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Abstract

Two-point boundary problems for conservative systems are

studied in the context of the least action principle. The em-

phasis is on the N -body problem under gravitation. There,

the least action principle optimal control problem is con-

verted to a differential game, where an opposing player max-

imizes over an indexed set of quadratics to yield the gravi-

tational potential. For problems where the time-duration is

below a specified bound, fundamental solutions are obtained

as indexed sets of solutions of Riccati equations.

1 Introduction

We suppose a conservative system follows a trajectory
minimizing the action functional, this being known as
the principle of least action or as Hamilton’s princi-
ple (c.f., [8, 9]). This allows the dynamical model to
be posed in terms of various optimal control problems.
Solution of the control problems allows one to convert
two-point boundary-value problems (TPBVPs) for the
dynamical system into initial value problems. In a sim-
ple mass-spring system, wherein solution of an associ-
ated Riccati equation generates the fundamental solu-
tion, this allows one to answer a variety of TPBVPs
via a simple max-plus integral (equivalently, a supre-
mum). We will concern ourselves mainly with the N -
body problem in orbital mechanics. In this case, the
analysis becomes more technical. Nonetheless, one can
construct machinery for guaranteed solution of the var-
ious TPBVPs.

Suppose the position component of the state at
time, t, is denoted by ξ(t) ∈ IRn, where also, we
will use x ∈ IRn to denote generic positions. Let the
potential energy at x ∈ IRn be denoted by V (x). The
kinetic energy at time, t, will be denoted by T (ξ̇(t))

.
=

1
2 ξ̇
′(t)Mξ̇(t), where if ξ(t) refers to the position of a
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point mass, M is simply mI, where m is the mass of
the body; in a multi-body system, this is generalized in
the obvious way. The action functional corresponding
to {ξ(r) | r ∈ [0, t]} is given by

F(ξ(·)) .
=

∫ t

0

−V (ξ(r)) + T (ξ̇(r)) dr.

The principle of least action states that a system evolves
so as to minimize the action functional.

One can also interpret this in terms of the charac-
teristic equations corresponding to the Hamiltonian of
the system. Let the initial position be ξ(0) = x ∈ IRn,
and let the dynamics be ξ̇(r) = u(r) for all r ∈ (0, t),
where u = u(·) ∈ Us,t .

= L2([s, t); IRn). Also let
U∞ .

= {u : (0,∞) → IRn |u(0,t) ∈ U0,t ∀t ∈ (0,∞)},
where u(0,t) denotes the restriction of the function to
domain (0, t). Define the control formulation payoff,
J0 : [0,∞)× IRn × U∞ → IR ∪ {−∞,+∞}, as

J0(t, x, u)
.
=

∫ t

0

−V (ξ(r)) + T (u(r)) dr(1.1)

=

∫ t

0

−V (ξ(r)) + 1
2u
′(r)Mu(r) dr,

where M is positive-definite symmetric, and the corre-
sponding value function as

W 0(t, x)
.
= inf
u∈U∞

J0(t, x, u).(1.2)

Clearly a solution of this problem yields an ξ(·) satisfy-
ing the least action principle, and so is the trajectory of
the conservative system under potential energy field V .

Let D .
= (0, t) × IRn (with D̄ .

= [0, t] × IRn) and
Ĉ1 .

= C(D̄)∩C1(D). Under quite reasonable conditions
on V , one can expect that W 0 ∈ Ĉ1, and that on D,
W 0 satisfies

0 = −∂
∂t
W (r, x)− V (x)(1.3)

−1

2
[∇xW (r, x)]′M−1∇xW (r, x)

.
= −H̄

(
r, x,

∂

∂t
W (r, x),∇xW (r, x)

)
.
= −∂

∂t
W (r, x)−H

(
r, x,∇xW (r, x)

)
.



It is also well-established that under sufficiently strong
conditions, first-order HJB PDEs such as (1.3) can
be solved via the method of characteristics. The
characteristic equations associated with (1.3) are

dr

dρ
= H̄q(r, ξ̂, q, p) = 1(1.4)

dξ̂

dρ
= H̄p(r, ξ̂, q, p) =M−1p(ρ)(1.5)

dq

dρ
= −H̄r(r, ξ̂, q, p) = 0(1.6)

dp̂

dρ
= −H̄x(r, ξ̂, q, p) = −∇xV (ξ̂(ρ)).(1.7)

