence.

For longer-duration problems, one divides the time-
interval into subintervals meeting the aforementioned con-
dition. Then, one may proceed similarly, but with the added
computation of a stationary point over a set of intermediary
positions of the N bodies.

As this is a direction which may not be familiar, we first
review the means by which one obtains fundamental solutions
for TPBVPs as min-plus convolutions via an optimal control
formulation. We then, indicate how one may effectively
handle the N -body case with aid of differential games.
The details are available in the references. That theory is
for limited time-duration problems. Lastly, we very briefly
indicate the extension to indefinite-duration problems.

II. REVIEW OF FUNDAMENTAL SOLUTION FORM

Before proceeding to the N -body case, we review the
nature of this min-plus fundamental solution form and its
usage in a general context. For more detail, one may see
[5], [6]. Suppose the position state variable at time, r, is
denoted by ξ(r) ∈ IRn. Let the potential energy at position
x ∈ IRn be denoted by V (x). The kinetic energy will be
denoted by T (ξ̇(r))

.
= 1

2 ξ̇
′(r)Mξ̇(r), where ξ(r) refers to

the position of a point mass, M is simply mI , where m is
the mass of the body and I ∈ IRn×n is the identity; in a
multi-body system, this is generalized in the obvious way.
The action functional evaluated on path {ξ(r) | r ∈ [0, t]} is
given by F(ξ)

.
=
∫ t

0
T (ξ̇(r)) − V (ξ(r)) dr. We reformulate

this in a more convenient form. Let the initial position be
ξ(0) = x ∈ IRn, and let the dynamics be ξ̇(r) = u(r) for all
r ∈ (0, t), where u ∈ U∞ .

= Lloc2 ((0,∞); IRn). Define the
payoff, J0 : [0,∞)× IRn × U∞ → IR ∪ {−∞,+∞}, as

J0(t, x, u)
.
=

∫ t

0

1
2u
′(r)Mu(r)− V (ξ(r)) dr, (1)



where M is positive-definite, symmetric. Suppose for the
purposes of this discussion that t is sufficiently small such
that the stationary point yields a minimum [5], [6]. Then,
one considers the corresponding value function given as

W 0(t, x)
.
= inf
u∈U∞

J0(t, x, u). (2)

Clearly a solution of this problem yields ξ(·) satisfying the
stationary action principle, and so is the trajectory of the
conservative system under potential energy field V .

In order to see how one may use the optimal control
formulation to obtain fundamental solutions for TPBVPs,
it is helpful to consider the associated Hamiltonian-Jacobi
partial differential equation (HJ PDE), and the corresponding
characteristic equations. Let D .

= (0, t) × IRn and Ĉ1 .
=

C(D̄)∩C1(D). Under reasonable conditions on V , one can
expect that W 0 ∈ Ĉ1, and that on D,

0 = −∂
∂t
W (r, x)−V (x)− 1

2
[∇xW (r, x)]′M−1∇xW (r, x)

where r denotes the time-to-go. The state and gradient
characteristic equations corresponding to this HJ PDE are

dξ̂

dρ
=M−1p(ρ),

dp̂

dρ
= −∇xV (ξ̂(ρ)).

These have associated initial and terminal conditions ξ̂(t) =
x and p(0) = 0. In order to convert to forward time, one
may take ξ(s) = ξ̂(t− s) and p(s) = p̂(t− s), which yield

dξ

ds
= −M−1p(s),

dp

ds
= ∇xV (ξ(s)), (3)

or d2ξ
ds2 = −M−1∇xV (ξ(s)), which of course, is the classi-

cal Newton’s second law formulation. Also, (3) implies that
the additive inverse of the co-state p(r) is the momentum.
One might also note that the optimal velocity in the HJB
PDE is attained at v = −M−1∇xW = −M−1p.

Suppose that one attaches a terminal cost to J0 yielding,

J(t, x, u) = J0(t, x, u) + ψ̄(ξ(t)), (4)
W (t, x) = inf

u∈U∞
J(t, x, u). (5)

The HJ PDE and characteristic equations (3) remain un-
changed. However, although the initial condition is still
ξ(0) = x, the terminal condition is defined by ψ̄. That is,
we have a TPBVP where the terminal condition corresponds
to the choice of ψ̄.

