An efficient numerical method for optimal control
problems with low dimensional nonlinearities
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Abstract—A class of finite time horizon optimal control
problems with nonlinear dynamics and non-quadratic costs is
considered. Stat-quad duality is used to transform the problem
into a canonical form. A derivative-free numerical method that
only uses fixed-point iterations is devised to solve it efficiently,
the convergence of which is limited only by the existence of the
staticizing control process (arg stat). For problems with mild and
low-dimensional nonlinearities, this leads to dimension reduction
of the control space. A 4-D and a 25-D control problem are solved
to demonstrate its accuracy and scalability.

I. INTRODUCTION

Numerical solution of optimal control problems is often
challenging, especially for nonlinear problems with high-
dimensional state space and long time horizons. Such nonlin-
ear optimizations arise not only from control design in robotics
and other real-time applications [1], [2], but also naturally
from models of conservative mechanical systems, such as
gravitational systems [3], [4].

Staticization (i.e. locating stationary points) of a function is
a notion related to extremization, but with distinct properties
and some peculiarities. The definition of staticization will be
given in §II-A. Here we present some cases that differentiate
staticization from extremization. In [5], Gray and Taylor noted
that conservative mechanical systems evolve along stationary
trajectories of the action functional, which are not necessarily
the minimizers. Furthermore, the equilibria of differential
games can sometimes be viewed as the stationary points of
some cost functional. This allows optimal control and game
problems to be considered as stationary control problems in
a unified way. The reader is referred to [6], [7], [8] for
motivations and connections to extremization.

Traditionally, optimal control problems are solved using
some form of dynamic programming, Pontryagin’s principle,
or other direct methods from nonlinear programming [9]. Cer-
tain differential games can also be solved using similar tools
to those used in optimal control, such as Hamilton-Jacobi-
Issac equation and Pontryagin’s principle [10]. Continuous-
time dynamic programming typically requires solving the
Hamilton-Jacobi-Bellman (HJB) equation, which suffers from
the curse-of-dimensionality, whereas Pontryagin’s principle re-
quires solving a two-point boundary value problem (TPBVP),
which is computationally challenging for long time durations.
As such, these methods are usually seen as distinct approaches
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to the same problem with very dissimilar characteristics. That
said, some hybrid methods have also been proposed, which
mitigate the shortcomings of each method [11], [12].

In this paper, we treat a class of finite time horizon con-
trol problems with non-quadratic cost function and nonlinear
dynamics, where we staticize the cost functional.

The effort here is based on the results in [13], [14], [15],
where stat-quad duality is used to obtain a representation of
the value function that corresponds to a “simpler” staticization
problem. The dimension of the space of control input in
the new problem roughly corresponds to the “dimension of
nonlinearity” of the original problem. In particular, if the
nonlinearity in state dynamics and the non-quadratic part in
the running cost are defined on a subspace of the state-
costate space (which are common, for example, in robotics
and other rigid-body systems [1]), the control dimension of
the staticization problem may be reduced.

In the current development, we propose a new algorithm
that subdivides long duration problems into smaller problems
using the dynamic programming principle, and solves each
subproblem using Pontryagin’s principle. A time-varying co-
ordinate transform is used on a per-subinterval basis to avoid
propagating differential Riccati equations (DRE) directly for
long durations, which ensures that the DRE solution does not
blow up.

The proposed algorithm has a multiple shooting structure
due to division of the interval. Although commonly applied to
optimal control problems, multiple shooting is usually solved
using derivative-based solvers such as Newton’s method or
gradient descent [16], [17], which incur additional computa-
tional cost to upkeep the Jacobian. However, the proposed
algorithm involves fixed-point iterations only and is derivative
free. As such, the algorithm performs relatively well for high
dimensional problems.

This paper is structured as follows. The optimal control
problem of interest and assumptions are specified in Section
II, followed by the definition of stat-quad duality and the
equivalent problem with linear time-invariant dynamics. The
numerical method is proposed in Section III. Two numerical
examples are shown in Section IV. Conclusions and future
directions are indicated in Section V. In the interest of space,
many results will be stated without proof.

