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1. Introduction. We suppose a conservative system follows a trajectory which
is a stationary point of the action functional, this being known as the principle of least
(more correctly, stationary) action or as Hamilton’s principle (c.f., [10, 11]). This
allows the dynamical model to be posed in terms of various optimal control problems.
Solution of these control problems allows one to convert two-point boundary value
problems (TPBVPs) for the dynamical system into initial value problems (IVPs).
For purposes of illustration, we will consider a simple mass-spring system, wherein
solution of an associated Riccati equation generates the fundamental solution, and
allows one to answer a variety of TPBVPs via a simple min-plus integral (equivalently,
a supremum). We will also consider the N -body problem in orbital mechanics. There,
the analysis becomes more technical. Nonetheless, one can construct machinery for
guaranteed solution of various TPBVPs.

1.1. Least action, optimal control, and TPBVPs. We begin with a some-
what formal discussion; specification of the exact assumptions will follow in the next
section. Suppose the position component of the state at time, t, is denoted by
ξ(t) ∈ IRn, where also, we will use x ∈ IRn to denote generic positions. Let the
potential energy at x ∈ IRn be denoted by V (x). The kinetic energy at time t will be
denoted by T (ξ̇(t))

.
= 1

2 ξ̇
′(t)Mξ̇(t). If ξ(t) is a point mass, M is simply mI, where

m is the mass of the body; in a multi-body system, this is generalized in the obvious
way. The action functional corresponding to {ξ(r) | r ∈ [0, t]} is

F(ξ(·)) .
=

∫ t

0

−V (ξ(r)) + T (ξ̇(r)) dr.

The original principle of least action stated that a system evolves so as to minimize
the action functional. More recently, it has been understood that systems evolve so
as to achieve a stationary point of the action functional (c.f., [11]).
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One can also interpret this in terms of the characteristic equations corresponding
to the Hamiltonian of the system. Let the initial position be ξ(0) = x ∈ IRn, and
let the dynamics be ξ̇(r) = u(r) for all r ∈ (0, t), where u = u(·) ∈ Us,t, with
Us,t .= L2([s, t); IRn). Also let

U∞ .
= {u : [0,∞)→ IRn |u[0,t) ∈ U0,t ∀t ∈ [0,∞)}, (1.1)

where u[0,t) denotes the restriction of the function to domain [0, t). Define the control
formulation payoff, J0 : [0,∞)× IRn × U∞ → IR ∪ {−∞,+∞}, as

J0(t, x, u)
.
=

∫ t

0

−V (ξ(r)) + T (u(r)) dr =

∫ t

0

−V (ξ(r)) + 1
2u
′(r)Mu(r) dr, (1.2)

where M is positive-definite symmetric, and the corresponding value function as

W 0(t, x)
.
= inf
u∈U∞

J0(t, x, u). (1.3)

Clearly a solution of this problem yields an ξ(·) satisfying the least action principle,
and so is the trajectory of the conservative system under potential energy field V ,
when the stationary action is the least.

Let D .
= (0, t) × IRn, D̄ .

= [0, t] × IRn, and Ĉ1 .
= C(D̄) ∩ C1(D). Under quite

reasonable conditions on V , one can expect that W 0 ∈ Ĉ1, and that on D, W 0 satisfies

0 = − ∂
∂r
W (r, x) + inf

v∈IRn

{
v · ∇xW (r, x) + 1

2v
′Mv

}
− V (x) (1.4)

= − ∂
∂r
W (r, x)− V (x)− 1

2
[∇xW (r, x)]′M−1∇xW (r, x)

.
= −H̄

(
r, x,

∂

∂r
W (r, x),∇xW (r, x)

)
.
= − ∂

∂r
W (r, x)−H

(
r, x,∇xW (r, x)

)
. (1.5)

It is also well-established that under sufficiently strong conditions, first-order Hamil-
ton-Jacobi-Bellman (HJB) partial differential equations (PDEs) such as (1.5) can
be solved via the method of characteristics (c.f., [18]). The characteristic equations
associated with (1.5) are

dr

dρ
= H̄q(r, ξ̂, q, p̂) = 1,

dξ̂

dρ
= H̄p(r, ξ̂, q, p̂) =M−1p̂(ρ) (1.6)

dq

dρ
= −H̄r(r, ξ̂, q, p̂) = 0,

dp̂

dρ
= −H̄x(r, ξ̂, q, p̂) = −∇xV (ξ̂(ρ)). (1.7)

These have associated initial and terminal conditions

ξ̂(t) = x, r(t) = 0, p̂(0) = 0, q(0) = −V (ξ̂(0))− 1

2
(p̂(0))′M−1p̂(0) = −V (ξ̂(0)),

(1.8)
where p̂(0) = 0 follows from the lack of a terminal cost here. Because of (1.6), we may

take r = ρ. Noting (1.7) and (1.8), we see that q(r) = V (ξ̂(0)) for all r. Also, in order

to return to forward time, we may take s = t− r, ξ(s) = ξ̂(t− s) and p(s) = p̂(t− s),
in which case we have

dξ

ds
= −M−1p(s),

dp

ds
= ∇xV (ξ(s)), (1.9)

or,

d2ξ

ds2
= −M−1∇xV (ξ(s)), (1.10)
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which of course, is the classical Newton’s second law formulation. Note that in the
above development, the trajectory was not fully specified, as only the initial position,
not the initial state (position and velocity), was given. Of course, (1.9) implies that
the additive inverse of the co-state p(r), is the momentum. (One might also note that
the optimal velocity in (1.4) is attained at v = −M−1∇xW = −M−1p.) Given both
the initial position and initial velocity, forward integration of (1.9) is the classical IVP
form for the system dynamics.

Suppose however, that one attaches a terminal cost to J0 yielding, say

J̄(t, x, u) = J0(t, x, u) + ψ̄(ξ(t)), (1.11)

W (t, x) = inf
u∈U∞

J̄(t, x, u), (1.12)

where U∞ is given by (1.1). The dynamic programing equation (DPE) and charac-
teristic equations (1.9) remain unchanged. However, although the initial condition is
still ξ(0) = x, the terminal condition is defined by ψ̄. That is, we have a TPBVP
where we control the terminal condition.

TPBVPs are common in classical optimal control theory, where the above charac-
teristic equations appear in Calculus of Variations and Pontryagin Maximum Principle
approaches (c.f., [20]). There, one is required to solve the relevant TPBVP to obtain
the desired optimal control problem solution. Classical methods used a shooting ap-
proach, and more modern methods such as pseudo-spectral algorithms (c.f., [19]) have
greatly advanced the state of the art.

Here we have a slightly different goal; we desire to solve TPBVPs that are con-
strained by conservative dynamics, i.e. those dynamics that conserve the (instanta-
neous) total energy defined as the sum of the potential and kinetic energies V and T .
For the trajectory ξ(·) of (1.9), this total energy at time s ∈ IR is given by

V (ξ(s)) + T (ξ̇(s)) = H(s, ξ(s),M ξ̇(s)) ,

where H is the Hamiltonian of (1.5). Noting that this Hamiltonian is invariant with
respect to its first argument, differentiation with respect to s along the trajectory ξ(·)
yields via (1.10) that

d
dsH(s, ξ(s),M ξ̇(s)) = 〈Hx(s, ξ(s),M ξ̇(s)), ξ̇(s)〉+ 〈Hp(s, ξ(s),M ξ̇(s)),M ξ̈(s)〉

= 〈∇xV (ξ(s)), ξ̇(s)〉+ 〈ξ̇(s), −∇xV (ξ(s))〉 = 0 ,

for all s ∈ [0, t]. That is, the conservative dynamics of interest here are precisely those
defined by (1.9), which in turn are defined by the characteristic equations (1.6) and
(1.7) associated with the optimal control problem (1.3). With the addition of terminal
cost ψ̄ in this optimal control problem, the boundary conditions for (1.9), and hence
the conservative dynamics of interest, consist of initial and terminal conditions

ξ(0) = x, p(t) = ∇xψ̄(ξ(t)). (1.13)

If one takes, for example, ψ̄(x) = −x′Mv̄ for some given v̄ ∈ IRn, then the terminal
condition in (1.13) becomes p(t) = −Mv̄. That is, one has boundary conditions

ξ(0) = x and ξ̇(t) = v̄. (1.14)

Alternatively, if one takes z ∈ IRn and ψ̄(x) = ψ∞(x)
.
= δ−0 (x− z) where

δ−0 (y)
.
=

{
0 if y = 0

+∞ otherwise
(1.15)
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(i.e., the min-plus delta function, c.f., [17, 25]), then the solution of control problem
(1.12) yields solution of the conservative system (1.9) with boundary conditions

ξ(0) = x and ξ(t) = z. (1.16)

Clearly, other boundary conditions can be generated as well.

1.2. Fundamental solutions. The goal here will be the development of funda-
mental solutions for TPBVPs corresponding to conservative systems of the form (1.9).
For a problem involving dynamical systems, we use the term fundamental solution to
indicate an object which, once obtained for a specific time-horizon, yields the solution
of that problem for other input data via an operation on the object and the input
data, without re-propagation over time. For example, the operator eAt ∈ L(IRn) de-
fined with respect to A ∈ IRn×n is a fundamental solution for the finite-dimensional
linear initial value problem, ξ̇(s) = Aξ(s), ξ(0) = x ∈ IRn, s ∈ [0, t], as we have
ξ(t) = eAt x for any specific initial data x ∈ IRn. As a substep in the analysis to
follow, we will obtain a one-parameter semigroup of min-plus linear min-plus integral
operators {G⊕(t)}t∈IR≥0

that serves as a min-plus primal space fundamental solution
semigroup [5, 31] for the optimal control problem (1.11), (1.12), or equivalently, the
HJB PDE (1.5). As this optimal control problem is formulated to encapsulate the
least action principle, the fundamental solution semigroup {G⊕(t)}t∈IR≥0

can also be
used as a fundamental solution semigroup for TPBVPs constrained by the conserva-
tive dynamics (1.9). In particular, given any terminal data of the form ξ(t) = z or
ξ̇(t) = v̄ for these dynamics, {G⊕(t)}t∈IR≥0

can be used to evaluate the correspond-

ing value function W (t, x) of (1.12), and the hence solve the corresponding TPBVP
(with initial data ξ(0) = x ∈ IRn). Also, in the case of the N -body problem, it will
shown that the fundamental solution can be interpreted in terms of a convex set,
Σ̂(t) ⊂ IR2N2+N+1, which can be used to generate the fundamental solution kernel
W
∞

(t, ·, ·).
A specific element G⊕(t) of the aforementioned min-plus primal space fundamental

solution semigroup {G⊕(t)}t∈IRn
≥0

is an operator that propagates any terminal payoff

through to the corresponding value function of the optimal control problem (1.11),
(1.12) at horizon t ∈ IR≥0 via a (min-plus linear) min-plus integration (or convolution,
cf. [1, 12, 22, 24]). That is,

W (t, ·) = G⊕(t) ψ̄
.
=

∫ ⊕
IRn

W
∞

(t, ·, z)⊗ ψ̄(z) dz , (1.17)

in which the min-plus integral is defined in general by
∫ ⊕
IRn f(z) dz = infz∈IRn f(z) for

any functional f : IRn → IR ∪ {∞}, and W
∞

(t, ·, ·) : IRn × IRn → IR ∪ {∞} denotes
the associated kernel. Existence of the min-plus primal-space fundamental solution
semigroup {G⊕(t)}t∈IR is guaranteed by dynamic programming, which requires that

W (t+ τ, ·) = S(t+ τ) ψ̄ = S(τ)S(t) ψ̄ , (1.18)

S(t) ψ̄
.
=

∫ ⊕
U∞

J0(t, x, u)⊗ ψ̄(ξ(t)) du, (1.19)

for all t, τ ∈ IR for which the value is finite, where S(t) is the dynamic program-
ming evolution operator. Operator S(t) is itself a min-plus linear min-plus integral
operator, by definition (1.19). The dynamic programming principle, as stipulated by
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the right-hand equality of (1.18), defines a one-parameter semigroup of these min-
plus linear min-plus integral dynamic programming evolution operators {S(t)}t∈IR≥0

for the optimal control problem (1.11), (1.12). (This is the so-called Lax-Oleinik
semigroup.) Consequently, as (1.17) and (1.18) imply that G⊕(t) ψ̄ = S(t) ψ̄ for any
horizon t ∈ IR≥0 and terminal payoff ψ̄, it follows immediately that

G⊕(t+ τ) = G⊕(τ)G⊕(t) (1.20)

for any t, τ ∈ IR≥0 for which the value function W (t + τ, ·) is finite. That is,
{G⊕(t)}t∈IR≥0

defines a one-parameter semigroup of min-plus linear min-plus inte-
gral operators as per (1.17). Furthermore, an explicit representation for the kernel
W
∞

(t, ·, ·) of G⊕(t) follows by inspection of (1.17), (1.18), (1.19). In particular, the

identity ψ̄(x) =
∫ ⊕
IRn δ

−
0 (x−z)⊗ψ̄(z) dz, which holds for all x ∈ IRn given the min-plus

delta function δ−0 of (1.15), the min-plus linearity of S(t) evident by definition (1.19),
and the left-hand equality of (1.18), together imply that

W (t, ·) = S(t) ψ̄ = S(t)

∫ ⊕
IRn

δ−0 (· − z)⊗ ψ̄(z) dz =

∫ ⊕
IRn

[S(t) δ−0 (· − z)]⊗ ψ̄(z) dz ,

so that by (1.17),

W
∞

(t, x, z) = [S(t) δ−0 (· − z)](x) . (1.21)

That is, the kernel W
∞

(t, x, z) of the min-plus primal-space fundamental solution
G⊕(t) is itself the value of an optimal control problem defined with respect to initial
and final states x, z ∈ IRn by (1.21).

