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Abstract

The H∞ problem for a nonlinear system is considered. The corresponding dynamic program-
ming equation is a fully nonlinear, first-order, steady-state partial differential equation (PDE),
possessing a term which is quadratic in the gradient. The solutions are typically nonsmooth,
and further, there is non-uniqueness among the class of viscosity solutions. In the case where
one tests a feedback control to see if it yields an H∞ controller, or where either the controller
or disturbance sufficiently dominate, the PDE is a Hamilton-Jacobi-Bellman equation. The
computation of the solution of a nonlinear, steady-state, first-order PDE is typically quite
difficult. In a companion paper, we developed an entirely new class of methods for the ob-
taining the “correct” solution of such PDEs. These methods are based on the linearity of the
associated semi-group over the max-plus (or, in some cases, min-plus) algebra. In particular,
solution of the PDE is reduced to solution of a max-plus (or min-plus) eigenvector problem for
known unique eigenvalue 0 (the max-plus multiplicative identity). It was demonstrated that
the eigenvector is unique, and that the power method converges to it. In the companion paper,
the basic method was laid out without discussion of errors and convergence. In this paper, we
both approach the error analysis for such an algorithm, and demonstrate convergence. The
errors are due to both the truncation of the basis expansion and computation of the matrix
whose eigenvector one computes.

Key words: Nonlinear H∞ control, dynamic programming, numerical methods, partial dif-
ferential equations, max-plus algebra.

1 Introduction

We consider the H∞ problem for a nonlinear system. The corresponding dynamic programming
equation (DPE) is a fully nonlinear, first-order, steady-state partial differential equation (PDE),
possessing a term which is quadratic in the gradient (for background, see [1], [2], [18], [37] among
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many notable others). The solutions are typically nonsmooth, and further, there are multiple
viscosity solutions – that is, one does not even have uniqueness among the class of viscosity solutions
(cf. [32], [33]). The computation of the solution of a nonlinear, steady-state, first-order PDE is
typically quite difficult, and possibly even more so in the presence of the non-uniqueness mentioned
above. Some previous works in the general area of numerical methods for these problems are [3],
[7], [8], [15], [16], [21], and the references therein. In the companion paper [24] to this article, the
mathematical background and basic algorithm for a class of numerical methods for such PDEs was
discussed. This class of methods employs the max–plus linearity of the associated semi-group. It is
a completely new class of methods. The approach is appropriate for two classes of PDEs associated
with nonlinear (infinite time-horizon) H∞ problems. The first is the (design) case where one tests a
feedback control to see if it yields an H∞ controller; the corresponding PDE is a Hamilton-Jacobi-
Bellman (HJB) equation. In the case where the “optimal” feedback control is being determined
as well, the problem takes the form of a differential game, and the PDE is, in general, an Isaacs
equation. However, if the controller sufficiently dominates the disturbance, the PDE is still an HJB
equation, and this is the second case. There is a slight difference in that the second case makes use
of the min-plus algebra rather than the max–plus algebra. In this paper, we will consider only the
first case, so as to simplify the discussion. However, one can certainly generalize the discussion to
the second case.

The recent history of this new class of methods stems from a study of the Robust/H∞ filter ([31],
[13], [11]; see also [5], [20], [6]), which has an associated time-dependent, fully nonlinear, first-order
PDE. In [12], the linearity of the associated semi-group over the max-plus algebra was noted, and
provided a key ingredient in the development of a numerical algorithm for this filter. This linearity
had previously been noted in [23]. A second key ingredient (first noted to our knowledge in [12]) was
the development of an appropriate basis for the solution space over the max-plus algebra, i.e. with
the max–plus algebra replacing the standard underlying field. (See also [19], [22] for related work.)
This reduced the problem of propagation of the solution of the PDE forward in time to max–plus
matrix-vector multiplication – with dimension being that of the number of basis functions being
used. A key point here is that only a finite number of basis functions are used, and so one needs to
determine a bound on the induced errors.

Returning to the (design case) H∞ problem, the associated steady–state PDE is solved to deter-
mine whether this is indeed an H∞ controller with that disturbance attenuation level. (If there is a
non-negative, locally bounded solution which is zero at the origin, then it is such an H∞ controller;
see for instance [1], [36].) The Hamiltonian is concave in the gradient variable. An example of such
a PDE is

0 = H(x,∇W ) = −
[

1

2γ2
(∇W )Ta(x)∇W + (f(x))T∇W + l(x)

]
where the notation will be described further below. There are typically multiple solutions of such
PDEs – even when one normalizes by requiring W (0) = 0. In the linear-quadratic case, two of these
solutions correspond to the stable and anti-stable manifolds associated with the Hamiltonian. The
“correct” solution (i.e. the one corresponding to the available storage or value) was characterized
in [36] as the smallest, non-negative viscosity solution which is zero at the origin. In [33], [32], for
the class of problems considered here, a specific quadratic growth bound was given which isolated
this correct solution as the unique, non-negative solution satisfying 0 ≤W (x) ≤ C|x|2 for a specific
C depending on the problem data.

The max–plus based methods make use of the fact that the solutions are actually fixed points
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of the associated semi-group, that is
W = Sτ [W ] (1)

where Sτ is the semi-group with time-step τ > 0. (See (10) for a definition of the semi-group.) In
this case, one does not actually use the infinitesimal version of the semi-group (the PDE).

The max–plus algebra is a commutative semi-field over R ∪ {−∞} with the addition and mul-
tiplication given by

a⊕ b = max{a, b},
a⊗ b = a+ b

(2)

where the operations are defined for −∞ in the obvious way. Note that −∞ is the additive identity,
and 0 is the multiplicative identity. Note that it is not a field since the additive inverses are missing.
Roughly speaking, it can be extended to mimic the inclusion of additive inverses [4], but we do not
need that here. Note that since 0 is the multiplicative identity, we can rewrite (1) as

0⊗W = Sτ [W ]. (3)

In the companion paper [24] (and references therein), we showed that Sτ is linear over the
max–plus algebra. With this in mind, one then thinks of W as an infinite-dimensional eigenvector
(or eigenfunction) for Sτ corresponding to eigenvalue 0. If one approximates W by some finite-
dimensional vector of coefficients in a max–plus basis expansion, then (3) can be re-cast as a
finite-dimensional max–plus eigenvector equation (approximating the true solution). Thus, the
nonlinear PDE problem is reduced to the solution of a (max–plus ) linear eigenvector problem. In
[24], an algorithm was generated under the assumption that the actual solution was spanned by a
finite number of the basis functions. It also assumed exact computation of the finite–dimensional
matrix which had the solution as the eigenvector. (Uniqueness of the eigenvalue and eigenvector
were proven there.) In order to keep the paper at a reasonable size, further results regarding details
of the numerical methods, convergence proofs and error bounds were delayed to the current paper
(although one may note that [26], [27], [25] contain some of the main points).

Since, in reality, the value function would not have a finite max–plus expansion in any but the
most unusual cases, we must consider the errors introduced by truncation of the expansion. In
[17], the question was addressed in a broad sense. In [27], it was shown that as the number of
basis functions increased, the approximation obtained by the algorithm converged to the true value
function (assuming perfect computation of the matrix whose eigenvector one wants). We will now
obtain some error estimates for the size of the errors introduced by this basis truncation. We also
consider errors introduced by the approximation of the elements of the matrix corresponding to
the H∞ problem. Finally, these lead us to consider the relative rates at which the spacing between
the basis functions and the improvement in the time–propagation errors in the matrix element
computations must converge.

First we need to review some results from [24] and other earlier papers which will be needed
here. This is done in Section 2. In Section 3, we obtain a bound on the size of the errors in the
computation of the finite–dimensional matrix beyond which, one cannot guarantee that the method
will produce an approximate solution. Then in Section 4, we consider the errors in the solution
introduced by truncation of the basis functions. In Section 5, we consider the errors in the solution
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introduced by approximation of the elements of the finite–dimensional matrix. In Section 6, we
combine these to determine the relative rates at which the spacing between the basis functions and
the matrix element errors must go to zero together.

Portions of this paper have appeared previously in [29], [30] [27], [26], and [25], and the last two
specifically discuss aspects of the convergence and error analysis.

2 Review of the Max–Plus Based Algorithm

In this section, the H∞ problem class under consideration and accompanying assumptions are given.
This is followed by a review of previous results regarding the max-plus based algorithm which are
necessary for the error analysis to follow.

We will consider the infinite time–horizon H∞ problem in the fixed–feedback case where the
control is built into the choice of dynamics. Recall that the case of active control computation (i.e.
the game case) is discussed in [24], [29] and [30]. Consider the system

Ẋ = f(X) + σ(X)w, X(0) = x (4)

where X is the state taking values in Rm, f represents the nominal dynamics, the disturbance w
lies in W .

= {w : [0,∞) → Rκ : w ∈ L2[0, T ] ∀T <∞}, and σ is an m×κ matrix–valued multiplier
on the disturbance.

We will make the following assumptions. These assumptions are not necessary but are sufficient
for the results to follow. No attempt has been made at this point to formulate tight assumptions.
In particular, in order to provide some clear sketches of proofs, we will assume that all the functions
f , σ and l (given below) are smooth, although that is not required for the results. We will assume
that there exist Kf , c ∈ (0,∞) such that

(x− y)T (f(x)− f(y)) ≤ −c|x− y|2 ∀x, y ∈ Rm

f(0) = 0
|fx(x)| ≤ Kf ∀x ∈ Rm (A1)

Note that this automatically implies the closed–loop stability criterion of H∞ control. We assume
that there exist M,Kσ <∞ such that

|σ(x)| ≤M ∀x ∈ Rm

|σ−1(x)| ≤M ∀x ∈ Rm

|σx(x)| ≤ Kσ ∀x ∈ Rm (A2)

Here, we of course use σ−1 to indicate the Moore-Penrose pseudo-inverse, and it is implicit in the
bound on σ−1(x) that σ is uniformly nondegenerate. Let l(x) be the running cost (to which the
L2–norm disturbance penalty will be added). We assume that there exist β, α <∞ such that

lxx(x) ≤ β ∀x ∈ Rm

0 ≤ l(x) ≤ α|x|2 ∀x ∈ Rm (A3)
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where notation such as lxx ≤ β will be used as a shorthand to indicate that the matrix lxx − βI is
negative semi-definite. (There is a reason for allowing β to be greater than 2α, which one might
notice; see [32].)

The system is said to satisfy an H∞ attenuation bound (of γ) if there exists γ ∈ (0,∞) and
a locally bounded available storage function (again, also referred to as the value function in the
sequel), W (x), such that

W (x) = sup
w∈W

sup
T<∞

∫ T

0
l(X(t))− γ2

2
|w(t)|2 dt. (5)

The corresponding DPE is

0 = − supw∈Rκ

{
[f(x) + σ(x)w]T∇W + l(x)− γ2

2
|w|2

}
= −

[
1

2γ2 (∇W )Tσ(x)σT (x)∇W + fT (x)∇W + l(x)
]
.