These have associated initial and terminal conditions

ξ̂(t) = x, r(t) = 0, p̂(0) = 0(1.8)

q(0) = −V (ξ̂(0))− 1

2
(p̂(0))′M−1p̂(0) = −V (ξ̂(0)),

where p̂(0) = 0 follows from the lack of a terminal cost
here. Because of (1.4), we may take r = ρ. Noting (1.6)

and (1.8), we see that q(r) = V (ξ̂(0)) for all r. Also, in
order to return to forward time, we may take s = t− r,
ξ(s) = ξ̂(t − s) and p(s) = p̂(t − s), in which case we
have

dξ

ds
= −M−1p(s),

dp

ds
= ∇xV (ξ(s)),(1.9)

or,
d2ξ

ds2
= −M−1∇xV (ξ(s)),(1.10)

which of course, is the classical Newton’s second law
formulation. Note that in the above development, the
trajectory was not fully specified, as only the initial
position, not the initial state (position and velocity),
was given. Of course, (1.9) implies that the additive
inverse of the co-state p(r), is the momentum. (One
might also note that the optimal velocity in the HJB
PDE is attained at v = −M−1∇xW = −M−1p.) Given
both the initial position and initial velocity, forward
integration of (1.9) is the classical initial value problem
(IVP) form for the system dynamics.

Suppose however, that one attaches a terminal cost
to J0 yielding, say

J(t, x, u) = J0(t, x, u) + ψ̄(ξ(t)),(1.11)

W (t, u) = inf
u∈U∞

J(t, x, u).(1.12)

The dynamic programing equation (DPE) and charac-
teristic equations (1.9) remain unchanged. However, al-
though the initial condition is still ξ(0) = x, the ter-
minal condition is defined by ψ̄. That is, we have a
TPBVP where we control the terminal condition.

TPBVPs are common in classical optimal control
theory, where the above characteristic equations appear
in Calculus of Variations and Pontryagin Maximum
Principle approaches. There, one is required to solve the
relevant TPBVP to obtain the desired optimal control
problem solution. Classical methods used a shooting
approach, and more modern methods such as pseudo-
spectral algorithms (c.f., [10]) have greatly advanced the
state of the art.

Here we have a slightly different goal; we desire to
solve TPBVPs arising from dynamical systems governed
by conservative dynamics. With the addition of termi-
nal cost, ψ̄, the boundary conditions for (1.9) consist of
initial condition

ξ(0) = x,(1.13)

and terminal condition
p(t) = ∇xψ̄(ξ(t)).(1.14)

If one takes, for example, ψ̄(x) = −v̄ · x for some
given v̄ ∈ IRn, then terminal condition (1.14) becomes
p(t) = v̄. That is, one has boundary conditions

ξ(0) = x and ξ̇(t) = v̄.(1.15)

Alternatively, if one takes z ∈ IRn and ψ̄(x) = ψ∞(x)
.
=

δ−0 (x− z) where

δ−0 (y)
.
=
{

0 if y=0
+∞ otherwise

(1.16)

(i.e., the min-plus “delta function”), then the solution
of control problem (1.12) yields solution of the conser-
vative system with boundary conditions

ξ(0) = x and ξ(t) = z.(1.17)

Clearly, other boundary conditions can be generated as
well.

The goal here will be the development of funda-
mental solutions for TPBVPs corresponding to conser-
vative systems. These fundamental solutions will gen-
erate particular solutions for boundary conditions such
as ξ̇(t) = v̄ via a max-plus integration over IRn.

In the case where the potential energy takes a
linear-quadratic form, the fundamental solution may
be obtained through solution of an associated Riccati
equation. However, here we will apply the approach to
N -body problems under the gravitational potential. In
this case, the potential does not take a linear-quadratic
form. However, we will see that one may take a dynamic
game approach to gravitation, where the potential
is a linear-quadratic form in the position variable.
This requires an additional max-plus integral, over the
opponent controls, beyond that which is required in the
purely linear-quadratic potential case.



2 Background and Standard Theory

Because of space limitations, the bulk of the proofs of
the results below are not included.

As indicated in the introduction, we consider con-
servative systems, and taking the least-action approach,
we model the dynamics of position as

ξ̇(r) = u(r), ξ(0) = x ∈ IRn,(2.18)

with u ∈ U∞. With potential and kinetic energy
functions V (x) and T (y) = 1

2y
′My, the running cost

is
L(ξ(r), ξ̇(r)) = T (ξ̇(r))− V (ξ(r)).

