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Abstract

This paper is concerned with a number of issues associated with the approximation via
max-plus methods of value functions arising in a class of mixed L2 / L∞ optimisation. The
class of problems is defined to be suitably general so as to admit future application to the
computation of value functions associated with L2-gain analysis, L∞ bounded (LIB) dissipa-
tion and to the analysis of systems with the ISS (input to state stability) properties. Common
to each these problems is the applicability of dynamic programming, which naturally leads to
the formulation of max-plus methods using the resulting semigroups (and sub-semigroups).
This paper provides the details of this formulation. In particular, we develop an affine power
method that yields the correct solution of the dynamic programming principle (DPP) and
hence the underlying optimisation problem, despite the inherent non-uniqueness of solutions
of such DPPs.
Keywords: max-plus, L2-gain dissipation, L∞ bounded dissipation, practical stability, dy-
namic programming.

1 Introduction

Dynamic programming has proved to be an invaluable tool in the analysis and design of control
systems. Of particular relevance is the application of dynamic programming in optimal control
and in the verification of various performance related properties, including L2-gain analysis and
nonlinear H∞-control [9, 23, 24], practical L2-gain analysis [4, 5], L∞-bounded dissipation (LIB)
[12] and many other optimisation based control tools (including receding horizon control, etc).
Recently, it was demonstrated in [10] that dynamic programming can also be used to quantify
the notion of minimal gains in a number of L∞ properties including input-to-state stability
(ISS) [22]. Furthermore, it has also been demonstrated in [11] that dynamic programming can
be applied in the synthesis of controllers for yielding closed loop ISS.

Given the breadth of dynamic programming applications, it is important to develop, where
possible, approximation techniques for the solution of the associated dynamic programming
principles (DPPs). A class of particularly promising approaches in this regard are the so-called
max-plus methods (see for example [6, 8]).
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A second motivation comes from the development of the theory of max-plus additive functionals
of solutions of max-plus stochastic differential equations. Max-plus stochastic processes are
developed following the definition of max-plus probability measures. See [7] for more details on
this theory.

In this paper, we apply max-plus methods to a particular class of optimisation problems. This
class of optimisation problems is chosen to be sufficiently general so as to include the recent
applications of dynamic programming cited above. Furthermore, in developing this approxima-
tion method, we demonstrate a number of interesting properties related to uniqueness of the
attendant DPPs.

2 Problem Formulation

Throughout this paper, we consider nonlinear continuous time systems of the form

ξ̇(t) = f(ξ(t), w(t)), (1)

initialized at ξ(0) = x◦, where ξ(t) ∈ Rn and w(t) ∈ Rp are respectively the state and input at
time t.

Let l, L : Rn → R, γ : R≥0 → R≥0 be continuous functions, with γ(0) = 0 and γ(s) strictly
increasing in s. Then, system (1) satisfies the following mixed L∞ / L2-gain property iff there
exists a locally bounded nonnegative function β : Rn → R≥0 such that

L(ξ(T )) +
∫ T

0
l(ξ(s))− γ(|w(s)|) ds ≤ β(x◦) (2)

for all x◦ ∈ Rn, w ∈ W[0, T ) and T ≥ 0. Here, the input space W[0, T ) is assumed apriori de-
pending on the choice of costs l and L. With L(·) ≡ 0, typically we choose W[0, T ) = W∞[0, T ),
where W∞[0, T ) :=

{
w : R→ Rp|measurable, ‖w‖∞ < ∞,

∫ T
0 γ(|w(s)|) ds < ∞

}
and for M ∈

(0,∞), WM [0, T ) :=
{
w : R→ Rp|measurable, ‖w‖∞ ≤ M

∫ T
0 γ(|w(s)|) ds < ∞

}
. Otherwise,

we choose W[0, T ) = WM [0, T ) for some fixed M < ∞. For simplicity of notation, we define

I[t◦,t](x, w) .=
∫ t

t◦
l(ξ(s))− γ(|w(s)|) ds, (3)

Q[t◦,t](x, w) .= L(ξ(t)) + I[t◦,t](x, w) = L(ξ(t)) +
∫ t

t◦
l(ξ(s))− γ(|w(s)|) ds, (4)

where ξ(·) satisfies (1) with ξ(t◦) = x. Of interest in this paper is the formulation and approxi-
mation of value functions for the following optimisation problems:

Problem 1: [stopping time problem]

W (x) = sup
T≥0

sup
w∈W[0,T )

{
Q[0,T ](x, w)

}
(5)

Problem 2: [infinite horizon problem]

V (x) = lim sup
T→∞

sup
w∈W[0,T )

{
Q[0,T ](x, w)

}
(6)

In order to develop max-plus approximations for these value functions, it is essential to first write
down a dynamic programming principle (DPP) for each of these problems. These DPPs then



define respectively a sub-semigroup and a semigroup which prove to be linear in the max-plus
sense, thereby admitting the application of so called max-plus power methods for approximation
of the two value functions. Lastly, we note that the infinite horizon problem value function V will
be of interest not only in its own right, but also in that it will pertain to a certain nonuniqueness
difficulty one encounters in solving for W .