Notationally, we adopt the following conventions: ’ denotes
transpose. I,, denotes the n x n identity matrix and 0,,xp
the m X n zero matrix. Standard notation (g) is used for
partial derivatives with respect to time. V denotes spatial
derivative and V2 second derivative. Where unambiguous, we



omit the variable(s) with respect to which the derivative is
taken; otherwise we indicate them using subscripts on V.
i,7,k,l,m,n € N are used freely for indexing and counting.
o, B, u,v,& ¢ are used to denote processes in general. = is
used to differentiate definitions from equalities, and the over-
dot notation is used for total time derivative.

II. THE OPTIMAL CONTROL PROBLEM AND ITS STAT-QUAD
DUAL EQUIVALENT PROBLEM

A. Problem Definition

Let 0 <t < T < oo denote the initial and terminal time and
s € [t,T] denote an arbitrary intermediate time. We consider
the control problem with state process £ given by

§(s) = AL(s) + Lf(M&(s)) + Bu(s),  &(t) =z € R", (1)

where A € R™*", B € R™J, [, € R™, M € RE*n, f
R* — R, and v € L%((¢,T);R’) denotes the control process.
The cost function J is given by

T(ust,2) = H(E(T)) + @
T
|05 + 50 Cels) + gule) D) s,

where C € R™ ", D € R/*J are symmetric invertible
matrices, ¢ : R¥ = R, and ¢ : R* — R.

The following regularity conditions on f, ¢, are assumed.

Assumption 1: f and ¢ are twice continuously differentiable,
and have uniformly bounded first and second derivative. ¥ €
C*(R™;R) has bounded second derivative.

This problem deviates from the usual linear-quadratic-
regulator problem due to the nonlinear term f in the dynamics,
the nonquadratic term ¢ in the running cost, and that the
terminal cost 1) need not be quadratic.

The proposed algorithm will exploit the fact that f, ¢ do not
depend on the full state « but on Mz, and that f does not
map directly into R", but “broadcast” through a linear map L.
As the nonlinearity f, ¢ are introduced through rank-deficient
matrices M and L, we say that the control problem (1)-(2)
has “low-dimensional nonlinearity”.

We consider the staticization (stat) of the cost function.
Loosely speaking, staticization of a differentiable function is
equivalent to locating its critical points and critical values. We
take the following characterization of arg stat from [7, Lemma
1] as its definition here.

Definition 1 (argstat,stat): Let V' be a Hilbert space and
let U C V be open. For a (Fréchet) differentiable function
G : U — R, we define

argstat G(u) = {u € U : %&(a) = 0}.
uelU
If {G(u) : u € argstat, .y G(u)} is a singleton; that is, if
there exists some a € R such that

{G(u):u e ariges[gat G(u)} = {a}.

Then stat,ey G(u) is defined to be a. Otherwise,

stat,ey G(u) is undefined.

If G is continuously differentiable and convex in « and has
a minimum, then stat,cy G(u) exists and is its minimum.

Assuming staty,er2((¢,7);rs) J(u;t, ) exists (i.e. is single-
valued) for all ¢,z € (0,7) x R™, we consider the value
function

W(t,z) = stat

u€L?((t,T);R7)
The HJB equation corresponding to the staticization prob-
lem above is given by

J(u;t,x).

0=—2W(s,z)— H(x, VW (s,z)) 3)

with terminal condition W (T, -) = ¢, where the Hamiltonian
H is given by

H(zx,p) = st%t{%x’()’x + 2v'Dv + ((Mx)
veERI
+p'[Ax + Lf(Mz) + Bul}.
We see that the stat is attained at v = —D~'B’p, and thus
H(z,p) = %x’C’z +p'Ax — %p’BDilB’p 4)
+(Mz)+ (L'p) f(Mz).

=N (Mz,L'p)

It was shown in [18, §2.3, §3.3] that the value function W is
the viscosity solution to (3) if H and ¢ are convex. A similar
verification theorem for more general staticization problems
can be found in [19].

B. Stat-quad duality

We group the non-quadratic terms in (4) as A/. The follow-
ing assumption is made in order to take the stat-quad dual of

N (o, y1) = L(yo) + (v1)" f(yo)

5 . el Opxy
Let C = —
O c2ly

acten <5 [i] ]

Assumption 2: ¢1,co € R\ {0} are such that

}. For any a € R* b € R!, define

N(y07 yl) = (a,bs)tealﬂngrl {N(a’a b) + Qé(yOa Y1, a, b)}a (5)
where
-/\v[(avb) = stat {N(yoayl) _Qé(y()ayha'ab)}'

(yo,y1) ERFH

That is, N and N are stat-quad dual of each other.