Note that by (1.1),(1.11),(1.12),

W (0, x) = ψ̄(x),(2.19)

and that W (t, x) = St[ψ̄](x) for t > 0. For c ∈ [0,∞),
let ψc : IRn × IRn → [0,∞) be given by

ψc(x, z) =
c

2
|x− z|2.(2.20)

Also let ψ∞ : IRn × IRn → [0,∞] (where we find it
notationally convenient to let [0,∞]

.
= [0,∞) ∪ {+∞})

be given by
ψ∞(x, z) = δ−0 (x− z),(2.21)

where δ−0 is given in (1.16).
Define the finite time-horizon payoffs Jc : [0,∞)×

IRn × U∞ × IR→ IR ∪ {−∞,+∞} by

Jc(t, x, u, z)
.
=

∫ t

0

L(ξ(s), u(s)) ds+ ψc(ξ(t), z),

for c ∈ [0,∞], where we specifically note J0(t, x, u) =∫ t
0
L(ξ(s), u(s)) ds. Also, for c ∈ [0,∞], we let

W c(t, x, z)
.
= inf
u∈U∞

Jc(t, x, u, z).(2.22)

We establish existence in the special case where the po-
tential energy function, V , is bounded. In the interest
of space, and given the extensive existing literature, we
do not prove this with potential energy functions corre-
sponding to mass-spring systems and N -body problems.

Theorem 2.1. Let c ∈ (0,∞) and z ∈ IRn. Suppose
W ∈ C(IR≥0× IRn× IRn; IR)∩C1(IR>0× IRn× IRn; IR)
satisfies

0 = − ∂
∂tW (t, x, z)−H(r, x,∇xW (t, x, z)) ,(2.23)

W (0, x, z) = ψc(x, z)(2.24)

for all t ∈ IR≥0 and x ∈ IRn, where H/H̄ are the
Hamiltonians (1.3). Then, W (t, x, z) ≤ Jc(t, x, u, z)
for all x ∈ IRn, u ∈ U∞. Furthermore, W (t, x, z) =

Jc(t, x, u∗, z) for the input u∗(s)
.
= −M−1∇xW (t −

s, ξ∗(s), z), s ∈ [0, t], where ξ∗ is the solution of dy-
namics (2.18), driven by u∗. Consequently W (t, x, z) =
W c(t, x, z).

A reachability problem of interest is defined via the
value function W̃ : IR≥0 × IRn × IRn 7→ IR, where

W̃ (t, x, z)
.
= inf
u∈U∞

{∫ t

0

L(ξ(s), u(s)) ds

}
.(2.25)

where (2.18) holds with ξ(0) = x, ξ(t) = z.

Using W̃ of (2.25), it is convenient to define the

function Ŵ : IR≥0 × IRn 7→ IR by

Ŵ (t, x)
.
= inf
z∈IRn

{
W̃ (t, x, z) + ψ̄(z)

}
.(2.26)

Theorem 2.2. The value function W of (1.12) and the

function Ŵ of (2.26) are equivalent. That is,

W (t, x) = Ŵ (t, x)(2.27)

for all t ∈ IR≥0 and x ∈ IRn.

In view of Theorem 2.2, W̃ may be regarded as
fundamental to the solution of the optimal control
problem (1.12). In particular, characterization of W̃
of (2.25) admits the evaluation of W of (1.12) for any
terminal cost ψ̄ via (2.26). To this end, establishing a

relationship between W∞ of (2.22) and W̃ of (2.25) is
vital.

Theorem 2.3. The value functions W∞ of (2.22) and

W̃ of (2.25) are equivalent. That is,

W∞(t, x, z) = W̃ (t, x, z)(2.28)

for all t ∈ IR≥0 and x, z ∈ IRn.

3 The N-body problem

Here, we address the solution of TPBVPs with N bodies
acting under gravitational acceleration. In particular,
we obtain a means for conversion of TPBVPs to initial
value problems. The key to application of our approach
to this class of problems lies in a variation of convex
duality, leading to an interpretation of the least action
principle as a differential game.

The following is easily obtained through methods of
convex duality (c.f., [14, 15, 16]), and we do not include
a proof.

Lemma 3.1. Suppose f(ρ̂) = ρ̂−1/2 for all ρ̂ ∈ (0,∞).
Then,

f(ρ̂) = sup
β̂<0

[
β̂ρ̂+ a(β̂)

]
∀ρ̂ > 0,

where



a(β̂) = − sup
ρ̂>0

[
β̂ρ̂− f(ρ̂)

]
∀β̂ < 0,

and, in particular, a(β̂) = −3
2 (2β̂)1/3 for all β̂ ∈

(−∞, 0).

Minor manipulation of this duality result yields:

Lemma 3.2. For ρ > 0, one has

1

ρ
=

(
3

2

)3/2

max
α∈(0,∞)

α

[
1− (αρ)2

2

]
.