(6)

Since W itself does not appear in (6), one can always scale by an additive constant. It will be
assumed throughout that we are looking for a solution satisfying W (0) = 0. We will also suppose
that the above constants satisfy

γ2

2M2
>
α

c2
. (A4)

We note that there are examples where (A4) fails and the available storage is ∞. Then one has the
following result. (See [32], Ths. 2.5 and 2.6, and [33], Th. 2.5, where the proofs also appear.)

Theorem 2.1 There exists a unique continuous viscosity solution of (6) in the class

0 ≤W (x) ≤ c
(γ − δ)2

2M2
|x|2 (7)

for sufficiently small δ > 0. Further, this unique continuous viscosity solution is given by

W (x) = lim
T→∞

V (T, x) = sup
T<∞

V (T, x) (8)

where V is the value of the finite time horizon problem with dynamics (4) and payoff and value

J(T, x, w) =
∫ T
0 l(X(t))− γ2

2
|w(t)|2 dt

V (T, x) = supw∈W J(T, x, w).
(9)

Define the semi–group

Sτ [W (·)](x) = sup
w∈W

{
∫ τ

0
l(X(t))− γ2

2
|w(t)|2 dt+W (X(τ))} (10)

where X satisfies (4). The next result demonstrates that we may solve the problem by obtaining
the fixed point of the semi-group. See [24], Th. 3.2 and the accompanying proof (or alternatively
[30], Th. 3.2 and proof).
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Theorem 2.2 For any τ ∈ [0,∞), W given by (8) satisfies Sτ [W ] = W , and further, it is the
unique solution in the class (7).

The following key result is proved in [24] (p. 1153) as well as in earlier references such as [30]
(Th. 3.3) and [12] (pp.689–690). However, to the author’s best knowledge, the first statement of
the result is due to Maslov [23].

Theorem 2.3 The solution operator, Sτ , is linear in the max–plus algebra.

As noted in the introduction, the above linearity is a key to the development of the algorithms.
A second key is the use of the space of semiconvex functions and a max–plus basis for the space. A
function φ is semiconvex if for every R <∞, there exists CR such that φ̂(x)

.
= φ(x) + (CR/2)|x|2

is convex on the ball BR
.
= {x ∈ Rm : |x| < R}. The infimum over such CR will be known as the

semiconvexity constant for φ over BR. We denote the space of semiconvex functions by S. (The
scalar CR may sometimes be replaced by a symmetric, positive definite matrix where the condition
becomes φ(x)+(1/2)xTCRx being convex; the case will be clear from the context.) Let 0 < R < R̂,
and suppose that φ is semiconvex over B

R̂
(0) with constant C

R̂
. Then φ is Lipschitz over BR(0),

with some constant LR. See, for instance, [10] for a proof. Therefore any φ ∈ S must be semiconvex
and Lipschitz with some constants CR and LR over any ball BR(0). Consequently, we define the
notation SR

C,L to be the set of φ : BR(0) → R such that φ is semiconvex and Lipschitz over BR(0)
with constants C and L, respectively. For simplicity of notation, we will henceforth use the notation
Bρ for the closed ball Bρ(0) for any ρ ∈ (0,∞). It is essential that the value, W , be semiconvex,
and that is given by the next result. The proof appears on pp. 1154–1155 in [24].

Theorem 2.4 W lies in S; for any R <∞, there exist CR, LR <∞ such that W ∈ SR
CR,LR

.

We now turn to the max–plus basis over SR
CR,LR

. The following theorem is a minor variant
of the semiconvex duality result given in [12]. It is derived from convex duality [34], [35] in a
straightforward manner. There is a change from [12] in that a scalar constant there is replaced by
a symmetric matrix C such that C −CRI > 0 where I is the (usual algebra) identity matrix. This
replacement allows more freedom in the actual numerical implementation.

Theorem 2.5 Let φ ∈ S. In particular, let CR, LR ∈ (0,∞) be the semi-convexity and Lipschitz
constants, respectively, for φ over BR. Let C be a symmetric, positive definite matrix such that
C−CRI > 0. Let DR ≥ R+ |C−1|LR where |C−1| indicates the matrix norm of C−1. (In particular,
one may take DR = R + LR/CR.) Then for all x ∈ BR,

φ(x) = max
x̃∈BDR

[
−1

2
(x− x̃)TC(x− x̃) + ax̃

]
= max

x̃∈Rm

[
−1

2
(x− x̃)TC(x− x̃) + ax̃

]
(11)

where

ax̃ = −max
x∈BR

[
−1

2
(x− x̃)TC(x− x̃)− φ(x)

]
. (12)
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Corollary 2.6 Let CR, LR, DR be as in Theorem 2.5. Let φ ∈ SR
C′,L′ where in this case, C ′ may be

a symmetric, positive definite matrix such that C − C ′ > 0, and R + |C−1|L′ ≤ DR. Then, (11),
(12) hold.

Remark 2.7 R + |C−1|LR may be replaced by |C−1|LR where LR is a Lipschitz constant for
φ̃(x)

.
= φ(x) + 1

2
xTCx over BR. Note that LR ≤ LR + |C|R.

Let φ ∈ SR
CR,LR

. Let {xi} be a countable, dense set over BDR
, and let symmetric C − CRI > 0

where (again) CR > 0 is a semiconvexity constant for φ over BR. Define

ψi(x)
.
= −1

2
(x− xi)

TC(x− xi) ∀x ∈ BR

for each i. It may occasionally be handy to extend the domain beyond BR by letting ψi(x) = −∞
for x 6∈ BR. Then, using Theorem 2.5, one finds (see [12] pp. 695–698)

φ(x) =
∞⊕
i=1

[ai ⊗ ψi(x)] ∀x ∈ BR where ai
.
= −max

x∈BR

[ψi(x)− φ(x)]. (13)

This is a countable max–plus basis expansion for φ. More generally, the set {ψi} forms a max–plus
basis for the space SR

CR,LR
. We now have the following.

Theorem 2.8 Given R <∞, there exist semiconvexity and Lipschitz constants constant CR, LR <
∞ such that W ∈ SR

CR,LR
. Let C −CRI > 0 and {xi} be dense over BDR

, and define the basis {ψi}
as above. Then

W (x) =
∞⊕
i=1

[ai ⊗ ψi(x)] ∀x ∈ BR (14)

where
ai

.
= −max

x∈BR

[ψi(x)−W (x)]. (15)

For the remainder of the section, fix any τ ∈ (0,∞). We also assume throughout this section
that one may choose C such that C − CRI > 0 and such that

Sτ [ψi] ∈ SR
C′,L′ for all i (A5)

where C − C ′ > 0 and R + |C−1|L′ ≤ DR. This assures that each Sτ [ψi] has a max-plus basis
expansion in terms of the basis {ψj}. We will not discuss this assumption in detail here, but simply
note that we have verified that this assumption holds for the problems where we have used this
max–plus method. We also note that this assumption will need to be replaced by a slightly stricter
assumption (A5′) in Section 4 for the results there and beyond.

We now proceed to review the basics of the algorithm. In [24], the above theory was developed,
and then, rather than proving convergence results for the algorithms, drastic assumptions were
made so that the basic concept could be presented, while still keeping the paper to a reasonable
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length. In [24], [29], [30], it was simply assumed that there was a finite set of basis functions,
{ψi}n

i=1, such that W had a finite max–plus basis expansion over BR in those functions, that is,

W (x) =
n⊕

i=1

ai ⊗ ψi, (16)

and we let aT .
= (a1 a2 · · · an), and Bj,i = −maxx∈BR

(ψj(x) − Sτ (ψi(x))). Let B be the n × n
matrix of elements Bj,i. Note that B actually depends on τ , but we suppress the dependence in the
notation. We made the further drastic assumption that for each j ∈ {1, 2, . . . , n}, Sτ [ψj] also had
a finite basis expansion in the same set of basis functions, {ψi}n

i=1, so that

Sτ [ψj(x)] =
n⊕

i=1

Bj,i ⊗ ψi(x) (17)

for all x ∈ BR. Specifically, under (16), (17) one has (see, for instance, [24], Th. 5.1 or [30], Th.
5.1)

Theorem 2.9 Suppose expansion (16) requires ai > −∞ for all i. Sτ [W ] = W if and only if
a = B ⊗ a where B ⊗ a represents max–plus matrix multiplication.

Continuing with the review, suppose that one has computed B exactly. One must then compute
the max–plus eigenvector. We should note that B has a unique max–plus eigenvalue, although pos-
sibly many eigenvectors corresponding to that eigenvalue [4]. By the above results, this eigenvalue
must be zero. As discussed in [24], [29], [27], one can compute the max–plus eigenvector via the
power method; this has the added benefit that the convergence analysis to follow is performed in
an analogous way. In the power method, one computes an eigenvector, a by

a = lim
N→∞

BN ⊗~0

where the power is to be understood in the max–plus sense and ~0 is the zero vector. Throughout
the paper, we let the {xj} be such that x1 = 0, that is ψ1(x) = −1

2
xTCx. Since this is simply

an approach to arrangement of the basis functions, we do not annotate it as an assumption. The
fact that the power method works is encapsulated in the following series of three results which hold
under (16), (17), and are proved in [24], pp. 1158–1160.

Lemma 2.10 B1,1 = 0. Also, there exists δ > 0 such that for all j 6= 1, Bj,j ≤ −δ.

Theorem 2.11 Let N ∈ {1, 2, . . . , n}, {ki}i=N+1
i=1 such that 1 ≤ ki ≤ n for all i and kN+1 = k1.

Suppose we are not in the case ki = 1 for all i. Then

N∑
i=1

Bki,ki+1
≤ −δ.

Recall that B has a unique max–plus eigenvalue, although possibly many max–plus eigenvectors
corresponding to that eigenvalue [4], and that by the above results, this eigenvalue must be zero
(ignoring errors due to approximation).
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Theorem 2.12 limN→∞BN⊗0 exists, converges in a finite number of steps, and satisfies e = B⊗e.
Further, this is the unique max–plus eigenvector up to a max–plus multiplicative constant.

Thus, under the drastic assumptions above, one finds that the power method converges to the
unique solution of the eigenvector problem (in a finite number of steps), and that this eigenvector
is the finite set of coefficients in the max–plus basis expansion of the value function, W . The
next sections will deal with the facts that we actually need to truncate infinite basis expansions,
and that the computations of the elements of B are only approximate. Convergence results and
error analysis will be performed. This will not only indicate that one can achieve arbitrarily good
approximations to W via the above max–plus approach, but will also indicate the rate at which
the distance between basis function centers should drop as the time-propagation errors in B drop
so as to guarantee convergence. This is somewhat analogous to results for finite difference schemes
which indicate the required relative rates at which the time and space step must go to zero for such
problems.