Remark 1.1. Using the notation of (1.17), (1.19), (1.20), it is important to note
that the Lax-Oleinik semigroup {S(t)}t∈IR≥0

does not define a min-plus primal-space
fundamental solution semigroup, as its elements are defined as min-plus integral min-
plus linear operators over U∞ rather than IRn. While this may seem to be a formal
detail, it is crucial from the point of view of computation. In particular, in applying
elements of {G⊕(t)}t∈IR≥0

, as opposed to {S(t)}t∈IR≥0
, minimization over a finite

dimensional (rather than infinite dimensional) space is required. �

1.3. Application. With regard to the specific optimal control problem (1.11),
(1.12), in the case where the potential energy T takes a linear-quadratic form, the
kernel W

∞
(t, ·, ·) of the min-plus primal space fundamental solution G⊕(t) can be

obtained through solution of an associated Riccati equation. Here, we will use only
a simple mass-spring example to demonstrate the concept, although a combination
of this approach with previously developed machinery for solution of certain infinite-
dimensional problems [6, 7, 8] has yielded corresponding min-plus primal-space fun-
damental solutions for certain TPBVPs for infinite-dimensional systems [5].

We will also apply the approach to N -body problems under the gravitational po-
tential. In that case, the potential does not take a linear-quadratic form. However,
we will see that one may take a dynamic game approach to gravitation, where the po-
tential is a linear-quadratic form in the position variable. This requires an additional
max-plus integral, over the opponent controls, beyond that which is required in the
purely linear-quadratic potential case.

In order to give a sense of the usefulness of the approach, two example problem
classes are considered. The first is a simple mass-spring oscillator, which should be
useful due to its simplicity, and this is discussed in Section 3. A deeper problem class,
that of N -body problems, is considered in Section 4.
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In the mass-spring case, one obtains an explicit solution for W
∞

in (3.10)–(3.11).
Fix t > 0, sin(ωt) 6= 0 (for more details, see Section 3). Suppose one has the funda-
mental solution in form (3.10)–(3.11). Then, for a TPBVP generated by initial and
terminals positions, say x and z in IR, the initial velocity solving the TPBVP is given
by

v = ξ̇(0) =M−1(Q∞t x+R∞t z), (1.22)

where M is the mass. If instead, one is given a TPBVP generated by an initial
position, x and terminal velocity, v̄ ∈ IR, the corresponding initial velocity is given
by (1.22), but with z = z∗ = (Mv̄ −Q∞t x)/R∞t .

The N -body problem class is more challenging, and as noted above, the funda-
mental solution, W

∞
is represented as the finite-dimensional convex set, Σ̂(t). Given

a set of N initial positions as vector x ∈ IR3N and a set of terminal positions as vector
z ∈ IR3N (along with time-duration, t ∈ (0, t̄), with t̄ satisfying (4.56), and body
masses and radii mi, Ri, i ∈ {1, 2, . . . N}, where the radii are included for technical
modeling reasons indicated below), the initial velocities solving the TPBVP are given

by (4.106),(4.107). That is, once Σ̂(t) is computed (more exactly, approximated), one

may repeatedly use Σ̂(t) for changing values of x and z. Specifically, in (4.100) for
any x, z pair, W

∞
(t, x, z) is obtained as the supremum of a linear functional over

the finite-dimensional convex set Σ̂(t). The N -body case where initial position and
terminal velocity are given is a bit more complex, and discussed further in Section
4.7.

Remark 1.2. It is worth noting that this is not the first instance in which
idempotent methods have been used to address problems in this class. Notably, [26]
takes a similar viewpoint on this topic, within a larger context. On another front,
other authors have found it useful to introduce a game-theoretic interpretation as an
aid in the study of dynamical systems, cf. [21]. �

2. General Theory. We now begin the rigorous development. As indicated
above, we consider conservative systems, and take the least-action approach. (That
is, in this paper, we concentrate on the case where the stationary action is least – see
Lemma 4.17 and [10, 11, 13] as well.)

2.1. Optimal control problem. We model the dynamics of position as

ξ̇(r) = u(r), ξ(0) = x ∈ IRn, (2.1)

with u ∈ U∞. Let the potential and kinetic energy functions be denoted by V (x) and
T (y) = 1

2y
′My, respectively. Recalling (1.2), we now have

J0(t, x, u) =

∫ t

0

L(ξ(r), u(r)) dr
.
=

∫ t

0

T (u(r))− V (ξ(r)) dr. (2.2)

Throughout this section, we employ the following assumptions:
M is positive-definite and symmetric. (A.M)

There exists DV <∞ such that V (x) ≤ DV for all x ∈ IRn. (A.V 1)
There exists KL,K

1
L < ∞ such that |V (x) − V (z)| ≤ KL|x −

z|, and |V (x)| ≤ K1
L(1 + |x|). (A.V 2)

(Of course, in (A.V 2), the existence of such a K1
L follows from the existence of KL,

but we find it useful to introduce both constants.)
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Remark 2.1. We note that (A.V 1), (A.V 2) are violated in the case of the ide-
alized harmonic oscillator given in Section 3. However, in that example one may
nonetheless obtain a closed-form solution. In the N -body application class of Sec-
tion 4, although (A.V 2) is violated if one assumes point-mass bodies, it is satisfied if
one assumes the bodies have positive radius and bounded density. Such models are
discussed further in Section 4. �

For c ∈ [0,∞), let ψc : IRn × IRn → [0,∞) be given by

ψc(x, z) =
c

2
|x− z|2. (2.3)

Also let ψ∞ : IRn × IRn → [0,∞] (where [0,∞]
.
= [0,∞) ∪ {+∞}) be given by

ψ∞(x, z) = lim
c→∞

ψc(x, z) = δ−0 (x− z), (2.4)

where δ−0 is given in (1.15). Define the finite time-horizon payoffs J̄c : [0,∞)× IRn×
U∞ → IR ∪ {−∞,+∞} by

J̄c(t, x, u, z)
.
= J0(t, x, u) + ψc(ξ(t), z), (2.5)

for c ∈ [0,∞], where we specifically note that J0(t, x, u) =
∫ t

0
L(ξ(s), u(s)) ds. Also,

for c ∈ [0,∞], we let

W
c
(t, x, z)

.
= inf
u∈U∞

J̄c(t, x, u, z). (2.6)

Value functions where one also notes dependence on terminal state components some-
times appear in the literature as “generating functions”, specifically in reference to
two-point boundary value problems (c.f., [14]). As in the introduction, for generic
terminal cost, ψ̄ ∈ L2(IRn; IR), we continue to let

J̄(t, x, u)
.
= J0(t, x, u) + ψ̄(ξ(t)), and W (t, x)

.
= inf
u∈U∞

J̄(t, x, u). (2.7)

We begin with general theory; results specific to application in mass-spring and
N -body systems will follow in later sections.

Lemma 2.2. W
c
(t, x, z) ≥ −DV t for all x, z ∈ IRn and all t ≥ 0. Also, suppose

there exists D,R < ∞ such that V (y) ≥ −D for all y ∈ BR(0). Then W
c
(t, x, z) ≤

Dt + 1
2 min{c, ‖M‖/t}|x − z|2 ≤ Dt + ψc(x, z) for all x, z ∈ BR(0) and t ≥ 0. More

generally, for ψ̄ : IRn → IR, W
c
(t, x) ∈ IR for all t ∈ (0,∞) and all x ∈ IRn. Lastly,

note that for c ≥ ĉ, W c
(t, x, z) ≥W ĉ

(t, x, z) for all t ≥ 0 and x, z ∈ IRn.
Proof. To obtain the first assertion, note that for any u ∈ U∞, J̄c(t, x, u, z) ≥∫ t

0
−V (ξ(r)) dr ≥ −DV t, where DV is given in Assumption (A.V 1). For the second

assertion, let ū(s) = 0 for all s ∈ (0, t). Then, J̄c(t, x, ū, z) =
∫ t

0
−V (x) dr+ψc(x, z) ≤

Dt + ψc(x, z), which implies W
c
(t, x, z) ≤ Dt + ψc(x, z). Alternatively, let ũ(r) =

1
t (z−x) for all r ∈ (0, t). Then, the corresponding trajectory satisfies ξ̃(r) ∈ BR(0) for

all r ∈ [0, t], and we have J̄c(t, x, ũ, z) =
∫ t

0
1

2t2 (z−x)′M(z−x)−V (ξ̃(r)) dr+ψc(z, z) ≤
‖M‖

2t |x−z|
2+Dt, which implies W

c
(t, x, z) ≤ ‖M‖2t |x−z|

2+Dt. For the third assertion,
simply take ū ≡ 0. The final assertion is immediate by the definition.

One expects that W
c

will be a viscosity solution on (0,∞)× IRn of

0=−∂1W (t, x, z)−H(t, x,∇xW (t, x, z))=−H̄(t, x, ∂1W (t, x, z),∇xW (t, x, z)) (2.8)

W (0, x, z) = ψc(x, z) x ∈ IRn, (2.9)
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where we will find it handy to use the notation ∂1 to denote the partial derivative
with respect to the first variable throughout, and H, H̄ are the Hamiltonians (1.5).
In fact, we have the following:

Theorem 2.3. Given c ∈ [0,∞) and z ∈ IRn, the value function W
c
(·, ·, z) of

(2.7) is Lipschitz continuous on compact sets, and is the unique viscosity solution of
(2.8),(2.9).

Proof. This follows immediately from [3], where we specifically use Proposition
1.3 and Theorems 2.1, 2.2 and 3.2 there.

2.2. A limit property. In order to characterize the fundamental solution to
the optimal control problem (2.7), it is useful to first demonstrate that a specific
limit property holds. In particular, it is demonstrated via a sequence of lemmas that
limc→∞W

c
= W

∞
. Lemmas 2.5 and 2.6 provide bounds on near-optimal trajectories

defined with respect to W
c
, leading to a sandwiching of W

c
using W

∞
. The required

limit property is then stated via Theorem 2.7 and Corollary 2.8.
By the positive-definiteness of M, there exists m > 0 such that

T (v) ≥ m

2
|v|2, ∀v ∈ IRn. (2.10)

Let t > 0. The “straight-line” control from x to z is given by usr = (1/t)[z − x] for
all r ∈ [0, t], and we let the corresponding trajectory be denoted by ξs· . The resulting
cost is

W̃ s(t, x, z)
.
= J̄c(t, x, us, z) ≤ K1

L(1 + |x|+ |z|)t+
‖M‖|z − x|2

2t
,

which for an appropriate choice of D1 = D1(t) <∞,

≤ D1(t)[1 + |x|2 + |z|2], ∀x, z ∈ IRn. (2.11)

Remark 2.4. We have W
∞

(t, x, z) ≤ W̃ s(t, x, z) ≤ D1(t)[1 + |x|2 + |z|2] for all
t ∈ (0,∞) and all x, z ∈ IRn. �

Lemma 2.5. There exists D̂ = D̂(t) <∞ such that for any ε-optimal trajectory,
ξε (i.e., any trajectory ξε corresponding to an ε-optimal input in the definition (2.6))
with ε ∈ (0, 1], |ξε(r)| ≤ D̂[1 + |x|+ |z|] for all 0 ≤ r ≤ t <∞ and x, z ∈ IRn.

Proof. Let t > 0 and x, z ∈ IRn. Let uε ∈ U∞ be ε-optimal in the definition (2.6)
of W

c
with ε ∈ (0, 1], and let ξε be the corresponding trajectory. Let

R
.
= max{|ξε(r)| | r ∈ [0, t]}, τ ∈ argmax{|ξε(r)| | r ∈ [0, t]}. (2.12)

Note that by Hölder’s inequality,

R = |ξε(τ)| ≤
√
τ‖uε‖L2(0,τ) + |x| ≤

√
t‖uε‖L2(0,t) + |x|. (2.13)

Now, using Assumption (A.V 2), (2.10) and (2.12),

J̄c(t, x, uε, z) ≥
∫ t

0

−V (ξε(r)) + T (uε(r)) dr ≥ −K1
L(1 +R)t+

m

2
‖ξ̇ε‖2L2(0,t),

which by (2.13),

≥ −K1
L(1 +R)t+

m

2t
(R− |x|)2.

Consequently, considering the quadratic inequality in R given by

−K1
L(1 +R)t+

m

2t
(R− |x|)2 −

[
K1
L(1 + |x|+ |z|)t+

‖M‖|z − x|2

2t
+ 1
]
≥ 0,
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and solving the quadratic equality by classical methods, we see that there exists
D̂ = D̂(t) <∞ such that

J̄c(t, x, uε, z) > K1
L(1+ |x|+ |z|)t+ ‖M‖|z − x|

2

2t
+1 ≥ W̃ s(t, x, z)+1 ≥W c

(t, x, z)+ε

if R > D̂[1 + |x| + |z|], which contradicts the ε-optimality of uε. Hence, R ≤ D̂(1 +
|x|+ |z|), completing the proof.

Lemma 2.6. There exists D̃ = D̃(t) < ∞ such that for ε-optimal controls,

uc,ε ∈ U∞, with ε ∈ (0, 1], |ξc,ε(t)− z| ≤ D̃[1+|x|+|z|]√
c

, for all c, t > 0 and x, z ∈ IRn.

Proof. Let ε ∈ (0, 1], c, t > 0 and x, z ∈ IRn. By Assmp. (A.V 2) and Lemma 2.5,

J̄c(t, x, uc,ε, z) ≥ −K1
L(1 + D̂[1 + |x|+ |z|])t+

c

2
|ξc,ε(t)− z|2. (2.14)

On the other hand,

W
∞

(t, x, z) ≥W c
(t, x, z) ≥ J̄c(t, x, uc,ε, z)− ε ≥ J̄c(t, x, uc,ε, z)− 1. (2.15)

Combining (2.14) and (2.15) yields

c

2
|ξc,ε(t)− z|2 ≤W∞(t, x, z) +K1

L(1 + D̂[1 + |x|+ |z|])t

≤ W̃ s(t, x, z) +K1
L(1 + D̂[1 + |x|+ |z|])t,

which by (2.11),

≤ D1(t)[1 + |x|2 + |z|2] +K1
L(1 + D̂[1 + |x|+ |z|])t.