With the addition of ψ̄, the boundary conditions for (3)
consist of initial condition ξ(0) = x and terminal condition
p(t) = ∇xψ̄(ξ(t)). If one takes, for example,

ψ̄(x) = −v̄ · x (6)

for some given v̄ ∈ IRn, then the terminal condition becomes
p(t) = v̄. That is, one has boundary conditions

ξ(0) = x and ξ̇(t) = v̄. (7)

Alternatively, if one takes z ∈ IRn and terminal cost
ψ∞(x) = ψ∞(x, z)

.
= δ−0 (x− z) where

δ−0 (y)
.
=
{

0 if y=0
+∞ otherwise

(8)

(i.e., the min-plus “delta function”), then the solution of
control problem (5) yields the solution of the TPBVP with

ξ(0) = x and ξ(t) = z. (9)

Other boundary conditions can be generated as well.
The goal here will be the development of fundamental

solutions for TPBVPs corresponding to conservative sys-
tems. These fundamental solutions will generate particular
solutions for boundary conditions such as ξ̇(t) = v̄ via a
min-plus convolution over IRn.

For c ∈ [0,∞), let ψc : IRn × IRn → [0,∞) be given by

ψc(x, z) =
c

2
|x− z|2, (10)

where we note ψ∞(x, z) is given just above (8).
Define the finite time-horizon payoff

Jc(t, x, u, z)
.
=

∫ t

0

L(ξ(s), u(s)) ds+ ψc(ξ(t), z),

for c ∈ [0,∞]
.
= [0,∞) ∪ {+∞}. Also, for c ∈ [0,∞], let

W c(t, x, z)
.
= inf
u∈U∞

Jc(t, x, u, z). (11)

Now, from (4), (5) and (11),

W (t, x) = inf
u∈U∞

{
J0(t, x, u) + ψ̄(ξ(t))

}
= inf
u∈U∞

{
J0(t, x, u) + inf

z∈IRn

[
ψ∞(ξ(t), z) + ψ̄(ξ(t))

]}
= inf
z∈IRn

[
inf

u∈U∞

{
J0(t, x, u) + ψ∞(ξ(t), z)

}
+ ψ̄(ξ(t))

]
= inf
z∈IRn

[
W∞(t, x, z) + ψ̄(z)

]
, (12)

or equivalently, in min-plus semi-field form (with a ⊕ b .
=

min{a, b}, a⊗ b .= a+ b),

=

∫ ⊕
IRn

W∞(t, x, z)⊗ ψ̄(z) dz. (13)

By (12) or (13), we see that W∞(t, x, z) may be regarded as
the fundamental solution of the TPBVP. That is, one obtains
W by min-plus covolution of ψ̄ with W∞, where we may
choose ψ̄ to yield certain classes of terminal data. In the
case of a quadratic potential function (such as in the mass-
spring [6], [5] and wave equation [1] examples), W∞ is
a quadratic function in (x, z) determined by the solution
of a Ricatti equation. In the case of the linear ψ̄ of (6)
and the tautological case of ψ̄(·) = ψ∞(·, z), this min-
plus convolution becomes trivial. Perhaps it should also be
mentioned that the initial velocity that yields the solution of
the TPBVP is given by −M−1∇xW∞(t, x, z), where we
remind the reader that t indicates time-to-go.

III. THE N -BODY PROBLEM

Now that we have indicated how one employs the funda-
mental solution in a general context, we move to the N -body
problem, which requires a game formulation. We address the
solution of TPBVPs with N bodies acting under gravitational
acceleration. In particular, we obtain a means for conversion
of TPBVPs to initial value problems. The key to application



of our approach to this class of problems lies in a variation
of convex duality, leading to an interpretation of the least
action principle as a differential game. The following is
easily obtained through methods of convex duality (c.f., [7]).