For purposes of readability, we briefly outline the steps in the max-plus algorithm for (approxi-
mate) computation of W over a ball, BR.

1. Choose a set of max-plus basis functions of the form ψi(x) = −1
2
(x−xi)

TC(x−xi) where the
xi lie in BDR

. (In practice however, a rectangular grid has been used.) Choose a “time-step”,
τ .

2. Compute (approximately) elements of the matrix B given by

Bj,i = −max
x∈BR

(ψj(x)− Sτ (ψi(x))).

A reasonably efficient means of computing B is important, and a Runge-Kutta based approach
is indicated in Section 5.1.

3. Compute the max-plus eigenvector of B corresponding to max–plus eigenvalue λ = 0 (i.e. the
solution of e = B ⊗ e). This is obtained from the max-plus power method ak+1 = B ⊗ ak.
This converges exactly in a finite number of steps.

4. Construct the solution approximation from Ŵ (x)
.
=
⊕n

i=1 ai ⊗ ψi(x) on BR(0).

3 Allowable Errors in Computation of B

In this section, we obtain a bound on the maximum allowable errors in the computation of B. If the
errors are below this bound, then we can guarantee convergence of the power method to the unique
eigenvector. In particular, the guaranteed convergence of the power method relies on Lemma 2.10
and Theorem 2.11 since these imply a certain structure to a directed graph associated with B (see
[24], [29]). If there was a sequence {ki}i=N+1

i=1 such that 1 ≤ ki ≤ n for all i and kN+1 = k1 such that
one does not have ki = 1 for all i, and such that

N∑
i=1

Bki,ki+1
≥ 0
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then there would be no guarantee of convergence of the power method (nor the ensuing uniqueness
result for that matter). In order to determine more exactly, the allowable errors in the computation
of the elements of B, we first need to obtain a more exact expression for the δ that appears in Lemma
2.10 and Theorem 2.11, and this will appear in Theorems 3.4 and 3.6. That will be followed by
results indicating the allowable error bounds. To begin, one needs the following lemma.

Lemma 3.1 Let X satisfy (4) with initial state X(0) = x ∈ Rm. Let K, τ ∈ (0,∞), and let
w ∈ L2[0, τ ]. Suppose δ > 0 sufficiently small so that

δ ≤ KM2/[c(1− e−cτ )] (18)

where c,M are given in Assumptions (A1),(A2). Then

K|X(τ)− x|2 + δ‖w‖2
L2[0,τ ] ≥

δc

8M2
|x|2(1− e−cτ )4.

Remark 3.2 It may be of interest to note that the assumption on the size of δ does not seem
necessary. At one point in the proof to follow, this assumption is used in order to eliminate a case
which would lead to a more complex expression on the right-hand side in the result in the lemma
statement. If some later technique benefited from not having such an assumption, the lemma proof
could be revisited in order to eliminate it. However, at this point, that would seem to be a needless
technicality.

Remark 3.3 It is perhaps also worth indicating the intuition behind the inequality obtained in
Lemma 3.1. Essentially, it states that, due to the nature of the dynamics of the system, the only
way that |X(τ) − x|2 can be kept small is through input disturbance energy ‖w‖2, and so their
weighted sum is bounded from below. The dependence on |x| on the right hand side is indicative
of the fact that |f(x)| goes to zero at the origin.

Proof. Note that by (4) and Assumptions (A1) and (A2),

d

dt
|X|2 ≤ −2c|X|2 + 2M |X||w| (19)

≤ −c|X|2 + M2

c
|w|2. (20)

Consequently, for any t ∈ [0, τ ],

|X(t)|2 ≤ e−ct|x|2 + M2

c

∫ t

0
|w(r)|2 dr

and so
‖w‖2

L2(0,t) ≥ c
M2

[
|X(t)|2 − |x|2

]
∀ t ∈ [0, τ ]. (21)

We may suppose

|X(t)| ≤
√

1 + (1− e−cτ )4/2|x| ∀ t ∈ [0, τ ]. (22)

Otherwise by (21) and the reverse of (22), there exists t ∈ [0, τ ] such that

K|X(τ)− x|2 + δ‖w‖2
L2[0,τ ] ≥ δ‖w‖2

L2[0,t] ≥ δc
2M2 (1− e−cτ )4|x|2 (23)
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in which case one already has the desired result. Define K
.
=
√

1 + (1− e−cτ )4/2.

Recalling (19), and applying (22), one has

d

dt
|X(t)|2 ≤ −2c|X(t)|2 + 2MK|x||w(t)|.

Solving this ODI for |X(t)|2, and using the Hölder inequality, yields the bound

|X(τ)|2 ≤ |x|2e−2cτ +
MK|x|‖w‖√

c
(1− e−4cτ )1/2. (24)

This implies

|X(τ)| ≤ |x|e−cτ +
1

c1/4

√
MK|x|‖w‖(1− e−4cτ )1/4. (25)

We consider two cases separately. First we consider the case where |X(τ)| ≤ |x|. Then, by (25)

|X(τ)− x| ≥ |x| − |X(τ)| ≥ |x|(1− e−cτ )− 1

c1/4

√
MK|x|‖w‖(1− e−4cτ )1/4. (26)

Now note that for general a, b, c ∈ [0,∞), a+ c ≥ b implies

a2 ≥ b2

2
− c2. (27)

By (26) and (27) (and noting the non-negativity of the norm),

|X(τ)− x|2 ≥ max

{
1
2
|x|2(1− e−cτ )2 − MK√

c
|x|‖w‖(1− e−4cτ )1/2, 0

}

which implies

K|X(τ)− x|2 + δ‖w‖2 ≥ max
{
K

2
|x|2(1− e−cτ )2 − KMK√

c
|x|‖w‖(1− e−4cτ )1/2 + δ‖w‖2,

δ‖w‖2
}
. (28)

The right hand side of (28) is a maximum of two convex quadratic functions of ‖w‖. The second
is monotonically increasing, while the first is positive at ‖w‖ = 0 and initially decreasing. This
implies that there are two possibilities for the location of the minimum of the maximum of the two
functions. If the minimum of the first function is to the left of the point where the two functions
intersect, then the minimum occurs at the minimum of the first function; alternatively it occurs
where the two functions intersect. The minimum of the first function occurs at ‖w‖min (where we
are abusing notation here, using the min subscript on the norm to indicate the value of ‖w‖ at
which the minimum occurs), and this is given by

‖w‖min =
KMK|x|(1− e−4cτ )1/2

2
√
cδ

. (29)

The point of intersection of the two functions occurs at

‖w‖int =

√
c|x|(1− e−cτ )2

2MK(1− e−4cτ )1/2
. (30)

11



The two points coincide when

δ =
KM2K

2
(1− e−4cτ )

c(1− e−cτ )2
=
KM2[1 + (1− e−cτ )4/2](1− e−4cτ )

c(1− e−cτ )2
,

and ‖w‖int occurs to the left of ‖w‖min for δ less than this. It is easy to see that assumption (18)
implies that δ is less than the value at which the points coincide, and consequently, the minimum
of the right hand side of (28) occurs at ‖w‖int.

Using the value of the right hand side of (28) corresponding to ‖w‖int, we find that for any
disturbance, w,

K|X(τ)− x|2 + δ‖w‖2 ≥ δc|x|2

4M2K
2

(1− e−cτ )4

(1− e−4cτ )

which, using definition of K

=
δc|x|2
4M2

(1− e−cτ )4

(1− e−4cτ )[1 + (1− e−cτ )4/2]
≥ δc|x|2

8M2
(1− e−cτ )4. (31)

Now we turn to the second case,
|X(τ)| > |x|. (32)

In this case, (32) and (25) yield

|x|e−cτ +
1

c1/4

√
MK|x|‖w‖(1− e−4cτ )1/4 > |x|. (33)

Upon rearrangement, (33) yields

‖w‖ >
√
c|x|
MK

(1− e−cτ )2

(1− e−4cτ )1/2
.

Consequently, using the definition of K and some simple manipulations,

K|X(τ)− x|2 + δ‖w‖2 ≥ δc|x|2(1− e−cτ )4

M2(1− e−4cτ )[1 + (1− e−cτ )4/2]

≥ δc|x|2
2M2

(1− e−cτ )4. (34)

Combining (31) and (34) completes the proof.

Now we turn to how Lemma 3.1 can be used to obtain a more detailed replacement for the δ
that appears in 2.10 and Theorem 2.11. Fix τ > 0. Let

γ̂2
0 ∈

(
2M2α

c2
, γ2

)
, (35)

and in particular, let γ̂2
0 = γ2 − δ where δ is sufficiently small so that

δ < γ2 − 2M2α

c2
. (36)

12



Then all results of Section 2 for W hold with γ2 replaced by γ̂2
0 , and we denote the corresponding

value by W γ̂0 . In particular, by Theorem 2.8, for any R < ∞ there exists semiconvexity constant
C0

R < ∞ for W γ̂0 over BR, and a Lipschitz constant, L0
R. Note that the required constants satisfy

C0
R < CR (see proof of Theorem 2.8 as given in [24]). If L0

R > LR sufficiently so that R+ |C−1|L0
R >

DR, we modify our basis to be dense over BD0
R

where D0
R ≥ R + |C−1|L0

R (and redefine DR
.
= D0

R

in that case). Then, as before, the set {ψi} forms a max–plus basis for the space of semiconvex
functions over BR with semiconvexity constant, C0

R, i.e. SR
C0

R,L0
R
.

For any j, let
xj ∈ argmax

|x|≤R
{ψj(x)−W γ̂0(x)}. (37)

Then for any x ∈ BR,

ψj(x)− ψj(xj) ≤W γ̂0(x)−W γ̂0(xj)−K0|x− xj|2 (38)

where K0 > 0 is the minimum eigenvalue of C − C0
RI > 0. Note that K0 depends on γ̂0.

Theorem 3.4 Let γ̂0 satisfy (35). Let K = K0 satisfy (38) (where we may take K0 > 0 to be the

minimum eigenvalue of C −C0
RI > 0 if desired). Let δ > 0 satisfy δ ≤ γ2

2
− γ̂2

0

2
and (18). Then, for

any j 6= 1,

Bj,j ≤
−δc|xj|2

8M2
(1− e−cτ )4.

(Recall that by the choice of ψ1 as the basis function centered at the origin, B1,1 = 0; see Lemma
2.10.)