Theorem 2.7. There exists D̆ = D̆(t) <∞ such that

W
∞

(t, x, z)− D̆√
c
[1 + |x|+ |z|]2 ≤W c

(t, x, z) ≤W∞(t, x, z),

for all t ∈ (0,∞), x, z ∈ IRn and c ≥ 1.
Proof. Clearly, W

c
(t, x, z) ≤ W

∞
(t, x, z) for all t, c ∈ (0,∞) and x, z ∈ IRn. We

concentrate on the other bound. Let uc,ε be ε-optimal for W
c
(t, x, z), with ε ∈ (0, 1],

and let ξc,ε denote the corresponding trajectory. Also for r ∈ [0, t], let

ûc,ε(r)
.
= uc,ε(r) + (1/t)[z − ξc,ε(t)], which yields ξ̂c,ε(t) = z. (2.16)

Further, using Lemma 2.6, this implies

|ξ̂c,ε(r)− ξc,ε(r)| = r

t
|ξc,ε(t)− z| ≤ rD̃[1 + |x|+ |z|]

t
√
c

, ∀r ∈ [0, t]. (2.17)

Next, note that

J̄c(t, x, uc,ε, z) =

∫ t

0

−V (ξc,ε(r)) + T (uc,ε(r)) dr + ψc(ξc,ε(t), z)

≤W c
(t, x, z) + ε ≤ W̃ s(t, x, z) + 1,

which implies

m

2
‖uc,ε‖2L2(0,t) ≤

∫ t

0

V (ξc,ε(r)) dr + W̃ s(t, x, z) + 1,
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which by Assumption (A.V 2), (2.11) and Lemma 2.5

≤ K1
L(1 + D̂(t)[1 + |x|+ |z|])t+D1(t)[1 + |x|2 + |z|2] + 1.

This implies there exists D2 = D2(t) <∞ such that

‖uc,ε‖L2(0,t) ≤ D2(t)[1 + |x|+ |z|]. (2.18)

Now, recalling that |a− b|2 ≤ |a− b|(|a|+ |b|) for all a, b ∈ IRn, one has∣∣∣∫ t

0

T (uc,ε(r)) dr −
∫ t

0

T (ûc,ε(r)) dr
∣∣∣≤ ‖M‖

2

∫ t

0

|uc,ε(r)− ûc,ε(r)|(|uc,ε(r)|+ |ûc,ε(r)|) dr

which by the definition of ûc,ε,

≤ ‖M‖
2t
|z − ξc,ε(t)|

∫ t

0

(|uc,ε(r)|+ |ûc,ε(r)|) dr

≤ ‖M‖
2t
|z − ξc,ε(t)|

∫ t

0

[
|z − ξc,ε(t)|

t
+ 2|uc,ε(r)|

]
dr

≤ ‖M‖
2t
|z − ξc,ε(t)|

[
|z − ξc,ε(t)|+ 2

√
t‖uc,ε‖L2(0,t)

]
(where the last bound follows by Hölder’s inequality), which by Lemma 2.6 and (2.18),

≤ D3(t)[1 + |x|+ |z|]2√
c

, (2.19)

for all x, z ∈ IRn and all c ∈ [1,∞) for proper choice of D3(t) < ∞. Also, by
Assumption (A.V 2),∣∣∣∣ ∫ t

0

−V (ξc,ε(r)) dr −
∫ t

0

−V (ξ̂c,ε(r)) dr

∣∣∣∣ ≤ KL

∫ t

0

∣∣ξc,ε(r)− ξ̂c,ε(r)∣∣ dr,
which by (2.17),

≤ KLD̃[1 + |x|+ |z|]t
2
√
c

(2.20)

By (2.16), (2.19), (2.20) (and noting that ψc ≥ 0),

J̄c(t, x, uc,ε, z)− J̄c(t, x, ûc,ε, z) ≥ −D3(t)[1 + |x|+ |z|]2√
c

− KLD̃[1 + |x|+ |z|]t
2
√
c

≥ −D̆(t)[1 + |x|+ |z|]2√
c

,

for an appropriate choice of D̆(t) <∞. This implies

J̄c(t, x, uc,ε, z) ≥W∞(t, x, z)− D̆(t)[1 + |x|+ |z|]2√
c

,

and since this is true for all ε ∈ (0, 1], W
c
(t, x, z) ≥ W

∞
(t, x, z) − D̆(t)[1+|x|+|z|]2√

c
,

which completes the proof.
Of course, Theorem 2.7 immediately implies:
Corollary 2.8. The value functions W

c
and W

∞
of (2.6) satisfy the limit

property limc→∞W
c
(t, x, z) = W

∞
(t, x, z) for all t ∈ (0,∞), x, z ∈ IRn.
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Remark 2.9. Note that

W
c
(t, x, z) = inf

u∈U∞

{∫ t

0

L(ξ(s), u(s)) ds+ c
2 |ξ(t)− z|

2
}

= inf
{∫ t

0

L(ξ(s), u(s)) ds+ ψ∞(ξ(t), y) + c
2 |y − z|

2
∣∣∣u ∈ U∞, y ∈ IRn}

= inf
y∈IRn

{
W
∞

(t, x, y) + c
2 |y − z|

2
}
,

which implies that W
c
(t, x, ·) is a Moreau envelope of W

∞
(t, x, ·). Consequently,

an alternative means for obtaining Corollary 2.8 is through verification of necessary
conditions for convergence of the Moreau envelope to W

∞
(t, x, ·); see, for example,

[28], Theorem 1.25. �

2.3. Fundamental solution. A reachability problem of interest is defined via
the value function W̃ : IR≥0 × IRn × IRn 7→ IR, where

W̃ (t, x, z)
.
= inf
u∈U∞

{∫ t

0

L(ξ(s), u(s)) ds
∣∣∣ ξ(t) = z

}
, (2.21)

where ξ satisfies (2.1) with ξ(0) = x. Using W̃ of (2.21), it is convenient to define the

function Ŵ : IR≥0 × IRn 7→ IR by

Ŵ (t, x)
.
= inf
z∈IRn

{
W̃ (t, x, z) + ψ̄(z)

}
. (2.22)

Proposition 2.10. W (t, x) = Ŵ (t, x) for all t ∈ IR≥0 and x ∈ IRn.
Proof. Fix t ∈ IR≥0, x ∈ IRn. By (2.21) and (2.22),

Ŵ (t, x) = inf
z∈IRn

{
inf

u∈U∞

[ ∫ t

0

L(ξ(s), u(s)) ds
∣∣∣ ξ(t) = z

]
+ ψ̄(z)

}
= inf

{∫ t

0

L(ξ(s), u(s)) ds+ ψ̄(ξ(t))
∣∣∣u ∈ U∞, z ∈ IRn, z = ξ(t)

}
= inf

{∫ t

0

L(ξ(s), u(s)) ds+ ψ̄(ξ(t))
∣∣∣u ∈ U∞ } = W (t, x).

From Theorem 2.10, we see that W̃ is a fundamental solution for optimal control
problem (2.1),(2.7). In particular, given a terminal cost function ψ̄(·), we have

W (t, x) = inf
z∈IRn

[
W̃ (t, x, z) + ψ̄(z)

]
=

∫ ⊕
IRn

W̃ (t, x, z)⊗ ψ̄(z) dz,

where in the last expression we use min-plus algebra notation (cf. [1, 22, 24]). We

next demonstrate the equivalence of W̃ and W
∞

, thereby showing that W
∞

is a
fundamental solution for (2.1),(2.7).

Proposition 2.11. W
∞

(t, x, z) = W̃ (t, x, z) for all t ∈ IR>0 and x, z ∈ IRn, and

W (t, x) = Ŵ (t, x) = infz∈IRn{W∞(t, x, z) + ψ̄(z)} for all t ∈ IR>0 and x ∈ IRn.
Proof. Fix t ∈ IR>0 and x, z ∈ IRn. Considering control ũ(t) = 1

t (z − x) as in the
proof of Lemma 2.2, we immediately see

W
∞

(t, x, z) <∞. (2.23)
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By (2.4)–(2.7) (in the case c =∞) and (2.23), we see

W
∞

(t, x, z) = inf
{
J̄∞(t, x, u, z)

∣∣u ∈ U∞, ξ(t) = z
}

= inf
{
J̄0(t, x, u)

∣∣u ∈ U∞, ξ(t) = z
}

= W̃ (t, x, z),

which yields the first assertion. The second assertion then follows from Proposition
2.10.

3. Application: a simple mass-spring system.

3.1. Model. We consider the standard example: A massM∈ (0,∞) is fixed to
a vertical wall via an elastic spring with spring constant K ∈ (0,∞), with the mass
free to move horizontally. Friction is neglected. Newton’s second law implies that the
position ξ satisfies the ordinary differential equation (ODE)

0 = ξ̈(t) + ω2 ξ(t) (3.1)

where ω
.
=
√
K/M is the frequency of oscillation. The potential and kinetic energy

associated with the spring and mass respectively are given by

V (x)
.
= K

2 x
2 , T (ξ̇)

.
= M

2 (ξ̇)2 . (3.2)

In this case, our Hamiltonian becomes

H(x, p) = K
2 x

2 − inf
v∈IR

{
vp+ M

2 p
2
}

= K
2 x

2 + 1
2Mp2. (3.3)

As the potential energy for this idealized spring is quadratic (with potential energy
possibly going to +∞), Assumptions (A.V 1) and (A.V 2) are violated, and we cannot
employ Lemma 2.2 or Theorem 2.3. However, we will have an explicit solution of the
HJB PDE, and consequently, we will use the following instead.

Theorem 3.1. Let c ∈ (0,∞), z ∈ IRn, 0 < t < T̂ <∞. Suppose W ∈ C([0, T̂ )×
IRn × IRn; IR) ∩ C1((0, T̂ ) × IRn × IRn; IR) satisfies (2.8),(2.9). Then, W (t, x, z) ≤
J̄c(t, x, u, z) for all x ∈ IRn, u ∈ U∞. Furthermore, W (t, x, z) = J̄c(t, x, u∗, z) for
the input u∗(s)

.
= −M−1∇xW (t − s, ξ∗(s), z), s ∈ [0, t], where ξ∗ is the solution of

dynamics (2.1), driven by u∗. Consequently W (t, x, z) = W
c
(t, x, z).

Proof. With z ∈ IRn fixed, let W denote a solution of (2.8), (2.9) as per the

theorem statement. Fix any t ∈ [0, T̂ ) and any ū ∈ U∞. Define π(v)
.
= p · v+ 1

2v
′Mv,

p ∈ IRn, and note that by completion of squares that π(v) ≥ − 1
2 p
′M−1p. Select

v = ū(s) and p = ∇xW (t− s, ξ̄(s), z) at each s ∈ [0, t], where ξ̄ denotes the trajectory
satisfying (2.1) corresponding to input ū. Then,

∇xW (t− s, ξ̄(s), z) · ū(s) + 1
2 ū(s)′Mū(s)

≥ − 1
2 [∇xW (t− s, ξ̄(s), z)]′M−1∇xW (t− s, ξ̄(s), z) ,

so that (2.8) and (1.5) imply that for all s ∈ [0, t],

0 = −∂1W (t− s, ξ̄(s), z)−V (ξ̄(s))− 1
2 [∇xW (t− s, ξ̄(s), z)]′M−1∇xW (t− s, ξ̄(s), z)

≤ −∂1W (t− s, ξ̄(s), z) +∇xW (t− s, ξ̄(s), z) · ū(s) + 1
2 ū(s)′Mū(s)− V (ξ̄(s))

= ∂
∂sW (t− s, ξ̄(s), z) + 1

2 ū(s)′Mū(s)− V (ξ̄(s)) .

Integrating with respect to s over [0, t] then yields (via the fundamental theorem of
calculus and (2.9)) that

W (t, x, z) ≤
∫ t

0

L(ξ̄(s), ū(s)) ds+ ψc(ξ̄(t), z) = J̄c(t, x, ū, z) , (3.4)
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proving the first assertion. To prove the second assertion, fix ū
.
= u∗, where u∗ is as

indicated in the theorem statement. Repeating the above argument yields equality in
(3.4), so that W (t, x, z) = J̄c(t, x, u∗, z) = W

c
(t, x, z) as required.

3.2. Fundamental solution of the mass-spring system. Analogues of The-
orems 2.7 and 2.10 and Proposition 2.11 provide a path for solution of the optimal
control problem with value function W of (2.7) associated with the principle of least

action. In particular, Theorem 2.10 provides a characterization of W in terms of W̃ of
(2.21), which is in turn equivalent to W

∞
of (2.6) by Proposition 2.11. However, W

∞

may be obtained as the limit case of W
c

of (2.6) as c → ∞ by Theorem 2.7, when
sufficiently smooth, where W

c
may be obtained by solving (2.8),(2.9). To this end,

let T̂
.
= π/ω, and define the time-indexed quadratic function W̆ c : [0, T̂ ) × IR2 7→ IR

by

W̆ c(t, x, z) = 1
2 Pt x

2 +Qt x z + 1
2 Rt z

2 , (3.5)

where Pt, Qt, Rt ∈ IR satisfy the IVPs on [0, T̂ ) given by

Ṗt = −K − 1
MP 2

t , Q̇t = − 1
M PtQt, Ṙt = − 1

M Q2
t , (3.6)

P0 = c, Q0 = c, R0 = c. (3.7)

Theorem 3.2. The value function W
c

of (2.6) and the explicit function W̆ c of

(3.5) are equivalent. That is, W
c
(t, x, z) = W̆ c(t, x, z) for all t ∈ [0, T̂ ), x, z ∈ IR.

Proof. By inspection of (3.5), note that

∂1W̆
c(t, x, z) = 1

2 Ṗt x
2 + Q̇t x z + 1

2 Ṙt z
2 , (3.8)

∇xW̆ c(t, x, z) = Pt x+Qt z . (3.9)

By inspection of (3.6), (3.7), (3.8) and (3.9), observe that for all t ∈ (0, T̂ ) and
x, z ∈ IR,

0 = −
[

1
2 Ṗt x

2 + Q̇t x z + 1
2 Ṙt z

2 + (K2 )x2 + ( 1
2M ) (Pt x+Qt z)

2
]

= −∂1W̆ (t, x, z)−H(x, W̆ (t, x, z)) ,

where H is the Hamiltonian (3.3). That is, (2.8) holds for W̆ . Also observe that
W̆ c(0, x, z) = c

2 x
2 − c x z + c

2 z
2 = ψc(x, z), where ψc is as per (2.3). That is, (2.9)

also holds for W̆ . Hence, Theorem 3.1 yields the desired result.
Theorem 3.2 and the unbounded-potential analogue of Corollary 2.8 may be used

to explore the limit case ofW
c

of (2.6) as c→∞. This limiting case can be approached
explicitly by solving (3.6), (3.7) for arbitrary fixed c ∈ IR>0 followed by taking the

aforementioned limit. Applying Theorem 2.7 then yields W
∞

of (2.6), and hence W̃
of (2.21) by Proposition 2.11. By inspection of (3.6), first note that it is convenient
to compute the inverse of Pt to facilitate computation of the limiting case. To this
end, define απt

.
= P−1

t , or Pt πt = 1
α , where α ∈ IR>0 is fixed. Differentiation yields

Ṗt πt + Pt π̇t = 0, or

π̇t = −απt Ṗt πt = −απt
(
−K − 1

M P 2
t

)
πt = αK π2

t + 1
αM = αK

(
π2
t + 1

α2 KM
)
.