3 Dynamic Programming

3.1 Dynamic Programming Principles (DPPs)

As noted above, we will be using max-plus methods to analyze and develop tools for the com-
putation of W and V , and these max-plus techniques follow from the dynamic programming
principle (DPP). Typically, one uses the DPP to obtain the dynamic programming equation
(DPE) – which takes the form of either a partial differential equation (PDE) or variational in-
equality (VI) for the problems considered here. Once one has the PDE or VI, one then typically
applies some numerical technique such as finite elements to obtain the solution of the PDE
or VI. In the case here, the DPPs themselves lead directly to the max-plus formulations and
associated numerical methods without reference to the infinitesmal PDE and VI formulations.
We now develop the DPPs for W and V . It is not difficult to show that the value W (x) satisfies
the following DPP.

Theorem 3.1 W given by (5) satisfies

W (x) = max
{

sup
t∈[0,τ)

sup
w∈W[0,t]

Q[0,t](x, w), sup
w∈W[0,τ)

I[0,τ ](x, w) + W (ξ(τ))
}

∀x ∈ Rn. (7)

Proof: Fix τ > 0. The supremum over T ≥ 0 in (5) is equivalent to maximum of the suprema
over [0, τ) and [τ,∞). That is,

W (x) = max

 sup
T∈[0,τ)

sup
w∈W[0,T )

QT (x, w), sup
T∈[τ,∞)

sup
w∈W[0,T )

{
L(ξ(T )) + I[0,T )(x, w) : ξ(0) = x

}
︸ ︷︷ ︸

=:`τ (x)


Considering the second term `τ (x) only,

`τ (x) = sup
T∈[τ,∞)

sup
w∈W[0,T )

{
I[0,τ ](x, w) + L(ξ(T )) + I[τ,T ](x, w) ds : ξ(0) = x

}
= sup

T∈[τ,∞)
sup

w1∈W[0,τ)
sup

w2∈W[τ,T )

{
I[0,τ ](x, w1) + L(ξ2(T )) + I[τ,T ](ξ2(τ), w2) : ξ1(0) = x, ξ2(τ) = ξ1(τ)

}
= sup

w1∈W[0,τ)

{
I[0,τ ](x, w1) + sup

T∈[τ,∞)
sup

w2∈W[τ,T )

{
L(ξ(T )) + I[τ,T ](ξ(τ), w2)

}
: ξ(0) = x

}
= sup

w1∈W[0,τ)

{
I[0,τ ](x, w1) + W (ξ(τ)) : ξ(0) = x

}
,

where ξ1(·), ξ2(·) satisfy (1) and correspond to inputs w1(·) and w2(·) respectively. This com-
pletes the proof.



In order to prove a dynamic programming principle for (6), it is useful to firstly consider the
following auxiliary finite horizon optimization problem:

W̃ (x, T ) = sup
w∈W[0,T )

{
Q[0,T ](x, w)

}
(8)

It follows immediately from (5), (6) and (8) that

W (x) = sup
T≥0

W̃ (x, T ), (9)

V (x) = lim sup
T→∞

W̃ (x, T ). (10)

Identity (10) will be used to prove the DPP for V . First we need the following lemma, the proof
of which is standard.

Lemma 3.2 W̃ given by (8) satisfies

W̃ (x, T ) = sup
w∈W[0,τ)

{
I[0,τ ](x, w) + W̃ (ξ(τ), T − τ) : ξ(0) = x

}
∀x ∈ Rn, τ ∈ [0, T ). (11)

Proof: Fix τ ∈ [0, T ).