Remark 1: The convexity of N\ is less critical here compared
to the Legendre-Fenchel dual, because stat is taken instead
of inf or sup. In this regard, stat-quad dual is more akin to
semiconvex dual, since a quadratic function is added to N to
aid the duality.

If A has uniformly bounded second derivative, taking
c1,c2 > 2sup,, . |V2N (3o, 1)| is sufficient for Assumption
2. However, since the y; argument represents L’ VW, this
usually does not hold a priori. Instead, one may use a local
bound of L'VWW on the region of interest to restrict the range
of Y-



Remark 2: C does not need to be diagonal in general and
can be chosen to facilitate computation. The reader may refer
to [7], [20] for discussions of properties of stat-quad dual.

We now rewrite (3) using stat-quad duality. For the sake of
space, we omit the arguments for W, and W shall implicitly
refer to W (s, x) in the rest of this section. Using (5) in (4)
and expanding @), we may rewrite H as:

H(x,p) = $2'Cax +p'Az — 3p'BD™'B'p
—1—( bs)tat l[/\u/'(cu b) +Qa(Mz —a,L'p—b)]
=12/Ca+p' Az — IpTp+ (6)
v C1 2 C2 2 /
(aﬁbs)tealépkﬂ N(a,b) — §|Mac —al® — 5|b\ + cop’ L],

where I' = BD~ !B’ + ¢, LL'. We note that " is symmetric.
By considering its singular value decomposition, there exist
matrices @ € R" ™ and A € R™*™ such that I' = QAQ’
and A is invertible. Observe then

~4p'Tp = stat [Qu+ §o/A "] Vp e R,

and therefore,

H(z,p)
=12/Ca +p' Az + vséc]}%:gb [p'Qu + $v'A 0]

+ stat  [N(a,b) — C—1|J\Mc —al? - 9|b|2 + cop' LY),

(a,b)ERK+

=12'Cax+p'Az+  stat
(v,a,b)eRm+F+!

{P'Qu+ 2v'A o+

N(a,b) — E|Ma: —ar— %2|b|2 + cop/ Lb}.

The stat over v and a, b are independent of each other, and are
combined to form a Hamiltonian of a new staticizing control
problem. Substituting H in (7) into (3), we obtain

'Cx + (VW) Ax ®)
+ stat{ VW) Qu+ 3v'A™ v + co(VW)'Lb

(v,a,b)cR™ TR+
+Na, 2 - 2P}
Observe that (8), along with the original boundary condition

W(T,-) = 1, is the attendant HIB equation for an optimal
control problem with linear time-invariant dynamics

{(s) = AC(s) + Qu(s) + c2LB(s), ((t)=z €R", (9)
and cost function J given by
j(l/,Oé,ﬁ;t,l‘) =
T 1 / 1 IA—1 \ 7/
| 3CCls) + 5 A (s) + Nia(). ()

1B(s)[? ds + v (¢(T)).
(10)

0=— (')W 1

b) — %|Ma: —q

- SIM¢s) —als) - T

We again consider the value function

W(t, x) = stat j(y, a, B;t,x),

(v,a,B)EVXAXB

(1)

where V = L?((t,T);R™), A = L?((¢t,T);R*), and B =
L2((t, T):RY).

We note that (3) and (8) are equivalent. By unlqueness of
viscosity solution to (3), one concludes that W=W.

C. An equivalent ODE formulation for arg stat

Let t € [0,7],z € R™ be given. The staticization problem
(9)—-(11) can be viewed as a problem of finding stationary
points of J(-;t,z), subject to an ODE constraint (9).

Introducing Lagrange multipliers to the problem (9)—(11)
converts it into an equivalent unconstrained staticization prob-
lem. Let W12 = W12((¢,T);R™) denote the respective
Sobolev space. Define G : W12 x V x A x B — (WhH2)*

G(& v, B) th (x = £(1)'h(t) +

/t (AC(s) + Quls) + caLB(s) — &())'h(s) ds.