For convenience, select α
.
= 1√

KM , so that
(

1
1+π2

t

)
π̇t = ω. Let t ∈ (0, T̂ ). Integra-

tion over the interval [0, t] yields tan−1 πt
∣∣t
0

= ω t, or πt = tan
(
tan−1 π0 + ω t

)
=
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tan
(
ω t+ tan−1( 1

α c )
)
. As c→∞, πt → π∞t , where π∞t

.
= tan(ω t). Equivalently,

Pt → P∞t
.
=

1

απ∞t
=

1

α tan(ω t)

as c→∞. Similarly, one obtains

Qt =
−c sin tan−1( 1

α c )

sin
(
ω t+ tan−1( 1

α c )
) → Q∞t

.
=

−1

α sinω t
as c→∞,

and

Rt = 1
α2 c

(
1

1 + ( 1
α c )

2

)
+ 1

α

(
1

1 + ( 1
α c )

2

)
cot
(
ω t+ tan−1( 1

α c )
)
→ R∞t

.
=

1

α tan(ω t)

as c → ∞. Hence, in the case of the mass-spring system, Proposition 2.11 and
Theorem 3.2 and the unbounded-potential analogue of Corollary 2.8 imply that for
t ∈ (0, π/ω),

W̃ (t, x, z) = W
∞

(t, x, z) = 1
2 P
∞
t x2 +Q∞t x z + 1

2 R
∞
t z2, (3.10)

where P∞t = ( 1
α ) cot(ω t) , Q∞t = −( 1

α )cosec(ω t) , R∞t = ( 1
α ) cot(ω t) . (3.11)

3.3. Usage in a two-point boundary value problem. As an application of
Theorem 2.10, consider the case where the terminal velocity v̄ is known. As the state
of (2.1) corresponds to the position of the mass, the additive inverse of the co-state
defined via the value function W of (2.7) corresponds to the momentum of the mass.
As the final co-state is ∇xψ̄(x(t)), knowledge of the final momentumM v̄ implies that
∇xψ̄(x(t)) = −M v̄, which in turn implies a terminal cost of

ψ̄(z) = −M v̄ z . (3.12)

Let t ∈ (0, π/ω). Applying Theorem 2.10, and using (2.22), the terminal position
z∗(t, x) ∈ IR corresponding to initial position x ∈ IR and terminal velocity v̄ = ẋ(t) is

z∗(t, x, v̄)
.
= argmin

z∈IR

{
W̃ (t, x, z)−M v̄ z

}
(3.13)

= argmin
z∈IR

{
1
2 P
∞
t x2 +Q∞t x z + 1

2 R
∞
t z2 −M v̄ z

}
.

Hence, by inspection, 0 = Q∞t x+R∞t z∗(t, x, v̄)−M v̄, so that

z∗(t, x, v̄) =
M v̄ −Q∞t x

R∞t
= ( v̄ω ) tan(ω t) + sec(ω t)x . (3.14)

In order to check (3.14), the dynamics of the mass-spring system may be integrated
explicitly. In particular, using general solution ξ(t) = A cos(ω t) + B sin(ω t), and
solving for A,B from ξ(0) = x and ξ̇(t) = v̄, one may check the above solution.

4. The N-body problem. Here, we address the solution of TPBVPs with N
bodies acting under gravitational acceleration. That is, we obtain a means for con-
version of TPBVPs into initial value problems. The key to application of the above
approach to this class of problems lies in a variation of convex duality, leading to an
interpretation of the least action principle as a zero-sum, differential game. Due to
the particular, simple form of this game, one may invert the order of the minimiza-
tion and maximization operations, after which the inner game problem is reduced to
solution of differential Riccati equations. This leads to a representation of W

∞
as a

maximization of a linear functional over a finite-dimensional, convex set.
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4.1. A representation for the gravitational potential energy. We begin
with a representation of the gravitational potential energy of the N -body problem as
a pointwise maximum of quadratic forms.

Lemma 4.1. For ρ ∈ (0,∞), one has

1

ρ
=

(
3

2

)3/2

max
α∈(0,∞)

α

[
1− (αρ)2

2

]
=

(
3

2

)3/2

max
α∈[0,
√

2/3ρ−1 ]

α

[
1− (αρ)2

2

]
.

Proof. Suppose f : (0,∞)→ IR is given by f(ρ̂) = ρ̂−1/2. By standard methods
of convex duality (c.f., [27, 28, 29]), one has the convex duality pair

f(ρ̂) = sup
β̂<0

[
β̂ρ̂+ a(β̂)

]
∀ρ̂ ∈ (0,∞),

a(β̂) = − sup
ρ̂>0

[
β̂ρ̂− f(ρ̂)

]
∀β̂ ∈ (−∞, 0).

Further, a(β̂) = −3
2 (2β̂)1/3 for all β̂ ∈ (−∞, 0). Next, letting β

.
= −β̂, this yields

ρ̂−1/2 = sup
β>0

[
3

2
(2β)1/3 − βρ̂

]
, ∀ρ̂ > 0.

Letting α =
√

2
3 (2β)1/3 for β > 0, one finds

ρ̂−1/2 = sup
α≥0

[(
3

2

)3/2

α−
(

3

2

)3/2
α3ρ̂

2

]
, ∀ρ̂ > 0.

Finally, letting ρ̂ = ρ2 for ρ > 0, one sees that this becomes

1

ρ
=

(
3

2

)3/2

sup
α≥0

α

[
1− (αρ)2

2

]
, ∀ρ > 0.

Lastly, note that the supremum is always attained, and does so at
√

2
3

1
ρ .

From Lemma 4.1, one immediately obtains the following.
Lemma 4.2. Given any δ̄ ∈ (0,∞) and any ρ ∈ [δ̄,∞), one has

1

ρ
=

(
3

2

)3/2

max
α∈[0,
√

2/3δ̄−1]

α

[
1− (αρ)2

2

]
,

while for ρ ∈ (0, δ̄), one has

max
ρ̃≥δ̄

1

ρ̃
≤
(

3

2

)3/2

max
α∈[0,
√

2/3δ̄−1]

α

[
1− (αρ)2

2

]
<

1

ρ
.

Recall that the gravitational potential energy due to two point masses of mass
m1 and m2, separated by distance ρ > 0, is given by

Gm1,m2(ρ) =
−Gm1m2

ρ
,

15



where G is the universal gravitational constant. Of course, this is also valid for
spherically symmetric bodies when the distance is greater than the sum of the radii
of the bodies. Using Lemma 4.1, we see that this may be represented as

−Gm1,m2(ρ) = Ĝm1 max
α1,2≥0

(α1,2m2)

[
1− (α1,2ρ)2

2

]
,

where the universal gravitational constant is replaced by Ĝ
.
=
(

3
2

)3/2
G. In the case

of N bodies at locations xi ∈ IR3 for i ∈ N .
=]1, N [ (where for integers i < j, we let

]i, j[ denote {i, i + 1, i + 2, . . . j} throughout), the additive inverse of the potential is
given by

−Ṽ (x) =
∑

(i,j)∈I∆

Ĝmi max
αi,j≥0

(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
=
∑

(i,j)∈I∆

Gmimj

|xi − xj |
, (4.1)

where I∆ .
= {(i, j) ∈]1, N [2 | j > i} and x = {x1, x2, . . . xN} ∈ IRn .

= (IR3)N . In view
of Lemma 4.2, we fix some δ̄ > 0, and use instead,

−V (x) =
∑

(i,j)∈I∆

Ĝmi max
αi,j∈[0,

√
2/3δ̄−1]

(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
. (4.2)

Throughout, we will largely suppress the dependence of V on the body masses.
Remark 4.3. The classical N -body problem formulation employs gravitational

potential energy models of the form (4.1). That is, it assumes the gravitational
potential model Gm/rc for a central body of mass m, where rc denotes the distance
from the body center. This model has beautiful simplicity, but is only exact in the
case of a point-mass, i.e., a body of zero radius and infinite density. Further, and
importantly, this model possesses an asymptote in the potential at r = 0, which is both
technically problematic and purely an artifact of the model. If one instead assumes
a spherical, positive-radius body of uniform density, the gravitational potential is
obtained as

−V p(x) =

{
Gm
rc

if rc ∈ [Rc,∞)

Ĝmᾰ
[
1− ᾰ2r2

c

2

]
if rc ∈ [0, Rc],

(4.3)

where ᾰ
.
= [
√

3/2Rc]
−1 and Rc denotes the body radius. (We note that this is also

correct for r ∈ [Rc,∞) when the density is only spherically symmetric.) Note that
such potentials are not only more realistic for macroscopic bodies, but also eliminate
the vertical asymptote of the classical problem-definition model. The next result
demonstrates that for the realistic case where the bodies have positive radii, one may
choose δ̄ such that V and Ṽ yield identical solutions. In particular, if δ̄ is less than
the minimal sum of body radii, then both models are identical for any solution in
which the bodies do not collide. It is perhaps worth remarking that in the case of one
body of uniform density and a second body which is essentially a point-mass, then
model (4.2), being similar to (4.3), would be correct when the point-mass was within
the radius of the larger body. (This is not an entirely academic point, as gravitation
within diffuse bodies is relevant, for example, in the study of the motion of stars
within galaxies.) Allowing δ̄ to vary as a function of the pairs of bodies, one can go
a bit further along that line [15]. �

Lemma 4.4. Suppose |xi − xj | ≥ δ̄ for all (i, j) ∈ I∆. Then −V (x) = −Ṽ (x).

Otherwise, −V (x) ≤ −Ṽ (x).
The above lemma is immediate from Lemma 4.2, and we do not include a proof.
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4.2. The differential-game model. The above representation for the gravita-
tional potential, (4.2), will be used to create a zero-sum game representation of the
N -body least-action problem, where an additional player will maximize over time-
indexed functions taking values in A (defined in (4.4)).

A .
=
{
α = {αi,j}(i,j)∈I∆

∣∣αi,j ∈ [0,
√

2/3δ̄−1]∀(i, j) ∈ I∆
}
, (4.4)

and note that A ⊂ IRI∆

where I∆ .
= #I∆. Then (4.2) may be written as

−V (x) = max
α∈A
{−V̂ (x, α)}, −V̂ (x, α)

.
=
∑

(i,j)∈I∆̂

Gmi(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
.

(4.5)
Let ξ(·) be a trajectory of the N -body system satisfying (2.1). The running cost

will again be

L(ξ(r), ξ̇(r)) = T (ξ̇(r))− V (ξ(r)), (4.6)

where now V is given by (4.5). Also, let

M .
= diag(m1,m1,m1,m2,m2,m2, . . .mN ) = diag(m1,m2, · · · ,mN )⊗ I3 (4.7)

(where ⊗ denotes the Kronecker product, cf., [16]), m̄
.
= mini∈N mi > 0, and M̄

.
=

maxi∈N mi. Note that we may write

T (y) = 1
2y
′My, ∀y ∈ IRn. (4.8)

We also continue to take ψc as given in Section 2.1 (i.e., by (2.3) and (2.4)) for
c ∈ [0,∞]. With these specific definitions, the least-action payoff, J̄c given by (2.5),
becomes

J̄c(t, x, u, z) =

∫ t

0

T (u(r))− V (ξ(r)) dr + ψc(ξ(t), z) (4.9)

=

∫ t

0

T (u(r)) + max
α∈A
{−V̂ (ξ(r), α)} dr + ψc(ξ(t), z). (4.10)

As in (2.6), we let the value be given by

W
c
(t, x, z) = inf

u∈U∞
J̄c(t, x, u, z). (4.11)

Let ˜̄Jc : [0,∞)× IRn×U∞× IRn → IR and W̃
c

: [0,∞)× IRn× IRn → IR be given by

˜̄Jc(t, x, u, z) =

∫ t

0

T (u(r))− Ṽ (ξ(r)) dr + ψc(ξ(t), z), (4.12)

W̃
c

(t, x, z) = inf
u∈U∞

˜̄Jc(t, x, u, z). (4.13)

Fix δ̄0 ≥ δ̄, and let

Dδ̄0 .
=
{
x ∈ IRn

∣∣ |xi − xj | > δ̄0 ∀(i, j) ∈ I∆
}
. (4.14)

Fix t > 0 and x, z ∈ Dδ̄0 . We assume:
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∃ c̄ = c̄(t, x, z) <∞, ε̄ = ε̄(t, x, z) > 0 such that ∀ ε-optimal uε ∈ U∞ in
(4.11) with ε ∈ (0, ε̄], and with ξε denoting the corresponding trajectory,
we have |(ξε)i(r)− (ξε)j(r)| ≥ δ̄ ∀ r ∈ [0, t], ∀ (i, j) ∈ I∆.

(A.N1)

We remark that Assumption (A.N1) is used only in Theorem 4.5 and Corollary 4.6,
which demonstrate that the two problem models just above are equivalent for problems
where collision is not possible for ε-optimal approximate solutions.

Theorem 4.5. Let t ∈ (0,∞) and x, z ∈ Dδ̄0 . Let c ≥ c̄(t, x, z). Suppose

u∗ ∈ U∞ minimizes J̄c(t, x, ·, z). Then u∗ also minimizes ˜̄Jc(t, x, ·, z).
Proof. Fix t ∈ [0,∞) and x, z ∈ IRn. Let u∗ ∈ U∞ minimize J̄c(t, x, ·, z). Let

ũ ∈ U∞. By (4.10), (4.12), Lemma 4.4, and then by the choice of u∗,

˜̄Jc(t, x, ũ, z) ≥ J̄c(t, x, ũ, z) ≥ J̄c(t, x, u∗, z),
which by Assumption (A.N1) and Lemma 4.4,

= ˜̄Jc(t, x, u∗, z).