Proof. Letting β
.
= −β̂, Lemma 3.1 implies

ρ̂−1/2 = sup
β>0

[
3

2
(2β)1/3 − βρ̂

]
, ∀ρ̂ > 0.

Next, letting α =
√

2
3 (2β)1/3 for β > 0, we find

ρ̂−1/2 = sup
α>0

[(
3

2

)3/2

α−
(

3

2

)3/2
α3ρ̂

2

]
, ∀ρ̂ > 0.

Finally, letting ρ̂ = ρ2 for ρ > 0, we see that the above
becomes

1

ρ
=

(
3

2

)3/2

sup
α>0

α

[
1− (αρ)2

2

]
, ∀ρ > 0.

Lastly, note that the supremum is always attained, and

does so at
√

2
3

1
ρ .

Recall that the gravitational potential energy due to
two point-mass bodies of mass m1 and m2, separated by
distance, ρ > 0, is given by

Gm1,m2(ρ) =
−Gm1m2

ρ
,

where G is the universal gravitational constant. Of
course, this is also valid for spherically symmetric bodies
when the distance is greater than the sum of the radii
of the bodies, and we do not concern ourselves with this
distinction further. Using Lemma 3.2, we see that this
may be represented as

−Gm1,m2(ρ) = Ĝm1 max
α1,2≥0

(α1,2m2)

[
1− (α1,2ρ)2

2

]
,

where the universal gravitational constant is replaced by

Ĝ
.
=
(

3
2

)3/2
G. In the case of N bodies at locations xi

for i ∈ N .
=]1, N [ (where for integers i < j, we let ]i, j[

denote {i, i + 1, i + 2, . . . j} throughout), the additive
inverse of the potential is given by

−V (x) =
∑

(i,j)∈I∆̂

Gmi max
αi,j≥0

(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
(3.29)

where I∆ .
= {(i, j) ∈]1, N [ | j > i} and x =

{x1, x2, . . . xN} ∈ X .
= (IR3)N . Throughout, we will

largely suppress the dependence of V on the body
masses. It is worth noting that the term in brackets

in (3.29) is negative for αi,j >
√

2
|xi−xj | . Let A .

= {α =

{αi,j}(i,j)∈I∆ |αi,j ∈ [0,∞)∀(i, j) ∈ I∆ }, and note that

A ⊂ IRI
∆

where I∆ .
= #I∆. Then (3.29) may be writ-

ten as

−V (x) = max
α∈A
{−V̂ (x, α)}(3.30)

where

−V̂ (x, α)
.
=
∑

(i,j)∈I∆̂

Gmi(αi,jmj)

[
1− (αi,j |xi − xj |)2

2

]
.

(3.31)
With n

.
= 3N , let ξ(·) be a trajectory of the N -body

system satisfying (2.18). The running cost will be

L(ξ(r), ξ̇(r)) = T (ξ̇(r))− V (ξ(r)),(3.32)

where V is given by (3.30) and

T (y)
.
=

∑
(i,j)∈I∆

mi|yi|2

2
,(3.33)

for y ∈ X . Note also that for x, z ∈ X , one continues to
have

ψc(x, z) =
c

2
|x− z|2 =

c

2

N∑
i=1

|xi − zi|2.(3.34)

With these specific definitions, the least-action payoff,
J̄c, becomes

J̄c(t, x, u, z) =

∫ t

0

T (u(r)) +
∑

(i,j)∈I∆

[
Gmimj

|ξi(r)− ξj(r)|

]
dr

+ψc(ξ(t), z)

=

∫ t

0

T (u(r)) + max
α∈A
{−V̂ (ξ(r), α)} dr

+ψc(ξ(t), z).(3.35)

As in (2.22), we let the value be given by

W c(t, x, z) = inf
u∈U∞

J̄c(t, x, u, z).(3.36)

We assume:
∃ δ̄, ε̄ > 0 such that ∀ ε-optimal uε ∈ U∞ with
ε ∈ (0, ε̄], and letting ξε denote the corresponding
trajectory, we have |(ξε)i(r) − (ξε)j(r)| ≥ δ̄ ∀ r ∈
[0, t], ∀ (i, j) ∈ I∆.