We use € (instead of () to denote the state process in the
unconstrained problem, to emphasize that £ is an arbitrary
state process a priori decoupled from v, «, 5. G now carries
information about the state dynamics, in the sense of the
following lemma.

Lemma 1: G(£,v,a, 8) = 0 iff (9) holds (in £).

We now introduce the multiplier (costate) A and define 7 :
W2 xVx AxBxWh2 - R as

j(é,u,a,ﬂ,)\) = G(éJ/,O{,B)[)\] +
T
/t %g(s)’Cé(s) + %V(s)’Afly(s) +./\u/'(oz(3),,3(s))
— M) — als)? = FIBE)P ds +p(¢(T)).

Each critical point (§,v,«,3,A) of the Lagrangian j
corresponds a constrained critical point (v, a, 8) of J 1
Prop. 43.21].

For y,z € R",a € R*. b € R, v € R™, define

H(z,v,a,b,y) = 32'Cz+ 30/A v+ N(a,b)
- %1|Mz —a?— %\le + 9/ (Az + Qu + o Lb).
Then r
F(ewa.p.0) = [ HE).v(s).0(). 8. A(5) ds

T
+(E(T)) — [ Als) €(s) ds + A1) (x — ¢(1))

= /tTH<<<s> (s

T
+ / A(s)' €(s) ds + D(&(T)) + A1)z — NT) €(T).

Considering the Fréchet derivative of 7 with respect to
A€ Wh2 and v, € V x A x B, we conclude that
v*, o, f* must satisfy

OH ((5),0(s), a(s), B(s), A(s)) + hs = 0,

9z
(4(s),v(s), al5), B(s), A(s)) = &, =0,

0H
N

(v(s),a(s), B(s)) = argstat H(£(s),v,a,b,A(s)),
(v,a,b)eERM K41

(by parts) a(s), B(s), A(s)) ds

(12)



for almost every s € [t,T], with boundary conditions A\(T") =
V(£(T)) and £(t) = x. These equations are comparable to
those obtained by Pontryagin’s principle.

We see given each (z,y), in finding

(v*,a",b") =  argstat

(v,a,b) ERM+k+1
v can be staticized independently from a, b. In particular,

_ Mz
([#]) o
where 7(a,b) = (a,b) + C"'VN(a,b).
For the present problem, (12) reduces to
—A(s)' = ((s)'C = er(M((s) = a*(5))' M + A(s)a’(s)
C(s) = AL(s) + Qu*(s) + coLb*(s),
or more compactly:
0] Lo ol
As)|  |laM'M—-C —A’ A(s)

H(Z,’U,(L,b, y)>

v*(2,y) = —AQ'y and [Z:éj:zﬂ N

[ caLb* (((s), A(s)) }
—c1 M'a*(((s), A(s))
7 [¢(s) ¢(5), A(s))
=A[i) - { (€06, A(5) ] o
with boundary condition A\(T") = V¢(¢(T')) and ¢

By [21, Prop. 43.21], we have

Theorem 2: stat(, . gyevxAxB j(z/,a,ﬁ; t,x) is single-
valued if and only if there exists a unique solution (¢, \) to
the TPBVP (14). In that case, for a.e. s € (t,T),

argstat J(v,, B;t,x) = argstat H(((s), v, a, b, A(s)).
(v,a,B)EVXAXB (v,a,b)CR™+E+

III. NUMERICAL METHOD

We proceed to develop the numerical method for the stati-
cization problem (9)—(11). We note that the solution (¢*, A*) to
the TPBVP (14) with boundary condition A\(T') = V¢ ({(T)),
¢(t) = x also solves (14) with boundary condition {(t) = x
and A(7) = V¢ (¢*(7)) for any 7 € [t,T]. The ODE (14)
can be solved on [t,T] regardless of 7. This observation is
similar to the dynamic programming principle, which allows
us to partition problems with long time horizons into shorter
sub-problems, so as to solve longer time horizon problems
efficiently.

A. Short Duration Fixed-Point Iteration

We begin by treating the case where the time duration 7' —¢
is “short”. For notational simplicity, we suppress the time of
evaluation in ODEs where unambiguous.