Corollary 4.6. Let t ∈ [0,∞) and x, z ∈ Dδ̄0 . Then, W
c
(t, x, z) = W̃

c

(t, x, z)
for all c ≥ c̄(t, x, z).
Henceforth, we work only with V, J̄c,W

c
, rather than Ṽ , ˜̄Jc, W̃

c

. Let

A∞ .
=
{
α : [0,∞)→ A|∃K <∞, {τk}k∈]0,K[ such that τ0 = 0, τK = t, and

τ(k−1) < τk and α[τk−1,τk) ∈ C([τk−1, τk);A)∀k ∈]1,K[
}
, (4.15)

Ā∞ .
= L∞([0,∞);A), (4.16)

and we note that, of course, C([0,∞);A) ⊂ A∞ ⊆ Ā∞. Also, we replace the time-
independent potential energy function, V (·), with

−V α(r, x)
.
= −V̂ (x, α(r)) =

∑
(i,j)∈I∆̂

Gmi(αi,j(r)mj)

[
1− (αi,j(r)|xi − xj |)2

2

]
. (4.17)

Let Jc : [0,∞)× IRn × U∞ × Ā∞ × IRn → IR be given by

Jc(t, x, u, α, z)
.
=

∫ t

0

T (u(r))− V α(r, ξ(r)) dr + ψc(ξ(t), z). (4.18)

Theorem 4.7. Let t ≥ 0 and x, z ∈ IRn. Then,

J̄c(t, x, u, z) = max
α∈A∞

Jc(t, x, u, α, z) = max
α∈Ā∞

Jc(t, x, u, α, z), ∀u ∈ U∞, (4.19)

and W
c
(t, x, z) = inf

u∈U∞
max

α(·)∈A∞
Jc(t, x, u, α, z) = inf

u∈U∞
max

α(·)∈Ā∞
Jc(t, x, u, α, z). (4.20)

Proof. Fix t ≥ 0 and x, z ∈ IRn. Let u ∈ U∞, and recall from (4.5) and (4.10)
that

J̄c(t, x, u, z) =

∫ t

0

T (u(r)) + max
α∈A

∑
(i,j)∈I∆

Ĝmi(αi,jmj)

[
1− (αi,j |ξi(r)− ξj(r)|)2

2

]
dr

+ ψc(ξ(t), z). (4.21)
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By (4.15), (4.16), (4.18) and (4.21), any α(r) is suboptimal in the maximization in
(4.21) for any r ∈ [0, t] and any α ∈ Ā∞ ⊇ A∞, and in particular,

J̄c(t, x, u, z) ≥ max
α(·)∈Ā∞

Jc(t, x, u, α, z) ≥ max
α(·)∈A∞

Jc(t, x, u, α, z), (4.22)

and we do not include the obvious details.
Let ᾱ∗ : IRn → A be given by ᾱ∗(x) = {ᾱ∗i,j(xi, xj)}(i,j)∈I∆ , where

ᾱ∗i,j(x
i, xj)

.
= argmax
α∈[0,
√

2/3δ̄−1]

α

[
1− (α|xi − xj |)2

2

]
, ∀(i, j) ∈ I∆, ∀x ∈ IRn

= argmax
α∈[0,
√

2/3δ̄−1 ]̂

Gmi(αmj)

[
1− (α|xi − xj |)2

2

]
, ∀(i, j) ∈ I∆, x ∈ IRn.

(4.23)

Let ξ denote the state trajectory corresponding to u and ξ0 = x. Let

α∗(r) = α∗(r;u(·)) = {α∗i,j(r) | (i, j) ∈ I∆} ∈ A∞, (4.24)

where the (i, j)
th

element of α∗ is given by

α∗i,j(r) = ᾱ∗i,j(ξ
i(r), ξj(r)), ∀r ∈ [0, t). (4.25)

Note that α∗ ∈ A∞. Also note that by (4.23) and (4.25),

α∗i,j(r) = argmax
α∈[0,
√

2/3δ̄−1 ]̂

Gmi(αmj)

[
1− (α|ξi(r)− ξj(r)|)2

2

]
∀(i, j) ∈ I∆, r ∈ [0, t).

(4.26)
Then, by (4.2), (4.17) and (4.26),

−V α
∗
(r, ξ(r)) = −V (ξ(r)) ∀r ∈ [0, t). (4.27)

By (4.9), (4.18), and (4.27),

J̄c(t, x, u, z) = Jc(t, x, u, α∗, z) ≤ max
α∈A∞

Jc(t, x, u, α, z). (4.28)

By (4.22) and (4.28), we have (4.19). That, in turn, immediately implies (4.20).
We specifically note that the problem of finding the fundamental solution of the

TPBVP for the N -body problem has been converted to a differential game. In a
heuristic sense, one may think of the problem now as not only a search over possible
world lines of the bodies, but as also including a search over negotiated potentials
between the bodies. Again heuristically, one may think of the potentials, not as fields
existing throughout space but as the opposing player in a game interpretation. The
first player minimizes the action at each moment, with immediate effect on the kinetic
term and integrated effect on the other terms, while the second player maximizes the
potential term at each moment. The analytical advantage obtained through the use
of this viewpoint is that one may express the potential energy as a quadratic form.

Remark 4.8. We note that (4.20) is a non-standard form for dynamic games.
The inf / sup is neither in terms of non-anticipative strategies (c.f., [2, 9]), nor in terms
of state feedback controls. This is due to the very simple form of the maximizing
player, which is only a representation for the running cost. �

Remark 4.9. Note that with V given by (4.2) and M given by (4.7), V and M
satisfy conditions (A.M), (A.V 1) and (A.V 2) of Section 2.1. �
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4.3. Semiconvexity and the HJB PDE. We next proceed to obtain the ex-
pected relationship to the associated HJB PDE.

Lemma 4.10. W
c
(t, x, z) ∈ [0, D̄t + ψc(x, z)] for all t ≥ 0 and all x, z ∈ IRn,

where D̄ = (G/δ̄)
∑

(i,j)∈I∆ mimj.
Proof. The result follows by Remark 4.9 and Lemma 2.2.
Lemma 4.11. Let ε ∈ (0, 1]. Given ε-optimal uε in the definition, (4.11), of

W
c
(t, x, z), we have ‖uε‖2L2(0,t) ≤

2
m̄ (D̄t+ ψc(x, z) + 1).

Proof. Let ε ∈ (0, 1], and let uε be as per the lemma statement. Let the corre-
sponding trajectory be denoted by ξε. Then, using Lemma 4.10,∫ t

0

T (uε(r))− V (ξε(r)) dr + ψc(ξε(t), z) ≤W c
(t, x, z) + 1 ≤ D̄t+ ψc(x, z) + 1.

Hence, noting the non-positivity of the potential, one has∫ t

0

T (uε(r)) dr ≤ D̄t+ ψc(x, z) + 1 +

∫ t

0

V (ξε(r)) dr ≤ D̄t+ ψc(x, z) + 1.

That is, 1
2

∫ t
0
(uε)′(r)Muε(r) dr ≤ D̄t + ψc(x, z) + 1. This immediately implies that

‖uε‖2L2(0,t) ≤ (2/m̄)[D̄t+ ψc(x, z) + 1].

Lemma 4.12. For any t0 > 0, W
c
(t, x, z) is semiconcave in x, uniformly in

(t, x, z, c) ∈ [t0,∞)× IRn × IRn × [0,∞).
Proof. Let t0 > 0, t ∈ [t0,∞), x, z ∈ IRn, c ∈ [0,∞) and ε ∈ (0, 1]. Let γ ∈ IRn,

|γ| < δ̄/4 where δ̄, ε are as in Assumption (A.N1). Let u be an ε-optimal input in
the definition, (4.11), or W

c
(t, x, z). We will obtain an upper bound on second-order

difference, [W
c
(t, x+γ, z)+W

c
(t, x−γ, z)−2W

c
(t, x, z)]/|γ|2, where this implies the

asserted semiconcavity (c.f., [4, 24]). Let

u+(r)
.
=

{
u(r)− 1

t0
γ if r ∈ [0, t0]

u(r) if r ∈ (t0, t),
and u−(r)

.
=

{
u(r) + 1

t0
γ if r ∈ [0, t0]

u(r) if r ∈ (t0, t).

(4.29)
By the ε-optimality of u with respect to W

c
(t, x, z) and the suboptimality of u± with

respect to W
c
(t, x± γ, z),

W
c
(t, x+ γ, z) +W

c
(t, x− γ, z)− 2W

c
(t, x, z)

< J̄c(t, x+ γ, u+, z) + J̄c(t, x− γ, u−, z)− 2J̄c(t, x, u, z) + 2ε. (4.30)

Let ξ, ξ+ and ξ− be the trajectories resulting from these controls with ξ(0) = x,
ξ+(0) = x+ γ and ξ−(0) = x− γ, and note that

|ξ+(r)− ξ(r)| = |ξ−(r)− ξ(r)| ≤ |γ|, ∀r ∈ [0, t0), (4.31)

ξ(r) = ξ+(r) = ξ−(r), ∀r ∈ [t0, t]. (4.32)

We see that (4.9) and (4.30) imply

W
c
(t, x+ γ, z) +W

c
(t, x− γ, z)− 2W

c
(t, x, z)

<

∫ t

0

T (u+(r)) + T (u−(r))− 2T (u(r)) dr +

∫ t

0

2V (ξ(r))− V (ξ+(r))− V (ξ−(r)) dr

+ ψc(ξ+(t), z) + ψc(ξ+(t), z)− 2ψc(ξ(t), z) + 2ε,
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which by (4.29) and (4.32),

=

∫ t0

0

T (u+(r)) + T (u−(r))− 2T (u(r)) dr +

∫ t0

0

2V (ξ(r))− V (ξ+(r))− V (ξ−(r)) dr+2ε.

(4.33)

We examine each of the second-order differences separately. A simple calculation
(and using notation (4.7)) verifies that T (u+(r)) +T (u−(r))− 2T (u(r)) = 1

t20
γ′Mγ ≤

M̄
t20
|γ|2. Integrating, this yields∫ t0

0

T (u+(r)) + T (u−(r))− 2T (u(r)) dr ≤ M̄

t0
|γ|2. (4.34)

By the choice of controls, Assumption (A.N1), and the fact that |γ| < δ̄/4, for all
(i, j) ∈ I∆,∣∣(ξ+)i(r)− (ξ+)j(r)

∣∣ ≥ ∣∣ξi(r)− ξj(r)∣∣− [∣∣(ξ+)i(r)− ξi(r)
∣∣+
∣∣(ξ+)j(r)− ξj(r)

∣∣]
≥ δ̄/2, ∀r ∈ [0, t], (4.35)

and similarly for ξ−. One may also show that there exists K̄2 < ∞ such that
|Vxx(y)| ≤ K̄2 ∀y ∈ IRn such that |yi − yj | ≥ δ̄/2 for all (i, j) ∈ I∆. Then, us-
ing (4.31), (4.35) and a similar argument to that for T (·), one finds that there exists
K2 <∞ such that∫ t0

0

2V (ξ(r))− [V (ξ+(r)) + V (ξ−(r))] dr ≤ K2|γ|2. (4.36)

Employing (4.34) and (4.36) in (4.33), one has

W
c
(t, x+ γ, z) +W

c
(t, x− γ, z)− 2W

c
(t, x, z) ≤

[
M̄

t0
+K2

]
|γ|2 + 2ε.

As this is true for all sufficiently small ε > 0, we obtain the desired result.
The HJB PDE associated with our problem here is

0 = −∂1W (t, x, z)−H(x,∇xW (t, x, z))

.
= −∂1W (t, x, z) + inf

v∈IRn
sup
α∈A

{
1
2v
′Mv − V̂ (x, α) + v′∇xW (t, x, z)

}
. (4.37)

Note that the right-hand side of (4.37) is separated (and in fact, the Isaacs condition
is satisfied). Consequently, we may write (4.37) as

0 = −∂1W (t, x, z) + min
v∈IRn

{
1
2v
′Mv + v′∇xW (t, x, z)

}
+ sup
α∈A
{−V̂ (x, α)} (4.38)

= −∂1W (t, x, z)− 1
2

(
∇xW (t, x, z)

)′M−1∇xW (t, x, z) + sup
α∈A
{−V̂ (x, α)}, (4.39)

which by (4.5),

= −∂1W (t, x, z)− 1
2

(
∇xW (t, x, z)

)′M−1∇xW (t, x, z)− V (x). (4.40)

The initial conditions, indexed by z ∈ IRn, corresponding to value function W
c

are

W (0, x, z) = ψc(x, z), ∀x ∈ IRn. (4.41)
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For t > 0, let

Dt
.
= C([0, t]× IRn) ∩ C1((0, t)× IRn). (4.42)

Theorem 4.13. Let c ∈ [0,∞) and z ∈ IRn. Value function W
c
(·, ·, z) is Lip-

schitz continuous on compact sets, and is the unique viscosity solution of HJB PDE
(4.37) (equivalently, (4.38)–(4.40)) and initial condition (4.41). Let t > 0, and sup-
pose further that W (·, ·, z) ∈ Dt and satisfies (4.37) (equivalently, (4.38)–(4.40)) and
initial condition (4.41). Let x ∈ IRn, and let u∗ be given by u∗(s) = ũ(s, ξ̃(s)) where
ξ̃(s) is generated by (2.1) with feedback ũ(s, x)

.
= −M−1∇xW (t − s, x, z) and initial

condition ξ̃(0) = x. Then, W (t, x, z) = J̄c(t, x, u∗, z) = W
c
(t, x, z).

Proof. By Remark 4.9, conditions (A.M), (A.V 1) and (A.V 2) of Section 2.1 are
satisfied. Consequently, the first assertion follows directly from Theorem 2.3. (We
remark that the local Lipschitz assertion also follows from Lemma 4.12.)