(A.N1)



Let

A∞ .
=
{
α : [0,∞)→ A|∃K <∞, {τk}k∈]0,K[

such that τ0 = 0, τK = t, τ(k−1) < τk ∀k,
and α[τk−1,τk) ∈ C([τk−1, τk);A)∀k ∈]1,K[

}
,(3.37)

and we note that, of course, C([0,∞);A) ⊂ A∞.
Also, we replace the time-independent potential energy
function with

−V α(r, x)
.
= −V̂ (x, α(r))(3.38)

=
∑

(i,j)∈I∆̂

Gmi(αi,j(r)mj)

[
1− (αi,j(r)|xi − xj |)2

2

]
.

Theorem 3.1. For all t ≥ 0 and all x, z ∈ IRn,

W c(t, x, z) = inf
u∈U∞

max
α(·)∈A∞

Jc(t, x, u, α, z),

where

Jc(t, x, u, α, z)
.
=

∫ t

0

T (u(r))− V α(r, ξ(r)) dr

+ψc(ξ(t), z).

Proof. Let ε, δ̄ be as in Assumption (A.N1). Let
U∞ε denote the set of ε-optimal controls, uε ∈ U∞.
Obviously,

W c(t, x, z) = inf
u∈U∞ε

J̄c(t, x, u, z)

= inf
u∈U∞ε

∫ t

0

T (u(r))(3.39)

+ max
α∈A

∑
(i,j)∈I∆̂

Gmi(αi,jmj)

[
1− (αi,j |ξi(r)− ξj(r)|)2

2

]
dr

+ψc(ξ(t), z).

Note that, as in the proof of Lemma 3.2, for ρ > 0

argmax
αi,j∈[0,∞)

Ĝmi(αi,jmj)

[
1− (αi,jρ)2

2

]
=

√
2

3

1

ρ
.

(3.40)

Let ᾱ∗(x) be given by

ᾱ∗i,j(x
i, xj)

.
=

√
2

3

1

|xi − xj |
,(3.41)

for all (i, j) ∈ I∆, ∀|xi − xj | > 0, where the domain
is implicitly clear. Further, given u ∈ U∞ε and corre-
sponding ξ, let α∗(r) = α∗(r;u(·)) = {α∗i,j(r) | (i, j) ∈
I∆} ∈ A∞ be given by

α∗i,j(r) = ᾱ∗i,j(ξ
i(r), ξj(r)), ∀r ∈ [0, t).(3.42)

Note that by (A.N1), for u ∈ U∞ε , α∗ ∈ A∞ (by
which we mean there exists an extension of α∗ past the
terminal time, t, in A∞).

By (3.39),

W c(t, x, z) ≥ inf
u∈U∞

max
α(·)∈A∞

Jc(t, x, u, α, z).

On the other hand, combining (3.39)–(3.42), one has

W c(t, x, z) = inf
u∈U∞ε

Jc(t, x, u, α∗, z),

which completes the proof.

Corollary 3.1. For all t ≥ 0 and all x, z ∈ IRn,

W c(t, x, z) = inf
u∈U∞

max
α(·)∈Ā∞

Jc(t, x, u, α, z),

where Ā∞ .
= L∞([0,∞);A).

We specifically note that the problem of finding the
fundamental solution of the TPBVP for the N -body
problem has been converted to a differential game. In
a heuristic sense, one may think of the problem now
as not only a search over possible world lines of the
bodies, but as also including a search over negotiated
potentials between the bodies. Again heuristically,
one may think of the potentials, not as fields existing
throughout space but as the opposing player in a game
interpretation. The first player minimizes the action
at each moment, with immediate effect on the kinetic
term and integrated effect on the other terms, while
the second player maximizes the potential term at each
moment. The analytical gain obtained through the use
of this viewpoint is that it allows one to express the
potential energy as a quadratic form.

We note that (3.39) is a non-standard form for
dynamic games. The inf / sup is neither in terms of non-
anticipative strategies (c.f., [2, 7]), nor in terms of state
feedback controls. This is due to the very simple form
of the maximizing player, which is only a representation
for the running cost.

Lemma 3.3. W c(t, x, z) ∈ [0, D̄t+ψc(x, z)] for all t ≥ 0
and all x, z ∈ IRn, where D̄ = (G/δ̄)

∑
(i,j)∈I∆ mimj.

Lemma 3.4. For ε-optimal uε ∈ U∞, with ε ∈ (0, 1],
we have ‖u‖L2(0,t) ≤ 2

m̄ (D̄t + ψc(x, z) + 1), where
m̄

.
= mini∈N mi.

Lemma 3.5. For any t0 > 0, W c(t, x, z) is semiconvex
in x, uniformly in (t, x, z, c) ∈ [t0,∞) × IRn × IRn ×
[0,∞].