Proof. Let K0, τ, δ satisfy the assumptions (i.e. (18), (36), (38)). Then

Sτ [ψj](xj)− ψj(xj) = sup
w∈L2

{∫ τ

0
l(X(t))− γ2

2
|w(t)|2 dt+ ψj(X(τ))− ψj(xj)

}
(39)

where X satisfies (4) with X(0) = xj. Let ε > 0, and wε be ε–optimal . Then this implies

Sτ [ψj](xj)− ψj(xj) ≤
∫ τ

0
l(Xε(t))− γ2

2
|wε(t)|2 dt+ ψj(X

ε(τ))− ψj(xj) + ε,

and by (38) and the definition of γ̂0

≤
∫ τ

0
l(Xε(t))− γ̂2

0

2
|wε(t)|2 − δ|wε(t)|2 dt+W γ̂0(Xε(τ))−W γ̂0(xj)

−K0|Xε(τ)− xj|2 + ε

and by Theorem 2.2 (for W γ̂0),
≤ −δ‖wε‖2 −K0|Xε(τ)− xj|2 + ε.

Combining this with Lemma 3.1 yields

Sτ [ψj](xj)− ψj(xj) ≤
−δc|xj|2

8M2
(1− e−cτ )4 + ε.

Since this is true for all ε > 0, one has

13



Sτ [ψj](xj)− ψj(xj) ≤
−δc|xj|2

8M2
(1− e−cτ )4. (40)

But,

Bj,j = min
|x|≤R

{Sτ [ψj](x)− ψj(x)} (41)

which by (40)

≤ −δc|xj|2
8M2

(1− e−cτ )4.

Remark 3.5 It is interesting to note that one may modify (41) asBj,j = minx∈Rm {Sτ [ψj](x)− ψj(x)}
since one has ψj(x) = −∞ for x 6∈ BR. One might also note that by the nondegeneracy of σ (As-
sumption (A2) ), if any function φ > −∞ on BR, then Sτ [φ] > −∞ on BR.

Theorem 3.6 Let γ̂0 satisfy (35). Let K0 be as in (38), and let δ > 0 be given by

δ = min
{
K0M

2

c
,
γ2

2
− γ̂2

0

2

}
(42)

(which is somewhat tighter than the requirement in the previous theorem). Let N ∈ N , {ki}i=N+1
i=1

such that 1 ≤ ki ≤ n for all i and kN+1 = k1. Suppose we are not in the case ki = 1 for all i. Then

N∑
i=1

Bki,ki+1
≤ −max

ki

|xki
|2 δc

8M2
(1− e−cNτ )4.

Proof. By Theorem 3.4, this is true for N = 1. We prove the case N = 2. The proof of the
general case will then be obvious. First note the monotonicity of the semi–group in the sense that
if g1(x) ≤ g2(x) for all x, then

Sτ [g1](x) ≤ Sτ [g2](x) ∀x ∈ Rm. (43)

Suppose either i 6= 1 or j 6= 1. By definition, ψj(x) + Bj,i ≤ Sτ [ψi](x) for all x ∈ Rm. Using
(43) and the max–plus linearity of the semi–group yields

Sτ [ψj](x) +Bj,i ≤ S2τ [ψi](x) ∀x

which implies in particular that

Sτ [ψj](xi) +Bj,i ≤ S2τ [ψi](xi). (44)

Now, employing the same proof as that of Theorem 3.4, but with τ replaced by 2τ (noting that
condition (18) is satisfied with 2τ replacing τ by our assumption (42)), one has as in (40)

S2τ [ψi](xi)− ψi(xi) ≤
−δc|xi|2

8M2
(1− e−2cτ )4. (45)
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Combining (44) and (45) yields

[
Sτ [ψj](xi)− ψi(xi)

]
+Bj,i ≤

−δc|xi|2
8M2

(1− e−2cτ )4.

Using the definition of Bi,j, this implies

Bi,j +Bj,i ≤
−δc|xi|2

8M2
(1− e−2cτ )4. (46)

By symmetry, one also has

Bi,j +Bj,i ≤
−δc|xj|2

8M2
(1− e−2cτ )4. (47)

Combining (46) and (47) yields

Bi,j +Bj,i ≤ −max
{
|xi|2, |xj|2

} δc

8M2
(1− e−2cτ )4.

The convergence of the power method (described in the previous section) relied on a certain
structure of B (B1,1 = 0 and strictly negative loop sums as described in the assumptions of Theo-
rem 2.11). Combining this with the above result on the size of loop sums, one can obtain a condition
which guarantees convergence of the power method to a unique eigenvector corresponding to eigen-
value zero. This is given in the next theorem.

Theorem 3.7 Let B be given by Bj,i = −maxx∈BR
(ψj(x) − Sτ [ψi](x)) for all i, j ≤ n, and let B̃

be an approximation of B with B̃1,1 = 0 and such that there exists ε > 0 such that

|B̃i,j −Bi,j| ≤ max{|xi|2, |xj|2}
(
δc

8M2

)
(1− e−cτ )4

n2
− ε ∀ i, j such that (i, j) 6= (1, 1) (48)

where

δ = min
{
K0M

2

c
,
γ2

2
− γ̂2

0

2

}
. (49)

Then the power method applied to B̃ converges in a finite number of steps to the unique eigenvector
ẽ corresponding to eigenvalue zero, that is

ẽ = B̃ ⊗ ẽ.

Proof. Let N ∈ N , and consider a sequence of nodes {ki}N+1
i=1 with k1 = kN+1. We must

show that if we are not in the case ki = 1 for all i, then

N∑
i=1

B̃ki,ki+1
< 0.

Suppose N > n2. Then any sequence {ki}N+1
i=1 with k1 = kN+1 must be composed of subloops of

length no greater than n2. Therefore, it is sufficient to prove the result for N ≤ n2. Note that by
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the assumptions and Theorem 3.6,

N∑
i=1

B̃ki,ki+1
≤

N∑
i=1

Bki,ki+1
+

N∑
i=1

|B̃ki,ki+1
−Bki,ki+1

|

≤ −max
ki

|xki
|2 δc

8M2
(1− e−cNτ )4 + max

ki

|xki
|2 δc

8M2
(1− e−cNτ )4(N/n2)− ε

≤ −ε.

Then by the same proofs as for Theorem 2.12, the result follows.

Theorem 3.7 will be useful later when we analyze the size of errors introduced by our computa-
tional approximation to the elements of B.

If the conditions of Theorem 3.7 are met, then one can ask what the size of the errors in the
corresponding eigenvector are. Specifically, if eigenvector ẽ is computed using approximation B̃,
what is a bound on the size of the difference between e (the eigenvector of B) and ẽ? The following
theorem gives a rough, but easily obtained, bound.

Theorem 3.8 Let B be given by Bi,j = −maxx∈BR
(ψj(x) − Sτ [ψi](x)) for all i, j ≤ n, and let B̃

be an approximation of B with B̃1,1 = 0 and such that there exists ε > 0 such that

|B̃i,j −Bi,j| ≤ max{|xi|2, |xj|2}
(
δc

8M2

)
(1− e−cτ )4

nµ
− ε ∀ i, j (50)

where µ ∈ {2, 3, 4, ...} and δ is given by (49). Then the power method will yield the unique eigen-
vectors e and ẽ of B and B̃ respectively, in finite numbers of steps, and

‖e− ẽ‖ .
= max

i
|ei − ẽi| ≤ (DR)2

(
δc

8M2

)
(1− e−cτ )4

nµ−2
− ε.

Proof. By Theorem 3.7, one may use the power method to compute ẽ, and so one has that
for any j ≤ n2,

ẽj = [B̃n2 ⊗ 0]j = max
m≤n2

[B̃m ⊗ 0]j = max
m≤n2

max
{kl}m

l=1
, k1=j

m∑
l=1

B̃kl,kl+1

where the exponents on B̃ represent max–plus exponentiation and the bound m ≤ n2 follows from
the fact that under the assumption, the sum around any loop other than that of the trivial loop,
B̃1,1 = 0, are strictly negative. Therefore,

ẽj ≤ max
m≤n2

max
{kl}m

l=1
, k1=j

[ m∑
l=1

|B̃kl,kl+1
−Bkl,kl+1

|+
m∑

l=1

Bkl,kl+1

]
which by the assumption (50) and the fact that e is the eigenvector of B,

≤ (DR)2
(
δc

8M2

)
(1− e−cτ )4

nµ−2
− ε+ ej.

By a symmetrical argument, one obtains

|ẽj − ej| ≤ (DR)2
(
δc

8M2

)
(1− e−cτ )4

nµ−2
− ε.
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We remark that by taking ε sufficiently small, and noting that 1− e−cτ ≤ cτ for nonnegative τ ,
Theorem 3.8 implies (under its assumptions)

‖e− ẽ‖ = max
i
|ei − ẽi| ≤ (DR)2

(
δc5

8M2

)
τ 4

nµ−2
. (51)

Also note that aside from the case i = j = 1 (recall B1,1 = 0), one has

min
i6=1

{|xi|2} ≤ max{|xi|2, |xj|2} ∀ i, j.

Using this, and choosing ε > 0 appropriately, one has the following theorem (where we note the
condition on the errors in B is uniform but potentially significantly stricter). The proof is nearly
identical to that for Theorem 3.8

Theorem 3.9 Let B be as in Theorem 3.8, and let B̃ be an approximation of B with B̃1,1 = 0 and
such that

|B̃i,j −Bi,j| ≤ min
i6=1

{|xi|2}
(
δc

9M2

)
(1− e−cτ )4

nµ
∀ i, j (52)

where µ ∈ {2, 3, 4, ...} and δ is given by (49). Then the power method will yield the unique eigen-
vectors e and ẽ of B and B̃ respectively, in finite numbers of steps, and

‖e− ẽ‖ ≤ min
i6=1

{|xi|2}
(
δc

9M2

)
(1− e−cτ )4

nµ−2
.

A simpler variant on this result may be worth using. Note that for τ ∈ [0, 1/c], one has
1− e−cτ ≥ (c/2)τ . Then by a proof again nearly identical to that of Theorem 3.8, one has

Theorem 3.10 Suppose τ ≤ 1/c. Let B be as in Theorem 3.8, and let B̃ be an approximation of
B with B̃1,1 = 0 and such that

|B̃i,j −Bi,j| ≤ min
i6=1

{|xi|2}
(

δc5

9(16)M2

)
τ 4

nµ
∀ i, j (53)

where µ ∈ {2, 3, 4, ...} and δ is given by (49). Then the power method will yield the unique eigen-
vectors e and ẽ of B and B̃ respectively, in finite numbers of steps, and

‖e− ẽ‖ ≤ min
i6=1

{|xi|2}
(

δc5

9(16)M2

)
τ 4

nµ−2
.

This variant is included since the simpler right hand sides might simplify analysis.