We turn to the second assertion. Fix t > 0. Let c, z,W (·, ·, z), u∗, ũ, ξ̃ be as
indicated. Let s ∈ (0, t). Then,

∇xW (t− s, ξ̃(s), z) · u∗(s) + 1
2 u
∗(s)′Mu∗(s)

= − 1
2 [∇xW (t− s, ξ̃(s), z)]′M−1∇xW (t− s, ξ̃(s), z) . (4.43)

From (4.39) and then (4.43),

0 = −∂1W (t− s, ξ̃(s), z) + sup
α∈A
{−V̂ (ξ̃(s), α)}

− 1
2 [∇xW (t− s, ξ̃(s), z)]′M−1∇xW (t− s, ξ̃(s), z)

= −∂1W (t− s, ξ̃(s), z) + sup
α∈A
{−V̂ (ξ̃(s), α)}

+∇xW (t− s, ξ̃(s), z) · u∗(s) + 1
2 u
∗(s)′Mu∗(s)

= ∂
∂sW (t− s, ξ̃(s), z) + 1

2 u
∗(s)′Mu∗(s) + sup

α∈A

{
− V̂ (ξ̃(s), α)

}
.

Note that u∗ ∈ U∞ by definition of Dt. Integrating with respect to s over [0, t] (noting
that the integrand is L1 by u∗ ∈ U∞, the form of −V̂ , (4.8), and Assumption (A.N1))
yields

0 = W (0, ξ̃(t), z)−W (t, x, z) +

∫ t

0

T (u∗(s)) + sup
α∈A
{−V̂ (ξ̃(s), α)} ds

= W (0, ξ̃(t), z)−W (t, x, z) +

∫ t

0

T (u∗(s))− V (ξ̃(s)) ds , (4.44)

which, by applying (4.41), yields

W (t, x, z) =

∫ t

0

T (u∗(s))− V (ξ̃(s)) ds+ ψc(ξ̃(t), z) = J̄c(t, x, u∗, z).

To obtain the last equality, note that by assumption and the definition of a viscosity
solution, W is also a viscosity solution of (4.37),(4.41). Therefore, by the uniqueness
obtained in the first assertion, W (t, x, z) = W

c
(t, x, z).

We now proceed to consider the game where the order of infimum and supremum
are reversed. Due to the very simple form of this particular game, with the α controller
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acting only on the running cost and that being in a separated form, an unusual
equivalence can be obtained. Recalling (4.18), let

W c(t, x, z)
.
= sup
α∈Ā∞

inf
u∈U∞

Jc(t, x, u, α, z). (4.45)

By the usual reordering inequality, (4.20) immediately implies that

W c(t, x, z) ≤W c
(t, x, z) ∀(t, x, z) ∈ [0,∞)× IRn × IRn. (4.46)

It will be helpful to introduce more notation. For c ∈ [0,∞] and α ∈ Ā∞, we let

Wα,c(t, x, z)
.
= inf
u∈U∞

Jc(t, x, u, α, z). (4.47)

The corresponding Hamiltonian is

Hα(r, x, p)
.
= V α(r, x) +

1

2
p′M−1p. (4.48)

Of course, one immediately sees that

W c(t, x, z) = sup
α∈Ā∞

Wα,c(t, x, z) ∀(t, x, z) ∈ [0,∞)× IRn × IRn. (4.49)

In a similar fashion to verification Theorem 4.13, we have the following.
Theorem 4.14. Let c ∈ (0,∞), z ∈ IRn and α ∈ Ā∞. In particular, suppose

that α is piecewise continuous, with possible discontinuities only at 0 < τ1 < τ2 <
. . . τK−1 < t with K < ∞. Let τ0 = 0, τK = t and Ot .

=
⋃
k∈]0,K−1[(τk, τk+1).

Suppose Wα(·, ·, z) ∈ C(IR≥0 × IRn; IR) ∩ C1(Ot × IRn; IR) satisfies

0 = −∂1W
α(r, x, z)−Hα(t− r, x,∇xWα(r, x, z)), (r, x) ∈ Ot × IRn, (4.50)

Wα(0, x, z) = ψc(x, z), x ∈ IRn. (4.51)

Then, Wα(t, x, z) ≤ Jc(t, x, u, α, z) for all x ∈ IRn, u ∈ U∞. Further, Wα(t, x, z) =
Jc(t, x, u∗, α, z) where u∗(s) = ũ(s, ξ̃(s)) with ξ̃(s) given by (2.1) with ũ(s, x)

.
=

−M−1∇xW (t− s, x, z) and ξ̃(0) = x. Consequently Wα(t, x, z) =Wα,c(t, x, z).
Proof. Fix t > 0, c ∈ (0,∞), z ∈ IRn and α ∈ Ā∞. Let Wα be as asserted, and let

ū ∈ U∞. We use induction on k. Let k ∈]0,K − 1[, and suppose Wα(t− τk+1, x, z) ≤
Jc(t − τk+1, x, ū, α, z) for all x ∈ IRn, which is certainly true for k + 1 = K. Define
π(v)

.
= p · v + 1

2v
′Mv, p ∈ IRn, and note that by completion of squares that π(v) ≥

− 1
2 p
′M−1p. Select v = ū(s) and p = ∇xWα(t − s, ξ̄(s), z) at each s ∈ (τk, τk+1),

where ξ̄ denotes the trajectory satisfying (2.1) corresponding to input ū. Then,

∇xWα(t− s, ξ̄(s), z) · ū(s) + 1
2 ū(s)′Mū(s)

≥ − 1
2 [∇xWα(t− s, ξ̄(s), z)]′M−1∇xWα(t− s, ξ̄(s), z) ,

so that (4.48) and (4.50) imply that for all s ∈ (τk, τk+1),

0 = −∂1W
α(t− s, ξ̄(s), z)− V α(s, ξ̄(s))

− 1
2 [∇xWα(t− s, ξ̄(s), z)]′M−1∇xWα(t− s, ξ̄(s), z)

≤ −∂1W
α(t− s, ξ̄(s), z) +∇xWα(t− s, ξ̄(s), z)′ū(s) + 1

2 ū(s)′Mū(s)− V α(s, ξ̄(s))

= d
dsW

α(t− s, ξ̄(s), z) + 1
2 ū(s)′Mū(s)− V α(s, ξ̄(s)) .
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Integrating with respect to s over (τk, τk+1) then yields that

0 ≤Wα(t− τk+1, ξ̄(τk+1), z)−Wα(t− τk, ξ̄(τk), z) +

∫ τk+1

τk

T (ū(s))− V α(s, ξ̄(s)) ds,

or equivalently,

Wα(t− τk, ξ̄(τk), z) ≤
∫ τk+1

τk

T (ū(s))− V α(s, ξ̄(s)) ds+Wα(t− τk+1, ξ̄(τk+1), z),

which by supposition,

≤
∫ τk+1

τk

T (ū(s))− V α(s, ξ̄(s)) ds+Jc(t− τk+1, ξ̄(τk+1), ū, α, z) =Jc(t− τk, ξ̄(τk), ū, α, z).

(4.52)

By induction, we have the first assertion. To prove the second assertion, fix ū
.
= u∗,

where u∗ is as indicated in the theorem statement. Repeating the above argument
yields equality in (4.52), so that Wα(t, x, z) = Jc(t, x, u∗, z) = Wα,c(t, x, z) as re-
quired.

4.4. Interchange of the order of minimization and maximization. Due
to the particular, simple form of the game, the order of the minimization and maxi-
mization operations may be reversed. This will be key to the numerical approach to
follow.

Lemma 4.15. Let t ∈ (0,∞) and x, z ∈ IRn. Let u† ∈ U∞ be a critical point of
J̄c(t, x, ·, z) of (4.9), and let the corresponding state trajectory be denoted by ξ†. Let
α∗(r)

.
= ᾱ∗(ξ†(r)) for all r ∈ [0, t) where ᾱ∗ is given by (4.23). Then, u† is a critical

point of Jc(t, x, ·, α∗, z), where Jc is given in (4.18).
Proof. Let ν ∈ U∞ and δ > 0. We examine differences in the direction ν from u†.

In particular, by inspection of (4.17), (4.18) and (4.8),

Jc(t, x, u† + δν, α∗, z)− Jc(t, x, u†, α∗, z)

=

∫ t

0

δ[u†(r)]′Mν(r)− δ
[
∇xV̂ (ξ†(r), α∗(r))

]′ ∫ r

0

ν(ρ) dρ dr

+ δ
(
∇xψc(ξ†(t), z)

)′ ∫ t

0

ν(r) dr +O(δ2)

=

∫ t

0

δ[u†(r)]′Mν(r)− δ
[
∇xV̂ (ξ†(r), ᾱ∗(ξ†(r)))

]′ ∫ r

0

ν(ρ) dρ dr

+ δ
(
∇xψc(ξ†(t), z)

)′ ∫ t

0

ν(r) dr +O(δ2). (4.53)

Now recall from (4.5) that −V (x) = maxα∈A
[
− V̂ (x, α)], where the maximum is

uniquely attained at ᾱ∗(x). Consequently, −∇xV (x) = −∇xV̂ (x, ᾱ∗(x)), and there-
fore with α∗(r)

.
= ᾱ∗(ξ†(r)), we see that (4.53) becomes

Jc(t, x, u† + δν, α∗, z)− Jc(t, x, u†, α∗, z)

=

∫ t

0

δ[u†(r)]′Mν(r)− δ
[
∇xV (ξ†(r))

]′ ∫ r

0

ν(ρ) dρ dr

+ δ
(
∇xψc(ξ†(t), z)

)′ ∫ t

0

ν(r) dr +O(δ2)
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= J̄c(t, x, u† + δν, z)− J̄c(t, x, u†, z) +O(δ2),

and since u† is a critical point of J̄c(t, x, ·, z),
= O(δ2). (4.54)

That is, u† is a critical point of Jc(t, x, ·, α∗, z).
Now let u∗ be an optimal control for our original problem (with potential energy

function, V (·)), that is, we let

u∗ ∈ argmin
u∈U∞

J̄c(t, x, ·, z) (4.55)

where J̄c is as per (2.5). As u∗ is a minimizer of J̄c(t, x, ·, z), Lemma 4.15 immediately
yields the following.

Lemma 4.16. Let t ∈ (0,∞) and x, z ∈ IRn. Then, u∗ given by (4.55) is a critical
point of Jc(t, x, ·, α∗, z).

Lemma 4.17. Let

t̄ = t̄(δ̄)
.
=

√
δ̄3

Gmaxi3]1,n[(
∑
j>imj)

. (4.56)

Let x, z ∈ IRn and t ∈ (0, t̄). Then Jc(t, x, ·, α∗, z) is strictly convex, and further, u∗

given by (4.55) is the minimizer of Jc(t, x, ·, α∗, z).
Proof. Let δ ∈ (0,∞) and ũ ∈ U∞, and let u∗ be as per (4.55). Let ξ̂(·) denote the

trajectory of (2.1) corresponding to initial state x ∈ IRn and input û
.
= u∗+δ ũ ∈ U∞.

Note that

ξ∗(r) = x+

∫ r

0

u∗(s) ds

ξ̂(r) = x+

∫ r

0

u∗(s) + δ ũ(s) ds = ξ∗(r) + δ ξ̃(r) , ξ̃(r)
.
=

∫ r

0

ũ(s) ds . (4.57)

In order to demonstrate convexity of Jc(t, x, α∗, ·, z), it is convenient to represent
−V α(r, ·) of (4.17) as an explicit quadratic function of the vector x ∈ IRn of all initial
states. To this end, let Ei ∈ IR1×N , i ∈]1, N [, denote the ith elementary basis vector
in IRN , and define Ei,j ∈ IRN×N by

Ei,j
.
= (Ei − Ej)′ (Ei − Ej) . (4.58)

Similarly, define the matrix E i ∈ IR3×n by

E i = Ei ⊗ I3 , E i,j .
= (E i − Ej)′(E i − Ej) = Ei,j ⊗ I3 , (4.59)

in which ⊗ denotes the Kronecker product. Using (4.59), define the quadratic function
Ψi,j : IRn → IR by

Ψi,j(x)
.
= 1

2 x
′E i,j x = 1

2 |(E
i − Ej)x|2 = 1

2 |x
i − xj |2 . (4.60)

Employing (4.60) in the definition (4.17) of −V α(r, ·) yields that

−V α(r, x) =
∑

(i,j)∈I∆

Ĝmi (αi,j(r)mj)
[
1− (αi,j(r))

2 Ψi,j(x)
]
. (4.61)

It is evident by inspection of (4.8), (2.3), and (4.61) that the functions T , ψc(·, z),
and V α(r, ·) are quadratic. In general, a quadratic function ψ : IRn → IR satisfies

ψ(x+ h) = ψ(x) +∇xψ(x) · h+ 1
2 (∇xxψ(x)h) · h (4.62)
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for all x, h ∈ IRn. Here, ∇xψ : IRn → IRn and ∇xxψ : IRn → IRn×n denote re-
spectively the derivative and Hessian of ψ. The first inner-product term on the
right-hand side is the directional derivative of ψ at x ∈ IRn in direction h ∈ IRn.
In the special case where ψ(x)

.
= 1

2 x
′ P x is a quadratic function with P ∈ IRn×n,

∇xψ(x) = 1
2 (P +P ′)x and ∇xxψ(x) = 1

2 (P +P ′). So, applying (4.62) to (4.8), (2.3),
(4.60),

T (u∗(r) + δ ũ(r)) = T (u∗(r)) + δ (Mu∗(r)) · ũ(r) + δ2

2 (M ũ(r)) · ũ(r) , (4.63)

Ψi,j(ξ∗(r) + δ ξ̃(r)) = Ψi,j(ξ∗(r)) + δ (E i,j ξ∗(r)) · ξ̃(r) + δ2

2 (E i,j ξ̃(r)) · ξ̃(r) , (4.64)

ψc(ξ∗(t) + δ ξ̃(t), z) = ψc(ξ∗(t), z) + δ (c (ξ∗(t)− z)) · ξ̃(t) + cδ2

2 |ξ̃(t)|
2 . (4.65)

In particular, (4.61) and (4.64) imply that

− V α(r, ξ∗(r) + δ ξ̃(r)) =
∑

(i,j)∈I∆

Ĝmi (αi,j(r)mj)
[
1− (αi,j(r))