The HJB PDE associated with our problem here is

0 = − ∂
∂tW (t, x, z)−H(x,∇xW (t, x, z))

.
= − ∂

∂tW (t, x, z)

+ inf
v∈IRn

sup
α∈A

{
1
2v
′Mv − V̂ (x, α) + v′∇xW (t, x, z)

}
.(3.43)

Note that the right-hand side of (3.43) is separated (and
in fact, the Isaacs condition is satisfied). Consequently,
we may write (3.43) as

0 = − ∂
∂tW (t, x, z)

− 1
2

(
∇xW (t, x, z)

)′M−1∇xW (t, x, z)

+ sup
α∈A
{−V̂ (x, α)}.(3.44)

Let

Dδ̄ .
=
{
x ∈ IRn

∣∣ |xi − xj | > δ̄ ∀(i, j) ∈ I∆
}
,(3.45)

where δ̄ is as indicated in Assumption (A.N1). Also,
for t > 0, let

Dδ̄t
.
=
{
W : [0, t]× D̄δ̄ → IR

∣∣
W ∈ C([0, t]× D̄δ̄) ∩ C((0, t)×Dδ̄)

}
.(3.46)

Theorem 3.2. Let c ∈ (0,∞), t > 0 and z ∈ Dδ̄.
Suppose W ∈ Dδ̄t satisfies (3.43) on (0, t) × Dδ̄, and
initial condition

W (0, x, z) = ψc(x, z), x ∈ Dδ̄.(3.47)

Then, W (t, x, z) = W c(t, x, z) for all x ∈ Dδ̄. In par-
ticular, for any ε-optimal uε with ε ∈ (0, ε̄], W (t, x, z) ≤
J̄c(t, x, uε, z), and further, with the controller u∗(s)
given by u∗(s) = ũ(s, ξ̃(s)) where ξ̃(s) is generated by
feedback ũ(s, x)

.
= ∇xW (t−s, x, z), one has W (t, x, z) =

J̄c(t, x, u∗, z).

We now proceed to consider the game where the
order of infimum and supremum are reversed. Due to
the very simple form of this particular game, with the
α controller acting only on the running cost and that
being in a separated form, an unusual equivalence can
be obtained. Let

W c(t, x, z)
.
= sup
α∈Ā∞

inf
u∈U∞

Jc(t, x, u, α, z).(3.48)

By the usual reordering inequality, one immediately has

W c(t, x, z) ≤W c(t, x, z) ∀(t, x, z) ∈ [0,∞)×IRn×IRn.
(3.49)

It will be helpful to introduce more notation. For
any α ∈ Ā∞, we let

Wα,c(t, x, z)
.
= inf
u∈U∞

Jc(t, x, u, α, z).(3.50)

The corresponding Hamiltonian will be

Hα(r, x, p)
.
= V α(t, x) +

1

2
p′M−1p.(3.51)

Of course, one immediately sees that

W c(t, x, z) = sup
α∈Ā∞

Wα,c(t, x, z)(3.52)

for all (t, x, z) ∈ [0,∞)× IRn × IRn.
In a similar fashion to the above verification results,

we have the following.

Theorem 3.3. Let c ∈ (0,∞), z ∈ Dδ̄ and α ∈ Ā∞.
In particular, suppose that α is piecewise continuous,
with possible discontinuities only at 0 = τ0 < τ1 < τ2 <
. . . τK = t with K < ∞. Let τ0 = 0, τK = t and
Ot .

=
⋃
k∈]0,K−1[(τk, τk+1). Suppose Wα ∈ C((0, t) ×

D
δ̄
; IR) ∩ C1(Ot ×Dδ̄; IR) satisfies

0=− ∂
∂rW

α(r, x, z)−Hα(t− r, x,∇xWα(r, x, z))(3.53)

(r, x) ∈ Ot ×Dδ̄,

Wα(0, x, z) = ψc(x, z), x ∈ Dδ̄.(3.54)

Then, Wα(t, x, z) ≤ Jc(t, x, u, α, z) for all x ∈ IRn,
u ∈ U∞. Furthermore, Wα(t, x, z) = Jc(t, x, u∗, α, z)
for the input u∗(s)

.
= −M−1∇xWα(t−s, x, z), s ∈ [0, t].

Consequently Wα(t, x, z) =Wα,c(t, x, z).

Now let u∗ be the optimal controller for our orig-
inal problem (with potential energy function, V (·)),
that is u∗(s) = ũ(s, ξ̃(s)) where ξ̃(s) is generated by
feedback ũ(s, x)

.
= ∇xW c(t − s, x, z). Let ξ∗(s) be

the resulting trajectory, where of course, ξ∗ ≡ ξ̃. For
s ∈ [0, t], let α∗(s) be given by (3.42), that is, α∗i,j(s) =

α∗i,j(s, u
∗(·)) .