Lemma 1: For ρ > 0, one has

1

ρ
=

(
3

2

)3/2

max
α∈(0,∞)

α

[
1− (αρ)2

2

]
,

and the supremum is attained at α =
√

2/3 ρ−1.
Recall that the gravitational potential energy due to two

point-mass bodies of mass m1 and m2, separated by distance
ρ > 0, is given by Gm1,m2(ρ) = −Gm1m2

ρ , where G is the
universal gravitational constant. Of course, this is also valid
for spherically symmetric bodies when the distance is greater
than the sum of the radii of the bodies, and we do not concern
ourselves with this distinction further. Using Lemma 1, we
see that this may be represented as

−Gm1,m2(ρ) = Ĝm1 max
α1,2≥0

(α1,2m2)

[
1− (α1,2ρ)2

2

]
,

where the universal gravitational constant is replaced by Ĝ .
=(

3
2

)3/2
G. In the case of N bodies at locations xi for i ∈

N .
=]1, N [ (where for integers i < j, we let ]i, j[ denote

{i, i+ 1, i+ 2, . . . j} throughout), the additive inverse of the
potential is given by

−V (x) =
∑

(i,j)∈I∆̂

Gmi max
αi,j≥0

(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
(14)

where I∆ .
= {(i, j) ∈]1, N [ | j > i} and x =

{x1, x2, . . . xN} ∈ IRn
.
= IR3N . Let A .

= {α =
{αi,j}(i,j)∈I∆ |αi,j ∈ [0,∞)∀(i, j) ∈ I∆ }, and note that
A ⊂ IRI∆

where I∆ .
= #I∆. Then (14) may be written as

−V (x) = max
α∈A
{−V̂ (x, α)},

−V̂ (x, α)
.
=
∑

(i,j)∈I∆̂

Gmi(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
.

Let ξ(·) = ((ξ1(·))′, (ξ2(·))′, . . . , (ξN (·))′)′ denote a tra-
jectory of the N -body system satisfying ξ̇(r) = u(r) =
((u1(r))′, . . . (uN (r))′)′. The running cost will be

T (ξ̇(r))− V (ξ(r)) =
∑

(i,j)∈I∆

mi|ui(r)|2

2
− V (ξ(r)), (15)

where V is given by (15). Note that for x, z ∈ IRn and
c ∈ [0,∞], we continue to take ψc as given by (10). With
these definitions, the least-action payoff, J̄c, becomes

J̄c(t, x, u, z) =

∫ t

0

T (u(r)) + max
α∈A
{−V̂ (ξ(r), α)} dr

+ψc(ξ(t), z). (16)

The value is given by (11) with payoff Jc replaced by (16).

We assume spatial separation of near-optimal trajectories,
that is:
∃ δ̄, ε̄ > 0 such that ∀ ε-optimal uε ∈ U∞ with
ε ∈ (0, ε̄], and letting ξε denote the correspond-
ing trajectory, we have |(ξε)i(r)−(ξε)j(r)| > δ̄
∀ r ∈ [0, t], ∀ (i, j) ∈ I∆.

(A.N)

Let Ā∞ .
= C([0,∞);A). Also, for α ∈ Ā∞, replace the

time-independent potential energy function with

−V α(r, x)
.
= −V̂ (x, α(r)) (17)

=
∑

(i,j)∈I∆̂

Gmi(αi,j(r)mj)

[
1− (αi,j(r)|xi − xj |)2

2

]
.

Theorem 2: For all t ≥ 0 and all x, z ∈ IRn,

W c(t, x, z) = inf
u∈U∞

max
α(·)∈Ā∞

Jc(t, x, u, α, z), (18)

where

Jc(t, x, u, α, z)
.
=

∫ t

0

T (u(r))− V α(r, ξ(r)) dr+ψc(ξ(t), z).

By inspection of (11) and Theorem 2, the problem of
finding the fundamental solution of the TPBVP for the N -
body problem has been converted to a differential game.
The first player minimizes the action at each moment, with
immediate effect on the kinetic term and integrated effect
on the other terms, while the second player maximizes the
potential term at each moment. With this viewpoint, one may
express the potential energy as a quadratic form.

We note that (18) is a non-standard form for dynamic
games, as it is not expressed in terms of non-anticipative
strategies (c.f., [2]), nor in terms of state feedback controls.
We note:

Lemma 3: For any t0 > 0, W c(t, x, z) is semiconvex in
x, uniformly in (t, x, z, c) ∈ [t0,∞)× IRn × IRn × [0,∞].