W̃ (x, T ) = sup
w1∈W[0,τ)

sup
w2∈W[τ,T )

{
I[0,τ ](x, w1) + L(ξ2(T )) + I[τ,T ](ξ2(τ), w2)

: ξ1(0) = x, ξ2(τ) = ξ1(τ)
}

= sup
w1∈W[0,τ)

{
I[0,τ ](x, w1) + sup

w2∈W[τ,T )

{
L(ξ2(T )) + I[τ,T ](ξ2(τ), w2)

: ξ2(τ) = ξ1(τ)
}

: ξ1(0) = x

}
= sup

w1∈W[0,τ)

{
I[0,τ ](x, w1) + W̃ (ξ1(τ), T − τ) : ξ1(0) = x

}
, (12)

which completes the proof.

Note that DPP (7) may also be proved using (11) by first rewriting (11) so that it holds for all
τ ∈ [0,∞).

Proof: [Theorem 3.1 using Lemma 3.2] Let a ∧ b
.= min(a, b). Then, (11) implies that

W̃ (x, T ) = sup
w∈W[0,τ∧T )

{
I[0,τ∧T ](x, w) + W̃ (ξ(τ ∧ T ), T − (τ ∧ T )

}
(13)

for all τ ∈ [0,∞). Taking the supremum over T ≥ 0 (of which τ is now independent) and
applying (9),

W (x) = sup
T≥0

sup
w∈W[0,τ∧T )

{
I[0,τ∧T ](x, w) + W̃ (ξ(τ ∧ T ), T − (τ ∧ T )) : ξ(0) = x

}
= max

(
sup

T∈[0,τ)
sup

w∈W[0,T )

{
I[0,T ](x, w) + W̃ (ξ(T ), T − T )) : ξ(0) = x

}
,

sup
T∈[τ,∞)

sup
w∈W[0,τ)

{
I[0,τ ](x, w) + W̃ (ξ(τ), T − τ)) : ξ(0) = x

})



= max

(
sup

T∈[0,τ)
sup

w∈W[0,T )

{
I[0,T ](x, w) + L(ξ(T )) : ξ(0) = x

}
,

sup
w∈W[0,τ)

{
I[0,τ ](x, w) + sup

T∈[τ,∞)
W̃ (ξ(τ), T − τ)) : ξ(0) = x

})

= max

(
sup

T∈[0,τ)
sup

w∈W[0,T )
Q[0,T ](x, w), sup

w∈W[0,τ)

{
I[0,τ ](x, w) + W (ξ(τ))

})

as obtained in (7).

Lemma 3.2 can also be applied to prove a dynamic programming principle for the infinite horizon
value function V , given by (6). First we need the following Lemma.

Lemma 3.3 Fix ρ ∈ [0,∞), δ̄ ∈ [0,∞), and τ ∈ [0,∞). Given any T ∈ [τ,∞), let ξδ
x,τ,T (τ) ∈

Rn denote the solution of (1) at time τ when initialized with ξδ
x,τ,T (0) = x ∈ Bρ and driven by

input wδ
x,τ,T ∈ W[0, τ ], where wδ

x,τ,T ∈ W[0, τ ] is δ-optimal in the DPP (11) for W̃ (x, T ) (for
the given τ), and δ ≤ δ̄.

Then, there exists Rρ ∈ [ρ,∞) such that ξδ
x,τ,T (τ) ∈ BRρ for all x ∈ Bρ, δ ≤ δ̄ and T ≥ τ .

Proof: Where W[0, τ) = WM [0, τ) for some M < ∞, the proof is immediate. In the case
where W[0, τ) = L2[0, τ), a similar proof can be found in [5].

Definition 3.4 The limsup in (10) is attained uniformly on compact sets when the following
condition holds: Given X ⊂ Rn compact, δ ∈ [ δ̄

2 , δ̄], δ̄ ∈ [0,∞) there exists Tδ̄,X < ∞ such that

T ≥ Tδ̄,X ⇒ sup
ζ∈X

∣∣∣∣∣sup
σ≥T

W (ζ, σ)− V (ζ)

∣∣∣∣∣ ≤ δ. (14)

Note that supσ≥T W (ζ, σ) ≥ V (ζ) for all ζ ∈ Rn. Hence, the right hand side of (14) may be
rewritten as

0 ≤ sup
ζ∈X

{
sup
σ≥T

W (ζ, σ)− V (ζ)

}
≤ δ.

Lemma 3.5 The limsup in (10) attained uniformly on compact sets implies that the following
properties hold, given any R ∈ [0,∞), τ ∈ [0,∞) δ̄ ∈ [0,∞), and δ ∈ [ δ̄

2 , δ̄]:

(i). There exists a T̄ δ̄
R,τ ∈ [τ,∞) such that

V (ζ) ≥ W̃ (ζ, T − τ)− δ ∀ ζ ∈ BR, T ≥ T̄ δ̄
R,τ . (15)

(ii). There exists ī(ζ) < ∞ such that

V (ζ) ≤ W (ζ, Ti(ζ)) + δ ∀ i ≥ ī(ζ), (16)

where {Ti(ζ)} → ∞ is a sequence such that limi→∞W (ζ, Ti(ζ)) = lim supT→∞W (ζ, T ).