The ¢ and A processes in (14) can be partially decoupled
to exploit the low dimensionality of this new problem and
simplify computation. Let R, S be the solution to the matrix

4 -4[3

with boundary condition R(t) = 0%, S(T) = L,.

(15)

We make the following assumption on the time horizon,
which will later be bypassed by employing the dynamic
programming principle.

Assumption 3: T — t is sufficiently small so that S(s) is
invertible for all s € [t, T].

In the following discussion, we assume R,S have been
found and aim to evaluate W at some given (¢, z).

For brevity, we denote p = [o/, 3]’. Consider the “open-
loop” system C ¢

[}J =A {)\] + Bp. (16)

Instead of treating ¢, A directly, we first apply a linear time-

varying change of variable. For each s € [t, T, let

o] = o, ST ]

- Onxn R p
Onxn S|4
—RS-! A _
51 } (I:clM/M _ C’] p+ B“)

_[A+RSTHC — et M'M)
- *Sil(cfclM/M)
+ ClRS_lM/ coL
_ClsilM/ Onxn
with boundary condition p(t) = = and ¢(T) =
R(T)q(T)).
Note that the dynamics of (p, ¢) does not involve g. Given
any pu € L?((t, T); R¥*), the solution to (17) is given by

(18)

I
| p— |
o &

(17)
Vi (p(T) +

pl(s) = @y +
/ S D, (c1R(T)S(1) "' M'a(T) + e LB(7)) dr
vw( t( T)+ R(T)q(T)) + (19)
/ S(r)"HC — ey M'M)pH (1) + 1 S(7) " *M'a(7) dr,
where <I>S7T is the state transition matrix associated with the
linear ODE
%@S s =(A+RS™HC —c;M'M))D, .
Define Y : L2((¢, T); R¥*) — C([t, T); R?"),
T:pe (P, q").
Every p process generates a (p, q) process via Y, which in

turn generates a new p process by closing the loop using (13),
as given by

w(p,q) =n" ({Of\i ]}fﬂ [ZD

(20)



The solution to the closed-loop system (14) will be found by
fixed-point iteration.

The next few results show that each of the maps involved
is Lipschitz and estimate their Lipschitz constant.

Lemma 3: 1~ (y) = y — C~'VAN(y). The inverse of 7
is C* with Lipschitz constant 2. In particular, (Vn(u))~?! is
bounded by 2 and Lipschitz in p with Lipschitz constant 4.
Similar to [13], the proof uses properties of stat-quad dual,
which we omit here.

The following result gives a Lipschitz bound on the terminal
condition.

Lemma 4: There exists some § € R such that whenever
T —t < ¢, there exists a unique continuously differentiable
function g : R™ — R™ such that

g(p) = Vio(p + R(T)g(p))

In particular, 4 can be chosen such that g is Lipschitz with
Lipschitz constant K, = 2sup,cgn | V29 (z)|.
Proof: Recall that R(t) = 0,,x, and V29 is bounded.

By continuity of R(-),S(-), there exists some § > 0 such that
2|R(7)| < (supgern |VZ(z)|)7t for all 7 € (¢t,t+ 6). In
particular, whenever T — ¢ < 6, we have |V2¢(2)R(T)| < %
for all z € R™.

We claim that (21) defines a contractive fixed-point iteration.
Indeed,

Vp € R™. 1)

Vst RT)a)| = V200 + RODQIR(T)| < 5.
By Banach fixed-point theorem, there exists a unique func-
tion g : R™ — R"™ such that (21) holds.
Denote F(p,q) =q— Vi (p+ R(T)q). By construction of
g, F(p,g(p)) = 0. Applying the implicit function theorem on
F yields that g(p) is differentiable and

(I,—V*P(p+R(T)g(p))R(T))Vyg(p) = V*¢(p+R(T)g(p)).

Therefore,

IVy(p)l
<|(In = V2 (p + R(T)g(p)R(T))"H|V*¥(p + Rry(p))l
<2 sup |VZ3(z)|.

zERn m

Lemma 5: Y is Lipschitz with Lipschitz constant
O(VT —1t). The Lipschitz constant also depends on
Cl, [M], |L|, sup, ey [Psels Koo SuPsepem) 1S(T) .
SUPseps,7) [R(T)].

Finally, we have the existence and uniqueness result.