2 Ψi,j(ξ∗(r) + δ ξ̃(r))
]

=
∑

(i,j)∈I∆

Ĝmi (αi,j(r)mj)
[
1− (αi,j(r))

2
(
Ψi,j(ξ∗(r)) + δ (E i,j ξ∗(r)) · ξ̃(r)

+ δ2

2 (E i,j ξ̃(r)) · ξ̃(r)
)]

= −V α(r, ξ∗(r))− δ
∑

(i,j)∈I∆

Ĝmimj (αi,j(r))
3

(E i,j ξ∗(r)) · ξ̃(r)

− δ2

2

∑
(i,j)∈I∆

Ĝmimj (αi,j(r))
3

(E i,j ξ̃(r)) · ξ̃(r) . (4.66)

Hence, combining (4.18), (4.63), (4.65) and (4.66),

Jc(t, x, α∗, u∗ + δ ũ, z)− Jc(t, x, α∗, u∗, z)

=

∫ t

0

δ(Mu∗(r))′ũ(r) + δ2

2 (M ũ(r))′ũ(r)− δ
∑

(i,j)∈I∆̂

Gmimj (αi,j(r))
3

(E i,j ξ∗(r))′ξ̃(r)

− δ2

2

∑
(i,j)∈I∆

Ĝmimj (αi,j(r))
3

(E i,j ξ̃(r))′ξ̃(r) dr

+ δ (c (ξ∗(t)− z)) · ξ̃(t) + cδ2

2 |ξ̃(t)|
2 . (4.67)

The corresponding expression for Jc(t, x, α∗, u∗− δ ũ, z)−Jc(t, x, α∗, u∗, z) follows by
substituting δ with −δ in (4.67). Adding the result of this substitution to (4.67) yields
the second difference of Jc(t, x, α∗, ·, z), namely,

Jc(t, x, α∗, u∗ + δ ũ, z) + Jc(t, x, α∗, u∗ − δ ũ, z)− 2 Jc(t, x, α∗, u∗, z) (4.68)

=

∫ t

0

δ2 (M ũ(r))′ũ(r)− δ2
∑

(i,j)∈I∆

Ĝmimj

(
α∗i,j(r)

)3
(E i,j ξ̃(r))′ξ̃(r) dr + cδ2 |ξ̃(t)|2 .

It remains to bound this second difference from below. To this end, write ũ(r) =[
ũ1(r)′ · · · ũN (r)′

]′
and ξ̃(r) =

[
ξ̃1(r)′ · · · ξ̃N (r)′

]′
, in which ũi(r), ξ̃i(r) ∈

IR3 for each i ∈]1, n[ and r ∈ [0, t]. So, recalling the definition of M,∫ t

0

(M ũ(r))′ũ(r) =

N∑
i=1

mi ‖ũi‖2L2[0,t] . (4.69)
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Similarly, recalling the definition of E i,j and the fact that α∗i,j(r) ∈
[
0, 1

δ̄
( 2

3 )
1
2

)
by

Assumption (A.N1),(
α∗i,j(r)

)
(E i,j ξ̃(r))′ξ̃(r) ≤ 1

δ̄3 ( 2
3 )

3
2 |ξ̃i(r)− ξ̃j(r)|2, ∀r ∈ [0, t]. (4.70)

So, in order to bound the summation term in (4.68), note that by (4.57), Hölder’s
inequality, and a reordering of the summations involved,∫ t

0

∑
(i,j)∈I∆

mimj |ξ̃i(r)− ξ̃j(r)|2 dr ≤ 2
∑

(i,j)∈I∆

mimj

∫ t

0

(
|ξ̃i(r)|2 + |ξ̃j(r)|2

)
dr

= 2
∑

(i,j)∈I∆

mimj

∫ t

0

(∣∣∣∣∫ r

0

ũi(s) ds

∣∣∣∣2 +

∣∣∣∣∫ r

0

ũj(s) ds

∣∣∣∣2
)
dr

≤ 2
∑

(i,j)∈I∆

mimj

∫ t

0

((∫ r

0

|ũi(s)| ds
)2

+

(∫ r

0

|ũj(s)| ds
)2
)
dr

≤ 2
∑

(i,j)∈I∆

mimj

(∫ t

0

r dr

)(
‖ũi‖2L2[0,t] + ‖ũj‖2L2[0,t]

)

= t2

2

N∑
i=1

mi

N∑
j=1, j 6=i

mj

(
‖ũi‖2L2[0,t] + ‖ũj‖2L2[0,t]

)

= t2

2

N∑
i=1

mi ‖ũi‖2L2[0,t]

N∑
j=1

mj + t2

2

N∑
i=1

mi

N∑
j=1

mj ‖ũj‖2L2[0,t] − t
2

N∑
i=1

m2
i ‖ũi‖2L2[0,t]

= t2
N∑
i=1

mi ‖ũi‖2L2[0,t]

N∑
j=1

mj − t2
N∑
i=1

m2
i ‖ũi‖2L2[0,t] = t2

N∑
i=1

mi ‖ũi‖2L2[0,t]

N∑
j=1, j 6=i

mj .

(4.71)

Combining (4.69)–(4.71) in (4.68) (and noting there that c ∈ [0,∞)),

Jc(t, x, α∗, u∗ + δ ũ, z) + Jc(t, x, α∗, u∗ − δ ũ, z)− 2 Jc(t, x, α∗, u∗, z)

≥ δ2

∫ t

0

(M ũ(r)) · ũ(r)−
∫ t

0

∑
(i,j)∈I∆

Ĝmimj

(
α∗i,j(r)

)3
(E i,j ξ̃(r)) · ξ̃(r) dr


≥ δ2

 N∑
i=1

mi ‖ũi‖2L2[0,t] − Ĝ
δ̄3 ( 2

3 )
3
2 t2

N∑
i=1

mi ‖ũi‖2L2[0,t]

N∑
j=1, j 6=i

mj


= δ2

N∑
i=1

mi ‖ũi‖2L2[0,t]

1− ( G
δ̄3 ) t2

N∑
j=1, j 6=i

mj


≥ δ2

1− ( G
δ̄3 ) t2 max

i∈]1,N [

N∑
j=1, j 6=i

mj

 N∑
i=1

mi ‖ũi‖2L2[0,t] > 0 (4.72)

if δ ∈ (0,∞), ‖ũ‖L2[0,t] > 0, and t ∈ (0, t̄). That is, Jc(t, x, α∗, ·, z) is strictly convex
if t ∈ (0, t̄), as required.
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Theorem 4.18. Suppose t ∈ [0, t̄) where t̄ is as per (4.56). Then one has
W c(t, x, z) = W

c
(t, x, z) =supα∈Ā∞Wα,c(t, x, z) for all x, z ∈ IRn.

Proof. Let x, z ∈ IRn and t ∈ [0, t̄). By the choice of u∗, viz., (4.55) and (4.28),
we have

W
c
(t, x, z) = J̄c(t, x, u∗, z) = Jc(t, x, u∗, α∗, z),

which by Lemma 4.17,

= min
u∈U∞

Jc(t, x, u, α∗, z) ≤ sup
α∈Ā∞

min
u∈U∞

Jc(t, x, u, α, z) = W c(t, x, z).

On the other hand, by (4.46), W c(t, x, z) ≤W c
(t, x, z), and consequently we have the

first equality. The second follows immediately from (4.49).

4.5. The limit property. Recall that the fundamental solution of interest is
obtained in the c→∞ limit. Consequently, we note that we have:

Theorem 4.19. W
∞

(t, x, z) = limc→∞W
c
(t, x, z) = supc∈[0,∞)W

c
(t, x, z),

where the convergence is uniform on compact subsets of [0, t̄) × RN × RN , with t̄
as per (4.56).

Proof. This follows directly from Remark 4.9, Theorem 2.7 and the monotonicity
of W

c
(t, x, z) with respect to c.

Theorem 4.20. W
∞

(t, x, z) = supα∈Ā∞Wα,∞(t, x, z) for all t ∈ [0, t̄) and
x, z ∈ IRn, where t̄ is as per (4.56).

Proof. Fix t ∈ [0, t̄) and x, z ∈ IRn. By Theorems 4.18 and 4.19,

W
∞

(t, x, z) = sup
c∈[0,∞)

sup
α∈Ā∞

Wα,c(t, x, z) = sup
α∈Ā∞

sup
c∈[0,∞)

Wα,c(t, x, z). (4.73)

Now, Jc(t, x, u, α, z) is monotonically increasing in c for all (t, x, u, α, z) ∈ [0, t̄) ×
IRn × U∞ × Ā∞ × IRn. From this one easily sees that Wα,c(t, x, z) is monotonically
increasing in c. (Take ε-optimal controls, u.) Therefore,

Wα,∞(t, x, z) = lim
c→∞

Wα,c(t, x, z) = sup
c∈[0,∞)

Wα,c(t, x, z), (4.74)

where we note that the finiteness of the supremum follows easily by using constant-
velocity trajectories from x to z, and we do not include the details. Combining (4.73)
and (4.74) yields the result.

4.6. Fundamental solution as a set of Riccati solutions. We will find
that the fundamental solution may be given in terms of a set of solutions of Riccati
equations. We look for a solution, W̆α,c, of the form

W̆α,c(r, x, z) = 1
2 [x′P̆ cr x+ 2x′ Q̆cr z + z′ R̆cr z + γ̆cr ] , r ∈ [0, t] , (4.75)

where P̆ cr , Q̆cr, R̆
c
r, γ̆

c
r ∈ IRn×n depend implicitly on the choice of α ∈ Ā∞ and satisfy

P̆ cr = P cr ⊗ I3 , Q̆cr = Qcr ⊗ I3 , R̆cr = Rcr ⊗ I3 , γ̆cr = γcr . (4.76)

Here, P cr ⊗ I3 denotes the Kronecker product of P cr with the identity matrix on IR3,
with P cr , Q

c
r, R

c
r ∈ IRN×N and γcr ∈ IR satisfying the respective initial value problems

Ṗ cr = −P crM−1
∗ P cr + νr , P c0 = c IN , (4.77)

Q̇cr = −P crM−1
∗ Qcr , Qc0 = −c IN , (4.78)
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Ṙcr = −(Qcr)
′M−1

∗ Qcr , Rc0 = c IN , (4.79)

γ̇cr = +2
∑

(i,j)∈I∆

Ĝmimj αi,j(t− r) , γc0 = 0 , (4.80)

in which P cr and Rcr are self-adjoint,M∗
.
= diag({mi}Ni=1),M≡M∗⊗ I3, IN denotes

the identity matrix on IRN ,

νr
.
= −

∑
(i,j)∈I∆

Ĝmimj (αi,j(t− r))3Ei,j , (4.81)

and Ei,j ∈ IRN×N is as per (4.58).
Theorem 4.21. The value function Wα,c of (4.47) and the explicit function

W̆α,c of (4.75) are equivalent. That is, Wα,c(r, x, z) = W̆α,c(r, x, z) for all r ∈ [0, t],
x, z ∈ IRn, with t ∈ [0, t̄).

Proof. It is sufficient to show that W̆α,c satisfies the conditions of Theorem 4.14.
To this end, note by inspection of (4.75) that

∂
∂rW̆

α,c(r, x, z) = 1
2 [x′

˙̆
P cr x+ 2x′

˙̆
Qcr z + z′

˙̆
Rcr z + ˙̆γcr ] , (4.82)

∇xW̆α,c(r, x, z) = P̆ cr x+ Q̆cr z . (4.83)

Recalling the form (4.61) of −V α(r, x), in which the quadratic function Ψi,j of (4.60)
is defined via matrix E i,j ∈ IRn×n of (4.59), the Hamiltonian H of (4.48) is given by

−H(t− r, x,∇xW̆α,c(r, x, z))

= −V α(t− r, x)− 1
2 (∇xW̆α,c(r, x, z))′M−1∇xW̆α,c(r, x, z)

=
∑

(i,j)∈I∆

Ĝmi (αi,j(t− r)mj)
[
1− 1

2 (αi,j(t− r))2 x′ E i,j x
]

− 1
2 [x′ P̆ crM−1 P̆ cr x+ 2x′P̆ crM−1 Q̆cr z + z′ (Q̆cr)

′M−1 Q̆cr z] . (4.84)

Hence, substituting (4.82) and (4.84) in the right-hand side of the DPE (4.50) yields

− ∂
∂rW̆

α,c(r, x, z)−H(t− r, x,∇xW̆α,c(r, x, z)) = 1
2 [x′ X̆c

r x+ 2x′ Y̆ cr z + z′ Z̆cr z + ζ̆cr ]
(4.85)

in which X̆c
r
.
= − ˙̆

P cr − P̆ crM−1 P̆ cr −
∑

(i,j)∈I∆

Ĝmimj (αi,j(t− r))3 E i,j , (4.86)

Y̆ cr
.
= − ˙̆

Qcr − P̆ crM−1 Q̆cr , Z̆cr
.
= − ˙̆

Rcr − (Q̆cr)
′M−1 Q̆cr , (4.87)

ζ̆cr
.
= − ˙̆γcr + 2

∑
(i,j)∈I∆

Ĝmimj αi,j(t− r) . (4.88)

Standard properties of Kronecker products (c.f., [16]) applied to (4.76) and the various
terms in (4.86), (4.87) imply that

˙̆
P cr = Ṗ cr ⊗ I3 ,

˙̆
Qcr = Q̇cr ⊗ I3 ,

˙̆
Rcr = Ṙcr ⊗ I3 , (4.89)

P̆ crM−1 P̆ cr = (P cr ⊗ I3) (M−1
∗ ⊗ I3) (P cr ⊗ I3) = (P crM−1

∗ P cr )⊗ I3 ,
P̆ crM−1 Q̆cr = (P crM−1

∗ Qcr)⊗ I3 , (Q̆cr)
′M−1 Q̆cr = (QcrM−1

∗ Qcr)⊗ I3 , (4.90)