Proof: Fix R, τ , δ̄, δ as per the statement of the Lemma. Fix X := BR ⊂ Rn (which is
obviously compact) and any ζ ∈ X . Assertion (ii) is obvious by the definition of limit supremum,
and so we prove only Assertion (i).

Assertion (i): Applying Definition 3.4, fix T δ̄
R,τ = Tδ,X + τ . Then, (14) states that

ζ ∈ X , T − τ ≥ Tδ̄,X ⇒ sup
σ≥T−τ

W (ζ, σ)− V (ζ) ≤ δ

which yields the implication (by selecting suboptimal σ = T − τ)

ζ ∈ X , T ≥ T δ̄
R,τ ⇒ V (ζ) ≥ W (ζ, T − τ)− δ

as required.

Lemma 3.6 Suppose that the limsup in (6) (equivalently, (10)) is achieved uniformly on com-
pact sets. Then, V given by (6) satisfies

V (x) = sup
w∈W[0,τ)

{
I[0,τ ](x, w) + V (ξ(τ)) : ξ(0) = x

}
∀x ∈ Rn, τ ∈ [0,∞). (17)

Proof: Fix x ∈ Rn, τ ∈ [0,∞). Applying (10) and (13),

V (x) = lim sup
T→∞

sup
w∈W[0,τ∧T )

{
I[0,τ∧T ](x, w) + W̃ (ξ(τ ∧ T ), T − (τ ∧ T )) : ξ(0) = x

}
≥ sup

w∈W[0,τ)
lim sup
T→∞

{
I[0,τ ](x, w) + W̃ (ξ(τ), T − τ) : ξ(0) = x

}
= sup

w∈W[0,τ)

{
I[0,τ ](x, w) + lim sup

T→∞

{
W̃ (ξ(τ), T − τ)

}
: ξ(0) = x

}
= sup

w∈W[0,τ)

{
I[0,τ ](x, w) + V (ξ(τ)) : ξ(0) = x

}
(18)

which proves the inequality in one direction. We prove that (18) in fact holds with equality by
contradiction.

Fix ρ ∈ [0,∞), x ∈ Bρ, τ ∈ [0,∞), δ̄ ∈ [0,∞). Assume (18) holds with strict inequality. That
is, there exists a δ ∈ (0, δ̄] (fixed) such that

V (x) ≥ sup
w∈W[0,τ)

{
I[0,τ ](x, w) + V (ξ(τ)) : ξ(0) = x

}
+ 4δ (19)

Given ρ, τ and δ̄, Lemma 3.3 fixes R := Rρ < ∞ such that ξδ
x,τ,T ∈ BR for all x ∈ Bρ, δ ≤ δ̄ and

T ≥ τ . The uniform limit assumption on V (via Lemma 3.5) then fixes T̄ := T̄ δ̄
R,τ < ∞ such

that
V (ξδ

x,τ,T (τ)) ≥ W̃ (ξδ
x,τ,T (τ), T − τ)− δ ∀T ≥ T̄ . (20)

Given x ∈ Bρ, Lemma 3.5 fixes ī(x) < ∞ such that

V (x) ≤ W̃ (x, Ti(x)) + δ ∀ i ≥ ī(x). (21)

Fix any ī ≥ ī(x) such that Tī(x) ≥ T̄ . Then, inequalities (19), (20) and (21) imply that

W̃ (x, Tī(x)) ≥ sup
w∈W[0,τ)

{
I[0,τ ](x, w) + V (ξ(τ)) : ξ(0) = x

}
+ 3δ

≥ I[0,τ ](x, wδ
x,τ,Tī(x)) + V (ξδ

x,τ,Tī(x)(τ)) + 3δ

≥ I[0,τ ](x, wδ
x,τ,Tī(x)) + W̃ (ξδ

x,τ,Tī(x)(τ), Tī(x)− τ) + 2δ



where wδ
x,τ,Tī(x) ∈ W[0, τ) is δ-optimal in the DPP for W̃ (x, Tī(x)). Hence,

W̃ (x, Tī(x)) ≥ sup
w∈W[0,τ)

{
I[0,τ ](x, w) + W̃ (ξ(τ), Tī(x)− τ) : ξ(0) = x

}
+ δ

which is a contradiction by Lemma 3.2. Hence, the assumption is incorrect. That is, the
inequality (18) holds with equality, proving (17).