With minor manipulation, one finds that the HJ PDE
associated with our problem is

0 = − ∂
∂tW (t, x, z) + sup

α∈A
{−V̂ (x, α)}

− 1
2

(
∇xW (t, x, z)

)′M−1∇xW (t, x, z), (19)

where M .
= diag({m1,m2, . . .mn}). Let

Dδ̄ .
=
{
x ∈ IRn

∣∣ |xi − xj | > δ̄ ∀(i, j) ∈ I∆
}
,

Dδ̄t
.
= C([0, t]× D̄δ̄) ∩ C((0, t)×Dδ̄).

Theorem 4: Let c ∈ (0,∞), t > 0 and z ∈ Dδ̄ . Suppose
W ∈ Dδ̄t satisfies (19) on (0, t)×Dδ̄ , and initial condition

W (0, x, z) = ψc(x, z), x ∈ Dδ̄. (20)

Then, W (t, x, z) = W c(t, x, z) for all x ∈ Dδ̄ . Further, with
the controller u∗(s) given by u∗(s) = ũ(s, ξ̃(s)) where ξ̃(s)
is generated by feedback ũ(s, x)

.
= ∇xW (t − s, x, z), one

has W (t, x, z) = J̄c(t, x, u∗, z).
We now consider the game where the order of infimum

and supremum are reversed. Due to the simple form of this
particular game, an unusual equivalence can be obtained. Let

W c(t, x, z)
.
= sup
α∈Ā∞

inf
u∈U∞

Jc(t, x, u, α, z). (21)



By the usual reordering inequality, one immediately has

W c(t, x, z) ≤W c(t, x, z) ∀(t, x, z) ∈ [0,∞)× IRn× IRn.

For any α ∈ Ā∞, we let

Wα,c(t, x, z)
.
= inf
u∈U∞

Jc(t, x, u, α, z). (22)

Then, W c(t, x, z) = supα∈Ā∞Wα,c(t, x, z) for all
(t, x, z) ∈ [0,∞)× IRn × IRn.

Now let u∗ be the optimal controller for our original
problem (with potential energy function, V (·)), that is
u∗(s) = ũ(s, ξ̃(s)) where ξ̃(s) is generated by feedback
ũ(s, x)

.
= −M−1∇xW c(t − s, x, z). Let ξ∗(s) be the

resulting trajectory, where of course, ξ∗ ≡ ξ̃. For s ∈ [0, t],
let α∗(s) track the optimal value of α for trajectory ξ∗.
(trivially obtainable from the last assertion of Lemma 1).

Lemma 5: Let t ∈ (0,∞) and x, z ∈ Dδ̄ . Then, u∗ is a
critical point of Jc(t, x, ·, α∗, z).

Lemma 6: Let t̄ = t̄(δ̄)
.
=
√ √

3δ̄3
√

2Ĝmaxi3]1,n[(
∑

j>i
mj)

. Let

x, z ∈ Dδ̄ . If t ∈ (0, t̄), then Jc(t, x, ·, α∗, z) is strictly
convex, and further, u∗ is the minimizer of Jc(t, x, ·, α∗, z).

Theorem 7: Let t ∈ [0, t̄) and and x, z ∈ Dδ̄ . Then

W c(t, x, z) = W c(t, x, z) = sup
α∈Ā∞

Wα,c(t, x, z),

and further, W∞(t, x, z) = supα∈Ā∞Wα,∞(t, x, z).

A. Fundamental Solution as Set of Riccati Solutions

We will find that the fundamental solution of the N -body
problem may be given in terms of a set of solutions of Riccati
equations. In particular, we look for a solution of the form

Wα,c(t, x, z) = 1
2

[
x′P ct x+2x′Qctz+ 1

2 z
′Rct z+γct

]
, (23)

where P c· , Q
c
· , R

c
· , γ

c
· implicity depend on the choice of α ∈

Ā∞. In particular, we suppose that P ct has the form P ct =
P̄ ct ⊗K I3, where ⊗K denotes the Kronecker product, and
I3 denotes the 3 × 3 identity matrix, with analogous forms
for Qct and Rct .