= ᾱ∗i,j([ξ
∗]i(s), [ξ∗]j(s)), where we remind

the reader that ᾱ∗ is given in (3.41).

Lemma 3.6. Let t ∈ (0,∞) and x, z ∈ Dδ̄. Let u† be a
critical point of J

c
(t, x, ·, z), and let the corresponding

state trajectory be denoted by ξ†. Let α∗(r)
.
= ᾱ∗(ξ†(r))

for all r ∈ [0, t) where ᾱ∗ is given by (3.41). Then, u†

is a critical point of Jc(t, x, ·, α∗, z).

By the choice of u∗ as a minimizer and Lemma 3.6,
we immediately have

Lemma 3.7. Let t ∈ (0,∞) and x, z ∈ Dδ̄. Then, u∗ is
a critical point of Jc(t, x, ·, α∗, z).

Lemma 3.8. Let x, z ∈ Dδ̄. Let t̄ = t̄(δ̄)
.
=√

2δ̄3

3Gmaxi3]1,n[(
∑

j>i
mj)

=
√ √

3δ̄3
√

2Ĝmaxi3]1,n[(
∑

j>i
mj)

. If

t ∈ (0, t̄), then Jc(t, x, ·, α∗, z) is strictly convex, and
further, u∗ is the minimizer of Jc(t, x, ·, α∗, z).



Theorem 3.4. If t ∈ [0, t̄), then

W c(t, x, z) = W c(t, x, z) ∀(x, z) ∈ Dδ̄ ×Dδ̄.

By Theorem 3.4 and (3.52), one also has:

Corollary 3.2. If t ∈ [0, t̄), then

W c(t, x, z) = W c(t, x, z) = sup
α∈Ā∞

Wα,c(t, x, z)

for all (x, z) ∈ Dδ̄ ×Dδ̄.

Recall that the fundamental solution of interest is
obtained in the c→∞ limit.

Theorem 3.5. W∞(t, x, z) = supα∈Ā∞Wα,∞(t, x, z)

for all t ∈ [0, t̄) and x, z ∈ Dδ̄.

3.1 Fundamental Solution as Set of Riccati
Solutions We will find that the fundamental solution
may be given in terms of a set of solutions of Riccati
equations.

We look for a solution, W̆α,c, of the form

W̆α,c(t, x, z) = 1
2

[
x′P ct x+ 2x′Qctz + 1

2 z
′Rct z

+γct
]
,(3.55)

where P·, Q·, R·, γ· implicity depend on the choice of
α ∈ Ā∞. In particular, we suppose that Pt has the
form

P ct =


pc,1,1t I3 pc,1,2t I3 . . . pc,1,Nt I3
pc,2,1t I3 pc,2,2t I3 . . . pc,2,Nt I3

...
...

. . .
...

pc,N,1t I3 pc,N,2t I3 . . . pc,N,Nt I3

(3.56)

where each of the pi,jt are scalars and I3 denotes the
3× 3 identity matrix. We also suppose analogous forms
for Qt and Rt. Lastly, we suppose Pt, Rt are symmetric.
Recall from Theorem 3.3 that W̆α,c will need to satisfy
(3.53) and (3.54). The initial condition (3.54) implies

pc,i,i0 = rc,i,i0 = −qc,i,i0 = c, ∀i ∈ N ,
pc,i,j0 = rc,i,j0 = −qc,i,j0 = 0, ∀i 6= j,

γ0 = 0.

From (3.55) and (3.56), we have

∂
∂tW̆

α,c(t, x, z) = 1
2

{ ∑
i,j∈N

[
ṗc,i,jt [xi]′xj + 2q̇c,i,jt [xi]′zj

+ṙc,i,jt [zi]′zj
]

+ γ̇t

}
.(3.57)

Next, note that

1

2
[∇xW̆α,c]′M−1∇xW̆α,c =

1

2

∑
i∈N

1

mi

∣∣∇xiW̆α,c
∣∣2.