3.2 Dynamic Programming Equations

By considering the DPPs (7) and (17) in the limit as τ ↓ 0, it is possible to show that the W
and V satisfy respectively a variational inequality (VI) and a partial differetial equation (PDE).
Since we will focus on max-plus mathods rather than PDE/VI based methods, the proof of the
following theorem is omitted.

Theorem 3.7 Define the Hamiltonian H(x, p) := l(x) + supw∈W {p · f(x, w)− γ(|w|)}. Then,
for all x ∈ Rn,

(i). W given by (5) satisfies the VI

max (L(x)−W (x), H(x,∇xW (x))) = 0, and (22)

(ii). V given by (6) satisfies the PDE

H(x,∇xV (x)) = 0 (23)

4 Max-Plus Representations and Numerical Methods

Define the time-indexed operator (actually a sub-semigroup)

Sτ [φ] = max
{

sup
t∈[0,τ)

sup
w∈W[0,τ)

Q[0,t](x, w), sup
w∈W[0,τ)

[Iτ (x, w) + φ(ξ(τ))]
}

(24)

and the semigroup

Lτ [φ] = sup
w∈W[0,τ)

[I[0,τ ](x, w) + φ(ξ(τ))
]

(25)

where the domains are implicit. Then DPP (7) can be rewritten as

W (x) = Sτ [W ](x) = max
{

sup
t∈[0,τ)

sup
w∈W[0,τ)

Q[0,t](x, w), Lτ [W ](x)
}

∀x ∈ Rn, (26)

and the DPP for V , (17) can be rewritten as

V (x) = Lτ [V ](x) ∀x ∈ Rn. (27)

Recall that the max-plus algebra is defined over R⊕
.= R∪ {−∞} where the max-plus addition

and multiplication operations, ⊕ and ⊗, are defined as a ⊕ b = max{a, b} and a ⊗ b = a + b,



respectively. One can easily show that Lτ is a max-plus linear operator, that is, Lτ [a⊗φ⊕b⊗ψ] =
a⊗ Lτ [φ]⊕ b⊗ Lτ [ψ] where φ, ψ lie in the domain of Lτ . Define cτ : Rn → R by

cτ (x) = sup
t∈[0,τ)

sup
w∈W[0,τ)

Q[0,t](x, w) ∀x ∈ Rn (28)

where we implicitly assume that L, l, f are such that cτ (x) is finite for all x (cf. [15]). Then, for
all φ in the domain of Lτ ,

Sτ [φ](x) = max{cτ (x),Lτ [φ](x)} (29)
= {cτ ⊕ Lτ [φ]}(x) ∀x ∈ Rn, (30)

and consequently, Sτ is a max-plus affine operator. Note that our DPP for W , (7), now takes
the form

W = cτ ⊕ Lτ [W ]. (31)

Similarly, one easily has (see above) that our DPP for V, (17), takes the max-plus eigenvector
form

0⊗ V = Lτ [V ]. (32)

We include the max-plus multiplication by the identity in this last equation to emphasize the
eigenvector nature of the problem.

We need to define a space to which the value functions belong. We will use the space of
semiconvex functions over Rn, Sc = Sc(Rn). Note that φ ∈ Sc if given any R < ∞, there exists
cR ∈ (0,∞) such that φ(x) + c

2 |x|2 is convex over BR(0). Since we will be mainly interested
in solving for these value functions over some compact set, we also define SR,cR

c (Rn) to be the
set of semiconvex functions for which φ(x) + cR

2 |x|2 is convex over BR(0), that is the set of
those semiconvex functions which are semiconvex for a specific semiconvex constant cR over
over specific ball BR(0). The following result is typical under reasonable assumptions on the
dynamics and cost. The proof is technical for infinite time-horizon problems such as those
considered here, and so it is not included. See [15], [6] for similar results.

Theorem 4.1 The value functions V and W are semiconvex, and consequently, given R < ∞,
there exists cR < ∞ such that W, V ∈ SR,cR

c .