Also let ν̄t denote the N ×N matrix of terms given by

ν̄i,jt =

{
−
∑
k 6=i Ĝmimk(αi,j(r))

3 if i = j,
Ĝmimj(αi,j(r))

3 if i 6= j.
(24)

Then, we have the Riccati system

˙̄P
c

t = −P̄ ctM−1P̄ ct + ν̄t,
˙̄Q
c

t = −P̄ ctM−1Q̄ct (25)
˙̄R
c

t = −
[
Q̄ct
]′M−1Q̄ct , γ̇t = 2

∑
i 6=j

Ĝmimjαi,j(r), (26)

with initial conditions P̄ c0 = R̄c0 = cI , Q̄c0 = −cI , γ0 = 0.
Now, note that by Theorem 7 and (23),

W∞(t, x, z) = sup
α∈Ā∞

lim
c→∞

Wα,c(t, x, z)

= sup
α∈Ā∞

lim
c→∞

1
2

[
x′P ct x+ 2x′Qctz + 1

2 z
′Rct z + γct

]
,

= sup
α∈Ā∞

1
2

[
x′P∞t x+ 2x′Q∞t z + 1

2 z
′R∞t z + γ∞t

]
.

It is important to note that Wα,c(t, x, z) and Wα,∞(t, x, z)
are concave in α. Letting

G(t) = G(t; {mj}Nj=1)
.
=
{(
P∞t , Q∞t , R

∞
t , γ

∞
t

) ∣∣α ∈ Ā∞},
W∞(t, x, z) = sup

(P,Q,R,γ)∈G(t)

1
2

[
x′Px+ 2x′Qz + 1

2 z
′Rz + γ

]
= sup

(P,Q,R,γ)∈Ĝ(t)

1
2

[
x′Px+ 2x′Qz + 1

2 z
′Rz + γ

]
,

where Ĝ(t)
.
= 〈G(t)〉 where 〈·〉 denotes convex hull (and

we remind the reader that the velocity of the solution of the
TPBVP is given by u∗(s) = −M−1∇xW∞(t− s, x, z) for
all s ∈ [0, t]). Consequently, one sees that the set Ĝ(t) =
Ĝ(t;m1,m2, . . .mN ) represents the general solution of the
N -body TPBVP for a given set of masses and time-duration.

IV. LONGER-DURATION PROBLEMS

We very briefly indicate the extension to arbitrary-duration
problems. The above solution is only guaranteed to work for
problems where t < t̄ (see Lemma 6). For longer-durations,
the infu∈U∞ is replaced by statu∈U∞ . Here, we note that one
defines argstaty∈Gy F(y)

.
= {y ∈ GY | Fy(y) = 0} where

Fy denotes the Fréchet differential, and staty∈Gy F(y)
.
=

{F(y) | y ∈ argstaty∈Gy F(y)}. One seeks W∞(t, x; z) =
statu∈U supα∈A J

∞(t, x, u, α; z). For t > t̄, one may in-
troduce intermediary times τk

.
= kτ , k ∈]1,K[, where

τ ∈ (0, t̄) and tK = t, and intermediary points, ζk ∈ IRn

for k ∈]1,K − 1[. One obtains

W∞(t, x; z) = stat
ζ̂∈R(K−1)n

sup
α̂∈Â

Ŵ∞(t, x, ζ̂, α̂; z),

where Â is composed of an outer product of Ā∞, ζ̂ .
=

{ζk}K−1
k=1 , and Ŵ∞ is an appropriately defined sum of

minimal actions for trajectories connecting the endpoints
ζk (with ζ0 .

= x and ζK
.
= z). Then, Ŵ∞ is

represented as a set of solutions of Riccati equations,{(
P k,∞τ (αk), Qk,∞τ (αk), Rk,∞τ (αk)

)}
k∈]1,K−1[

, and

W∞(t, x; z) = sup
α̂∈Â

stat
ζ̂∈R(K−1)n

Ŵ∞(t, x, ζ̂, α̂; z),

which yields an alternate numerical approach, where the
stationarity over the ζ̂ is obtained from a linear system.
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