4 Convergence and Truncation Errors

In this section we consider the approximation due to using only a finite number of functions in
the max–plus basis expansion. It will be shown that as the number of functions increases (in a
reasonable way), the approximate solution obtained by the eigenvector computation of Section 2
converges from below to the value function, W . Error bounds will also be obtained.
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4.1 Convergence

This subsection contains a quick proof that the errors due to truncation of the basis go to zero as the
number of basis functions increases (in a reasonable way). No specific error bounds are obtained;
those require the more tedious analysis of the next subsection.

Note that in this subsection, a slightly different notation for the indexing and numbers of basis
functions in the sets of basis functions is used. This will make the proof simpler. This alternate
notation appears only in this subsection. Specifically, let us have the sets of basis functions indexed
by n, that is the sets are indexed by n. Let the cardinality of the nth set be I(n). For each n, let
X (n) .

= {x(n)
i }I(n)

i=1 and X (n) ⊂ X (n+1). For instance, in the one-dimensional case, one might have
X (1) = {0}, X (2) = {−1/2, 0, 1/2}, X (3) = {−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4}, and so on. Further,

we will let the basis functions be given by ψ
(n)
i

.
= −1

2
(x− x(n)

i )TC(x− x(n)
i ), and consider the sets of

basis functions Ψ(n) .= {ψ(n)
i : i ∈ I(n)}. Then define the approximations to the semigroup operator,

Sτ by

S(n)
τ [φ](x)

.
=

In⊕
i=1

a
(n)
i ⊗ ψ

(n)
i (x) (54)

where
a

(n)
i

.
= −max

x

[
ψ

(n)
i (x)− Sτ [φ](x)

]
. (55)

In other words, S(n)
τ is the result of the application of the Sτ followed by the truncation due

to a finite number of basis functions. More specifically, if one defines T (n)[φ](x) =
⊕In

i=1 a
(n)
i ⊗

ψ
(n)
i (x) with the a

(n)
i given by (55), then S(n)

τ [φ] = T (n) ◦ Sτ [φ]. Also, let Y(n) = {φ : BR(0) →
R| ∃{a(n)

i } such that φ(x) =
⊕In

i=1 a
(n)
i ⊗ ψ

(n)
i (x) ∀x ∈ BR(0)}. Then note that for φ ∈ Y (n), one

has

S(n)
τ [φ](x) =

In⊕
i=1

 In⊕
j=1

B
(n)
i,j ⊗ a

(n)
j

⊗ ψ
(n)
i (x) (56)

for where B
(n)
i,j corresponds to S(n)

τ [φ].

Lastly, we use the notation Sτ
N to indicate repeated application of Sτ N times. (Of course, by

the semigroup property, Sτ
N = SNτ .) Correspondingly, we use the notation S(n)

τ

N
to indicate the

application of S(n)
τ N times.

Define φ0(x) ≡ 0 and

φ
(n)
0 (x)

.
=

In⊕
i=1

a0(n)
i ⊗ ψ

(n)
i (x), a0(n)

i
.
= −max

x

[
ψ

(n)
i (x)− φ0(x)

]
. (57)

It is well-known that (see [29], [32] among many others) that

lim
N→∞

Sτ
N [φ0] = W. (58)

Also, note that since X (n) ⊂ X (n+1), one has

S(n)
τ

N
[φ

(n)
0 ](x) ≤ Sτ

(n+1)N [φ
(n+1)
0 ](x) ≤ Sτ

N [φ0](x) (59)
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for all x ∈ BR.

Note that by (57), and the definition of φ0, the corresponding coefficients, a0(n)
i , satisfy a0(n)

i = 0
for all i. Combining this with Theorem 2.12 and (56), one finds that for each n, there exists N(n)
such that

S(n)
τ

N
[φ

(n)
0 ] = S(n)

τ

N(n)
[φ

(n)
0 ] ∀N ≥ N(n). (60)

Defining

W (n)∞ .
= S(n)

τ

N(n)
[φ

(n)
0 ], (61)

we further find that the limit is the fixed point. That is,

S(n)
τ [W (n)∞] = W (n)∞. (62)

Then, by (58), (59) and (61), we find that

W (n)∞ is monotonically increasing in n (63)

and
W (n)∞ ≤W. (64)

Therefore, there exists W∞∞ ≤ W such that

W (n)∞ ↑ W∞∞, (65)

and in fact, one can demonstrate equicontinuity of the W (n)∞ on BR given the assumptions (and
consequently uniform convergence).

Under Assumption (A5), one can show (see for instance Lemma 4.3, although this is more
specific than what is is needed, or Theorem 3.3 in [27]) that given ε > 0, there exists nε <∞ such
that

W (n)∞(x) = S(n)
τ [W (n)∞](x) ≥ Sτ [W

(n)∞](x)− ε

for all x ∈ BR for any n ≥ nε. On the other hand, one always has

S(n)
τ [φ] ≤ Sτ [φ].

Combining these last two inequalities, one obtains

W (n)∞ = S(n)
τ [W (n)∞] ≤ Sτ [W

(n)∞] ≤ S(n)
τ [W (n)∞] + ε = W (n)∞ + ε. (66)

Combining this with (65), one finds

Theorem 4.1
W∞∞ = Sτ [W

∞∞], (67)

or in other words, W∞∞ is a fixed point of Sτ .

Then, with some more work (see [27], Theorem 3.2), one obtains a convergence theorem.

Theorem 4.2
W∞∞(x) = W (x) ∀x ∈ BR.
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4.2 Truncation Error Estimate

Theorem 4.2 demonstrates convergence of the algorithm to the value function as the basis function
density increases. Here we outline one approach to obtaining specific error estimates. The estimates
may be rather conservative due to the form of the truncation error bound used; this question will
become more clear below. The main results are in Theorem 4.5 and Remark 4.6. Note that these
are only the errors due to truncation to a finite number of basis functions; as noted above, analysis
of the errors due to approximation of the entries in the B matrix is discussed further below.

Recall that we choose the basis functions throughout such that x
(n)
1 = 0, or in other words,

ψ
(n)
1 (x) = −1

2
xTCx for all n. (Note that we return here to the notation where the (n) superscript

corresponds to the number of basis functions - as opposed to the more complex notation with
cardinality I(n) which was used in the previous subsection only.) Also, we will use the notation

W
(n)
N,τ (x)

.
= Sτ

(n)N [φ
(n)
0 ](x)

and we reiterate that the N superscript indicates repeated application of the operator N times.
Also, φ

(n)
0 is the finite basis expansion of φ0 (with n basis fucntions).

To specifically set C, we will replace Assumption (A5) of Section 2 with the following. We
assume throughout the remainder of the paper that one may choose matrix C > 0 and δ′ ∈ (0, 1)
such that with C ′ .= (1− δ′)C

Sτ [ψi] ∈ SR
C′,L′ for all i (A5′)

where R+ |C−1|L′ ≤ DR. Again, we do not discuss this assumption in detail, but simply note that
we have verified that this assumption holds for the problems we have run. Also note that one could
be more general, allowing C ′ to be a more general positive definite symmetric matrix such that
C − C ′ > 0, but we will not include that here. Finally, it should be noted that δ′ would depend
on τ ; as τ ↓ 0, one would need to take δ′ ↓ 0. Since δ′ will appear in the denominator of the error
bound of the next lemma (as well as implicitly in the denominator of the fraction on the right–hand
side of the error bound in Theorem 4.5), this implies that one does not want to take τ ↓ 0 as the
means for reducing the errors. This will be discussed further in the next section.

The following lemma is a general result about the errors due to truncation when using the above
max–plus basis expansion.

Lemma 4.3 Let δ′, C ′, L′ be as in Assumption (A5′), and let φ ∈ SR,C′ with φ(0) = 0, φ differen-

tiable at zero with ∇xφ(0) = 0, and −1
2
xTC ′x ≤ φ(x) ≤ 1

2
M̂|x|2 for all x for some M̂ < ∞. Let

{ψi}n
i=1 consist of basis functions with matrix C, centers {xi} ⊆ BDR

such that C − C ′I > 0, and
let ∆

.
= maxx∈BDR

(0) mini |x− xi| Let

φ∆(x) = max
i

[ai + ψi(x)] ∀x ∈ BR

where
ai = −max

x∈BR

[ψi(x)− φ(x)] ∀ i.

Then

0 ≤ φ(x)− φ∆(x) ≤
 |C|

[
2β̂ + 1 + |C|/(δ′CR)

]
|x|∆ if |x| ≥ ∆

1
2
[M̂+ |C|]|x|∆ otherwise

where β̂ is specified in the proof.
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Proof. Note that (see [12])

φ(x) = max
x̃∈BDR

[a(x̃) + ψx̃(x)] ∀x ∈ BR(0)

where
a(x̃) = −max

x∈BR

[ψx̃(x)− φ(x)] ∀ x̃ ∈ BDR
,

and
ψx̃(x)

.
= −1

2
(x− x̃)TC(x− x̃) ∀x ∈ BR(0), x̃ ∈ BDR

.

It is obvious that 0 ≤ φ(x)− φ∆(x), and so we prove the other bound.

Consider any x ∈ BR. Then
φ(x) = a(x̃) + ψx̃(x) (68)

if and only if
C(x− x̃) ∈ −D−

x φ(x)

where

D−
x φ(x) =

{
p ∈ Rm : lim inf

|y−x|→0

φ(y)− φ(x)− (y − x) · p
|y − x| ≥ 0

}
.

We denote such an x̃ corresponding to x (in (68)) as x̃. By the Lipschitz nature of φ, one can easily
establish that

|x̃− x| ≤ |C−1|L′. (69)

However, it will be desirable to have a bound where the right–hand side depends linearly on |x|.
(Actually, this may only be necessary for small x, while (69) may be a smaller bound for large x,
but we will obtain it for general x.) Noting that φ ≥ −1

2
xTC ′x ≥ −1

2
xTCx, one has

1
2
(x− x̃)TC(x− x̃) ≤ a(x̃) + 1

2
xTCx.