Semiconvex duality (a variant of convex duality) implies that for any symmetric positive definite
matrix C such that C − cRI > 0, one has

W (x) = max
z
{a(z) + ψ̂(x, z)} (33)

with a given by

a(z) = min
x
{W (x)− ψ̂(x, z)} (34)

for all x ∈ BR(0) where ψ̂(x, z) .= −1
2(x − z)T C(x − z); see [15], [6], [20], [19] for details. By

restricting the z to some countable set {zi}∞i=1 (say the rationals) over a particular ball, this
semiconvex duality becomes

W (x) = sup
i∈{1,2,...}

{ai + ψ̂(x, zi)}) = sup
i∈{1,2,...}

{a(zi) + ψ̂(x, zi)} (35)

with the ai given by



ai = min
x
{W (x)− ψ̂(x, zi)} (36)

for all x ∈ BR(0); again see the references for details. Now we will suppose that the value func-
tion, W (x) has a max-plus expansion with a specific, finite number of max-plus basis functions.
This is not generally true of course, and one needs to perform an error analysis that indicates
that the errors introduced by truncation of the basis expansion go to zero as the number of
functions in the expansion goes to infinity. We delay the very long proof of such results so as
to get to the core concepts. A proof for the H∞case is given in [14], with portions appearing in
[16] [17]. Thus, we assume for the purposes of this extended abstract that

W (x) = max
i∈{1,2,...,N}

{ai + ψ̂(x, zi)} =
{ N⊕

i=1

[ai ⊗ ψi]
}
(x) (37)

with the ai given as above. Similarly, suppose that for each i ∈ {1, 2, . . . , N} one has a finite
max-plus expansion of Lτ [ψi] which we denote by

Lτ [ψi] =
N⊕

j=1

[Bj,i ⊗ ψj ] (38)

where Bj,i = minx{Lτ [ψi](x)− ψj(x)}, and also that

cτ =
N⊕

j=1

[cj ⊗ ψj ] (39)

where cj = minx{cτ (x)− ψj(x)}. Then, by (31) and (37)

N⊕
j=1

aj ⊗ ψj = cτ ⊕ Lτ

[ N⊕
i=1

ai ⊗ ψi

]
which by (38) and (39)

=
[ N⊕
j=1

cj ⊗ ψj

]
⊕

{ N⊕
i=1

⊗ai ⊗
[ N⊕
j=1

Bj,i ⊗ ψj

]}

=
[ N⊕
j=1

cj ⊗ ψj

]
⊕

{ N⊕
j=1

[ N⊕
i=1

ai ⊗Bj,i

]
⊗ ψj

}

=
N⊕

j=1

[
cj ⊕

N⊕
i=1

Bj,i ⊗ ai

]
⊗ ψj (40)

Under an asummption that each basis function is active (i.e. required in the expansion), (40)
implies that the vector of coefficients ai, denoted simply by a satisfies the affine equation

a = c⊕ [B ⊗ a] (41)

where c is the vector of coefficients ci and B is the N × N matrix of the Bj,i. In summary,
under mild assumptions (and blindly truncating the max-plus basis expansions) one finds the
following. (The reader should keep in mind that we are truncating the expansion, and the more
exact statement would be W ' ⊕N

i=1 ai ⊗ ψi with the error going to zero as N →∞ – see [14],
[16], [17].)



Theorem 4.2 The solution of DPP (7) is given by W =
⊕N

i=1 ai ⊗ ψi where the vector of
coefficients satisfies max-plus affine equation (41).

Similarly, suppose for now that V has the finite expansion (but see [14], [16], [17] for discussion
of the associated errors for this case for the slightly simpler case of L ≡ 0)

V (x) =
{ N⊕

i=1

[ei ⊗ ψi]
}
(x) (42)

with the ei given by
ei = min

x
{V (x)− ψ̂(x, zi)}. (43)

Then one has the following similar result.

Theorem 4.3 The solution of DPP (17) is given by V =
⊕N

i=1 ei ⊗ ψi where the vector of
coefficients satisfies max-plus eigenvector equation

0⊗ e = e = B ⊗ e. (44)

4.1 Nonuniqueness for the Max-Plus Affine Equation

There are serious nonuniqueness issues for both the DPPs and the DPEs for both W and V . It
will be simpler to quantify this lack of uniqueness with the technology below. Note that this
nonuniqueness also appears in the above PDE and VI forms. Some (although not all) of these
nonuniqueness issues also appear in the max-plus algebraic forms of these equations, (41) and
(44).

In the case of V , the max-plus equation (44) is simply an eigenvector problem for eigenvalue
zero. The following property can be shown to hold for some problem forms. In particular, it is
shown to hold for the L2-gain/H∞ problem form under reasonable conditions on the dynamics
and cost [15], [20], [19]. (Note that this form is equivalent to the case where L = 0 along with
certain conditions on the integral cost form.)