Theorem 6: There exists a unique control pair (a*, 5*) €
A x B such that (16) and (20) hold, provided T — t is
sufficiently small.

Proof: Suppose T — t is sufficiently small so that YT
is Lipschitz with Lipschitz constant less than % Then the
composition p* o Y defines a contractive fixed-point iteration
on L2((t,T); R¥*!). By Banach fixed-point theorem, it admits
a unique fixed-point u* = [(a*)’, (8*)']. |

This shows that if V24 is uniformly bounded and T — ¢
is sufficiently small, the staticizing control problem (9)—(11)

can be solved on [t,T] using fixed-point iterations and the
convergence is guaranteed.

We note that one may find the value W (t,z) using (10),
(2), or rewrite N/ using the stat-quad duality in Assumption 2
to obtain an expression involving only N, p, q.

B. Extension to Longer Durations

For longer durations, we partition the interval [t,T] as
follows. Let t;, € [t,T] be a strictly increasing sequence
with to = ¢ and t;y = T. On each sub-interval [tg,tg41],
the optimal control problem can be solved using fixed-point
iteration as shown in Lemma 5, whereas each sub-intervals
are stitched together by the following algorithm, where the
terminal gradient is propagated towards ty. The convergence
of the iteration below is based on the dynamic programming
principle and requires that the second derivative of the value
function W is bounded on the domain concerned and over
[t, T). This tacitly assumes that W is C?2 in space for all (0, 7.

function SOLVE_P((t)N_., @, p1)

Returns (p*(tx))N_, as given by (18).

end function

function Q_INT((t%)_,, 1)

Returns (¢ (tx) — Vo(p(T) + R(T)q(T))N,.
end function

function VALUE(¢, z, (t;.c){c\/:o, n, g, €)

1 < Initial guess for p
P <« SOLVE_P((tx)N_y, z, 1)
Q@ < empty array of length N + 1

k+ N
while £ > 0 do
k+—k-—1

T < LINSPACE(tg, tg+1,M)
Find or recall (R(7))}_o: (S(7:))7_0
repeat
p < SOLVE_P(T, Py, 11)
if K +1= N then
Qr+1 < 9(pn)
else if |py + R(7,)Qk+1 — Pr+1| > € then
Pyt1 < pn + R(70) Qi1
k< k+2
break
end if
¢ QINT(7, ) + Qp.
1l i) < 0 (M(p + Rq), L'Sq)
Q1 <+ S+ q0
until ;4 ,) converges
end while
return W (o, z)

end function

Remark 3: We note that R, S are solutions of a time-
independent ODE (15).

The algorithm discretized all sub-intervals using n points;
that is, 7 has length n for each k. This is not necessary, but
this allows us to exploit the time-independence of (15), since
R and S can be reused rather than re-recomputed for each
sub-interval.



The inner loop that finds |y, +,.,) via fixed-point iteration
is similar to the Forward-Backward-Sweep method, whose
convergence is usually limited by the time horizon and the
problem structure [22]. The outer loop allows us to extend its
convergence to longer time horizons.

The relation between outer and inner loop can also be
thought of as a mutual recursion, where the inner loop solves
the optimal control problem on a short subinterval, but need
to solve it with the correct terminal gradient A({j4+1) =
Vi(&(tk+1)). This is delegated to the outer loop, which
retrieves that information from the next subinterval, that is,
the outer loop then runs the inner loop on the next subinterval
and returns the correct gradient. The process repeats until p
converges on the first subinterval.

IV. NUMERICAL EXAMPLES

Two numerical experiments are run on an Intel Core i9-
11900 processor. The algorithm is implemented in Python and
C++.

A. Motor control

A variant of the motor control problem in [1, §2.2] is solved
to test the accuracy of the algorithm.
Consider the state process (1) where

0 1 0 0 0
. |—-20 -1 0 O 1
A= 0 0 0 1|’ B= 0f’
0 0 -1 0 0
and L = [0,-1,0,0)', M = [1,0,0,0], f(z) = 20(sin(z) —

x). The cost function is given by

1 2m
Husta) = 1= [+ (5)=6a(5) +(€als)—6a(:) ds

The dualizing coefficients are taken to be ¢; = co = —2.