−
∑

(i,j)∈I∆

Ĝmimj (αi,j(t− r))3 E i,j =

− ∑
(i,j)∈I∆

Ĝmimj (αi,j(t− r))3Ei,j

⊗ I3
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= νr ⊗ I3
.
= ν̆r , (4.91)

in which Ei,j ∈ IRN×N and νr are as per (4.58) and (4.81) respectively. In addition,
given any A, B ∈ IRN×N , note that A ⊗ I3 = B ⊗ I3 implies that A = B. Conse-
quently, substitution of (4.89), (4.90), (4.91) in (4.86), (4.87) yields that there exists
Xc
r , Y

c
r , Z

c
r ∈ IRN×N such that

X̆c
r = Xc

r ⊗ I3 , Y̆ cr = Y cr ⊗ I3 , Z̆cr = Zcr ⊗ I3 , (4.92)

where Xc
r
.
= −Ṗ cr − P crM−1

∗ P cr + νr , Y cr
.
= −Q̇cr − P crM−1

∗ Qcr , (4.93)

Zcr
.
= −Ṙcr − (Qcr)

′M−1
∗ Qcr , (4.94)

in which νr is as per (4.81). However, definitions (4.77), (4.78), (4.79) of P cr , Qcr, R
c
r

imply via (4.93), (4.94) that 0 = Xc
r = Y cr = Zcr . Hence, (4.92) immediately implies

that 0 = X̆c
r = Y̆ cr = Z̆cr . Similarly, definition (4.80) of γcr , (4.76), and (4.88) imply

that 0 = ζ̆cr . Hence, DPE (4.85) holds as required.
Remark 4.22. Recalling that αi,j is defined for all (i, j) ∈ I∆, it is useful to

define αi,j
.
= αj,i for each j ∈]1, i − 1[. Using this definition (and re-indexing using

k, l ∈]1, N [, k 6= l), the square matrix νr of (4.77),(4.81) is equivalently given by

νr
.
= − 1

2

N∑
k=1

N∑
l=1, l 6=k

Ĝmkml (αk,l(t− r))3Ek,l . (4.95)

Contributions to the (i, j)th entry of νr from the sum in (4.95) are limited to four
cases, namely where (i) k = i = j, (ii) l = i = j, (iii) k = i, l = j, (iv) k = j, l = i.
Rewriting (4.95) as a sum of these four cases (with terms appearing in order of (i) to
(iv)),

νi,jr = − 1
2 Ĝmi

N∑
l=1,l 6=i

ml (αi,l(t− r))3 1i=j − 1
2 Ĝ

N∑
k=1, k 6=i

mkmi (αk,i(t− r))3 1i=j

+ 1
2 Ĝmimj (αi,j(t− r))3 1i6=j + 1

2 Ĝmjmi (αj,i(t− r))3 1i 6=j ,

in which 1b
.
= 1 if b holds (and 1b

.
= 0 otherwise). Hence,

νi,jr =

 −Ĝmi

∑N
k=1, k 6=imk (αi,k(t− r))3 , i = j ,

+Ĝmimj (αi,j(t− r))3 , i 6= j .
(4.96)

Similarly, note that the initial value problem (4.80) may be rewritten as

γ̇cr =

N∑
i=1

N∑
j=1, j 6=i

Ĝmimj αi,j(t− r) , γc0 = 0 . (4.97)

�
Now, note that by Theorem 4.20,

W
∞

(t, x, z) = sup
α∈Ā∞

Wα,∞(t, x, z) = sup
α∈Ā∞

lim
c→∞

Wα,c(t, x, z)

which by (4.75),

= sup
α∈Ā∞

lim
c→∞

1
2

[
x′P̆ ct x+ 2x′Q̆ctz + z′R̆ct z + γct

]
,
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= sup
α∈Ā∞

1
2

[
x′P̆∞t x+ 2x′Q̆∞t z + z′R̆∞t z + γ∞t

]
. (4.98)

Let Σ(t) = Σ(t;m1,m2, . . .mN ) be given by Σ(t) =
{(
P̆∞t , Q̆∞t , R̆

∞
t , γ

∞
t

) ∣∣α ∈ Ā∞ }.
We see that

W
∞

(t, x, z) = sup
(P,Q,R,γ)∈Σ(t)

1
2

[
x′Px+ 2x′Qz + z′Rz + γ

]
, (4.99)

which by the linearity in (P,Q,R, γ) of the expression inside the supremum,

= sup
(P,Q,R,γ)∈Σ̂(t)

1
2

[
x′Px+ 2x′Qz + z′Rz + γ

]
, (4.100)

where Σ̂(t)
.
= 〈Σ(t)〉 (i.e., the convex hull of Σ(t)). Consequently, we will see that

the set Σ̂(t) = Σ̂(t;m1, . . .mN ) will represent the general solution of the N -body

TPBVP. With the symmetry of P,R, one can see that this set lies in IR2N2+N+1, a
finite-dimensional space.

Of course, one may be concerned about computation of the suprema in (4.98) and
(4.100). Specifically, one would like to know whether the object inside the supremum
in (4.98) is concave. In this regard, it is helpful to define

Pct = Pct (α)
.
=

(
P̆ ct Q̆ct

(Q̆ct)
′ R̆ct

)
. (4.101)

We will say that a matrix-valued function, say P : Ā∞ → L(IR2n; IR2n) is concave if
its domain, Ā∞, is convex and P(α0 +δα̂)−2P(α0)+P(α0−δα̂) � 0 for all α0 ∈ Ā∞,

α̂ ∈ L∞([0,∞); IRI
∆

) and δ ∈ IR such that α0 + δα̂ ∈ Ā∞, where we find it useful to
include δ in this definition. Here, we use the standard partial order given by P � P̂
if and only if P̂ − P is non-negative definite.

Lemma 4.23. Pct is a concave function of α ∈ Ā∞.

Proof. Let α0 ∈ Ā∞, α̂ ∈ L∞([0,∞); IRI
∆

) be such that α0 + α̂, α0 − α̂ ∈ Ā∞
and δ ∈ [−1, 1]. Let α = α0 + δα̂ Let νi,jt be given by (4.96) with this α, where we
may then view νi,jt as a function of δ. It is easy to see that

d2νi,jr
dδ2

=

{
−
∑
k 6=i 6Ĝmimkαi,j(t− r)(α̂i,j(t− r))2 if i = j,

6Ĝmimkαi,j(t− r)(α̂i,j(t− r))2 if i 6= j,
(4.102)

where we note that this implies

d2νi,jt
dδ2

≥ 0, ∀t ≥ 0, i 6= j. (4.103)

Now, for any y ∈ IRn, using (4.102) and (4.103), we see that

y′
d2νt
dδ2

y =
∑
i∈N

d2νi,it
dδ2

y2
i +

∑
i∈N

∑
j∈N\{i}

d2νi,jt
dδ2

yiyj =
∑
i∈N

∑
j∈N\{i}

d2νi,jt
dδ2

(−y2
i + yiyj)

≤
∑
i∈N

∑
j∈N\{i}

d2νi,jt
dδ2

(−y2
i +

y2
i

2
+
y2
j

2
) = 1

2

∑
(i,j)∈I∆

[d2νi,jt
dδ2

(y2
j − y2

i ) +
d2νj,it
dδ2

(y2
i − y2

j )
]

= 0,
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where the last inequality follows by noting that
d2νi,j

t

dδ2 =
d2νj,i

t

dδ2 . Consequently, d2νt
dδ2 is

non-positive definite for all t ≥ 0. (It may be helpful to note that taking ȳi = 1 for

all i ∈ N , ȳ′ d
2νt
dδ2 ȳ = 0, and so d2νt

dδ2 is never strictly negative definite.) Now let

Ix
.
=

(
M−1 0n×n
0n×n 0n×n

)
, N̂t

.
=

(
dνt
dδ 0n×n

0n×n 0n×n

)
, and Nt

.
=

(
d2νt
dδ2 0n×n

0n×n 0n×n

)
,

where 0n×n denotes the n × n matrix with all entries zero. By the non-positive

definiteness of d2νt
dδ2 , Nr is non-positive definite for all r ≥ 0. By (4.77)–(4.79) and

(4.101), and recalling from (4.91) that ν̆r
.
= νr ⊗ I3,

Ṗct = −Pct IxPct + ν̆t. (4.104)

Let Πc
t
.
=

dPc
t

dδ and σct
.
=

d2Pc
t

dδ2 . Differentiating (4.104) with respect to δ, we find

Π̇c
t = −(Πc

t)
′IxPct − Pct IxΠc

t + N̂t,

σ̇ct = −(σct )
′IxPct − Pct Ixσct − 2(Πc

t)
′IxΠc

t + Nt
.
= −(σct )

′IxPct − Pct Ixσct + Ωct .

For 0 ≤ r ≤ t <∞, define Scr,t
.
= exp

{
−
∫ t
r
Pcs ds Ix

}
. We find that

σct =

∫ t

0

Scr,tΩcr
(
Scr,t
)′
dr. (4.105)

Note that by the non-positive definiteness of Nr, Ωcr is non-positive definite for all

r ≥ 0. This implies that Scr,tΩcr
(
Scr,t
)′

is non-positive definite for all 0 ≤ r ≤ t < ∞,
and consequently, by (4.105), σct is non-positive definite for all t ≥ 0. Finally, note

Pct (α0+ δα̂)− 2Pct (α0) + Pct (α0− δα̂) =

∫ δ

0

Πc
t(α

0+ rα̂) dr −
∫ δ

0

Πc
t(α

0+ (r − δ)α̂) dr

=

∫ δ

0

[∫ r

0

σct (α
0 + sα̂) ds+ Πc

t(α
0)

]
dr −

∫ δ

0

[
Πc
t(α

0)−
∫ 0

r−δ
σct (α

0 + sα̂) ds

]
dr

=

∫ δ

0

∫ r

r−δ
σct (α

0 + sα̂) ds dr � 0 ∀t ≥ 0,

where the last ordering follows from the non-positive definiteness of σct .
Theorem 4.24. For all t ∈ [0, t̄), c > 0 and x, z ∈ IRn, both Wα,c(t, x, z) and

Wα,∞(t, x, z) are concave in α.
Proof. First, as noted above, Ā∞ is convex. Next, note thatWα,c(t, x, z) is linear

in Pct and γt. Also note that γt is linear in α. Now, recall

Wα,c(t, x, z) = 1
2

(
x
z

)′
Pct (α)

(
x
z

)
+ γct (α).

Then, by Lemma 4.23, Wα,c(t, x, z) is concave in α.

Next, let α0 ∈ Ā∞, α̂ ∈ L∞((0,∞); IRI
∆

) be such that α0 + α̂, α0 − α̂ ∈ Ā∞ and
δ ∈ [−1, 1]. Then,

Wα0+δα̂,∞(t, x, z)− 2Wα0,∞(t, x, z) +Wα0−δα̂,∞(t, x, z)

≤ lim sup
c→∞

[
Wα0+δα̂,c(t, x, z)− 2Wα0,c(t, x, z) +Wα0−δα̂,c(t, x, z)

]
≤ 0,

where the last inequality follows from the concavity of Wα,c(t, x, z).
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4.7. Usage in a two-point boundary value problem. The fundamental so-
lution may be used to solve two-point boundary value problems in the same manner as
indicated in Section 3.3. However, the details of the significant complication induced
by the required optimization over α merit discussion. Recall that W

∞
(t, x, z) may

be used to solve a variety of TPBVPs where the initial position vector, x ∈ IR3N , is
specified, and some combination of terminal position and velocity data are also spec-
ified. The two obvious cases are where terminal position vector z ∈ IR3N is specified,
and where terminal velocity vector v̄ ∈ IR3N is specified.

We first consider the case where x and z are specified. The corresponding initial
velocity, v0 = ξ̇(0), is obtained from v0 = −M−1∇xW

∞
(t, x, z). Using (4.100), one

see that this is

v0 = −M−1[P ∗x+Q∗z], (4.106)

where

(P ∗, Q∗, R∗, γ∗)∈ argmax
{

1
2

[
x′Px+ 2x′Qz + z′R′z + γ

] ∣∣∣ (P,Q,R, γ) ∈ Σ̂(t)
}
,

(4.107)

where the linearity of the argument in (P,Q,R, γ), the convexity and finite-dimension-

ality of Σ̂(t), and the finiteness of the maximum (guaranteed by the finiteness of W
∞

and (4.100)) guarantee the non-emptyness of the argmax. Regarding implementation,

we note that Σ̂(t) may be computed offline, and stored. If this is done in a brute force
manner, say computing quadruples

(
P̆∞t , Q̆∞t , R̆

∞
t , γ

∞
t

)
for a large set of piecewise

constant α ∈ Ā∞, one should store only those elements which are not obviously in
the interior of the convex hull of other such points. Obviously, methods for efficient
computation, storage and use of an approximation of Σ̂(t) would be a substantial
block of research, and is not considered here.

In the case where initial point vector, x, and terminal velocity vector, v̄, are
specified, additional effort is required. As in Section 3.3, one must obtain z∗ such
that the TPBVP for x, z∗ has ξ̇∗(t) = v̄ (where ξ∗(·) is the solution trajectory from
x to z∗). As is (3.13), and using representation (4.100), one sees that the problem
becomes

z∗ = argmin
z∈IRn

max
(P,Q,R,γ)∈Σ̂(t)

{
1
2

[
x′Px+ 2x′Qz + z′Rz + γ

]
− v̄′Mz

}
.

One should note that the minimization and maximization are both over finite-dimen-
sional spaces. Note also that for sufficiently small t > 0 (depending on α), one
can expect R∞t to be positive definite, and consequently, one has a convex/concave
argument. Although beyond the scope here, if one obtains conditions on the problem
data such that conditions for a unique saddle point are satisfied (cf., [30]), then

min
z∈IRn

max
(P,Q,R,γ)∈Σ̂(t)

{
1
2

[
x′Px+ 2x′Qz + z′Rz + γ

]
− v̄′Mz

}
= max

(P,Q,R,γ)∈Σ̂(t)

{
1
2

[
x′Px+ γ − (Mv̄ −Q′x)′R−1(Mv̄ −Q′x)

]}
,

and the desired initial velocity is v0 = −M−1[P ∗x+Q∗z∗] where z∗ = (R∗)−1(Mv̄−
(Q∗)′x) and

(P ∗, Q∗, R∗, γ∗) ∈ argmax
(P,Q,R,γ)∈Σ̂(t)

{
x′Px+ γ − (Mv̄ −Q′x)′R−1(Mv̄ −Q′x)

}
.
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