B-Dissipation Property: Let x1 = 0. B1,1 = 0, and there exists Ni < ∞, ε > 0 such that for all
{ki}Ni

i=1 such that k1 = kNi and not ki = 1 for all i, one has
∑Ni−1

i=1 Bki,ki+1 < −ε.

We also suppose that Bj,i 6= −∞ for all j, i, and this holds under reasonable conditions on the
dynamics and choice of C in the basis functions. In particular, this has also been shown to hold in
the H∞case under reasonable assumptions [15]. The condition Bj,i 6= −∞ for all j, i is sufficient
(although not necessary) to guarantee that B has exactly one max-plus eigenvalue [3]. Further,
under the additional condition of the B-Dissipation Property, there is a unique eigenvector
(modulo max-plus multiplication by a scalar of course) corresponding to this eigenvalue [15],
[20], [19]. (These uniqueness properties are obviously different from the properties one expects
for eigenvalues and eigenvectors in the standard algebraic field.) Note that this is in contrast
to the corresponding DPP and DPE. Further, this unique eigenvector is the yields the correct
solution, i.e. the value function, for the original control problem.

Now, consider our max-plus affine problem (41). Suppose this problem has solution a0. Also
suppose that the eigenvector problem, (44), has solution e0. Let a1 .= a0 ⊕ e0. Then

a1 = a0 ⊕ e0



= [c⊕ (B ⊗ a0)]⊕ (B ⊗ e0)
= c⊕ [(B ⊗ a0)]⊕ (B ⊗ e0)]
= c⊕ [B ⊗ (a0 ⊕ e0)] = c⊕ (B ⊗ a1).

Therefore, one has the following.

Theorem 4.4 Solutions of (41) are at most unique modulo max-plus addition by a max-plus
eigenvector corresponding to max-plus eigenvalue zero.

This also yields a way to view nonuniqueness in the originating DPP and VI. More specifially,
if W is a solution of the DPP or VI, and if V is a solution of the corresponding DPP or PDE
for the problem with lim sup, then the pointwise maximum of W and V (i.e. max-plus sum of
W and V ) yields another solution of the DPP or VI for W .

4.2 The Affine Power Method

Given this lack of uniqueness in the DPP and variational inequality for W , and the corresponding
lack of uniqueness in the max-plus affine equation (41), one would question how one would know
that the solution that one computed to any of these characterizations was the correct solution
(the value function). Interestingly, there is a method for solution of the max-plus affine equation
(41) that yields this correct solution. The underlying reason that it yields the correct solution
is that it corresponds to forward propagation of the original control problem. One particularly
nice property of the solution method is that it converges exactly in a finite number of steps. This
exact convergence rather than standard convergence (i.e given ε > 0, there exists Nε < ∞ such
that the solution is within ε of the limit after Nε steps) is typical of problems in the max-plus
algebra. Roughly speaking, it is due to the fact that a⊕b = a for any b ≤ a, which is in contrast
to the standard field where addition by anything other than the additive identity yields a sum
different from the numbers being added.

Let R⊕
.= R ∪ {−∞}. Let F : R⊕N → R⊕N be defined by

F [e] .= c⊕ (B ⊗ e). (45)

The max-plus affine power method will simply be repeated applicaton of F until one has con-
vergence. The following lemma will be useful. It follows from the B-dissipation property. The
proof can be found in [15], [20], [19], and so it is not included here.

Lemma 4.5 Given any a ∈ R⊕N , and B (with elements in R⊕), saitisfying the B-dissipation
property, there exists K < ∞ (dependent on a) such that Bk ⊗ a = BK ⊗ a for all k ≥ K where
we note that the superscripts k and K on B indicate max-plus exponentiation (i.e the max-plus
multiplication of B by itself k or K times).

We will denote the initial vector for the afine power method as a0. The following is a direct
result of Lemma 4.5.

Lemma 4.6 Given any a0, c ∈ R⊕N , and B saitisfying the B-dissipation property, there exists
K̂ < ∞ such that

Bk ⊗ a0 = BK̂ ⊗ a0, and Bk ⊗ c = BK̂ ⊗ c

for all k ≥ K̂.



Now note that for any k ≥ K̂, one has

F k+1[a0] =

[
k⊕

i=0

(
Bi ⊗ c

)]
⊕

(
Bk+1 ⊗ a0

)

=

 K̂⊕
i=0

(
Bi ⊗ c

)⊕ (
BK̂+1 ⊗ a0

)
= F K̂+1[a0].