Also,

∇xiW̆α,c(t, x, z) =
∑
j∈N

[
pc,i,jt xj +

qc,i,jt + pc,j,it

2
zj
]

which implies,∣∣∇xiW̆α,c(t, x, z)
∣∣2 =

∑
j,k∈N

pc,i,jt pc,i,kt [xj ]′xk

+pc,i,jt qc,i,kt [xj ]′zk + qc,i,jt pc,i,kt [zj ]′zk

+qc,i,jt qc,i,kt [zj ]′zk.(3.58)

Substituting (3.57)–(3.58) into (3.53), and collecting
like terms, we find

ṗc,i,jr =


−
∑
k∈N

1
mk

(pc,i,kr )2

−
∑
k 6=i Ĝmimk(αi,j(t− r))3 if i = j,

−
∑
k∈N

1
mk
pc,i,kt pc,k,jr

+Ĝmimj(αi,j(t− r))3 if i 6= j,

q̇c,i,jr = −
∑
k∈N

1

mk
pc,i,kr qc,k,jr ,

ṙc,i,jr = −
∑
k∈N

1

mk
qc,k,ir qc,k,jr ,

γ̇cr = 2
∑
i6=j

Ĝmimjαi,j(t− r).

Now let P̄ ct , Q̄ct and R̄ct denote the N × N matrices
consisting of pc,i,jt , qc,i,jt and rc,i,jt , respectively, where
we note that by our above assumptions, P̄ ct and R̄ct are
symmetric. Also let ν̄t denote the N × N matrix of
terms given by

ν̄i,jt =

{
−
∑
k 6=i Ĝmimk(αi,j(r))

3 if i = j,

Ĝmimj(αi,j(r))
3 if i 6= j.

(3.59)

Then, we have the Riccati system

˙̄P
c

t = −P̄ ctM−1
0 P̄ ct + ν̄t(3.60)

˙̄Q
c

t = −P̄ ctM−1
0 Q̄ct(3.61)

˙̄R
c

t = −
[
Q̄ct
]′M−1

0 Q̄ct(3.62)

γ̇t = 2
∑
i 6=j

Ĝmimjαi,j(r).(3.63)

where M0 is the diagonal N ×N matrix with diagonal
elements (m1,m2 . . .mN ). As the above Riccati system
has a solution (up to the time of the vertical asymptote),
this validates the assumption of solution form (3.55).



Now, note that by Theorem 3.5

W∞(t, x, z) = sup
α∈Ā∞

Wα,∞(t, x, z)

= sup
α∈Ā∞

lim
c→∞

Wα,c(t, x, z)

which by (3.55),
= sup
α∈Ā∞

lim
c→∞

1
2

[
x′P ct x+ 2x′Qctz + 1

2 z
′Rct z + γct

]
,

= sup
α∈Ā∞

1
2

[
x′P∞t x+ 2x′Q∞t z + 1

2 z
′R∞t z + γ∞t

]
.

(3.64)

Let G(t) = G(t;m1,m2, . . .mN ) be given by

G(t) =
{(
P∞t , Q∞t , R

∞
t , γ

∞
t

) ∣∣α ∈ Ā∞ } .(3.65)

We see that

W∞(t, x, z) = sup
(P,Q,R,γ)∈G(t)

1
2

[
x′Px+ 2x′Qz + 1

2 z
′Rz + γ

]
which by the linearity in (P,Q,R, γ) of the expression
inside the supremum,

= sup
(P,Q,R,γ)∈Ĝ(t)

1
2

[
x′Px+ 2x′Qz + 1

2 z
′Rz + γ

]
,(3.66)

where Ĝ(t)
.
= 〈G(t)〉. Consequently, we will see that

the set Ĝ(t) = Ĝ(t;m1,m2, . . .mN ) will represent the
general solution of the N -body TPBVP. With the
symmetry of P,R, one can see that this set lies in
IR2N2+N+2, a finite-dimensional space.

Of course, one may be concerned about computa-
tion of the suprema in (3.64) and (3.66). Specifically,
one would like to know whether the object inside the
supremum in (3.64) is concave. In this regard, it is
helpful to define

Pct = Pct (α)
.
= (P ct Qct(Q

c
t)
′ Rct ) .(3.67)

We will say that a matrix-valued function, say P :
Ā∞ → L(IR2n; IR2n) is concave if its domain, Ā∞, is
convex and P(α0 + δα̂)− 2P(α0) + P(α0 − δα̂) � 0 for

all α0 ∈ Ā∞, α̂ ∈ L∞([0,∞); IRI
∆

) and δ ∈ IR such that
α0 + δα̂ ∈ Ā∞, where we find it useful to include δ in
this definition. Here, we use the standard partial order
given by P � P̂ if and only if P̂ − P is non-negative
definite.

Lemma 3.9. Pct is a concave function of α ∈ Ā∞.

Theorem 3.6. For all t ≥ 0, c > 0 and x, z ∈ IRn,
Wα,c(t, x, z) and Wα,∞(t, x, z) are concave in α.
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