The time interval is divided into N = 22 parts, each taking
n = 50 steps. The value function was evaluated at 51 x 51
points on a 2-D subspace of the state space given by

{(x1,x2,$1,$2)/ L X1, T2 S R}

with target accuracy 10~ (in terms of the boundary condition
of (14)). The numerical results are plotted in Fig. 1.

The table below compares the proposed algorithm with the
generic solve_bvp function from SciPy. The two columns
list the average time to evaluate the value function at a point,
and the number of points at which the solver converged.

Solver Time per eval. | # converged
Stat-quad dual 142ms 2601
solve_bvp 122ms 2149

B. Diffusion equation with nonlocal spatial term

High dimensional control problems similar to the one con-
sidered in [23] is solved to test the scalability of the algorithm.
We consider a square domain discretized into a 5 x 5 uniform
grid as shown in Fig. 2.

Applying finite difference method on the grid yields a 25-
dimensional control problem as follows.

(b) Error in boundary condition

(a) Value function W(()’ 5
IMT) = Vo (C(T))]

o = N w Ao

(c) Gradient |VW (0,

I (d) Relative back-substitution er-
ror into HIB PDE (3)

Fig. 1: Results for Example A.

S I
—1-6-11-16-21—
*27‘771‘271‘772‘2*
*é*é*1‘3*1‘8*2‘3f
*2172‘)*1‘471‘972‘4*
75,1‘0,1‘5,2‘0,2‘57
S

Fig. 2: Grid configuration: numbers are the index for each
node.

Let A be the discrete Laplace operator and let B € R25*1
be given by

2 1=1,5,21,25
B, =<1 i=2,3,4,6,10,11, 15,16, 20,22, 23,24 ;
0 otherwise

then A€ + Bu is exactly the discrete Laplacian over the grid.
Let 19541 denote the 25 x 1 vector of ones. We consider the
state process given by

]125><1

—7d(z 13)2 44 —
- < r}; s>,5<0) ,

where f(z) = In(1 + €*) and d(¢,j) denotes the Euclidean
distance between node ¢ and j.
The cost function is given by

Tt = [ Guls) = €Y (GG +GiGaE()

2
+ cos (\/% Efil e_%d(i,lli)zfi(s)) ds

¢ = A+ Bu+ 2L



where G1, G5 computes the finite difference in the horizontal
and vertical direction over the grid.

The time interval [0,1] was divided equally into N = 5
parts. The dualizing coefficients were taken to be ¢; = 4 and
¢y = —3. The value function was then evaluated at 51 x 51 =
2601 points on a 2-D subspace of the state space defined by

{z1125%1 + zow : 1,22 € R},

where w € R?® is given by w; = %e‘éd(@m)% this means
that initial distributions are Gaussian distributions scaled by
9 and shifted by z.

The computations took about 140 minutes ( 3.2s per evalu-

ation). The numerical results are plotted in Fig. 3.

10710
%

1

(a) Value function W (0, -) (b) Error in boundary condition

IA(T) = Vo ((T))]

0.015

0.01

0.005

/-10

Bl — 0
0 [
10 10 X,

10
2 X 1 )

1

(c) Gradient |V (0, )|

1

(d) Relative back-substitution er-
ror into HIB PDE (3)

Fig. 3: Results for Example B.

C. Discussions

The parameters used in the examples are somewhat arbi-
trary. In general, the length of subdivisions should be chosen
to ensure a desirable convergence rate in fixed-point iterations.
On the other hand, n affects the evaluation of R and S, which
in turn affects the accuracy of p#, ¢*. The proposed algorithm
is slightly slower than the standard TPBVP solver. But it
does not employ any derivative-based root finding in shooting,
and have demonstrated better convergence properties than the
standard BVP solver.

V. CONCLUSIONS

A numerical method for solving optimal control problems
and computing value function is proposed, which employs a
multiple shooting structure to splice Pontryagin’s principle
and dynamic programming. The method exploits the low
dimensionality of nonlinearity in the control problem and
performs reasonably well for high dimensional problems.

In the current version of the algorithm, the size of the second
derivative of the value function V(¢34 1,-) limits the step size

ti+1 — tr. This is not ideal numerically, but might be worked
around by rearranging the fixed-point iteration equation. It
would also be interesting to investigate whether this approach
can be extended to more general control-affine problems.
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