Also, since a(x̃) + ψ
x̃
(·) touches φ from below at x, one must have

1
2
(x− x̃)TC(x− x̃)− 1

2
(x− x̃)TC(x− x̃) ≤ a(x̃) + 1

2
xTCx− 1

2
(x− x̃)TC(x− x̃)

≤ φ(x) + 1
2
xTCx ≤ 1

2
M̂|x|2 + 1

2
xTCx

for all x ∈ BR where the last inequality is by assumption. Define

F (x)
.
= 1

2
(x− x̃)TC(x− x̃)− 1

2
(x− x̃)TC(x− x̃)− 1

2
M̂|x|2,

and we see that we require F (x) ≤ 1
2
xTCx for all x ∈ BR. Taking the derivative, we find the

maximum of F at x̂ given by
x̂ = (C + M̂I)−1Cx̃ (70)

and so
x̂− x̃ = −M̂(C + M̂I)−1x̃. (71)
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(In the interests of readbility, we ignore the detail of the case where x̂ /∈ BR(0) here.) Therefore,
F (x̂) ≤ 1

2
xTCx implies

(x− x̃)TC(x− x̃) ≤ x̃
TM̂(C + M̂I)−1C(C + M̂I)−1M̂x̃+ x̃

T
C(C + M̂I)−1M̂(C + M̂I)−1Cx̃

+xTCx

= M̂x̃
T
[
M̂(C + M̂I)−1C(C + M̂I)−1 + M̂(C + M̂I)−1M̂I(C + M̂I)−1

−M̂2(C + M̂I)−2 + C(C + M̂I)−2C
]
x̃+ xTCx

= M̂x̃
T
[
M̂C(C + M̂I)−2 + C(C + M̂I)−2C

]
x̃+ xTCx

= x̃
TM̂C(C + M̂I)−1x̃+ xTCx. (72)

Noting that C is positive definite symmetric, and writing it as C =
√
C
√
C

T
where

√
C = S

√
Λ

with S unitary and Λ the matrix of eigenvalues, one may rewrite the first term in the right–hand
side of (72) as

x̃
TM̂C(C + M̂I)−1x̃ = x̃

TM̂1
2

[
C(C + M̂I)−1 + (C + M̂I)−1C

]
x̃ = x̃

T√
CQ

√
C

T
x̃

where
Q

.
= 1

2
M̂
[√
C

T
(C + M̂I)−1

√
C
−T

+
√
C
−1

(C + M̂I)−1
√
C
]
.

Making the change of variables y =
√
C

T
x, (72) becomes

|y − ỹ|2 ≤ ỹ
T
Qỹ + |y|2.

Noting that
√
C

T
(C + M̂I)−1

√
C
−T

is a similarity transform of (C + M̂I)−1, one sees that the
eigenvalues of Q are the eigenvalues of M̂(C + M̂I)−1. Now, since (C + M̂I) is positive definite,

(C + M̂I) = S ΛS
−1

with Λ the diagonal matrix of eigenvalues and S the unitary matrix of eigenvectors. Therefore,

M̂(C + M̂I)−1 = S(M̂Λ
−1

)S
−1

, and note that β
.
= maxi{M̂λ

−1

i } < 1 where the λi are the
diagonal elements of Λ. Consequently,

|y − ỹ|2 ≤ β|ỹ|2 + |y|2 (73)

where β ∈ (0, 1). This implies

|ỹ − y|2 ≤ β|ỹ − y + y|2 + |y|2

= β
[
|ỹ − y|2 + |y|2 + 2(ỹ − y) · y

]
+ |y|2

≤ β|ỹ − y|2 + (β + 1)|y|2 + β
[(1− β)/2

β
|ỹ − y|2 +

β

(1− β)/2
|y|2

]
,

which after some rearrangement, yields

|ỹ − y|2 ≤ 2(1 + β2)

(1− β)2
|y|2 (74)

which implies
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(x− x̃)TC(x− x̃) ≤
[
2(1 + β2)

(1− β)2

]
xTCx.

Consequently, there exists β̂ <∞ (i.e. β̂ = [|
√
C|/C0

R][
√

2(1 + β2)/(1− β)] ) such that

|x− x̃| ≤ β̂|x|. (75)

Given x̃, let i ∈ argmini |xi − x̃|, and note that

|xi − x̃| ≤ ∆. (76)

It is easy to see that

|ψ
x̃
(x)− ψi(x)| ≤ 1

2
|(x− x̃)TC(x− x̃)− (x− x̃)TC(x− xi)|

+1
2
|(x− x̃)TC(x− xi)− (x− xi)

TC(x− xi)|
≤ 1

2
|C|

[
|x̃− xi||x− x̃|+ |x̃− xi||x− xi|

]
≤ 1

2
|C|

[
|x̃− xi||x− x̃|+ |x̃− xi|(|x− x̃|+ |x̃− xi|)

]
which by (76)

≤ |C|
[
|x− x̃|∆ + 1

2
∆2
]
. (77)

Combining (75) and (77), one finds

|ψ
x̃
(x)− ψi(x)| ≤ |C|

[
β̂|x|∆ + 1

2
∆2
]
. (78)

Now note that

φ(x)− φ∆(x) ≤ a(x̃) + ψ
x̃
(x)− [ai + ψi(x)]

which by (78)

≤ |C|
[
β̂|x|∆ + 1

2
∆2
]
+ a(x̃)− ai. (79)

We now deal with the last two terms in this bound. Let

xi
.
= argmax

x∈BR

[ψi(x)− φ(x)].

(Note that we will also skip the technical details of the additional case where xi lies on the boundary
of BR.) Then,

−C(xi − xi) ∈ D−φ(xi)

and
−C(x− x̃) ∈ D−φ(x).

By the semiconvexity, one has the general result that p ∈ D−φ(x), q ∈ D−φ(y) implies

(p− q) · (x− y) ≥ −(x− y)TC ′(x− y).
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Consequently,
−(xi − xi + x̃− x)TC(xi − x) ≥ −(xi − x)TC ′(xi − x).

Recalling that C ′ = (1− δ′)C , we see that this implies

−(xi − x)TC(xi − x) + (1− δ′)(xi − x)TC(xi − x) ≥ −|C| |xi − x| |xi − x̃| ≥ −|C| |xi − x|∆,

or
δ′(xi − x)TC(xi − x) ≤ |C| |xi − x|∆.

Noting that C − CRI > 0, this implies

|xi − x| ≤ |C|
δ′CR

∆. (80)

Now,

ã− ai ≤ ψi(xi)− ψ
x̃
(xi)

= ψi(x)− ψ
x̃
(x) + [ψi(xi)− ψ

x̃
(xi)]− [ψi(x)− ψ

x̃
(x)]

which, after cancellation,
= ψi(x)− ψ

x̃
(x)− (x− xi)C(xi − x̃)

≤ |ψi(x)− ψ
x̃
(x)|+ |C|∆|x− xi|

which by (78) and (80)

≤ |C|
[
β̂|x|+ (1

2
+ |C|/(δ′CR))∆

]
∆. (81)

Combining (79) and (81) yields

φ(x)− φ∆(x) ≤ |C|
[
2β̂|x|+ (1 + |C|/(δ′CR))∆

]
∆. (82)

Suppose |x| ≥ ∆. Then, (82) implies

φ(x)− φ∆(x) ≤ |C|
[
2β̂ + 1 + |C|/(δ′CR)

]
|x|∆ (83)

which is the first case in right hand side of the assertion.

Lastly, suppose |x| < ∆. By assumption, there exists M̂ < ∞ such that φ(x) ≤ 1
2
M̂|x|2.

Therefore,
φ(x)− φ∆(x) ≤ 1

2
(M̂+ |C|)|x|2 ≤ 1

2
(M̂+ |C|)|x|∆

which completes the proof.

The above lemma is a general result about the errors due to truncation with the above max–
plus basis expansion. In order to apply this to the problem at hand, one must consider the effect
of repeated application of the truncated operator S(n)

τ . Note that S(n)
τ may be written as the

composition of Sτ and a truncation operator, T (n) where we have

T (n)[φ] = φ∆
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in the notation of the previous lemma, where in particular, φ∆ was given by

φ∆(x) = max
i

[ai + ψi(x)] ∀x ∈ BR

where
ai = − max

x∈BR(0)
[ψi(x)− φ(x)] ∀ i.

In other words, one has the following equivalence of notation

S(n)
τ [φ] = {T (n) ◦ Sτ}[φ] = {Sτ [φ]}∆ (84)

which we shall use freely throughout.

We now proceed to consider how truncation errors accumulate. In order to simplify the analysis,
we simply let

MC′
.
= max

{
|C|[2β̂ + 1 + |C|/(δ′CR)], 1

2
[M̂+ |C|]

}
.

Fix ∆. We suppose that we have n sufficiently large (with properly distributed basis function
centers) so that

max
x∈BDR

min
i
|x− xi| ≤ ∆.

Let φ0 satisfy the conditions on φ in Lemma 4.3. (One can simply take φ0 ≡ 0.) Then, by Lemma
4.3,

φ0(x)−MC′|x|∆ ≤ φ
(n)
0 (x) ≤ φ0(x) ∀x ∈ BR(0). (85)

Now, for any x ∈ BR(0), let w1,ε
x be ε/2–optimal for Sτ [φ0](x), and let X1,ε

x be the corresponding
trajectory. Then,

0 ≤ Sτ [φ0](x)− Sτ [φ
(n)
0 ](x)

≤ φ0(X
1,ε
x (τ))− φ

(n)
0 (X1,ε

x (τ)) +
ε

2

which by (85)

≤MC′|X1,ε
x (τ)|∆ +

ε

2
. (86)

Proceeding along, one then finds

0 ≤ Sτ [φ0](x)− S(n)
τ [φ

(n)
0 ](x)

= Sτ [φ0](x)− Sτ [φ
(n)
0 ](x) + Sτ [φ

(n)
0 ](x)− S(n)

τ [φ
(n)
0 ](x)

which by Lemma 4.3, the fact that Sτ [φ
(n)
0 ] ∈ SR

C′,L (by Assumption (A5′) ), and (86)

≤MC′|X1,ε
x (τ)|∆ +MC′|x|∆ +

ε

2
. (87)

Let us proceed one more step with this approach. For any x ∈ BR(0), let w2,ε
x be ε/4–optimal

for Sτ [Sτ [φ0]](x) (that is ε/4–optimal for problem Sτ with terminal cost Sτ [φ0]), and let X2,ε
x be the

corresponding trajectory. Then, as before,

0 ≤ S2τ [φ0](x)− Sτ [S
(n)
τ φ

(n)
0 ](x)

= Sτ [Sτ [φ0]](x)− Sτ [S
(n)
τ [φ

(n)
0 ]](x)

≤ Sτ [φ0](X
2,ε
x (τ))− S(n)

τ [φ
(n)
0 ](X2,ε

x (τ)) +
ε

4
. (88)

25



Now let

wε
2(t)

.
=

{
w2,ε

x (t) if t ∈ [0, τ ]
w1,ε

X2,ε
x (τ)

(t− τ) if t ∈ (τ, 2τ ],

and let X
2,ε
x be the corresponding trajectory. Then combining (87) and (88), one has

0 ≤ S2τ [φ0](x)− Sτ [S
(n)
τ φ

(n)
0 ](x)

≤MC′|X2,ε
x (2τ)|∆ +MC′|X2,ε

x (τ)|∆ +
ε

2
+
ε

4
. (89)

Applying Lemma 4.3 again, but now using (89), one has

0 ≤ S2τ [φ0](x)− S(n)
τ [S(n)

τ [φ
(n)
0 ]](x)

= Sτ [Sτ [φ0]](x)− Sτ [S
(n)
τ [φ

(n)
0 ]](x) + Sτ [S

(n)
τ [φ

(n)
0 ]](x)− S(n)

τ [S(n)
τ [φ

(n)
0 ]](x)

≤MC′|X2,ε
x (2τ)|∆ +MC′|X2,ε

x (τ)|∆ +MC′|x|∆ +
ε

2
+
ε

4

= MC′∆
2∑

i=0

|X2,ε
x (iτ)|+

2∑
i=1

ε

2i
. (90)

It is then clear that, by induction, one obtains

Lemma 4.4

0 ≤ SNτ [φ0](x)− S(n)
τ

N
[φ0](x) ≤MC′∆

N∑
i=0

|XN,ε
x (iτ)|+

N∑
i=1

ε

2i
. (91)

where the construction of ε–optimal X
N,ε
x (·) by induction follows in the obvious way as above.