Let
a∗ .= lim

k→∞
F k[a0]. (46)

Then
a∗ = F K̂+1[a0]. (47)

Further,
F [a∗] = F K̂+2[a0] = F K̂+1[a0] = a∗.

Consequently, one has

Theorem 4.7 For any initial a0, a∗ given by (46) is a solution of (41).

Not only is the limit a solution of (41) and achieved in a finite number of steps, it is also the
correct solution of (41) in that it is the solution corresponding to the value function. Let the kth

iterate be ak = F k[a0]. Also, define the corresponding kth approximation of the solution to be
W k(x) .=

⊕N
i=1 ak

i ⊗ ψi(x). Note that from the above, one has W k = W K̂+1 for all k ≥ K̂ + 1.

Let W ∗(x) .=
⊕N

i=1 a∗i ⊗ψi(x) =
⊕N

i=1 aK̂+1
i ⊗ψi(x). We will assume that a0 is chosen such that

W 0(x) ≤ W (x) ∀x ∈ Rn (IC)

where W is the value function. Note that this is an assumption on the a0
i coefficients. It is

typically the case that one knows W (x) ≥ 0 for all x. Consequently, if the basis functions are
of the form ψ(x) = −1

2(x− xi)T C(x− xi) with C positive definite, then one only needs to take
the a0

i ≤ 0 in order to satisfy (IC).

Theorem 4.8 W ∗ is the correct solution of the DPP (i.e. it is the value function of the original
control problem).

Proof: The result will follow by showing that repeated application of the F operator corre-
sponds to forward propagation of the value function of a finite time-horizon problem. We only
sketch the main points of the proof. First note that

W 1(x) =
N⊕

i=1

{[
ci ⊕ (B ⊗ a0)i

]
⊗ ψi(x)

}

=
[ N⊕

i=1

ci ⊗ ψi(x)
]
⊕

[ N⊕
i=1

(B ⊗ a0)i ⊗ ψi(x)
]

which by the definitions of c and B

= max
{
cτ (x),Lτ [W 0](x)

}
= max

{
sup

t∈[0,τ)
sup

w∈W[0,τ)
Q[0,t](x, w), sup

w∈W[0,τ)
[I[0,τ ](x, w) + W 0(ξ(τ))]

}
. (48)



Similarly,

W 2(x) = max
{

sup
t∈[0,τ)

sup
w∈W[0,τ)

Q[0,t](x, w), sup
w∈W[0,τ)

[I[0,τ(x,w)] + W 1(ξ(τ))]
}

and using (48), this becomes
= max

{
sup

t∈[0,2τ)
sup

w∈W[0,2τ)
Q[0,t](x, w), sup

w∈W[0,2τ)
[I[0,2τ(x,w)] + W 0(ξ(2τ))]

}
. (49)

By induction, one finds

W k(x) = max
{

sup
t∈[0,kτ)

sup
w∈W[0,kτ)

Q[0,t](x, w), sup
w∈W[0,kτ)

[I[0,kτ(x,w)] + W 0(ξ(kτ))]
}
. (50)

The next step is to note that given ε > 0, there exists Kε < ∞ such that (by the definition of
W )

W (x) ≤ sup
t∈[0,kτ)

sup
w∈W[0,kτ)

Q[0,t](x, w) + ε

for any k ≥ Kε. Consequently, using (50), one has

W (x) ≤ W k(x) + ε (51)

for any k ≥ Kε. On the other hand, by the DPP of Theorem 3.1 one has

W (x) = max
{

sup
t∈[0,kτ)

sup
w∈W[0,kτ)

Q[0,t](x, w), sup
w∈W[0,kτ)

[I[0,kτ ](x, w) + W (ξ(kτ))]
}

which by the condition (IC),

≥ max
{

sup
t∈[0,kτ)

sup
w∈W[0,kτ)

Q[0,t(x,w)], sup
w∈W[0,kτ)

[I[0,kτ(x,w)] + W 0(ξ(kτ))]
}

= W k(x). (52)

Combining (51) and (52) leads to the result.

We have now obtained max-plus based techniques for the solution of the control problems
addressed here. These techniques belong to an entirely new class of methods which are not
related to finite elements or any other previously known class of methods. Along the way, we
have developed a new way to represent the solutions of these control problems, such as by
the max-plus affine formulation (41). This max-plus affine formulation leads to a new way to
represent the nonuniqueness question in terms of max-plus linear algebra. Interestingly, the
max-plus affine power method yields the correct solution of (41) in spite of the nonuniqueness.
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