Theorem 4.5 Let {ψi}n
i=1, C

′ and ∆ be as in Lemma 4.3. Then, there exists m,λ ∈ (0,∞) such
that

0 ≤W (x)−W (n)∞(x) ≤MC′

(
em

1− e−λτ

)
|x|∆ ∀x ∈ BR(0).

Remark 4.6 By Theorem 2.12, there exists N = N(n) <∞ such that

W (n)∞(x) = W (n)N(x) ∀x ∈ BR(0),

and so Theorem 4.5 also implies

0 ≤W (x)−W (n)N(x) ≤MC′

(
em

1− e−λτ

)
|x|∆ ∀x ∈ BR(0)

for N ≥ N(n).
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Proof. Let ε ∈ (0, 1). Fix φ0 and x. For each N < ∞, construct wε
N(·) as above along

with the corresponding X
N,ε
x . Let wε

∞(t) = wε
N(t) if t ∈ [0, Nτ ], and similarly, X

∞,ε
x (t) = X

N,ε
x (t) if

t ∈ [0, Nτ ]. Then, by [32] (see also [33]), there exists K̃ <∞ (independent of ε ∈ (0, 1) ) such that

‖wε
∞‖L2(0,Nτ) ≤ K̃(1 + |x|2)

for all N < ∞. Consequently, using Assumptions (A1) and (A2), there exist m,λ ∈ (0,∞) such
that

|X∞,ε
x (t)| ≤ |x|em−λt ∀ t ∈ [0,∞). (92)

Then, by Lemma 4.4 and (92),

0 ≤ SNτ [φ0](x)− S(n)
τ

N
[φ0](x) ≤MC′∆|x|em

N∑
i=0

e−λiτ +
N∑

i=1

ε

2i

≤MC′∆|x| em

1− e−λτ
+ ε.

Since this is true for all N ∈ N , and S(n)
τ

N
[φ0](x) = S(n)

τ

N+1
[φ0](x) = W (n)∞(x) for all N ≥ N(n),

one obtains the result by taking the limit as N →∞ and then as ε ↓ 0.

Lastly, we note that for τ sufficiently small, where

τ ≤ 1/λ (93)

is sufficient (so that λτ/2 ≤ (1− e−λτ ) ), one has

0 ≤W (x)−W (n)∞(x) ≤MC′∆
( em

1− e−λτ

)
|x| ≤ K1|x|(∆/τ) (94)

with
K1

.
= 2MC′em/λ. (95)

5 Errors in the Approximation of B

In the previous section, we considered the errors due to truncation while assuming that B and
consequently, the eigenvector, e were computed exactly. Of course, as discussed in Section 3, there
is an allowable upper limit for errors in the elements of B, below which one can guarantee the
convergence of the power method. The errors in B also translate into errors in the eigenvector and
consequently the approximate solution as discussed in Sections 3 and 6. In this section, we consider
a power series (in t) for V (t, x)

.
= St[ψi](x) where we recall Bj,i = −maxx∈BR(0)[−ψj(x)−Sτ [ψi](x)].

With the power series for V (t, x) = St[ψi](x) truncated at some level, tn
′−1 (for each i), we obtain a

relationship between n′, τ and basis function density which guarantees that the errors in B do not
exceed the allowable bounds obtained in Section 3. In addition to the errors incurred by truncation
of the power series, there may be errors in the computation of the terms in the series themselves. In
subsection 5.1, one particular method for computing the power series terms to sufficient accuracy
is given.
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As noted above, one approach to the computation of B is a Taylor series (in t) approximation
to St[ψi](x). More specifically, letting V (t, x) = St[ψi](x), so that V satisfies

Vt = f · ∇V + l +
1

2γ2
∇V TσσT∇V (96)

V (0, x) = ψi(x)

one may approximate V as

V (t, x) = V0(x) + V1(x)t+
1

2
V2(x)t

2 + . . . . (97)

Here V0(x) = ψi(x) and V1 is the right hand side of (96) with ψi replacing V . Specifically,

V1(x) = fψix + l +
1

2γ2
ψixaψix

where a = σσT and we drop the gradient/vector notation for simplification here and below. The
higher order terms are computed by differentiating (96) at t = 0. Of course this process requires
some smoothness for V . The following is well–known, and so we only sketch a proof.

Theorem 5.1 Given R′ <∞ and n′ ∈ N , there exists τ ′ > 0 such that V ∈ Cn′
((0, τ ′)×BR′(0)).

Proof. The result for C2 can be found, for instance, in [9] as well as many earlier works (see
the references in [9] as well as [15]). In order to obtain continuity of higher derivatives, one simply
differentiates (97), and applies the same technique. For example, the partial Vxl

(t, x) satisfies

Ut =
[
fxl
Vx + lxl

+ Vxaxl
Vx

]
+
[
f + 2Vxa

]
Ux

U(0, x) = ψixl
(x).

Note that τ ′ may depend on n′.

Fix some R′, n′ < ∞. Let τ ′ be given by Theorem 5.1. We assume τ < min{τ ′, 1, 1/c} (where
the motivation for the bounds of 1 and 1/c appear in (103) and (106) below) and R̃ < R′. Then we
may approximate V over (0, τ)×B

R̃
(0) by

Ṽ (t, x) = V0(x) + V1(x)t+ V2(x)
t2

2
+ . . .+ Vn′−1(x)

tn
′−1

(n′ − 1)!
. (98)

Letting
MR′,n′

.
= max

(t,x)∈[0,τ ]×B
R̃

(0)
|Vt(n

′)(t, x)|,

one has

|V (t, x)− Ṽ (t, x)| ≤MR′,n′
τn′

(n′)!
∀ (t, x) ∈ [0, τ ]×B

R̃
(0). (99)

Now define the corresponding approximation to B by

B̃j,i = − max
x∈B

R̃
(0)

{
ψj(x)− Ṽ (τ, x)

}
. (100)
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By (99) and (100), one has

|Bj,i − B̃j,i| ≤MR′,n′
τn′

(n′)!
. (101)

Comparing (101) with Theorem 3.10, one finds that a sufficient condition for the convergence
of the power method (using B̃ computed from approximation Ṽ ) is that τ ≤ 1/c and that for some
µ ∈ {2, 3, 4, . . .} (µ = 2 is the weakest condition)

MR′,n′
τn′

(n′)!
≤
[
min
i6=1

|xi|2
] ( δc5

9(16)M2

)
τ 4

nµ
.

Note that the τ ≤ 1/c condition can be removed by using Theorems 3.8 and 3.9 instead of 3.10.

Since computation of B̃j,i requires the maximization operation, below we will introduce an
approximation for B̃j,i, to be denoted by B̂j,i (where the maximum may only be computed approx-
imately rather than exactly). Suppose further that

|B̃j,i − B̂j,i| ≤MR′,n′
τn′

(n′)!
. (102)

Then, by (102), (101) with Theorem 3.10, one finds that a sufficient condition for the convergence
of the power method (using B̂) is that τ ≤ 1/c and that for some µ ∈ {2, 3, 4, . . .} (µ = 2 is the
weakest condition)

2MR′,n′
τn′

(n′)!
≤
[
min
i6=1

|xi|2
] ( δc5

9(16)M2

)
τ 4

nµ
, (103)

and so a sufficient condition is

τn′−4 ≤
[
min
i6=1

|xi|2
] ( δc5(n′)!

9(32)M2MR′,n′

)
1

nµ
. (104)

Suppose a rectangular grid of evenly spaced basis function centers with ND centerpoints per dimen-
sion, and recall that ψ1 is centered at the origin which impliesND is odd. (Perhaps it should be noted
that this is conservative in that we are considering a rectangular grid encompassing BDR

rather than
just those basis functions centered in the sphere itself.) This implies mini6=1 |xi|2 = 4D2

R/(ND− 1)2,
and (104) becomes

τn′−4 ≤
(

D2
Rδc

5(n′)!
9(8)M2MR′,n′

)(
1

ND

)mµ( 1

ND − 1

)2

which implies a sufficient condition is

τn′−4 ≤
(

D2
Rδc

5(n′)!
9(8)M2MR′,n′

)(
1

ND

)mµ+2 .
= M̃R′,n′

(
1

ND

)mµ+2

(105)

where we recall that m is the dimension of the state space.

Therefore, if one fixes τ < min{1, 1/c}, then it is sufficient that

n′ ≥ 4 +
log M̃R′,n′ + (mµ+ 2) log (1/ND)

log τ
. (106)
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Alternatively, one may, without loss of generality, require M̃R′,n′ ≥ 1 in which case (noting that
log τ < 0 since τ < 1) (106) yields the sufficient condition

n′ ≥ 4 +
(mµ+ 2) log (1/ND)

log τ
(107)

in which case the lower bound on n′ scales like log (1/ND) . We remark, that this sufficient condition
may be quite conservative.

5.1 A Method for Computing B

As noted above, one would not typically have a closed–form expression for the Bj,i or even the B̃j,i

terms, and we denote the approximation of B̃ by B̂. In this subsection, we indicate some specifics
of a numerical method for the approximation. This is not essential to the paper, but we felt that it
was useful to sketch an approximation technique so as to concretely indicate one approach to this
subproblem.

The approach taken was to define

X̃j,i(t)
.
= argmax{ψj(x)− Ṽ (t, x)}

where Ṽ is given by (98) (i.e. the truncated power series expansion of St[ψi](x)), and then to
propagate X̃j,i as the solution of an ODE forward from t = 0 to τ via a Runge–Kutta method.

One difficulty is that X̃j,i(t) diverges as t ↓ 0. In order to remedy this, and also remedy unbounded
derivatives as t ↓ 0, we replace ψj(x) by ψτ

j,i(t, x) where

ψτ
j,i(t, x)

.
= −1

2
(x− ξ(t))T [(C + δ(1− t/τ))I](x− ξ(t)) (108)

where
ξ(t)

.
= xi + (t/τ)(xj − xi), (109)

and δ > 0. Then one may define

X̃τ
j,i(t)

.
= argmax

x
{ψτ

j,i(t, x)− Ṽ (t, x)}, (110)

and note that
X̃τ

j,i(τ) = X̃j,i(τ) = argmax{ψj(x)− Ṽ (t, x)}.

Since X̃τ
j,i(t) is the argmax at each time t ∈ [0, τ ], this implies

[ψτ
j,i]x(t, X̃

τ
j,i(t))− Ṽx(t, X̃

τ
j,i(t)) = 0

for all t ∈ [0, τ ]. Differentiating with respect to time, implies[
[ψτ

j,i]xx(t, X̃
τ
j,i(t))− Ṽxx(t, X̃

τ
j,i(t))

] ˙̃
X

τ

j,i(t) +
[
]ψτ

j,i]tx(t, X̃
τ
j,i(t))− Ṽtx(t, X̃

τ
j,i(t))

]
= 0,

or,

˙̃
X

τ

j,i(t) =
[
[ψτ

j,i]xx(t, X̃
τ
j,i(t))− Ṽxx(t, X̃

τ
j,i(t))

]−1[
[ψτ

j,i]tx(t, X̃
τ
j,i(t))− Ṽtx(t, X̃

τ
j,i(t))

]
. (111)
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The initial state for (111) is

X̃τ
j,i(0) = argmax

x
{ψτ

j,i(0, x)− Ṽ (0, x)} = argmax
x

{−1
2
(x− xi)

T (C + δI)(x− xi)− ψi(x)} = xi.

Note that [
[ψτ

j,i]xx(0, x)− Ṽxx(0, x)
]

= −[C + δI] + C = −δI (112)

which is negative definite, and[
[ψτ

j,i]xx(τ, x)− Ṽxx(τ, x)
]

= −C − Ṽxx(τ, x) (113)

would be negative definite on BR by Assumption (A5′) if approximation Ṽ (τ, ·) were replaced by
Sτ [ψi]. Also,

X̃τ
j,i(0) = xi ∈ BDR

, and X̃τ
j,i(τ) ∈ BR (114)

if approximation Ṽ (τ, ·) is replaced by Sτ [ψi]. This suggests the following assumption (which is
only used for this approach to computing B). Suppose there exists δ̂ > 0 such that

[
[ψτ

j,i]xx(t, x)− Ṽxx(t, x)
]
+ δ̂I < 0 ∀ |x| ≤ ĝ(t), ∀t ∈ [0, τ ]

and
|X̃τ

j,i(t)| ≤ ĝ(t) ∀ t ∈ [0, τ ]

(115)

where g : [0, τ ] → R is any function such that ĝ(0) = DR, ĝ(τ) = R and ĝ is monotonically decreas-
ing. Note that, by (112)–(114), the conditions are satisfied at both endpoints (t = 0 and t = τ)
when Ṽ (τ, ·) is replaced by Sτ [ψi]. Consequently, this may not be significantly more restrictive than
the general assumptions, and for the purposes of sketching this particular approach to computing
B, let us assume (115). Note that this guarantees the existence of the inverse in (111), and further
that X̃τ

j,i(τ) is the unique maximizer in BR.

Analytical expressions for the right hand side of (111) can be obtained from (98) and (108).
(These can be used to generate sufficient conditions that guarantee (115), but these are likely much
too conservative.) Thus, one merely needs to propagate the n–dimensional ODE (111) forward to
time τ . A Runge-Kutta method may be used for this, and the resulting approximate solution is
denoted by X̂τ

j,i. The approximation of the elements of B̂ are then given by

B̂j,i = −
{
ψτ

j,i(X̂
τ (τ))− Ṽ (τ, X̂τ (τ))

}
= −

{
ψj(X̂

τ (τ))− Ṽ (τ, X̂τ (τ))
}
. (116)

Note that

the number of steps in the Runge–Kutta algorithm must be controlled so that

(102) is satisfied.
(117)

6 Error Summary

The error analyses of the previous three sections will now be combined. In particular, the errors
due to truncation and the errors in computation of B will be combined to produce overall error
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bounds (125), (126). A condition required for the algorithm to work (assuming one uses the power
series of Section 5 for computation of B) is also obtained.

Theorems 3.7 to 3.10 provided sufficient conditions for the power method step to converge to the
max–plus eigenvector. Employing the simplest condition (but also the strictest), that of Theorem
3.10, convergence of the power method with approximation B̂ to B is guaranteed if

|B̂i,j −Bi,j| ≤ min
i6=1

{|xi|2}
(

δc5

9(16)M2

)
τ 4

nµ
∀ i, j (118)

where µ ∈ {2, 3, 4, ...} and δ is given by (49). Note that we are assuming τ ≤ min{1, 1/c, τ ′} as
in Section 5 (as well as all assumptions including (A5′) and technical conditions (18), (36) which
appear in Section 3). Then, Theorem 3.10 implies that a resulting error bound for the max–plus
eigenvector given by

‖e− ê‖ .
= max

i
|ei − êi| ≤ min

i6=1
{|xi|2}

(
δc5

9(16)M2

)
τ 4

nµ−2
. (119)

where ê corresponds to B̂. We remark that slightly different error estimates (under slightly different
conditions) are also given in Theorems 3.8 and 3.9.

Suppose we adopt the notation Ŵ (x)
.
=
⊕n

i=1 êi ⊗ ψi(x) and W f (x)
.
=
⊕n

i=1 ei ⊗ ψi(x) so that
W f corresponds to the finite expansion with zero error in the computation/approximation of B.
Then, by (119),

‖Ŵ −W f‖ .
= max

|x|≤R
|Ŵ (x)−W f (x)| ≤ min

i6=1
{|xi|2}

(
δc5

9(16)M2

)
τ 4

nµ−2

= min
i6=1

{|xi|2}
(

δc5τ 4

9(16)M2

)(
1

ND

)m(µ−2)

(120)

where again, ND is the number of centers of basis functions per dimension of the state space with
a rectangular, evenly spaced grid of centers. It should be recalled that the basis functions are such
that ψ1 is centered at the origin (x1 = 0), and so ND is odd. (Perhaps one should note that we
are being sloppy here by using the number of basis functions corresponding to covering the entire
rectangle which encloses the sphere BDR

, although only those with centers covering the sphere itself
are required for the bound. Consequently, the above bound is conservative.) Also, with the evenly
spaced basis function centers, (120) can be written as

‖Ŵ −W f‖ ≤
(
D2

Rδc
5τ 4

9(4)M2

)(
1

ND

)m(µ−2)( 1

ND − 1

)2

(121)

Using the approach of Section 5, (118) is satisfied if

τn′−4 ≤ M̃R′,n′

(
1

ND

)mµ+2

(122)

where M̃R′,n′ is given by (105) and n′ is the number of terms (including zeroth order) in the Taylor
series, and if (117) is satisfied.
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This does not account for the truncation errors induced by using only a finite number of basis
functions. Let W be the true value function (see Section 2). Then, by (94),

|W (x)−W f (x)| ≤ K1
|x|
τ

(
2DR

ND − 1

)
∀x ∈ BR (123)

where K1 is given by (95), 2DR/(ND − 1) = ∆, and τ satisfies (93); τ now must satisfy

τ ≤ min{1, 1/c, 1/λ, τ ′}. (124)

The error bound (123) is not without drawbacks. In particular, τ appears in the denominator.
However, it does not seem possible with the techniques of this paper to remove that term. This is
the reason for concentrating in Section 5 on fixed τ with increasing n′ as the means for reducing
errors.

Combining (121) and (123), the total error bound (assuming convergence of the power method
– for which (122) and (117) form a sufficient condition – and τ ≤ min{1, 1/c, 1/λ, τ ′}) is given by

|W (x)− Ŵ (x)| ≤
(
D2

Rδc
5τ 4

9(4)M2

)(
1

ND

)m(µ−2)( 1

ND − 1

)2

+K1
|x|
τ

(
2DR

ND − 1

)
which for ND ≥ 3

≤
(
D2

Rδc
5τ 4

18M2

)(
1

ND

)m(µ−2)+2

+K1
|x|
τ

(
2DR

ND

)
. (125)

Since the best error rate in the last term in 1/ND, we take µ = 2, and find in that case

|W (x)− Ŵ (x)| ≤
[
D2

Rδc
5τ 4

18M2
+ 2K1DR

|x|
τ

](
1

ND

)
. (126)

That is, the total error goes down linearly in (1/ND). Note that this rate is constrained by the fact
that the solutions are only viscosity solutions – which may have discontinuous first derivatives. It
is conjectured that with smooth solutions, the rate would instead be (1/ND)2.

This assumes that conditions (122) and (117) are met as well as (124). Also, as in Section 5,
one may prefer to write (122) as

n′ ≥ 4 +
log M̃R′,n′ + (mµ+ 2) log (1/ND)

log τ
,

or assuming without loss of generality that M̃R′,n′ ≥ 1, one has the less tight but clearer bound of

n′ ≥ 4 +
(mµ+ 2) log (1/ND)

log τ

in which case the lower bound on n′ scales like log (1/ND) . From this, one sees for instance that
doubling ND would typically imply the addition of

d
((2m+ 2) log (1/2)

log τ

)
= d

((2m+ 2) log 2

log (1/τ)

)
to n′ where d(z) indicates the smallest integer greater than or equal to z. Again, this assumes
the use of the Taylor series/Runge–Kutta approach of Section 5 toward the approximation of B.
Alternate approaches may yield different conditions.
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Remark 6.1 All error bounds are actually conceived as the errors which may be achieved with
given computer effort. A key underlying assumption of this paper is that all the elements of B
are computed. This requires substantial effort since the number of terms in B is the square of the
number of basis functions. In practice, it has been observed that elements of B, Bi,j, corresponding
to basis function pairs where |xi − xj| is large generally do not contribute at all to the resulting
eigenvector (recall that this is the max–plus algebra). By not computing these terms, one could
greatly reduce the computations. This is a question for further study which lies beyond the bounds
of the current paper.
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Birkhäuser (1991).

[2] J.A. Ball and J.W. Helton, “H∞ control for nonlinear plants: connections with differential
games”, Proc. 28th IEEE Conf. Dec. Control, Tampa FL (1989), 956–962.

[3] M. Bardi and I. Capuzzo-Dolcetta, “Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations”, Birkhauser, Boston, 1997.

[4] F.L. Baccelli, G. Cohen, G.J. Olsder and J.-P. Quadrat, Synchronization and Linearity, John
Wiley (1992).

[5] R.K. Boel, M.R. James and I.R. Petersen, “Robustness and risk sensitive filtering”, Submitted
to IEEE Trans. Auto. Control.

[6] G. Didinsky, T. Basar and P. Bernhard, “Structural properties of minimax policies of a class
of differential games arising in nonlinear H∞ –control and filtering” Proc. 32nd IEEE CDC
(1993).
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